common.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/hypervisor.h>
  18. #include <asm/processor.h>
  19. #include <asm/sections.h>
  20. #include <linux/topology.h>
  21. #include <linux/cpumask.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/atomic.h>
  24. #include <asm/proto.h>
  25. #include <asm/setup.h>
  26. #include <asm/apic.h>
  27. #include <asm/desc.h>
  28. #include <asm/i387.h>
  29. #include <asm/mtrr.h>
  30. #include <linux/numa.h>
  31. #include <asm/asm.h>
  32. #include <asm/cpu.h>
  33. #include <asm/mce.h>
  34. #include <asm/msr.h>
  35. #include <asm/pat.h>
  36. #ifdef CONFIG_X86_LOCAL_APIC
  37. #include <asm/uv/uv.h>
  38. #endif
  39. #include "cpu.h"
  40. /* all of these masks are initialized in setup_cpu_local_masks() */
  41. cpumask_var_t cpu_initialized_mask;
  42. cpumask_var_t cpu_callout_mask;
  43. cpumask_var_t cpu_callin_mask;
  44. /* representing cpus for which sibling maps can be computed */
  45. cpumask_var_t cpu_sibling_setup_mask;
  46. /* correctly size the local cpu masks */
  47. void __init setup_cpu_local_masks(void)
  48. {
  49. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  50. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  51. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  52. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  53. }
  54. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  55. {
  56. #ifdef CONFIG_X86_64
  57. display_cacheinfo(c);
  58. #else
  59. /* Not much we can do here... */
  60. /* Check if at least it has cpuid */
  61. if (c->cpuid_level == -1) {
  62. /* No cpuid. It must be an ancient CPU */
  63. if (c->x86 == 4)
  64. strcpy(c->x86_model_id, "486");
  65. else if (c->x86 == 3)
  66. strcpy(c->x86_model_id, "386");
  67. }
  68. #endif
  69. }
  70. static const struct cpu_dev __cpuinitconst default_cpu = {
  71. .c_init = default_init,
  72. .c_vendor = "Unknown",
  73. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  74. };
  75. static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  76. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  77. #ifdef CONFIG_X86_64
  78. /*
  79. * We need valid kernel segments for data and code in long mode too
  80. * IRET will check the segment types kkeil 2000/10/28
  81. * Also sysret mandates a special GDT layout
  82. *
  83. * TLS descriptors are currently at a different place compared to i386.
  84. * Hopefully nobody expects them at a fixed place (Wine?)
  85. */
  86. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  87. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  88. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  89. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  90. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  91. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  92. #else
  93. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  94. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  95. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  96. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  97. /*
  98. * Segments used for calling PnP BIOS have byte granularity.
  99. * They code segments and data segments have fixed 64k limits,
  100. * the transfer segment sizes are set at run time.
  101. */
  102. /* 32-bit code */
  103. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  104. /* 16-bit code */
  105. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  106. /* 16-bit data */
  107. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  108. /* 16-bit data */
  109. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  110. /* 16-bit data */
  111. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  112. /*
  113. * The APM segments have byte granularity and their bases
  114. * are set at run time. All have 64k limits.
  115. */
  116. /* 32-bit code */
  117. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  118. /* 16-bit code */
  119. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  120. /* data */
  121. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  122. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  123. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  124. GDT_STACK_CANARY_INIT
  125. #endif
  126. } };
  127. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  128. static int __init x86_xsave_setup(char *s)
  129. {
  130. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  131. return 1;
  132. }
  133. __setup("noxsave", x86_xsave_setup);
  134. #ifdef CONFIG_X86_32
  135. static int cachesize_override __cpuinitdata = -1;
  136. static int disable_x86_serial_nr __cpuinitdata = 1;
  137. static int __init cachesize_setup(char *str)
  138. {
  139. get_option(&str, &cachesize_override);
  140. return 1;
  141. }
  142. __setup("cachesize=", cachesize_setup);
  143. static int __init x86_fxsr_setup(char *s)
  144. {
  145. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  146. setup_clear_cpu_cap(X86_FEATURE_XMM);
  147. return 1;
  148. }
  149. __setup("nofxsr", x86_fxsr_setup);
  150. static int __init x86_sep_setup(char *s)
  151. {
  152. setup_clear_cpu_cap(X86_FEATURE_SEP);
  153. return 1;
  154. }
  155. __setup("nosep", x86_sep_setup);
  156. /* Standard macro to see if a specific flag is changeable */
  157. static inline int flag_is_changeable_p(u32 flag)
  158. {
  159. u32 f1, f2;
  160. /*
  161. * Cyrix and IDT cpus allow disabling of CPUID
  162. * so the code below may return different results
  163. * when it is executed before and after enabling
  164. * the CPUID. Add "volatile" to not allow gcc to
  165. * optimize the subsequent calls to this function.
