srmmu.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336
  1. /*
  2. * srmmu.c: SRMMU specific routines for memory management.
  3. *
  4. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
  6. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  7. * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  8. * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/mm.h>
  12. #include <linux/slab.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/bootmem.h>
  18. #include <linux/fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/log2.h>
  22. #include <asm/bitext.h>
  23. #include <asm/page.h>
  24. #include <asm/pgalloc.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/io.h>
  27. #include <asm/vaddrs.h>
  28. #include <asm/traps.h>
  29. #include <asm/smp.h>
  30. #include <asm/mbus.h>
  31. #include <asm/cache.h>
  32. #include <asm/oplib.h>
  33. #include <asm/asi.h>
  34. #include <asm/msi.h>
  35. #include <asm/mmu_context.h>
  36. #include <asm/io-unit.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/tlbflush.h>
  39. /* Now the cpu specific definitions. */
  40. #include <asm/viking.h>
  41. #include <asm/mxcc.h>
  42. #include <asm/ross.h>
  43. #include <asm/tsunami.h>
  44. #include <asm/swift.h>
  45. #include <asm/turbosparc.h>
  46. #include <asm/leon.h>
  47. #include <asm/btfixup.h>
  48. enum mbus_module srmmu_modtype;
  49. static unsigned int hwbug_bitmask;
  50. int vac_cache_size;
  51. int vac_line_size;
  52. extern struct resource sparc_iomap;
  53. extern unsigned long last_valid_pfn;
  54. extern unsigned long page_kernel;
  55. static pgd_t *srmmu_swapper_pg_dir;
  56. #ifdef CONFIG_SMP
  57. #define FLUSH_BEGIN(mm)
  58. #define FLUSH_END
  59. #else
  60. #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
  61. #define FLUSH_END }
  62. #endif
  63. BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
  64. #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
  65. int flush_page_for_dma_global = 1;
  66. #ifdef CONFIG_SMP
  67. BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
  68. #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
  69. #endif
  70. char *srmmu_name;
  71. ctxd_t *srmmu_ctx_table_phys;
  72. static ctxd_t *srmmu_context_table;
  73. int viking_mxcc_present;
  74. static DEFINE_SPINLOCK(srmmu_context_spinlock);
  75. static int is_hypersparc;
  76. /*
  77. * In general all page table modifications should use the V8 atomic
  78. * swap instruction. This insures the mmu and the cpu are in sync
  79. * with respect to ref/mod bits in the page tables.
  80. */
  81. static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
  82. {
  83. __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
  84. return value;
  85. }
  86. static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
  87. {
  88. srmmu_swap((unsigned long *)ptep, pte_val(pteval));
  89. }
  90. /* The very generic SRMMU page table operations. */
  91. static inline int srmmu_device_memory(unsigned long x)
  92. {
  93. return ((x & 0xF0000000) != 0);
  94. }
  95. static int srmmu_cache_pagetables;
  96. /* these will be initialized in srmmu_nocache_calcsize() */
  97. static unsigned long srmmu_nocache_size;
  98. static unsigned long srmmu_nocache_end;
  99. /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  100. #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  101. /* The context table is a nocache user with the biggest alignment needs. */
  102. #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
  103. void *srmmu_nocache_pool;
  104. void *srmmu_nocache_bitmap;
  105. static struct bit_map srmmu_nocache_map;
  106. static unsigned long srmmu_pte_pfn(pte_t pte)
  107. {
  108. if (srmmu_device_memory(pte_val(pte))) {
  109. /* Just return something that will cause
  110. * pfn_valid() to return false. This makes
  111. * copy_one_pte() to just directly copy to
  112. * PTE over.
  113. */
  114. return ~0UL;
  115. }
  116. return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
  117. }
  118. static struct page *srmmu_pmd_page(pmd_t pmd)
  119. {
  120. if (srmmu_device_memory(pmd_val(pmd)))
  121. BUG();
  122. return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
  123. }
  124. static inline unsigned long srmmu_pgd_page(pgd_t pgd)
  125. { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
  126. static inline int srmmu_pte_none(pte_t pte)
  127. { return !(pte_val(pte) & 0xFFFFFFF); }
  128. static inline int srmmu_pte_present(pte_t pte)
  129. { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
  130. static inline void srmmu_pte_clear(pte_t *ptep)
  131. { srmmu_set_pte(ptep, __pte(0)); }
  132. static inline int srmmu_pmd_none(pmd_t pmd)
  133. { return !(pmd_val(pmd) & 0xFFFFFFF); }
  134. static inline int srmmu_pmd_bad(pmd_t pmd)
  135. { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
  136. static inline int srmmu_pmd_present(pmd_t pmd)
  137. { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
  138. static inline void srmmu_pmd_clear(pmd_t *pmdp) {
  139. int i;
  140. for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
  141. srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
  142. }
  143. static inline int srmmu_pgd_none(pgd_t pgd)
  144. { return !(pgd_val(pgd) & 0xFFFFFFF); }
  145. static inline int srmmu_pgd_bad(pgd_t pgd)
  146. { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
  147. static inline int srmmu_pgd_present(pgd_t pgd)
  148. { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
  149. static inline void srmmu_pgd_clear(pgd_t * pgdp)
  150. { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
  151. static inline pte_t srmmu_pte_wrprotect(pte_t pte)
  152. { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
  153. static inline pte_t srmmu_pte_mkclean(pte_t pte)
  154. { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
  155. static inline pte_t srmmu_pte_mkold(pte_t pte)
  156. { return __pte(pte_val(pte) & ~SRMMU_REF);}
  157. static inline pte_t srmmu_pte_mkwrite(pte_t pte)
  158. { return __pte(pte_val(pte) | SRMMU_WRITE);}
  159. static inline pte_t srmmu_pte_mkdirty(pte_t pte)
  160. { return __pte(pte_val(pte) | SRMMU_DIRTY);}
  161. static inline pte_t srmmu_pte_mkyoung(pte_t pte)
  162. { return __pte(pte_val(pte) | SRMMU_REF);}
  163. /*
  164. * Conversion functions: convert a page and protection to a page entry,
  165. * and a page entry and page directory to the page they refer to.
  166. */
  167. static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
  168. { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
  169. static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
  170. { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
  171. static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
  172. { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
  173. /* XXX should we hyper_flush_whole_icache here - Anton */
  174. static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
  175. { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
  176. static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
  177. { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
  178. static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
  179. {
  180. unsigned long ptp; /* Physical address, shifted right by 4 */
  181. int i;
  182. ptp = __nocache_pa((unsigned long) ptep) >> 4;
  183. for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
  184. srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
  185. ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
  186. }
  187. }
  188. static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
  189. {
  190. unsigned long ptp; /* Physical address, shifted right by 4 */
  191. int i;
  192. ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
  193. for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
  194. srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
  195. ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
  196. }
  197. }
  198. static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
  199. { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
  200. /* to find an entry in a top-level page table... */
  201. static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
  202. { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
  203. /* Find an entry in the second-level page table.. */
  204. static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
  205. {
  206. return (pmd_t *) srmmu_pgd_page(*dir) +
  207. ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
  208. }
  209. /* Find an entry in the third-level page table.. */
  210. static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
  211. {
  212. void *pte;
  213. pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
  214. return (pte_t *) pte +
  215. ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
  216. }
  217. static unsigned long srmmu_swp_type(swp_entry_t entry)
  218. {
  219. return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
  220. }
  221. static unsigned long srmmu_swp_offset(swp_entry_t entry)
  222. {
  223. return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
  224. }
  225. static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
  226. {
  227. return (swp_entry_t) {
  228. (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
  229. | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
  230. }
  231. /*
  232. * size: bytes to allocate in the nocache area.
  233. * align: bytes, number to align at.
  234. * Returns the virtual address of the allocated area.
