head_64.S 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. /*
  2. * linux/boot/head.S
  3. *
  4. * Copyright (C) 1991, 1992, 1993 Linus Torvalds
  5. */
  6. /*
  7. * head.S contains the 32-bit startup code.
  8. *
  9. * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
  10. * the page directory will exist. The startup code will be overwritten by
  11. * the page directory. [According to comments etc elsewhere on a compressed
  12. * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
  13. *
  14. * Page 0 is deliberately kept safe, since System Management Mode code in
  15. * laptops may need to access the BIOS data stored there. This is also
  16. * useful for future device drivers that either access the BIOS via VM86
  17. * mode.
  18. */
  19. /*
  20. * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
  21. */
  22. .code32
  23. .text
  24. #include <linux/init.h>
  25. #include <linux/linkage.h>
  26. #include <asm/segment.h>
  27. #include <asm/pgtable_types.h>
  28. #include <asm/page_types.h>
  29. #include <asm/boot.h>
  30. #include <asm/msr.h>
  31. #include <asm/processor-flags.h>
  32. #include <asm/asm-offsets.h>
  33. __HEAD
  34. .code32
  35. ENTRY(startup_32)
  36. cld
  37. /*
  38. * Test KEEP_SEGMENTS flag to see if the bootloader is asking
  39. * us to not reload segments
  40. */
  41. testb $(1<<6), BP_loadflags(%esi)
  42. jnz 1f
  43. cli
  44. movl $(__KERNEL_DS), %eax
  45. movl %eax, %ds
  46. movl %eax, %es
  47. movl %eax, %ss
  48. 1:
  49. /*
  50. * Calculate the delta between where we were compiled to run
  51. * at and where we were actually loaded at. This can only be done
  52. * with a short local call on x86. Nothing else will tell us what
  53. * address we are running at. The reserved chunk of the real-mode
  54. * data at 0x1e4 (defined as a scratch field) are used as the stack
  55. * for this calculation. Only 4 bytes are needed.
  56. */
  57. leal (BP_scratch+4)(%esi), %esp
  58. call 1f
  59. 1: popl %ebp
  60. subl $1b, %ebp
  61. /* setup a stack and make sure cpu supports long mode. */
  62. movl $boot_stack_end, %eax
  63. addl %ebp, %eax
  64. movl %eax, %esp
  65. call verify_cpu
  66. testl %eax, %eax
  67. jnz no_longmode
  68. /*
  69. * Compute the delta between where we were compiled to run at
  70. * and where the code will actually run at.
  71. *
  72. * %ebp contains the address we are loaded at by the boot loader and %ebx
  73. * contains the address where we should move the kernel image temporarily
  74. * for safe in-place decompression.
  75. */
  76. #ifdef CONFIG_RELOCATABLE
  77. movl %ebp, %ebx
  78. movl BP_kernel_alignment(%esi), %eax
  79. decl %eax
  80. addl %eax, %ebx
  81. notl %eax
  82. andl %eax, %ebx
  83. #else
  84. movl $LOAD_PHYSICAL_ADDR, %ebx
  85. #endif
  86. /* Target address to relocate to for decompression */
  87. addl $z_extract_offset, %ebx
  88. /*
  89. * Prepare for entering 64 bit mode
  90. */
  91. /* Load new GDT with the 64bit segments using 32bit descriptor */
  92. leal gdt(%ebp), %eax
  93. movl %eax, gdt+2(%ebp)
  94. lgdt gdt(%ebp)
  95. /* Enable PAE mode */
  96. xorl %eax, %eax
  97. orl $(X86_CR4_PAE), %eax
  98. movl %eax, %cr4
  99. /*
  100. * Build early 4G boot pagetable
  101. */
  102. /* Initialize Page tables to 0 */
  103. leal pgtable(%ebx), %edi
  104. xorl %eax, %eax
  105. movl $((4096*6)/4), %ecx
  106. rep stosl
  107. /* Build Level 4 */
  108. leal pgtable + 0(%ebx), %edi
  109. leal 0x1007 (%edi), %eax
  110. movl %eax, 0(%edi)
  111. /* Build Level 3 */
  112. leal pgtable + 0x1000(%ebx), %edi
  113. leal 0x1007(%edi), %eax
  114. movl $4, %ecx
  115. 1: movl %eax, 0x00(%edi)
  116. addl $0x00001000, %eax
  117. addl $8, %edi
  118. decl %ecx
  119. jnz 1b
  120. /* Build Level 2 */
  121. leal pgtable + 0x2000(%ebx), %edi
  122. movl $0x00000183, %eax
  123. movl $2048, %ecx
  124. 1: movl %eax, 0(%edi)
  125. addl $0x00200000, %eax
  126. addl $8, %edi
  127. decl %ecx
  128. jnz 1b
  129. /* Enable the boot page tables */
  130. leal pgtable(%ebx), %eax
  131. movl %eax, %cr3
  132. /* Enable Long mode in EFER (Extended Feature Enable Register) */
  133. movl $MSR_EFER, %ecx
  134. rdmsr
  135. btsl $_EFER_LME, %eax
  136. wrmsr
  137. /*
  138. * Setup for the jump to 64bit mode
  139. *
  140. * When the jump is performend we will be in long mode but
  141. * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
  142. * (and in turn EFER.LMA = 1). To jump into 64bit mode we use
  143. * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
  144. * We place all of the values on our mini stack so lret can
  145. * used to perform that far jump.