  166. */
  167. asm volatile ("pushfl \n\t"
  168. "pushfl \n\t"
  169. "popl %0 \n\t"
  170. "movl %0, %1 \n\t"
  171. "xorl %2, %0 \n\t"
  172. "pushl %0 \n\t"
  173. "popfl \n\t"
  174. "pushfl \n\t"
  175. "popl %0 \n\t"
  176. "popfl \n\t"
  177. : "=&r" (f1), "=&r" (f2)
  178. : "ir" (flag));
  179. return ((f1^f2) & flag) != 0;
  180. }
  181. /* Probe for the CPUID instruction */
  182. static int __cpuinit have_cpuid_p(void)
  183. {
  184. return flag_is_changeable_p(X86_EFLAGS_ID);
  185. }
  186. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  187. {
  188. unsigned long lo, hi;
  189. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  190. return;
  191. /* Disable processor serial number: */
  192. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  193. lo |= 0x200000;
  194. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  195. printk(KERN_NOTICE "CPU serial number disabled.\n");
  196. clear_cpu_cap(c, X86_FEATURE_PN);
  197. /* Disabling the serial number may affect the cpuid level */
  198. c->cpuid_level = cpuid_eax(0);
  199. }
  200. static int __init x86_serial_nr_setup(char *s)
  201. {
  202. disable_x86_serial_nr = 0;
  203. return 1;
  204. }
  205. __setup("serialnumber", x86_serial_nr_setup);
  206. #else
  207. static inline int flag_is_changeable_p(u32 flag)
  208. {
  209. return 1;
  210. }
  211. /* Probe for the CPUID instruction */
  212. static inline int have_cpuid_p(void)
  213. {
  214. return 1;
  215. }
  216. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  217. {
  218. }
  219. #endif
  220. /*
  221. * Some CPU features depend on higher CPUID levels, which may not always
  222. * be available due to CPUID level capping or broken virtualization
  223. * software. Add those features to this table to auto-disable them.
  224. */
  225. struct cpuid_dependent_feature {
  226. u32 feature;
  227. u32 level;
  228. };
  229. static const struct cpuid_dependent_feature __cpuinitconst
  230. cpuid_dependent_features[] = {
  231. { X86_FEATURE_MWAIT, 0x00000005 },
  232. { X86_FEATURE_DCA, 0x00000009 },
  233. { X86_FEATURE_XSAVE, 0x0000000d },
  234. { 0, 0 }
  235. };
  236. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  237. {
  238. const struct cpuid_dependent_feature *df;
  239. for (df = cpuid_dependent_features; df->feature; df++) {
  240. if (!cpu_has(c, df->feature))
  241. continue;
  242. /*
  243. * Note: cpuid_level is set to -1 if unavailable, but
  244. * extended_extended_level is set to 0 if unavailable
  245. * and the legitimate extended levels are all negative
  246. * when signed; hence the weird messing around with
  247. * signs here...
  248. */
  249. if (!((s32)df->level < 0 ?
  250. (u32)df->level > (u32)c->extended_cpuid_level :
  251. (s32)df->level > (s32)c->cpuid_level))
  252. continue;
  253. clear_cpu_cap(c, df->feature);
  254. if (!warn)
  255. continue;
  256. printk(KERN_WARNING
  257. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  258. x86_cap_flags[df->feature], df->level);
  259. }
  260. }
  261. /*
  262. * Naming convention should be: <Name> [(<Codename>)]
  263. * This table only is used unless init_<vendor>() below doesn't set it;
  264. * in particular, if CPUID levels 0x80000002..4 are supported, this
  265. * isn't used
  266. */
  267. /* Look up CPU names by table lookup. */
  268. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  269. {
  270. const struct cpu_model_info *info;
  271. if (c->x86_model >= 16)
  272. return NULL; /* Range check */
  273. if (!this_cpu)
  274. return NULL;
  275. info = this_cpu->c_models;
  276. while (info && info->family) {
  277. if (info->family == c->x86)
  278. return info->model_names[c->x86_model];
  279. info++;
  280. }
  281. return NULL; /* Not found */
  282. }
  283. __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
  284. __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
  285. void load_percpu_segment(int cpu)
  286. {
  287. #ifdef CONFIG_X86_32
  288. loadsegment(fs, __KERNEL_PERCPU);
  289. #else
  290. loadsegment(gs, 0);
  291. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  292. #endif
  293. load_stack_canary_segment();
  294. }
  295. /*
  296. * Current gdt points %fs at the "master" per-cpu area: after this,
  297. * it's on the real one.