  235. */
  236. static unsigned long __srmmu_get_nocache(int size, int align)
  237. {
  238. int offset;
  239. if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
  240. printk("Size 0x%x too small for nocache request\n", size);
  241. size = SRMMU_NOCACHE_BITMAP_SHIFT;
  242. }
  243. if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
  244. printk("Size 0x%x unaligned int nocache request\n", size);
  245. size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
  246. }
  247. BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
  248. offset = bit_map_string_get(&srmmu_nocache_map,
  249. size >> SRMMU_NOCACHE_BITMAP_SHIFT,
  250. align >> SRMMU_NOCACHE_BITMAP_SHIFT);
  251. if (offset == -1) {
  252. printk("srmmu: out of nocache %d: %d/%d\n",
  253. size, (int) srmmu_nocache_size,
  254. srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
  255. return 0;
  256. }
  257. return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
  258. }
  259. static unsigned long srmmu_get_nocache(int size, int align)
  260. {
  261. unsigned long tmp;
  262. tmp = __srmmu_get_nocache(size, align);
  263. if (tmp)
  264. memset((void *)tmp, 0, size);
  265. return tmp;
  266. }
  267. static void srmmu_free_nocache(unsigned long vaddr, int size)
  268. {
  269. int offset;
  270. if (vaddr < SRMMU_NOCACHE_VADDR) {
  271. printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
  272. vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
  273. BUG();
  274. }
  275. if (vaddr+size > srmmu_nocache_end) {
  276. printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
  277. vaddr, srmmu_nocache_end);
  278. BUG();
  279. }
  280. if (!is_power_of_2(size)) {
  281. printk("Size 0x%x is not a power of 2\n", size);
  282. BUG();
  283. }
  284. if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
  285. printk("Size 0x%x is too small\n", size);
  286. BUG();
  287. }
  288. if (vaddr & (size-1)) {
  289. printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
  290. BUG();
  291. }
  292. offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
  293. size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
  294. bit_map_clear(&srmmu_nocache_map, offset, size);
  295. }
  296. static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
  297. unsigned long end);
  298. extern unsigned long probe_memory(void); /* in fault.c */
  299. /*
  300. * Reserve nocache dynamically proportionally to the amount of
  301. * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
  302. */
  303. static void srmmu_nocache_calcsize(void)
  304. {
  305. unsigned long sysmemavail = probe_memory() / 1024;
  306. int srmmu_nocache_npages;
  307. srmmu_nocache_npages =
  308. sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
  309. /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
  310. // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
  311. if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
  312. srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
  313. /* anything above 1280 blows up */
  314. if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
  315. srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
  316. srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
  317. srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
  318. }
  319. static void __init srmmu_nocache_init(void)
  320. {
  321. unsigned int bitmap_bits;
  322. pgd_t *pgd;
  323. pmd_t *pmd;
  324. pte_t *pte;
  325. unsigned long paddr, vaddr;
  326. unsigned long pteval;
  327. bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
  328. srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
  329. SRMMU_NOCACHE_ALIGN_MAX, 0UL);
  330. memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
  331. srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
  332. bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
  333. srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
  334. memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
  335. init_mm.pgd = srmmu_swapper_pg_dir;
  336. srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
  337. paddr = __pa((unsigned long)srmmu_nocache_pool);
  338. vaddr = SRMMU_NOCACHE_VADDR;
  339. while (vaddr < srmmu_nocache_end) {
  340. pgd = pgd_offset_k(vaddr);
  341. pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
  342. pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
  343. pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
  344. if (srmmu_cache_pagetables)
  345. pteval |= SRMMU_CACHE;
  346. srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
  347. vaddr += PAGE_SIZE;
  348. paddr += PAGE_SIZE;
  349. }
  350. flush_cache_all();
  351. flush_tlb_all();
  352. }
  353. static inline pgd_t *srmmu_get_pgd_fast(void)
  354. {
  355. pgd_t *pgd = NULL;
  356. pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
  357. if (pgd) {
  358. pgd_t *init = pgd_offset_k(0);
  359. memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
  360. memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
  361. (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
  362. }
  363. return pgd;
  364. }
  365. static void srmmu_free_pgd_fast(pgd_t *pgd)
  366. {
  367. srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
  368. }
  369. static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
  370. {
  371. return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
  372. }
  373. static void srmmu_pmd_free(pmd_t * pmd)
  374. {
  375. srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
  376. }
  377. /*
  378. * Hardware needs alignment to 256 only, but we align to whole page size
  379. * to reduce fragmentation problems due to the buddy principle.
  380. * XXX Provide actual fragmentation statistics in /proc.
  381. *
  382. * Alignments up to the page size are the same for physical and virtual
  383. * addresses of the nocache area.
  384. */
  385. static pte_t *
  386. srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  387. {
  388. return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
  389. }
  390. static pgtable_t
  391. srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
  392. {
  393. unsigned long pte;
  394. struct page *page;
  395. if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
  396. return NULL;
  397. page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
  398. pgtable_page_ctor(page);
  399. return page;
  400. }
  401. static void srmmu_free_pte_fast(pte_t *pte)
  402. {
  403. srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
  404. }
  405. static void srmmu_pte_free(pgtable_t pte)
  406. {
  407. unsigned long p;
  408. pgtable_page_dtor(pte);
  409. p = (unsigned long)page_address(pte); /* Cached address (for test) */
  410. if (p == 0)
  411. BUG();
  412. p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
  413. p = (unsigned long) __nocache_va(p); /* Nocached virtual */
  414. srmmu_free_nocache(p, PTE_SIZE);
  415. }
  416. /*
  417. */
  418. static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
  419. {
  420. struct ctx_list *ctxp;
  421. ctxp = ctx_free.next;
  422. if(ctxp != &ctx_free) {
  423. remove_from_ctx_list(ctxp);
  424. add_to_used_ctxlist(ctxp);
  425. mm->context = ctxp->ctx_number;
  426. ctxp->ctx_mm = mm;
  427. return;
  428. }
  429. ctxp = ctx_used.next;
  430. if(ctxp->ctx_mm == old_mm)
  431. ctxp = ctxp->next;
  432. if(ctxp == &ctx_used)
  433. panic("out of mmu contexts");
  434. flush_cache_mm(ctxp->ctx_mm);
  435. flush_tlb_mm(ctxp->ctx_mm);
  436. remove_from_ctx_list(ctxp);
  437. add_to_used_ctxlist(ctxp);
  438. ctxp->ctx_mm->context = NO_CONTEXT;
  439. ctxp->ctx_mm = mm;
  440. mm->context = ctxp->ctx_number;
  441. }
  442. static inline void free_context(int context)
  443. {
  444. struct ctx_list *ctx_old;
  445. ctx_old = ctx_list_pool + context;
  446. remove_from_ctx_list(ctx_old);
  447. add_to_free_ctxlist(ctx_old);
  448. }
  449. static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
  450. struct task_struct *tsk, int cpu)
  451. {
  452. if(mm->context == NO_CONTEXT) {
  453. spin_lock(&srmmu_context_spinlock);
  454. alloc_context(old_mm, mm);
  455. spin_unlock(&srmmu_context_spinlock);
  456. srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
  457. }
  458. if (sparc_cpu_model == sparc_leon)
  459. leon_switch_mm();
  460. if (is_hypersparc)
  461. hyper_flush_whole_icache();
  462. srmmu_set_context(mm->context);
  463. }
  464. /* Low level IO area allocation on the SRMMU. */
  465. static inline void srmmu_mapioaddr(unsigned long physaddr,
  466. unsigned long virt_addr, int bus_type)
  467. {
  468. pgd_t *pgdp;
  469. pmd_t *pmdp;
  470. pte_t *ptep;
  471. unsigned long tmp;
  472. physaddr &= PAGE_MASK;
  473. pgdp = pgd_offset_k(virt_addr);
  474. pmdp = srmmu_pmd_offset(pgdp, virt_addr);
  475. ptep = srmmu_pte_offset(pmdp, virt_addr);
  476. tmp = (physaddr >> 4) | SRMMU_ET_PTE;
  477. /*
  478. * I need to test whether this is consistent over all
  479. * sun4m's. The bus_type represents the upper 4 bits of
  480. * 36-bit physical address on the I/O space lines...
  481. */
  482. tmp |= (bus_type << 28);
  483. tmp |= SRMMU_PRIV;
  484. __flush_page_to_ram(virt_addr);
  485. srmmu_set_pte(ptep, __pte(tmp));
  486. }
  487. static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
  488. unsigned long xva, unsigned int len)
  489. {
  490. while (len != 0) {
  491. len -= PAGE_SIZE;
  492. srmmu_mapioaddr(xpa, xva, bus);
  493. xva += PAGE_SIZE;
  494. xpa += PAGE_SIZE;
  495. }
  496. flush_tlb_all();
  497. }
  498. static inline void srmmu_unmapioaddr(unsigned long virt_addr)
  499. {
  500. pgd_t *pgdp;
  501. pmd_t *pmdp;
  502. pte_t *ptep;
  503. pgdp = pgd_offset_k(virt_addr);
  504. pmdp = srmmu_pmd_offset(pgdp, virt_addr);
  505. ptep = srmmu_pte_offset(pmdp, virt_addr);
  506. /* No need to flush uncacheable page. */
  507. srmmu_pte_clear(ptep);
  508. }
  509. static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
  510. {
  511. while (len != 0) {
  512. len -= PAGE_SIZE;
  513. srmmu_unmapioaddr(virt_addr);
  514. virt_addr += PAGE_SIZE;
  515. }
  516. flush_tlb_all();
  517. }
  518. /*
  519. * On the SRMMU we do not have the problems with limited tlb entries
  520. * for mapping kernel pages, so we just take things from the free page
  521. * pool. As a side effect we are putting a little too much pressure
  522. * on the gfp() subsystem. This setup also makes the logic of the
  523. * iommu mapping code a lot easier as we can transparently handle
  524. * mappings on the kernel stack without any special code as we did
  525. * need on the sun4c.