  146. */
  147. pushl $__KERNEL_CS
  148. leal startup_64(%ebp), %eax
  149. pushl %eax
  150. /* Enter paged protected Mode, activating Long Mode */
  151. movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
  152. movl %eax, %cr0
  153. /* Jump from 32bit compatibility mode into 64bit mode. */
  154. lret
  155. ENDPROC(startup_32)
  156. no_longmode:
  157. /* This isn't an x86-64 CPU so hang */
  158. 1:
  159. hlt
  160. jmp 1b
  161. #include "../../kernel/verify_cpu_64.S"
  162. /*
  163. * Be careful here startup_64 needs to be at a predictable
  164. * address so I can export it in an ELF header. Bootloaders
  165. * should look at the ELF header to find this address, as
  166. * it may change in the future.
  167. */
  168. .code64
  169. .org 0x200
  170. ENTRY(startup_64)
  171. /*
  172. * We come here either from startup_32 or directly from a
  173. * 64bit bootloader. If we come here from a bootloader we depend on
  174. * an identity mapped page table being provied that maps our
  175. * entire text+data+bss and hopefully all of memory.
  176. */
  177. /* Setup data segments. */
  178. xorl %eax, %eax
  179. movl %eax, %ds
  180. movl %eax, %es
  181. movl %eax, %ss
  182. movl %eax, %fs
  183. movl %eax, %gs
  184. lldt %ax
  185. movl $0x20, %eax
  186. ltr %ax
  187. /*
  188. * Compute the decompressed kernel start address. It is where
  189. * we were loaded at aligned to a 2M boundary. %rbp contains the
  190. * decompressed kernel start address.
  191. *
  192. * If it is a relocatable kernel then decompress and run the kernel
  193. * from load address aligned to 2MB addr, otherwise decompress and
  194. * run the kernel from LOAD_PHYSICAL_ADDR
  195. *
  196. * We cannot rely on the calculation done in 32-bit mode, since we
  197. * may have been invoked via the 64-bit entry point.
  198. */
  199. /* Start with the delta to where the kernel will run at. */
  200. #ifdef CONFIG_RELOCATABLE
  201. leaq startup_32(%rip) /* - $startup_32 */, %rbp
  202. movl BP_kernel_alignment(%rsi), %eax
  203. decl %eax
  204. addq %rax, %rbp
  205. notq %rax
  206. andq %rax, %rbp
  207. #else
  208. movq $LOAD_PHYSICAL_ADDR, %rbp
  209. #endif
  210. /* Target address to relocate to for decompression */
  211. leaq z_extract_offset(%rbp), %rbx
  212. /* Set up the stack */
  213. leaq boot_stack_end(%rbx), %rsp
  214. /* Zero EFLAGS */
  215. pushq $0
  216. popfq
  217. /*
  218. * Copy the compressed kernel to the end of our buffer
  219. * where decompression in place becomes safe.
  220. */
  221. pushq %rsi
  222. leaq (_bss-8)(%rip), %rsi
  223. leaq (_bss-8)(%rbx), %rdi
  224. movq $_bss /* - $startup_32 */, %rcx
  225. shrq $3, %rcx
  226. std
  227. rep movsq
  228. cld
  229. popq %rsi
  230. /*
  231. * Jump to the relocated address.
  232. */
  233. leaq relocated(%rbx), %rax
  234. jmp *%rax
  235. .text
  236. relocated:
  237. /*
  238. * Clear BSS (stack is currently empty)
  239. */
  240. xorl %eax, %eax
  241. leaq _bss(%rip), %rdi
  242. leaq _ebss(%rip), %rcx
  243. subq %rdi, %rcx
  244. shrq $3, %rcx
  245. rep stosq
  246. /*
  247. * Do the decompression, and jump to the new kernel..
  248. */
  249. pushq %rsi /* Save the real mode argument */
  250. movq %rsi, %rdi /* real mode address */
  251. leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
  252. leaq input_data(%rip), %rdx /* input_data */
  253. movl $z_input_len, %ecx /* input_len */
  254. movq %rbp, %r8 /* output target address */
  255. call decompress_kernel
  256. popq %rsi
  257. /*
  258. * Jump to the decompressed kernel.
  259. */
  260. jmp *%rbp
  261. .data
  262. gdt:
  263. .word gdt_end - gdt
  264. .long gdt
  265. .word 0
  266. .quad 0x0000000000000000 /* NULL descriptor */
  267. .quad 0x00af9a000000ffff /* __KERNEL_CS */
  268. .quad 0x00cf92000000ffff /* __KERNEL_DS */
  269. .quad 0x0080890000000000 /* TS descriptor */
  270. .quad 0x0000000000000000 /* TS continued */
  271. gdt_end:
  272. /*
  273. * Stack and heap for uncompression
  274. */
  275. .bss
  276. .balign 4
  277. boot_heap:
  278. .fill BOOT_HEAP_SIZE, 1, 0
  279. boot_stack:
  280. .fill BOOT_STACK_SIZE, 1, 0
  281. boot_stack_end:
  282. /*
  283. * Space for page tables (not in .bss so not zeroed)
  284. */
  285. .section ".pgtable","a",@nobits
  286. .balign 4096
  287. pgtable:
  288. .fill 6*4096, 1, 0