  298. */
  299. void switch_to_new_gdt(int cpu)
  300. {
  301. struct desc_ptr gdt_descr;
  302. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  303. gdt_descr.size = GDT_SIZE - 1;
  304. load_gdt(&gdt_descr);
  305. /* Reload the per-cpu base */
  306. load_percpu_segment(cpu);
  307. }
  308. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  309. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  310. {
  311. unsigned int *v;
  312. char *p, *q;
  313. if (c->extended_cpuid_level < 0x80000004)
  314. return;
  315. v = (unsigned int *)c->x86_model_id;
  316. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  317. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  318. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  319. c->x86_model_id[48] = 0;
  320. /*
  321. * Intel chips right-justify this string for some dumb reason;
  322. * undo that brain damage:
  323. */
  324. p = q = &c->x86_model_id[0];
  325. while (*p == ' ')
  326. p++;
  327. if (p != q) {
  328. while (*p)
  329. *q++ = *p++;
  330. while (q <= &c->x86_model_id[48])
  331. *q++ = '\0'; /* Zero-pad the rest */
  332. }
  333. }
  334. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  335. {
  336. unsigned int n, dummy, ebx, ecx, edx, l2size;
  337. n = c->extended_cpuid_level;
  338. if (n >= 0x80000005) {
  339. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  340. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  341. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  342. c->x86_cache_size = (ecx>>24) + (edx>>24);
  343. #ifdef CONFIG_X86_64
  344. /* On K8 L1 TLB is inclusive, so don't count it */
  345. c->x86_tlbsize = 0;
  346. #endif
  347. }
  348. if (n < 0x80000006) /* Some chips just has a large L1. */
  349. return;
  350. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  351. l2size = ecx >> 16;
  352. #ifdef CONFIG_X86_64
  353. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  354. #else
  355. /* do processor-specific cache resizing */
  356. if (this_cpu->c_size_cache)
  357. l2size = this_cpu->c_size_cache(c, l2size);
  358. /* Allow user to override all this if necessary. */
  359. if (cachesize_override != -1)
  360. l2size = cachesize_override;
  361. if (l2size == 0)
  362. return; /* Again, no L2 cache is possible */
  363. #endif
  364. c->x86_cache_size = l2size;
  365. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  366. l2size, ecx & 0xFF);
  367. }
  368. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  369. {
  370. #ifdef CONFIG_X86_HT
  371. u32 eax, ebx, ecx, edx;
  372. int index_msb, core_bits;
  373. if (!cpu_has(c, X86_FEATURE_HT))
  374. return;
  375. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  376. goto out;
  377. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  378. return;
  379. cpuid(1, &eax, &ebx, &ecx, &edx);
  380. smp_num_siblings = (ebx & 0xff0000) >> 16;
  381. if (smp_num_siblings == 1) {
  382. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  383. goto out;
  384. }
  385. if (smp_num_siblings <= 1)
  386. goto out;
  387. if (smp_num_siblings > nr_cpu_ids) {
  388. pr_warning("CPU: Unsupported number of siblings %d",
  389. smp_num_siblings);
  390. smp_num_siblings = 1;
  391. return;
  392. }
  393. index_msb = get_count_order(smp_num_siblings);
  394. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  395. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  396. index_msb = get_count_order(smp_num_siblings);
  397. core_bits = get_count_order(c->x86_max_cores);
  398. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  399. ((1 << core_bits) - 1);
  400. out:
  401. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  402. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  403. c->phys_proc_id);