  526. */
  527. static struct thread_info *srmmu_alloc_thread_info(void)
  528. {
  529. struct thread_info *ret;
  530. ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
  531. THREAD_INFO_ORDER);
  532. #ifdef CONFIG_DEBUG_STACK_USAGE
  533. if (ret)
  534. memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
  535. #endif /* DEBUG_STACK_USAGE */
  536. return ret;
  537. }
  538. static void srmmu_free_thread_info(struct thread_info *ti)
  539. {
  540. free_pages((unsigned long)ti, THREAD_INFO_ORDER);
  541. }
  542. /* tsunami.S */
  543. extern void tsunami_flush_cache_all(void);
  544. extern void tsunami_flush_cache_mm(struct mm_struct *mm);
  545. extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
  546. extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
  547. extern void tsunami_flush_page_to_ram(unsigned long page);
  548. extern void tsunami_flush_page_for_dma(unsigned long page);
  549. extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
  550. extern void tsunami_flush_tlb_all(void);
  551. extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
  552. extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
  553. extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
  554. extern void tsunami_setup_blockops(void);
  555. /*
  556. * Workaround, until we find what's going on with Swift. When low on memory,
  557. * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
  558. * out it is already in page tables/ fault again on the same instruction.
  559. * I really don't understand it, have checked it and contexts
  560. * are right, flush_tlb_all is done as well, and it faults again...
  561. * Strange. -jj
  562. *
  563. * The following code is a deadwood that may be necessary when
  564. * we start to make precise page flushes again. --zaitcev
  565. */
  566. static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
  567. {
  568. #if 0
  569. static unsigned long last;
  570. unsigned int val;
  571. /* unsigned int n; */
  572. if (address == last) {
  573. val = srmmu_hwprobe(address);
  574. if (val != 0 && pte_val(pte) != val) {
  575. printk("swift_update_mmu_cache: "
  576. "addr %lx put %08x probed %08x from %p\n",
  577. address, pte_val(pte), val,
  578. __builtin_return_address(0));
  579. srmmu_flush_whole_tlb();
  580. }
  581. }
  582. last = address;
  583. #endif
  584. }
  585. /* swift.S */
  586. extern void swift_flush_cache_all(void);
  587. extern void swift_flush_cache_mm(struct mm_struct *mm);
  588. extern void swift_flush_cache_range(struct vm_area_struct *vma,
  589. unsigned long start, unsigned long end);
  590. extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
  591. extern void swift_flush_page_to_ram(unsigned long page);
  592. extern void swift_flush_page_for_dma(unsigned long page);
  593. extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
  594. extern void swift_flush_tlb_all(void);
  595. extern void swift_flush_tlb_mm(struct mm_struct *mm);
  596. extern void swift_flush_tlb_range(struct vm_area_struct *vma,
  597. unsigned long start, unsigned long end);
  598. extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
  599. #if 0 /* P3: deadwood to debug precise flushes on Swift. */
  600. void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  601. {
  602. int cctx, ctx1;
  603. page &= PAGE_MASK;
  604. if ((ctx1 = vma->vm_mm->context) != -1) {
  605. cctx = srmmu_get_context();
  606. /* Is context # ever different from current context? P3 */
  607. if (cctx != ctx1) {
  608. printk("flush ctx %02x curr %02x\n", ctx1, cctx);
  609. srmmu_set_context(ctx1);
  610. swift_flush_page(page);
  611. __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
  612. "r" (page), "i" (ASI_M_FLUSH_PROBE));
  613. srmmu_set_context(cctx);
  614. } else {
  615. /* Rm. prot. bits from virt. c. */
  616. /* swift_flush_cache_all(); */
  617. /* swift_flush_cache_page(vma, page); */
  618. swift_flush_page(page);
  619. __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
  620. "r" (page), "i" (ASI_M_FLUSH_PROBE));
  621. /* same as above: srmmu_flush_tlb_page() */
  622. }
  623. }
  624. }
  625. #endif
  626. /*
  627. * The following are all MBUS based SRMMU modules, and therefore could
  628. * be found in a multiprocessor configuration. On the whole, these
  629. * chips seems to be much more touchy about DVMA and page tables
  630. * with respect to cache coherency.
  631. */
  632. /* Cypress flushes. */
  633. static void cypress_flush_cache_all(void)
  634. {
  635. volatile unsigned long cypress_sucks;
  636. unsigned long faddr, tagval;
  637. flush_user_windows();
  638. for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
  639. __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
  640. "=r" (tagval) :
  641. "r" (faddr), "r" (0x40000),
  642. "i" (ASI_M_DATAC_TAG));
  643. /* If modified and valid, kick it. */
  644. if((tagval & 0x60) == 0x60)
  645. cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
  646. }
  647. }
  648. static void cypress_flush_cache_mm(struct mm_struct *mm)
  649. {
  650. register unsigned long a, b, c, d, e, f, g;
  651. unsigned long flags, faddr;
  652. int octx;
  653. FLUSH_BEGIN(mm)
  654. flush_user_windows();
  655. local_irq_save(flags);
  656. octx = srmmu_get_context();
  657. srmmu_set_context(mm->context);
  658. a = 0x20; b = 0x40; c = 0x60;
  659. d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
  660. faddr = (0x10000 - 0x100);
  661. goto inside;
  662. do {
  663. faddr -= 0x100;
  664. inside:
  665. __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
  666. "sta %%g0, [%0 + %2] %1\n\t"
  667. "sta %%g0, [%0 + %3] %1\n\t"
  668. "sta %%g0, [%0 + %4] %1\n\t"
  669. "sta %%g0, [%0 + %5] %1\n\t"
  670. "sta %%g0, [%0 + %6] %1\n\t"
  671. "sta %%g0, [%0 + %7] %1\n\t"
  672. "sta %%g0, [%0 + %8] %1\n\t" : :
  673. "r" (faddr), "i" (ASI_M_FLUSH_CTX),
  674. "r" (a), "r" (b), "r" (c), "r" (d),
  675. "r" (e), "r" (f), "r" (g));
  676. } while(faddr);
  677. srmmu_set_context(octx);
  678. local_irq_restore(flags);
  679. FLUSH_END
  680. }
  681. static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  682. {
  683. struct mm_struct *mm = vma->vm_mm;
  684. register unsigned long a, b, c, d, e, f, g;
  685. unsigned long flags, faddr;
  686. int octx;
  687. FLUSH_BEGIN(mm)
  688. flush_user_windows();
  689. local_irq_save(flags);
  690. octx = srmmu_get_context();
  691. srmmu_set_context(mm->context);
  692. a = 0x20; b = 0x40; c = 0x60;
  693. d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
  694. start &= SRMMU_REAL_PMD_MASK;
  695. while(start < end) {
  696. faddr = (start + (0x10000 - 0x100));
  697. goto inside;
  698. do {
  699. faddr -= 0x100;
  700. inside:
  701. __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
  702. "sta %%g0, [%0 + %2] %1\n\t"
  703. "sta %%g0, [%0 + %3] %1\n\t"
  704. "sta %%g0, [%0 + %4] %1\n\t"
  705. "sta %%g0, [%0 + %5] %1\n\t"
  706. "sta %%g0, [%0 + %6] %1\n\t"
  707. "sta %%g0, [%0 + %7] %1\n\t"
  708. "sta %%g0, [%0 + %8] %1\n\t" : :
  709. "r" (faddr),
  710. "i" (ASI_M_FLUSH_SEG),
  711. "r" (a), "r" (b), "r" (c), "r" (d),
  712. "r" (e), "r" (f), "r" (g));
  713. } while (faddr != start);
  714. start += SRMMU_REAL_PMD_SIZE;
  715. }
  716. srmmu_set_context(octx);
  717. local_irq_restore(flags);
  718. FLUSH_END
  719. }
  720. static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
  721. {
  722. register unsigned long a, b, c, d, e, f, g;
  723. struct mm_struct *mm = vma->vm_mm;
  724. unsigned long flags, line;
  725. int octx;
  726. FLUSH_BEGIN(mm)
  727. flush_user_windows();
  728. local_irq_save(flags);
  729. octx = srmmu_get_context();
  730. srmmu_set_context(mm->context);
  731. a = 0x20; b = 0x40; c = 0x60;
  732. d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
  733. page &= PAGE_MASK;
  734. line = (page + PAGE_SIZE) - 0x100;
  735. goto inside;
  736. do {
  737. line -= 0x100;
  738. inside:
  739. __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
  740. "sta %%g0, [%0 + %2] %1\n\t"
  741. "sta %%g0, [%0 + %3] %1\n\t"
  742. "sta %%g0, [%0 + %4] %1\n\t"
  743. "sta %%g0, [%0 + %5] %1\n\t"
  744. "sta %%g0, [%0 + %6] %1\n\t"
  745. "sta %%g0, [%0 + %7] %1\n\t"
  746. "sta %%g0, [%0 + %8] %1\n\t" : :
  747. "r" (line),
  748. "i" (ASI_M_FLUSH_PAGE),
  749. "r" (a), "r" (b), "r" (c), "r" (d),
  750. "r" (e), "r" (f), "r" (g));
  751. } while(line != page);
  752. srmmu_set_context(octx);
  753. local_irq_restore(flags);
  754. FLUSH_END
  755. }
  756. /* Cypress is copy-back, at least that is how we configure it. */
  757. static void cypress_flush_page_to_ram(unsigned long page)
  758. {
  759. register unsigned long a, b, c, d, e, f, g;
  760. unsigned long line;
  761. a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
  762. page &= PAGE_MASK;
  763. line = (page + PAGE_SIZE) - 0x100;
  764. goto inside;
  765. do {
  766. line -= 0x100;
  767. inside:
  768. __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
  769. "sta %%g0, [%0 + %2] %1\n\t"
  770. "sta %%g0, [%0 + %3] %1\n\t"
  771. "sta %%g0, [%0 + %4] %1\n\t"
  772. "sta %%g0, [%0 + %5] %1\n\t"
  773. "sta %%g0, [%0 + %6] %1\n\t"
  774. "sta %%g0, [%0 + %7] %1\n\t"
  775. "sta %%g0, [%0 + %8] %1\n\t" : :
  776. "r" (line),
  777. "i" (ASI_M_FLUSH_PAGE),
  778. "r" (a), "r" (b), "r" (c), "r" (d),
  779. "r" (e), "r" (f), "r" (g));
  780. } while(line != page);
  781. }
  782. /* Cypress is also IO cache coherent. */
  783. static void cypress_flush_page_for_dma(unsigned long page)
  784. {
  785. }
  786. /* Cypress has unified L2 VIPT, from which both instructions and data
  787. * are stored. It does not have an onboard icache of any sort, therefore
  788. * no flush is necessary.
  789. */
  790. static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
  791. {
  792. }
  793. static void cypress_flush_tlb_all(void)
  794. {
  795. srmmu_flush_whole_tlb();
  796. }
  797. static void cypress_flush_tlb_mm(struct mm_struct *mm)
  798. {
  799. FLUSH_BEGIN(mm)
  800. __asm__ __volatile__(
  801. "lda [%0] %3, %%g5\n\t"
  802. "sta %2, [%0] %3\n\t"
  803. "sta %%g0, [%1] %4\n\t"
  804. "sta %%g5, [%0] %3\n"
  805. : /* no outputs */
  806. : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
  807. "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
  808. : "g5");
  809. FLUSH_END
  810. }
  811. static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  812. {
  813. struct mm_struct *mm = vma->vm_mm;
  814. unsigned long size;
  815. FLUSH_BEGIN(mm)
  816. start &= SRMMU_PGDIR_MASK;
  817. size = SRMMU_PGDIR_ALIGN(end) - start;
  818. __asm__ __volatile__(
  819. "lda [%0] %5, %%g5\n\t"
  820. "sta %1, [%0] %5\n"
  821. "1:\n\t"
  822. "subcc %3, %4, %3\n\t"
  823. "bne 1b\n\t"
  824. " sta %%g0, [%2 + %3] %6\n\t"
  825. "sta %%g5, [%0] %5\n"
  826. : /* no outputs */
  827. : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
  828. "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
  829. "i" (ASI_M_FLUSH_PROBE)
  830. : "g5", "cc");
  831. FLUSH_END
  832. }
  833. static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  834. {
  835. struct mm_struct *mm = vma->vm_mm;
  836. FLUSH_BEGIN(mm)
  837. __asm__ __volatile__(
  838. "lda [%0] %3, %%g5\n\t"
  839. "sta %1, [%0] %3\n\t"
  840. "sta %%g0, [%2] %4\n\t"
  841. "sta %%g5, [%0] %3\n"
  842. : /* no outputs */
  843. : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
  844. "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
  845. : "g5");
  846. FLUSH_END
  847. }
  848. /* viking.S */
  849. extern void viking_flush_cache_all(void);
  850. extern void viking_flush_cache_mm(struct mm_struct *mm);
  851. extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
  852. unsigned long end);
  853. extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
  854. extern void viking_flush_page_to_ram(unsigned long page);
  855. extern void viking_flush_page_for_dma(unsigned long page);
  856. extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
  857. extern void viking_flush_page(unsigned long page);
  858. extern void viking_mxcc_flush_page(unsigned long page);
  859. extern void viking_flush_tlb_all(void);
  860. extern void viking_flush_tlb_mm(struct mm_struct *mm);
  861. extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  862. unsigned long end);
  863. extern void viking_flush_tlb_page(struct vm_area_struct *vma,
  864. unsigned long page);
  865. extern void sun4dsmp_flush_tlb_all(void);
  866. extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
  867. extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  868. unsigned long end);
  869. extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
  870. unsigned long page);
  871. /* hypersparc.S */
  872. extern void hypersparc_flush_cache_all(void);
  873. extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
  874. extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
  875. extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
  876. extern void hypersparc_flush_page_to_ram(unsigned long page);
  877. extern void hypersparc_flush_page_for_dma(unsigned long page);
  878. extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
  879. extern void hypersparc_flush_tlb_all(void);
  880. extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
  881. extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
  882. extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
  883. extern void hypersparc_setup_blockops(void);
  884. /*
  885. * NOTE: All of this startup code assumes the low 16mb (approx.) of
  886. * kernel mappings are done with one single contiguous chunk of
  887. * ram. On small ram machines (classics mainly) we only get
  888. * around 8mb mapped for us.
  889. */
  890. static void __init early_pgtable_allocfail(char *type)
  891. {
  892. prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
  893. prom_halt();
  894. }
  895. static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
  896. unsigned long end)
  897. {
  898. pgd_t *pgdp;
  899. pmd_t *pmdp;
  900. pte_t *ptep;
  901. while(start < end) {
  902. pgdp = pgd_offset_k(start);
  903. if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
  904. pmdp = (pmd_t *) __srmmu_get_nocache(
  905. SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
  906. if (pmdp == NULL)
  907. early_pgtable_allocfail("pmd");
  908. memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
  909. srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
  910. }
  911. pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
  912. if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
  913. ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
  914. if (ptep == NULL)
  915. early_pgtable_allocfail("pte");
  916. memset(__nocache_fix(ptep), 0, PTE_SIZE);
  917. srmmu_pmd_set(__nocache_fix(pmdp), ptep);
  918. }
  919. if (start > (0xffffffffUL - PMD_SIZE))
  920. break;
  921. start = (start + PMD_SIZE) & PMD_MASK;
  922. }
  923. }
  924. static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
  925. unsigned long end)
  926. {
  927. pgd_t *pgdp;
  928. pmd_t *pmdp;
  929. pte_t *ptep;
  930. while(start < end) {
  931. pgdp = pgd_offset_k(start);
  932. if(srmmu_pgd_none(*pgdp)) {
  933. pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
  934. if (pmdp == NULL)
  935. early_pgtable_allocfail("pmd");
  936. memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
  937. srmmu_pgd_set(pgdp, pmdp);
  938. }
  939. pmdp = srmmu_pmd_offset(pgdp, start);
  940. if(srmmu_pmd_none(*pmdp)) {
  941. ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
  942. PTE_SIZE);
  943. if (ptep == NULL)
  944. early_pgtable_allocfail("pte");
  945. memset(ptep, 0, PTE_SIZE);
  946. srmmu_pmd_set(pmdp, ptep);
  947. }
  948. if (start > (0xffffffffUL - PMD_SIZE))
  949. break;
  950. start = (start + PMD_SIZE) & PMD_MASK;
  951. }
  952. }
  953. /*
  954. * This is much cleaner than poking around physical address space
  955. * looking at the prom's page table directly which is what most
  956. * other OS's do. Yuck... this is much better.