  404. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  405. c->cpu_core_id);
  406. }
  407. #endif
  408. }
  409. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  410. {
  411. char *v = c->x86_vendor_id;
  412. int i;
  413. for (i = 0; i < X86_VENDOR_NUM; i++) {
  414. if (!cpu_devs[i])
  415. break;
  416. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  417. (cpu_devs[i]->c_ident[1] &&
  418. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  419. this_cpu = cpu_devs[i];
  420. c->x86_vendor = this_cpu->c_x86_vendor;
  421. return;
  422. }
  423. }
  424. printk_once(KERN_ERR
  425. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  426. "CPU: Your system may be unstable.\n", v);
  427. c->x86_vendor = X86_VENDOR_UNKNOWN;
  428. this_cpu = &default_cpu;
  429. }
  430. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  431. {
  432. /* Get vendor name */
  433. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  434. (unsigned int *)&c->x86_vendor_id[0],
  435. (unsigned int *)&c->x86_vendor_id[8],
  436. (unsigned int *)&c->x86_vendor_id[4]);
  437. c->x86 = 4;
  438. /* Intel-defined flags: level 0x00000001 */
  439. if (c->cpuid_level >= 0x00000001) {
  440. u32 junk, tfms, cap0, misc;
  441. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  442. c->x86 = (tfms >> 8) & 0xf;
  443. c->x86_model = (tfms >> 4) & 0xf;
  444. c->x86_mask = tfms & 0xf;
  445. if (c->x86 == 0xf)
  446. c->x86 += (tfms >> 20) & 0xff;
  447. if (c->x86 >= 0x6)
  448. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  449. if (cap0 & (1<<19)) {
  450. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  451. c->x86_cache_alignment = c->x86_clflush_size;
  452. }
  453. }
  454. }
  455. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  456. {
  457. u32 tfms, xlvl;
  458. u32 ebx;
  459. /* Intel-defined flags: level 0x00000001 */
  460. if (c->cpuid_level >= 0x00000001) {
  461. u32 capability, excap;
  462. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  463. c->x86_capability[0] = capability;
  464. c->x86_capability[4] = excap;
  465. }
  466. /* AMD-defined flags: level 0x80000001 */
  467. xlvl = cpuid_eax(0x80000000);
  468. c->extended_cpuid_level = xlvl;
  469. if ((xlvl & 0xffff0000) == 0x80000000) {
  470. if (xlvl >= 0x80000001) {
  471. c->x86_capability[1] = cpuid_edx(0x80000001);
  472. c->x86_capability[6] = cpuid_ecx(0x80000001);
  473. }
  474. }
  475. if (c->extended_cpuid_level >= 0x80000008) {
  476. u32 eax = cpuid_eax(0x80000008);
  477. c->x86_virt_bits = (eax >> 8) & 0xff;
  478. c->x86_phys_bits = eax & 0xff;
  479. }
  480. #ifdef CONFIG_X86_32
  481. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  482. c->x86_phys_bits = 36;
  483. #endif
  484. if (c->extended_cpuid_level >= 0x80000007)
  485. c->x86_power = cpuid_edx(0x80000007);
  486. }
  487. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  488. {
  489. #ifdef CONFIG_X86_32
  490. int i;
  491. /*
  492. * First of all, decide if this is a 486 or higher
  493. * It's a 486 if we can modify the AC flag
  494. */
  495. if (flag_is_changeable_p(X86_EFLAGS_AC))
  496. c->x86 = 4;
  497. else
  498. c->x86 = 3;
  499. for (i = 0; i < X86_VENDOR_NUM; i++)
  500. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  501. c->x86_vendor_id[0] = 0;
  502. cpu_devs[i]->c_identify(c);
  503. if (c->x86_vendor_id[0]) {
  504. get_cpu_vendor(c);
  505. break;
  506. }
  507. }
  508. #endif
  509. }
  510. /*
  511. * Do minimum CPU detection early.
  512. * Fields really needed: vendor, cpuid_level, family, model, mask,
  513. * cache alignment.
  514. * The others are not touched to avoid unwanted side effects.
  515. *
  516. * WARNING: this function is only called on the BP. Don't add code here
  517. * that is supposed to run on all CPUs.