  957. */
  958. static void __init srmmu_inherit_prom_mappings(unsigned long start,
  959. unsigned long end)
  960. {
  961. pgd_t *pgdp;
  962. pmd_t *pmdp;
  963. pte_t *ptep;
  964. int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
  965. unsigned long prompte;
  966. while(start <= end) {
  967. if (start == 0)
  968. break; /* probably wrap around */
  969. if(start == 0xfef00000)
  970. start = KADB_DEBUGGER_BEGVM;
  971. if(!(prompte = srmmu_hwprobe(start))) {
  972. start += PAGE_SIZE;
  973. continue;
  974. }
  975. /* A red snapper, see what it really is. */
  976. what = 0;
  977. if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
  978. if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
  979. what = 1;
  980. }
  981. if(!(start & ~(SRMMU_PGDIR_MASK))) {
  982. if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
  983. prompte)
  984. what = 2;
  985. }
  986. pgdp = pgd_offset_k(start);
  987. if(what == 2) {
  988. *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
  989. start += SRMMU_PGDIR_SIZE;
  990. continue;
  991. }
  992. if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
  993. pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
  994. if (pmdp == NULL)
  995. early_pgtable_allocfail("pmd");
  996. memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
  997. srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
  998. }
  999. pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
  1000. if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
  1001. ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
  1002. PTE_SIZE);
  1003. if (ptep == NULL)
  1004. early_pgtable_allocfail("pte");
  1005. memset(__nocache_fix(ptep), 0, PTE_SIZE);
  1006. srmmu_pmd_set(__nocache_fix(pmdp), ptep);
  1007. }
  1008. if(what == 1) {
  1009. /*
  1010. * We bend the rule where all 16 PTPs in a pmd_t point
  1011. * inside the same PTE page, and we leak a perfectly
  1012. * good hardware PTE piece. Alternatives seem worse.
  1013. */
  1014. unsigned int x; /* Index of HW PMD in soft cluster */
  1015. x = (start >> PMD_SHIFT) & 15;
  1016. *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
  1017. start += SRMMU_REAL_PMD_SIZE;
  1018. continue;
  1019. }
  1020. ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
  1021. *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
  1022. start += PAGE_SIZE;
  1023. }
  1024. }
  1025. #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
  1026. /* Create a third-level SRMMU 16MB page mapping. */
  1027. static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
  1028. {
  1029. pgd_t *pgdp = pgd_offset_k(vaddr);
  1030. unsigned long big_pte;
  1031. big_pte = KERNEL_PTE(phys_base >> 4);
  1032. *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
  1033. }
  1034. /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
  1035. static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
  1036. {
  1037. unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
  1038. unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
  1039. unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
  1040. /* Map "low" memory only */
  1041. const unsigned long min_vaddr = PAGE_OFFSET;
  1042. const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
  1043. if (vstart < min_vaddr || vstart >= max_vaddr)
  1044. return vstart;
  1045. if (vend > max_vaddr || vend < min_vaddr)
  1046. vend = max_vaddr;
  1047. while(vstart < vend) {
  1048. do_large_mapping(vstart, pstart);
  1049. vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
  1050. }
  1051. return vstart;
  1052. }
  1053. static inline void memprobe_error(char *msg)
  1054. {
  1055. prom_printf(msg);
  1056. prom_printf("Halting now...\n");
  1057. prom_halt();
  1058. }
  1059. static inline void map_kernel(void)
  1060. {
  1061. int i;
  1062. if (phys_base > 0) {
  1063. do_large_mapping(PAGE_OFFSET, phys_base);
  1064. }
  1065. for (i = 0; sp_banks[i].num_bytes != 0; i++) {
  1066. map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
  1067. }
  1068. BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
  1069. }
  1070. /* Paging initialization on the Sparc Reference MMU. */
  1071. extern void sparc_context_init(int);
  1072. void (*poke_srmmu)(void) __cpuinitdata = NULL;
  1073. extern unsigned long bootmem_init(unsigned long *pages_avail);
  1074. void __init srmmu_paging_init(void)
  1075. {
  1076. int i, cpunode;
  1077. char node_str[128];
  1078. pgd_t *pgd;
  1079. pmd_t *pmd;
  1080. pte_t *pte;
  1081. unsigned long pages_avail;
  1082. sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
  1083. if (sparc_cpu_model == sun4d)
  1084. num_contexts = 65536; /* We know it is Viking */
  1085. else {
  1086. /* Find the number of contexts on the srmmu. */
  1087. cpunode = prom_getchild(prom_root_node);
  1088. num_contexts = 0;
  1089. while(cpunode != 0) {
  1090. prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
  1091. if(!strcmp(node_str, "cpu")) {
  1092. num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
  1093. break;
  1094. }
  1095. cpunode = prom_getsibling(cpunode);
  1096. }
  1097. }
  1098. if(!num_contexts) {
  1099. prom_printf("Something wrong, can't find cpu node in paging_init.\n");
  1100. prom_halt();
  1101. }
  1102. pages_avail = 0;
  1103. last_valid_pfn = bootmem_init(&pages_avail);
  1104. srmmu_nocache_calcsize();
  1105. srmmu_nocache_init();
  1106. srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
  1107. map_kernel();
  1108. /* ctx table has to be physically aligned to its size */
  1109. srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
  1110. srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
  1111. for(i = 0; i < num_contexts; i++)
  1112. srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
  1113. flush_cache_all();
  1114. srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
  1115. #ifdef CONFIG_SMP
  1116. /* Stop from hanging here... */
  1117. local_flush_tlb_all();
  1118. #else
  1119. flush_tlb_all();
  1120. #endif
  1121. poke_srmmu();
  1122. srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
  1123. srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
  1124. srmmu_allocate_ptable_skeleton(
  1125. __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
  1126. srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
  1127. pgd = pgd_offset_k(PKMAP_BASE);
  1128. pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
  1129. pte = srmmu_pte_offset(pmd, PKMAP_BASE);
  1130. pkmap_page_table = pte;
  1131. flush_cache_all();
  1132. flush_tlb_all();
  1133. sparc_context_init(num_contexts);
  1134. kmap_init();
  1135. {
  1136. unsigned long zones_size[MAX_NR_ZONES];
  1137. unsigned long zholes_size[MAX_NR_ZONES];
  1138. unsigned long npages;
  1139. int znum;
  1140. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  1141. zones_size[znum] = zholes_size[znum] = 0;
  1142. npages = max_low_pfn - pfn_base;
  1143. zones_size[ZONE_DMA] = npages;
  1144. zholes_size[ZONE_DMA] = npages - pages_avail;
  1145. npages = highend_pfn - max_low_pfn;
  1146. zones_size[ZONE_HIGHMEM] = npages;
  1147. zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
  1148. free_area_init_node(0, zones_size, pfn_base, zholes_size);
  1149. }
  1150. }
  1151. static void srmmu_mmu_info(struct seq_file *m)
  1152. {
  1153. seq_printf(m,
  1154. "MMU type\t: %s\n"
  1155. "contexts\t: %d\n"
  1156. "nocache total\t: %ld\n"
  1157. "nocache used\t: %d\n",
  1158. srmmu_name,
  1159. num_contexts,
  1160. srmmu_nocache_size,
  1161. srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
  1162. }
  1163. static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
  1164. {
  1165. }
  1166. static void srmmu_destroy_context(struct mm_struct *mm)
  1167. {
  1168. if(mm->context != NO_CONTEXT) {
  1169. flush_cache_mm(mm);
  1170. srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
  1171. flush_tlb_mm(mm);
  1172. spin_lock(&srmmu_context_spinlock);
  1173. free_context(mm->context);
  1174. spin_unlock(&srmmu_context_spinlock);
  1175. mm->context = NO_CONTEXT;
  1176. }
  1177. }
  1178. /* Init various srmmu chip types. */
  1179. static void __init srmmu_is_bad(void)
  1180. {
  1181. prom_printf("Could not determine SRMMU chip type.\n");
  1182. prom_halt();
  1183. }
  1184. static void __init init_vac_layout(void)
  1185. {
  1186. int nd, cache_lines;
  1187. char node_str[128];
  1188. #ifdef CONFIG_SMP
  1189. int cpu = 0;
  1190. unsigned long max_size = 0;
  1191. unsigned long min_line_size = 0x10000000;
  1192. #endif
  1193. nd = prom_getchild(prom_root_node);
  1194. while((nd = prom_getsibling(nd)) != 0) {
  1195. prom_getstring(nd, "device_type", node_str, sizeof(node_str));
  1196. if(!strcmp(node_str, "cpu")) {
  1197. vac_line_size = prom_getint(nd, "cache-line-size");
  1198. if (vac_line_size == -1) {
  1199. prom_printf("can't determine cache-line-size, "
  1200. "halting.\n");
  1201. prom_halt();
  1202. }
  1203. cache_lines = prom_getint(nd, "cache-nlines");
  1204. if (cache_lines == -1) {
  1205. prom_printf("can't determine cache-nlines, halting.\n");
  1206. prom_halt();
  1207. }
  1208. vac_cache_size = cache_lines * vac_line_size;
  1209. #ifdef CONFIG_SMP
  1210. if(vac_cache_size > max_size)
  1211. max_size = vac_cache_size;
  1212. if(vac_line_size < min_line_size)
  1213. min_line_size = vac_line_size;
  1214. //FIXME: cpus not contiguous!!
  1215. cpu++;
  1216. if (cpu >= nr_cpu_ids || !cpu_online(cpu))
  1217. break;
  1218. #else
  1219. break;
  1220. #endif
  1221. }
  1222. }
  1223. if(nd == 0) {
  1224. prom_printf("No CPU nodes found, halting.\n");
  1225. prom_halt();
  1226. }
  1227. #ifdef CONFIG_SMP
  1228. vac_cache_size = max_size;
  1229. vac_line_size = min_line_size;
  1230. #endif
  1231. printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
  1232. (int)vac_cache_size, (int)vac_line_size);
  1233. }
  1234. static void __cpuinit poke_hypersparc(void)
  1235. {
  1236. volatile unsigned long clear;
  1237. unsigned long mreg = srmmu_get_mmureg();
  1238. hyper_flush_unconditional_combined();
  1239. mreg &= ~(HYPERSPARC_CWENABLE);
  1240. mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
  1241. mreg |= (HYPERSPARC_CMODE);
  1242. srmmu_set_mmureg(mreg);
  1243. #if 0 /* XXX I think this is bad news... -DaveM */
  1244. hyper_clear_all_tags();
  1245. #endif
  1246. put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
  1247. hyper_flush_whole_icache();
  1248. clear = srmmu_get_faddr();
  1249. clear = srmmu_get_fstatus();
  1250. }
  1251. static void __init init_hypersparc(void)
  1252. {
  1253. srmmu_name = "ROSS HyperSparc";
  1254. srmmu_modtype = HyperSparc;
  1255. init_vac_layout();
  1256. is_hypersparc = 1;
  1257. BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
  1258. BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
  1259. BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
  1260. BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
  1261. BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
  1262. BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
  1263. BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
  1264. BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
  1265. BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
  1266. BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
  1267. BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
  1268. BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
  1269. BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
  1270. BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
  1271. poke_srmmu = poke_hypersparc;
  1272. hypersparc_setup_blockops();
  1273. }
  1274. static void __cpuinit poke_cypress(void)
  1275. {
  1276. unsigned long mreg = srmmu_get_mmureg();
  1277. unsigned long faddr, tagval;
  1278. volatile unsigned long cypress_sucks;
  1279. volatile unsigned long clear;
  1280. clear = srmmu_get_faddr();
  1281. clear = srmmu_get_fstatus();
  1282. if (!(mreg & CYPRESS_CENABLE)) {
  1283. for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
  1284. __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
  1285. "sta %%g0, [%0] %2\n\t" : :
  1286. "r" (faddr), "r" (0x40000),
  1287. "i" (ASI_M_DATAC_TAG));
  1288. }
  1289. } else {
  1290. for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
  1291. __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
  1292. "=r" (tagval) :
  1293. "r" (faddr), "r" (0x40000),
  1294. "i" (ASI_M_DATAC_TAG));
  1295. /* If modified and valid, kick it. */
  1296. if((tagval & 0x60) == 0x60)
  1297. cypress_sucks = *(unsigned long *)
  1298. (0xf0020000 + faddr);
  1299. }
  1300. }
  1301. /* And one more, for our good neighbor, Mr. Broken Cypress. */
  1302. clear = srmmu_get_faddr();
  1303. clear = srmmu_get_fstatus();
  1304. mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
  1305. srmmu_set_mmureg(mreg);
  1306. }
  1307. static void __init init_cypress_common(void)
  1308. {
  1309. init_vac_layout();
  1310. BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
  1311. BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
  1312. BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
  1313. BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
  1314. BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
  1315. BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
  1316. BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
  1317. BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
  1318. BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
  1319. BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
  1320. BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
  1321. BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
  1322. BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
  1323. BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
  1324. poke_srmmu = poke_cypress;
  1325. }
  1326. static void __init init_cypress_604(void)
  1327. {
  1328. srmmu_name = "ROSS Cypress-604(UP)";
  1329. srmmu_modtype = Cypress;
  1330. init_cypress_common();
  1331. }
  1332. static void __init init_cypress_605(unsigned long mrev)
  1333. {
  1334. srmmu_name = "ROSS Cypress-605(MP)";
  1335. if(mrev == 0xe) {
  1336. srmmu_modtype = Cypress_vE;
  1337. hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
  1338. } else {
  1339. if(mrev == 0xd) {
  1340. srmmu_modtype = Cypress_vD;
  1341. hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
  1342. } else {
  1343. srmmu_modtype = Cypress;
  1344. }
  1345. }
  1346. init_cypress_common();
  1347. }
  1348. static void __cpuinit poke_swift(void)
  1349. {
  1350. unsigned long mreg;
  1351. /* Clear any crap from the cache or else... */
  1352. swift_flush_cache_all();
  1353. /* Enable I & D caches */
  1354. mreg = srmmu_get_mmureg();
  1355. mreg |= (SWIFT_IE | SWIFT_DE);
  1356. /*
  1357. * The Swift branch folding logic is completely broken. At
  1358. * trap time, if things are just right, if can mistakenly
  1359. * think that a trap is coming from kernel mode when in fact
  1360. * it is coming from user mode (it mis-executes the branch in
  1361. * the trap code). So you see things like crashme completely
  1362. * hosing your machine which is completely unacceptable. Turn
  1363. * this shit off... nice job Fujitsu.
  1364. */
  1365. mreg &= ~(SWIFT_BF);
  1366. srmmu_set_mmureg(mreg);
  1367. }
  1368. #define SWIFT_MASKID_ADDR 0x10003018
  1369. static void __init init_swift(void)
  1370. {
  1371. unsigned long swift_rev;
  1372. __asm__ __volatile__("lda [%1] %2, %0\n\t"
  1373. "srl %0, 0x18, %0\n\t" :
  1374. "=r" (swift_rev) :
  1375. "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
  1376. srmmu_name = "Fujitsu Swift";
  1377. switch(swift_rev) {
  1378. case 0x11:
  1379. case 0x20:
  1380. case 0x23:
  1381. case 0x30:
  1382. srmmu_modtype = Swift_lots_o_bugs;
  1383. hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
  1384. /*
  1385. * Gee george, I wonder why Sun is so hush hush about
  1386. * this hardware bug... really braindamage stuff going
  1387. * on here. However I think we can find a way to avoid
  1388. * all of the workaround overhead under Linux. Basically,
  1389. * any page fault can cause kernel pages to become user
  1390. * accessible (the mmu gets confused and clears some of
  1391. * the ACC bits in kernel ptes). Aha, sounds pretty
  1392. * horrible eh? But wait, after extensive testing it appears
  1393. * that if you use pgd_t level large kernel pte's (like the
  1394. * 4MB pages on the Pentium) the bug does not get tripped
  1395. * at all. This avoids almost all of the major overhead.
  1396. * Welcome to a world where your vendor tells you to,
  1397. * "apply this kernel patch" instead of "sorry for the
  1398. * broken hardware, send it back and we'll give you
  1399. * properly functioning parts"
  1400. */
  1401. break;
  1402. case 0x25:
  1403. case 0x31:
  1404. srmmu_modtype = Swift_bad_c;
  1405. hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
  1406. /*
  1407. * You see Sun allude to this hardware bug but never
  1408. * admit things directly, they'll say things like,
  1409. * "the Swift chip cache problems" or similar.