  518. */
  519. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  520. {
  521. #ifdef CONFIG_X86_64
  522. c->x86_clflush_size = 64;
  523. c->x86_phys_bits = 36;
  524. c->x86_virt_bits = 48;
  525. #else
  526. c->x86_clflush_size = 32;
  527. c->x86_phys_bits = 32;
  528. c->x86_virt_bits = 32;
  529. #endif
  530. c->x86_cache_alignment = c->x86_clflush_size;
  531. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  532. c->extended_cpuid_level = 0;
  533. if (!have_cpuid_p())
  534. identify_cpu_without_cpuid(c);
  535. /* cyrix could have cpuid enabled via c_identify()*/
  536. if (!have_cpuid_p())
  537. return;
  538. cpu_detect(c);
  539. get_cpu_vendor(c);
  540. get_cpu_cap(c);
  541. if (this_cpu->c_early_init)
  542. this_cpu->c_early_init(c);
  543. #ifdef CONFIG_SMP
  544. c->cpu_index = boot_cpu_id;
  545. #endif
  546. filter_cpuid_features(c, false);
  547. }
  548. void __init early_cpu_init(void)
  549. {
  550. const struct cpu_dev *const *cdev;
  551. int count = 0;
  552. printk(KERN_INFO "KERNEL supported cpus:\n");
  553. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  554. const struct cpu_dev *cpudev = *cdev;
  555. unsigned int j;
  556. if (count >= X86_VENDOR_NUM)
  557. break;
  558. cpu_devs[count] = cpudev;
  559. count++;
  560. for (j = 0; j < 2; j++) {
  561. if (!cpudev->c_ident[j])
  562. continue;
  563. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  564. cpudev->c_ident[j]);
  565. }
  566. }
  567. early_identify_cpu(&boot_cpu_data);
  568. }
  569. /*
  570. * The NOPL instruction is supposed to exist on all CPUs with
  571. * family >= 6; unfortunately, that's not true in practice because
  572. * of early VIA chips and (more importantly) broken virtualizers that
  573. * are not easy to detect. In the latter case it doesn't even *fail*
  574. * reliably, so probing for it doesn't even work. Disable it completely
  575. * unless we can find a reliable way to detect all the broken cases.
  576. */
  577. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  578. {
  579. clear_cpu_cap(c, X86_FEATURE_NOPL);
  580. }
  581. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  582. {
  583. c->extended_cpuid_level = 0;
  584. if (!have_cpuid_p())
  585. identify_cpu_without_cpuid(c);
  586. /* cyrix could have cpuid enabled via c_identify()*/
  587. if (!have_cpuid_p())
  588. return;
  589. cpu_detect(c);
  590. get_cpu_vendor(c);
  591. get_cpu_cap(c);
  592. if (c->cpuid_level >= 0x00000001) {
  593. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  594. #ifdef CONFIG_X86_32
  595. # ifdef CONFIG_X86_HT
  596. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  597. # else
  598. c->apicid = c->initial_apicid;
  599. # endif
  600. #endif
  601. #ifdef CONFIG_X86_HT
  602. c->phys_proc_id = c->initial_apicid;
  603. #endif
  604. }
  605. get_model_name(c); /* Default name */
  606. init_scattered_cpuid_features(c);
  607. detect_nopl(c);
  608. }
  609. /*
  610. * This does the hard work of actually picking apart the CPU stuff...
  611. */
  612. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  613. {
  614. int i;
  615. c->loops_per_jiffy = loops_per_jiffy;
  616. c->x86_cache_size = -1;
  617. c->x86_vendor = X86_VENDOR_UNKNOWN;
  618. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  619. c->x86_vendor_id[0] = '\0'; /* Unset */
  620. c->x86_model_id[0] = '\0'; /* Unset */
  621. c->x86_max_cores = 1;
  622. c->x86_coreid_bits = 0;
  623. #ifdef CONFIG_X86_64
  624. c->x86_clflush_size = 64;
  625. c->x86_phys_bits = 36;
  626. c->x86_virt_bits = 48;
  627. #else
  628. c->cpuid_level = -1; /* CPUID not detected */
  629. c->x86_clflush_size = 32;
  630. c->x86_phys_bits = 32;
  631. c->x86_virt_bits = 32;
  632. #endif
  633. c->x86_cache_alignment = c->x86_clflush_size;
  634. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  635. generic_identify(c);
  636. if (this_cpu->c_identify)
  637. this_cpu->c_identify(c);
  638. /* Clear/Set all flags overriden by options, after probe */
  639. for (i = 0; i < NCAPINTS; i++) {
  640. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  641. c->x86_capability[i] |= cpu_caps_set[i];
  642. }
  643. #ifdef CONFIG_X86_64
  644. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  645. #endif
  646. /*
  647. * Vendor-specific initialization. In this section we
  648. * canonicalize the feature flags, meaning if there are
  649. * features a certain CPU supports which CPUID doesn't
  650. * tell us, CPUID claiming incorrect flags, or other bugs,
  651. * we handle them here.