  1410. */
  1411. break;
  1412. default:
  1413. srmmu_modtype = Swift_ok;
  1414. break;
  1415. };
  1416. BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
  1417. BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
  1418. BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
  1419. BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
  1420. BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
  1421. BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
  1422. BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
  1423. BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
  1424. BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
  1425. BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
  1426. BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
  1427. BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
  1428. flush_page_for_dma_global = 0;
  1429. /*
  1430. * Are you now convinced that the Swift is one of the
  1431. * biggest VLSI abortions of all time? Bravo Fujitsu!
  1432. * Fujitsu, the !#?!%$'d up processor people. I bet if
  1433. * you examined the microcode of the Swift you'd find
  1434. * XXX's all over the place.
  1435. */
  1436. poke_srmmu = poke_swift;
  1437. }
  1438. static void turbosparc_flush_cache_all(void)
  1439. {
  1440. flush_user_windows();
  1441. turbosparc_idflash_clear();
  1442. }
  1443. static void turbosparc_flush_cache_mm(struct mm_struct *mm)
  1444. {
  1445. FLUSH_BEGIN(mm)
  1446. flush_user_windows();
  1447. turbosparc_idflash_clear();
  1448. FLUSH_END
  1449. }
  1450. static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  1451. {
  1452. FLUSH_BEGIN(vma->vm_mm)
  1453. flush_user_windows();
  1454. turbosparc_idflash_clear();
  1455. FLUSH_END
  1456. }
  1457. static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
  1458. {
  1459. FLUSH_BEGIN(vma->vm_mm)
  1460. flush_user_windows();
  1461. if (vma->vm_flags & VM_EXEC)
  1462. turbosparc_flush_icache();
  1463. turbosparc_flush_dcache();
  1464. FLUSH_END
  1465. }
  1466. /* TurboSparc is copy-back, if we turn it on, but this does not work. */
  1467. static void turbosparc_flush_page_to_ram(unsigned long page)
  1468. {
  1469. #ifdef TURBOSPARC_WRITEBACK
  1470. volatile unsigned long clear;
  1471. if (srmmu_hwprobe(page))
  1472. turbosparc_flush_page_cache(page);
  1473. clear = srmmu_get_fstatus();
  1474. #endif
  1475. }
  1476. static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
  1477. {
  1478. }
  1479. static void turbosparc_flush_page_for_dma(unsigned long page)
  1480. {
  1481. turbosparc_flush_dcache();
  1482. }
  1483. static void turbosparc_flush_tlb_all(void)
  1484. {
  1485. srmmu_flush_whole_tlb();
  1486. }
  1487. static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
  1488. {
  1489. FLUSH_BEGIN(mm)
  1490. srmmu_flush_whole_tlb();
  1491. FLUSH_END
  1492. }
  1493. static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  1494. {
  1495. FLUSH_BEGIN(vma->vm_mm)
  1496. srmmu_flush_whole_tlb();
  1497. FLUSH_END
  1498. }
  1499. static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  1500. {
  1501. FLUSH_BEGIN(vma->vm_mm)
  1502. srmmu_flush_whole_tlb();
  1503. FLUSH_END
  1504. }
  1505. static void __cpuinit poke_turbosparc(void)
  1506. {
  1507. unsigned long mreg = srmmu_get_mmureg();
  1508. unsigned long ccreg;
  1509. /* Clear any crap from the cache or else... */
  1510. turbosparc_flush_cache_all();
  1511. mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
  1512. mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
  1513. srmmu_set_mmureg(mreg);
  1514. ccreg = turbosparc_get_ccreg();
  1515. #ifdef TURBOSPARC_WRITEBACK
  1516. ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
  1517. ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
  1518. /* Write-back D-cache, emulate VLSI
  1519. * abortion number three, not number one */
  1520. #else
  1521. /* For now let's play safe, optimize later */
  1522. ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
  1523. /* Do DVMA snooping in Dcache, Write-thru D-cache */
  1524. ccreg &= ~(TURBOSPARC_uS2);
  1525. /* Emulate VLSI abortion number three, not number one */
  1526. #endif
  1527. switch (ccreg & 7) {
  1528. case 0: /* No SE cache */
  1529. case 7: /* Test mode */
  1530. break;
  1531. default:
  1532. ccreg |= (TURBOSPARC_SCENABLE);
  1533. }
  1534. turbosparc_set_ccreg (ccreg);
  1535. mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
  1536. mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
  1537. srmmu_set_mmureg(mreg);
  1538. }
  1539. static void __init init_turbosparc(void)
  1540. {
  1541. srmmu_name = "Fujitsu TurboSparc";
  1542. srmmu_modtype = TurboSparc;
  1543. BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
  1544. BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
  1545. BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
  1546. BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
  1547. BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
  1548. BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
  1549. BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
  1550. BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
  1551. BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
  1552. BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
  1553. BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
  1554. poke_srmmu = poke_turbosparc;
  1555. }
  1556. static void __cpuinit poke_tsunami(void)
  1557. {
  1558. unsigned long mreg = srmmu_get_mmureg();
  1559. tsunami_flush_icache();
  1560. tsunami_flush_dcache();
  1561. mreg &= ~TSUNAMI_ITD;
  1562. mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
  1563. srmmu_set_mmureg(mreg);
  1564. }
  1565. static void __init init_tsunami(void)
  1566. {
  1567. /*
  1568. * Tsunami's pretty sane, Sun and TI actually got it
  1569. * somewhat right this time. Fujitsu should have
  1570. * taken some lessons from them.
  1571. */
  1572. srmmu_name = "TI Tsunami";
  1573. srmmu_modtype = Tsunami;
  1574. BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
  1575. BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
  1576. BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
  1577. BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
  1578. BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
  1579. BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
  1580. BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
  1581. BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
  1582. BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
  1583. BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
  1584. BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
  1585. poke_srmmu = poke_tsunami;
  1586. tsunami_setup_blockops();
  1587. }
  1588. static void __cpuinit poke_viking(void)
  1589. {
  1590. unsigned long mreg = srmmu_get_mmureg();
  1591. static int smp_catch;
  1592. if(viking_mxcc_present) {
  1593. unsigned long mxcc_control = mxcc_get_creg();
  1594. mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
  1595. mxcc_control &= ~(MXCC_CTL_RRC);
  1596. mxcc_set_creg(mxcc_control);
  1597. /*
  1598. * We don't need memory parity checks.
  1599. * XXX This is a mess, have to dig out later. ecd.
  1600. viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
  1601. */
  1602. /* We do cache ptables on MXCC. */
  1603. mreg |= VIKING_TCENABLE;
  1604. } else {
  1605. unsigned long bpreg;
  1606. mreg &= ~(VIKING_TCENABLE);
  1607. if(smp_catch++) {
  1608. /* Must disable mixed-cmd mode here for other cpu's. */
  1609. bpreg = viking_get_bpreg();
  1610. bpreg &= ~(VIKING_ACTION_MIX);
  1611. viking_set_bpreg(bpreg);
  1612. /* Just in case PROM does something funny. */
  1613. msi_set_sync();
  1614. }
  1615. }
  1616. mreg |= VIKING_SPENABLE;
  1617. mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
  1618. mreg |= VIKING_SBENABLE;
  1619. mreg &= ~(VIKING_ACENABLE);
  1620. srmmu_set_mmureg(mreg);
  1621. }
  1622. static void __init init_viking(void)
  1623. {
  1624. unsigned long mreg = srmmu_get_mmureg();
  1625. /* Ahhh, the viking. SRMMU VLSI abortion number two... */
  1626. if(mreg & VIKING_MMODE) {
  1627. srmmu_name = "TI Viking";
  1628. viking_mxcc_present = 0;
  1629. msi_set_sync();
  1630. BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
  1631. BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
  1632. BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
  1633. /*
  1634. * We need this to make sure old viking takes no hits
  1635. * on it's cache for dma snoops to workaround the
  1636. * "load from non-cacheable memory" interrupt bug.
  1637. * This is only necessary because of the new way in
  1638. * which we use the IOMMU.
  1639. */
  1640. BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
  1641. flush_page_for_dma_global = 0;
  1642. } else {
  1643. srmmu_name = "TI Viking/MXCC";
  1644. viking_mxcc_present = 1;
  1645. srmmu_cache_pagetables = 1;
  1646. /* MXCC vikings lack the DMA snooping bug. */
  1647. BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
  1648. }
  1649. BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
  1650. BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
  1651. BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
  1652. BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
  1653. #ifdef CONFIG_SMP
  1654. if (sparc_cpu_model == sun4d) {
  1655. BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
  1656. BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
  1657. BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
  1658. BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
  1659. } else
  1660. #endif
  1661. {
  1662. BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
  1663. BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
  1664. BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
  1665. BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
  1666. }
  1667. BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
  1668. BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
  1669. poke_srmmu = poke_viking;
  1670. }
  1671. #ifdef CONFIG_SPARC_LEON
  1672. void __init poke_leonsparc(void)
  1673. {
  1674. }
  1675. void __init init_leon(void)
  1676. {
  1677. srmmu_name = "Leon";
  1678. BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
  1679. BTFIXUPCALL_NORM);
  1680. BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
  1681. BTFIXUPCALL_NORM);
  1682. BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
  1683. BTFIXUPCALL_NORM);
  1684. BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
  1685. BTFIXUPCALL_NORM);
  1686. BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
  1687. BTFIXUPCALL_NORM);
  1688. BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
  1689. BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
  1690. BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
  1691. BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
  1692. BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
  1693. BTFIXUPCALL_NOP);
  1694. BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
  1695. poke_srmmu = poke_leonsparc;
  1696. srmmu_cache_pagetables = 0;
  1697. leon_flush_during_switch = leon_flush_needed();
  1698. }
  1699. #endif
  1700. /* Probe for the srmmu chip version. */
  1701. static void __init get_srmmu_type(void)
  1702. {
  1703. unsigned long mreg, psr;
  1704. unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
  1705. srmmu_modtype = SRMMU_INVAL_MOD;
  1706. hwbug_bitmask = 0;
  1707. mreg = srmmu_get_mmureg(); psr = get_psr();
  1708. mod_typ = (mreg & 0xf0000000) >> 28;
  1709. mod_rev = (mreg & 0x0f000000) >> 24;
  1710. psr_typ = (psr >> 28) & 0xf;
  1711. psr_vers = (psr >> 24) & 0xf;
  1712. /* First, check for sparc-leon. */
  1713. if (sparc_cpu_model == sparc_leon) {
  1714. psr_typ = 0xf; /* hardcoded ids for older models/simulators */
  1715. psr_vers = 2;
  1716. init_leon();
  1717. return;
  1718. }
  1719. /* Second, check for HyperSparc or Cypress. */
  1720. if(mod_typ == 1) {
  1721. switch(mod_rev) {
  1722. case 7:
  1723. /* UP or MP Hypersparc */
  1724. init_hypersparc();
  1725. break;
  1726. case 0:
  1727. case 2:
  1728. /* Uniprocessor Cypress */
  1729. init_cypress_604();
  1730. break;
  1731. case 10:
  1732. case 11:
  1733. case 12:
  1734. /* _REALLY OLD_ Cypress MP chips... */
  1735. case 13:
  1736. case 14:
  1737. case 15:
  1738. /* MP Cypress mmu/cache-controller */
  1739. init_cypress_605(mod_rev);
  1740. break;
  1741. default:
  1742. /* Some other Cypress revision, assume a 605. */
  1743. init_cypress_605(mod_rev);
  1744. break;
  1745. };
  1746. return;
  1747. }
  1748. /*
  1749. * Now Fujitsu TurboSparc. It might happen that it is
  1750. * in Swift emulation mode, so we will check later...
  1751. */
  1752. if (psr_typ == 0 && psr_vers == 5) {
  1753. init_turbosparc();
  1754. return;
  1755. }
  1756. /* Next check for Fujitsu Swift. */
  1757. if(psr_typ == 0 && psr_vers == 4) {
  1758. int cpunode;
  1759. char node_str[128];
  1760. /* Look if it is not a TurboSparc emulating Swift... */
  1761. cpunode = prom_getchild(prom_root_node);
  1762. while((cpunode = prom_getsibling(cpunode)) != 0) {
  1763. prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
  1764. if(!strcmp(node_str, "cpu")) {
  1765. if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
  1766. prom_getintdefault(cpunode, "psr-version", 1) == 5) {
  1767. init_turbosparc();
  1768. return;
  1769. }
  1770. break;
  1771. }
  1772. }
  1773. init_swift();
  1774. return;
  1775. }
  1776. /* Now the Viking family of srmmu. */
  1777. if(psr_typ == 4 &&
  1778. ((psr_vers == 0) ||
  1779. ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
  1780. init_viking();
  1781. return;
  1782. }
  1783. /* Finally the Tsunami. */
  1784. if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
  1785. init_tsunami();
  1786. return;
  1787. }
  1788. /* Oh well */
  1789. srmmu_is_bad();
  1790. }
  1791. /* don't laugh, static pagetables */
  1792. static void srmmu_check_pgt_cache(int low, int high)
  1793. {
  1794. }
  1795. extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
  1796. tsetup_mmu_patchme, rtrap_mmu_patchme;
  1797. extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
  1798. tsetup_srmmu_stackchk, srmmu_rett_stackchk;
  1799. extern unsigned long srmmu_fault;
  1800. #define PATCH_BRANCH(insn, dest) do { \
  1801. iaddr = &(insn); \
  1802. daddr = &(dest); \
  1803. *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
  1804. } while(0)
  1805. static void __init patch_window_trap_handlers(void)
  1806. {
  1807. unsigned long *iaddr, *daddr;
  1808. PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
  1809. PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
  1810. PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
  1811. PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
  1812. PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
  1813. PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
  1814. PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
  1815. }
  1816. #ifdef CONFIG_SMP
  1817. /* Local cross-calls. */
  1818. static void smp_flush_page_for_dma(unsigned long page)
  1819. {
  1820. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
  1821. local_flush_page_for_dma(page);
  1822. }
  1823. #endif
  1824. static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
  1825. {
  1826. return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
  1827. }
  1828. static unsigned long srmmu_pte_to_pgoff(pte_t pte)
  1829. {
  1830. return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
  1831. }
  1832. static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
  1833. {
  1834. prot &= ~__pgprot(SRMMU_CACHE);
  1835. return prot;
  1836. }
  1837. /* Load up routines and constants for sun4m and sun4d mmu */
  1838. void __init ld_mmu_srmmu(void)
  1839. {
  1840. extern void ld_mmu_iommu(void);
  1841. extern void ld_mmu_iounit(void);
  1842. extern void ___xchg32_sun4md(void);
  1843. BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
  1844. BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
  1845. BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
  1846. BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
  1847. BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
  1848. BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
  1849. PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
  1850. BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
  1851. BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
  1852. BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
  1853. page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
  1854. /* Functions */
  1855. BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
  1856. #ifndef CONFIG_SMP
  1857. BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
  1858. #endif
  1859. BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
  1860. BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
  1861. BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
  1862. BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
  1863. BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
  1864. BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
  1865. BTFIXUPSET_SETHI(none_mask, 0xF0000000);
  1866. BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
  1867. BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
  1868. BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
  1869. BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
  1870. BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
  1871. BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
  1872. BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
  1873. BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
  1874. BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
  1875. BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
  1876. BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
  1877. BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
  1878. BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
  1879. BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
  1880. BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
  1881. BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
  1882. BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
  1883. BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
  1884. BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
  1885. BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
  1886. BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
  1887. BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
  1888. BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
  1889. BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
  1890. BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
  1891. BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
  1892. BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
  1893. BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
  1894. BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
  1895. BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
  1896. BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
  1897. BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
  1898. BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
  1899. BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
  1900. BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
  1901. BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
  1902. BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
  1903. BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
  1904. BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
  1905. BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
  1906. BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
  1907. BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
  1908. BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
  1909. BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
  1910. BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
  1911. BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
  1912. BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
  1913. BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
  1914. get_srmmu_type();
  1915. patch_window_trap_handlers();
  1916. #ifdef CONFIG_SMP
  1917. /* El switcheroo... */
  1918. BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
  1919. BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
  1920. BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
  1921. BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
  1922. BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
  1923. BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
  1924. BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
  1925. BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
  1926. BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
  1927. BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
  1928. BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
  1929. BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
  1930. BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
  1931. BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
  1932. BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
  1933. if (sparc_cpu_model != sun4d) {
  1934. BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
  1935. BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
  1936. BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
  1937. BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
  1938. }
  1939. BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
  1940. BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
  1941. BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
  1942. if (poke_srmmu == poke_viking) {
  1943. /* Avoid unnecessary cross calls. */
  1944. BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
  1945. BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
  1946. BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
  1947. BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
  1948. BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
  1949. BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
  1950. BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
  1951. }
  1952. #endif
  1953. if (sparc_cpu_model == sun4d)
  1954. ld_mmu_iounit();
  1955. else
  1956. ld_mmu_iommu();
  1957. #ifdef CONFIG_SMP
  1958. if (sparc_cpu_model == sun4d)
  1959. sun4d_init_smp();
  1960. else
  1961. sun4m_init_smp();
  1962. #endif
  1963. }