  652. *
  653. * At the end of this section, c->x86_capability better
  654. * indicate the features this CPU genuinely supports!
  655. */
  656. if (this_cpu->c_init)
  657. this_cpu->c_init(c);
  658. /* Disable the PN if appropriate */
  659. squash_the_stupid_serial_number(c);
  660. /*
  661. * The vendor-specific functions might have changed features.
  662. * Now we do "generic changes."
  663. */
  664. /* Filter out anything that depends on CPUID levels we don't have */
  665. filter_cpuid_features(c, true);
  666. /* If the model name is still unset, do table lookup. */
  667. if (!c->x86_model_id[0]) {
  668. const char *p;
  669. p = table_lookup_model(c);
  670. if (p)
  671. strcpy(c->x86_model_id, p);
  672. else
  673. /* Last resort... */
  674. sprintf(c->x86_model_id, "%02x/%02x",
  675. c->x86, c->x86_model);
  676. }
  677. #ifdef CONFIG_X86_64
  678. detect_ht(c);
  679. #endif
  680. init_hypervisor(c);
  681. /*
  682. * Clear/Set all flags overriden by options, need do it
  683. * before following smp all cpus cap AND.
  684. */
  685. for (i = 0; i < NCAPINTS; i++) {
  686. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  687. c->x86_capability[i] |= cpu_caps_set[i];
  688. }
  689. /*
  690. * On SMP, boot_cpu_data holds the common feature set between
  691. * all CPUs; so make sure that we indicate which features are
  692. * common between the CPUs. The first time this routine gets
  693. * executed, c == &boot_cpu_data.
  694. */
  695. if (c != &boot_cpu_data) {
  696. /* AND the already accumulated flags with these */
  697. for (i = 0; i < NCAPINTS; i++)
  698. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  699. }
  700. #ifdef CONFIG_X86_MCE
  701. /* Init Machine Check Exception if available. */
  702. mcheck_init(c);
  703. #endif
  704. select_idle_routine(c);
  705. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  706. numa_add_cpu(smp_processor_id());
  707. #endif
  708. }
  709. #ifdef CONFIG_X86_64
  710. static void vgetcpu_set_mode(void)
  711. {
  712. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  713. vgetcpu_mode = VGETCPU_RDTSCP;
  714. else
  715. vgetcpu_mode = VGETCPU_LSL;
  716. }
  717. #endif
  718. void __init identify_boot_cpu(void)
  719. {
  720. identify_cpu(&boot_cpu_data);
  721. init_c1e_mask();
  722. #ifdef CONFIG_X86_32
  723. sysenter_setup();
  724. enable_sep_cpu();
  725. #else
  726. vgetcpu_set_mode();
  727. #endif
  728. init_hw_perf_events();
  729. }
  730. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  731. {
  732. BUG_ON(c == &boot_cpu_data);
  733. identify_cpu(c);
  734. #ifdef CONFIG_X86_32
  735. enable_sep_cpu();
  736. #endif
  737. mtrr_ap_init();
  738. }
  739. struct msr_range {
  740. unsigned min;
  741. unsigned max;
  742. };
  743. static const struct msr_range msr_range_array[] __cpuinitconst = {
  744. { 0x00000000, 0x00000418},
  745. { 0xc0000000, 0xc000040b},
  746. { 0xc0010000, 0xc0010142},
  747. { 0xc0011000, 0xc001103b},
  748. };
  749. static void __cpuinit print_cpu_msr(void)
  750. {
  751. unsigned index_min, index_max;
  752. unsigned index;
  753. u64 val;
  754. int i;
  755. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  756. index_min = msr_range_array[i].min;
  757. index_max = msr_range_array[i].max;
  758. for (index = index_min; index < index_max; index++) {
  759. if (rdmsrl_amd_safe(index, &val))
  760. continue;
  761. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  762. }
  763. }
  764. }
  765. static int show_msr __cpuinitdata;
  766. static __init int setup_show_msr(char *arg)
  767. {
  768. int num;
  769. get_option(&arg, &num);
  770. if (num > 0)
  771. show_msr = num;
  772. return 1;
  773. }
  774. __setup("show_msr=", setup_show_msr);
  775. static __init int setup_noclflush(char *arg)
  776. {
  777. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  778. return 1;
  779. }
  780. __setup("noclflush", setup_noclflush);
  781. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  782. {
  783. const char *vendor = NULL;
  784. if (c->x86_vendor < X86_VENDOR_NUM) {
  785. vendor = this_cpu->c_vendor;
  786. } else {
  787. if (c->cpuid_level >= 0)
  788. vendor = c->x86_vendor_id;
  789. }
  790. if (vendor && !strstr(c->x86_model_id, vendor))
  791. printk(KERN_CONT "%s ", vendor);
  792. if (c->x86_model_id[0])
  793. printk(KERN_CONT "%s", c->x86_model_id);
  794. else
  795. printk(KERN_CONT "%d86", c->x86);
  796. if (c->x86_mask || c->cpuid_level >= 0)
  797. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  798. else
  799. printk(KERN_CONT "\n");
  800. #ifdef CONFIG_SMP
  801. if (c->cpu_index < show_msr)
  802. print_cpu_msr();
  803. #else
  804. if (show_msr)
  805. print_cpu_msr();
  806. #endif
  807. }
  808. static __init int setup_disablecpuid(char *arg)
  809. {
  810. int bit;
  811. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  812. setup_clear_cpu_cap(bit);
  813. else
  814. return 0;
  815. return 1;
  816. }
  817. __setup("clearcpuid=", setup_disablecpuid);
  818. #ifdef CONFIG_X86_64
  819. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  820. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  821. irq_stack_union) __aligned(PAGE_SIZE);
  822. /*
  823. * The following four percpu variables are hot. Align current_task to
  824. * cacheline size such that all four fall in the same cacheline.
  825. */
  826. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  827. &init_task;
  828. EXPORT_PER_CPU_SYMBOL(current_task);
  829. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  830. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  831. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  832. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  833. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  834. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  835. /*
  836. * Special IST stacks which the CPU switches to when it calls
  837. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  838. * limit), all of them are 4K, except the debug stack which
  839. * is 8K.
  840. */
  841. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  842. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  843. [DEBUG_STACK - 1] = DEBUG_STKSZ
  844. };
  845. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  846. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  847. /* May not be marked __init: used by software suspend */
  848. void syscall_init(void)
  849. {
  850. /*
  851. * LSTAR and STAR live in a bit strange symbiosis.
  852. * They both write to the same internal register. STAR allows to
  853. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  854. */
  855. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  856. wrmsrl(MSR_LSTAR, system_call);
  857. wrmsrl(MSR_CSTAR, ignore_sysret);
  858. #ifdef CONFIG_IA32_EMULATION
  859. syscall32_cpu_init();
  860. #endif
  861. /* Flags to clear on syscall */
  862. wrmsrl(MSR_SYSCALL_MASK,
  863. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  864. }
  865. unsigned long kernel_eflags;
  866. /*
  867. * Copies of the original ist values from the tss are only accessed during
  868. * debugging, no special alignment required.
  869. */
  870. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  871. #else /* CONFIG_X86_64 */
  872. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  873. EXPORT_PER_CPU_SYMBOL(current_task);
  874. #ifdef CONFIG_CC_STACKPROTECTOR
  875. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  876. #endif
  877. /* Make sure %fs and %gs are initialized properly in idle threads */
  878. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  879. {
  880. memset(regs, 0, sizeof(struct pt_regs));
  881. regs->fs = __KERNEL_PERCPU;
  882. regs->gs = __KERNEL_STACK_CANARY;
  883. return regs;
  884. }
  885. #endif /* CONFIG_X86_64 */
  886. /*
  887. * Clear all 6 debug registers:
  888. */
  889. static void clear_all_debug_regs(void)
  890. {
  891. int i;
  892. for (i = 0; i < 8; i++) {
  893. /* Ignore db4, db5 */
  894. if ((i == 4) || (i == 5))
  895. continue;
  896. set_debugreg(0, i);
  897. }
  898. }
  899. /*
  900. * cpu_init() initializes state that is per-CPU. Some data is already
  901. * initialized (naturally) in the bootstrap process, such as the GDT
  902. * and IDT. We reload them nevertheless, this function acts as a
  903. * 'CPU state barrier', nothing should get across.
  904. * A lot of state is already set up in PDA init for 64 bit
  905. */
  906. #ifdef CONFIG_X86_64
  907. void __cpuinit cpu_init(void)
  908. {
  909. struct orig_ist *orig_ist;
  910. struct task_struct *me;
  911. struct tss_struct *t;
  912. unsigned long v;
  913. int cpu;
  914. int i;
  915. cpu = stack_smp_processor_id();
  916. t = &per_cpu(init_tss, cpu);
  917. orig_ist = &per_cpu(orig_ist, cpu);
  918. #ifdef CONFIG_NUMA
  919. if (cpu != 0 && percpu_read(node_number) == 0 &&
  920. cpu_to_node(cpu) != NUMA_NO_NODE)
  921. percpu_write(node_number, cpu_to_node(cpu));
  922. #endif
  923. me = current;
  924. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  925. panic("CPU#%d already initialized!\n", cpu);
  926. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  927. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  928. /*
  929. * Initialize the per-CPU GDT with the boot GDT,
  930. * and set up the GDT descriptor:
  931. */
  932. switch_to_new_gdt(cpu);
  933. loadsegment(fs, 0);
  934. load_idt((const struct desc_ptr *)&idt_descr);
  935. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  936. syscall_init();
  937. wrmsrl(MSR_FS_BASE, 0);
  938. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  939. barrier();
  940. check_efer();
  941. if (cpu != 0)
  942. enable_x2apic();
  943. /*
  944. * set up and load the per-CPU TSS
  945. */
  946. if (!orig_ist->ist[0]) {
  947. char *estacks = per_cpu(exception_stacks, cpu);
  948. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  949. estacks += exception_stack_sizes[v];
  950. orig_ist->ist[v] = t->x86_tss.ist[v] =
  951. (unsigned long)estacks;
  952. }
  953. }
  954. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  955. /*
  956. * <= is required because the CPU will access up to
  957. * 8 bits beyond the end of the IO permission bitmap.
  958. */
  959. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  960. t->io_bitmap[i] = ~0UL;
  961. atomic_inc(&init_mm.mm_count);
  962. me->active_mm = &init_mm;
  963. BUG_ON(me->mm);
  964. enter_lazy_tlb(&init_mm, me);
  965. load_sp0(t, &current->thread);
  966. set_tss_desc(cpu, t);
  967. load_TR_desc();
  968. load_LDT(&init_mm.context);
  969. #ifdef CONFIG_KGDB
  970. /*
  971. * If the kgdb is connected no debug regs should be altered. This
  972. * is only applicable when KGDB and a KGDB I/O module are built
  973. * into the kernel and you are using early debugging with
  974. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  975. */
  976. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  977. arch_kgdb_ops.correct_hw_break();
  978. else
  979. #endif
  980. clear_all_debug_regs();
  981. fpu_init();
  982. raw_local_save_flags(kernel_eflags);
  983. if (is_uv_system())
  984. uv_cpu_init();
  985. }
  986. #else
  987. void __cpuinit cpu_init(void)
  988. {
  989. int cpu = smp_processor_id();
  990. struct task_struct *curr = current;
  991. struct tss_struct *t = &per_cpu(init_tss, cpu);
  992. struct thread_struct *thread = &curr->thread;
  993. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  994. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  995. for (;;)
  996. local_irq_enable();
  997. }
  998. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  999. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  1000. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1001. load_idt(&idt_descr);
  1002. switch_to_new_gdt(cpu);
  1003. /*
  1004. * Set up and load the per-CPU TSS and LDT
  1005. */
  1006. atomic_inc(&init_mm.mm_count);
  1007. curr->active_mm = &init_mm;
  1008. BUG_ON(curr->mm);
  1009. enter_lazy_tlb(&init_mm, curr);
  1010. load_sp0(t, thread);
  1011. set_tss_desc(cpu, t);
  1012. load_TR_desc();
  1013. load_LDT(&init_mm.context);
  1014. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1015. #ifdef CONFIG_DOUBLEFAULT
  1016. /* Set up doublefault TSS pointer in the GDT */
  1017. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1018. #endif
  1019. clear_all_debug_regs();
  1020. /*
  1021. * Force FPU initialization:
  1022. */
  1023. if (cpu_has_xsave)
  1024. current_thread_info()->status = TS_XSAVE;
  1025. else
  1026. current_thread_info()->status = 0;
  1027. clear_used_math();
  1028. mxcsr_feature_mask_init();
  1029. /*
  1030. * Boot processor to setup the FP and extended state context info.
  1031. */
  1032. if (smp_processor_id() == boot_cpu_id)
  1033. init_thread_xstate();
  1034. xsave_init();
  1035. }
  1036. #endif