nmi.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. /* Pseudo NMI support on sparc64 systems.
  2. *
  3. * Copyright (C) 2009 David S. Miller <davem@davemloft.net>
  4. *
  5. * The NMI watchdog support and infrastructure is based almost
  6. * entirely upon the x86 NMI support code.
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/param.h>
  10. #include <linux/init.h>
  11. #include <linux/percpu.h>
  12. #include <linux/nmi.h>
  13. #include <linux/module.h>
  14. #include <linux/kprobes.h>
  15. #include <linux/kernel_stat.h>
  16. #include <linux/reboot.h>
  17. #include <linux/slab.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/delay.h>
  20. #include <linux/smp.h>
  21. #include <asm/perf_event.h>
  22. #include <asm/ptrace.h>
  23. #include <asm/local.h>
  24. #include <asm/pcr.h>
  25. /* We don't have a real NMI on sparc64, but we can fake one
  26. * up using profiling counter overflow interrupts and interrupt
  27. * levels.
  28. *
  29. * The profile overflow interrupts at level 15, so we use
  30. * level 14 as our IRQ off level.
  31. */
  32. static int panic_on_timeout;
  33. /* nmi_active:
  34. * >0: the NMI watchdog is active, but can be disabled
  35. * <0: the NMI watchdog has not been set up, and cannot be enabled
  36. * 0: the NMI watchdog is disabled, but can be enabled
  37. */
  38. atomic_t nmi_active = ATOMIC_INIT(0); /* oprofile uses this */
  39. EXPORT_SYMBOL(nmi_active);
  40. static unsigned int nmi_hz = HZ;
  41. static DEFINE_PER_CPU(short, wd_enabled);
  42. static int endflag __initdata;
  43. static DEFINE_PER_CPU(unsigned int, last_irq_sum);
  44. static DEFINE_PER_CPU(local_t, alert_counter);
  45. static DEFINE_PER_CPU(int, nmi_touch);
  46. void touch_nmi_watchdog(void)
  47. {
  48. if (atomic_read(&nmi_active)) {
  49. int cpu;
  50. for_each_present_cpu(cpu) {
  51. if (per_cpu(nmi_touch, cpu) != 1)
  52. per_cpu(nmi_touch, cpu) = 1;
  53. }
  54. }
  55. touch_softlockup_watchdog();
  56. }
  57. EXPORT_SYMBOL(touch_nmi_watchdog);
  58. static void die_nmi(const char *str, struct pt_regs *regs, int do_panic)
  59. {
  60. if (notify_die(DIE_NMIWATCHDOG, str, regs, 0,
  61. pt_regs_trap_type(regs), SIGINT) == NOTIFY_STOP)
  62. return;
  63. console_verbose();
  64. bust_spinlocks(1);
  65. printk(KERN_EMERG "%s", str);
  66. printk(" on CPU%d, ip %08lx, registers:\n",
  67. smp_processor_id(), regs->tpc);
  68. show_regs(regs);
  69. dump_stack();
  70. bust_spinlocks(0);
  71. if (do_panic || panic_on_oops)
  72. panic("Non maskable interrupt");
  73. nmi_exit();
  74. local_irq_enable();
  75. do_exit(SIGBUS);
  76. }
  77. notrace __kprobes void perfctr_irq(int irq, struct pt_regs *regs)
  78. {
  79. unsigned int sum, touched = 0;
  80. int cpu = smp_processor_id();
  81. clear_softint(1 << irq);
  82. pcr_ops->write(PCR_PIC_PRIV);
  83. local_cpu_data().__nmi_count++;
  84. nmi_enter();
  85. if (notify_die(DIE_NMI, "nmi", regs, 0,
  86. pt_regs_trap_type(regs), SIGINT) == NOTIFY_STOP)
  87. touched = 1;
  88. sum = kstat_irqs_cpu(0, cpu);
  89. if (__get_cpu_var(nmi_touch)) {
  90. __get_cpu_var(nmi_touch) = 0;
  91. touched = 1;
  92. }
  93. if (!touched && __get_cpu_var(last_irq_sum) == sum) {
  94. local_inc(&__get_cpu_var(alert_counter));
  95. if (local_read(&__get_cpu_var(alert_counter)) == 30 * nmi_hz)
  96. die_nmi("BUG: NMI Watchdog detected LOCKUP",
  97. regs, panic_on_timeout);
  98. } else {
  99. __get_cpu_var(last_irq_sum) = sum;
  100. local_set(&__get_cpu_var(alert_counter), 0);
  101. }
  102. if (__get_cpu_var(wd_enabled)) {
  103. write_pic(picl_value(nmi_hz));
  104. pcr_ops->write(pcr_enable);
  105. }
  106. nmi_exit();
  107. }
  108. static inline unsigned int get_nmi_count(int cpu)
  109. {
  110. return cpu_data(cpu).__nmi_count;
  111. }
  112. static __init void nmi_cpu_busy(void *data)
  113. {
  114. local_irq_enable_in_hardirq();
  115. while (endflag == 0)
  116. mb();
  117. }
  118. static void report_broken_nmi(int cpu, int *prev_nmi_count)
  119. {
  120. printk(KERN_CONT "\n");
  121. printk(KERN_WARNING
  122. "WARNING: CPU#%d: NMI appears to be stuck (%d->%d)!\n",
  123. cpu, prev_nmi_count[cpu], get_nmi_count(cpu));
  124. printk(KERN_WARNING
  125. "Please report this to bugzilla.kernel.org,\n");
  126. printk(KERN_WARNING
  127. "and attach the output of the 'dmesg' command.\n");
  128. per_cpu(wd_enabled, cpu) = 0;
  129. atomic_dec(&nmi_active);
  130. }
  131. void stop_nmi_watchdog(void *unused)
  132. {
  133. pcr_ops->write(PCR_PIC_PRIV);
  134. __get_cpu_var(wd_enabled) = 0;
  135. atomic_dec(&nmi_active);
  136. }
  137. static int __init check_nmi_watchdog(void)
  138. {
  139. unsigned int *prev_nmi_count;
  140. int cpu, err;
  141. if (!atomic_read(&nmi_active))
  142. return 0;
  143. prev_nmi_count = kmalloc(nr_cpu_ids * sizeof(unsigned int), GFP_KERNEL);
  144. if (!prev_nmi_count) {
  145. err = -ENOMEM;
  146. goto error;
  147. }
  148. printk(KERN_INFO "Testing NMI watchdog ... ");
  149. smp_call_function(nmi_cpu_busy, (void *)&endflag, 0);
  150. for_each_possible_cpu(cpu)
  151. prev_nmi_count[cpu] = get_nmi_count(cpu);
  152. local_irq_enable();
  153. mdelay((20 * 1000) / nmi_hz); /* wait 20 ticks */
  154. for_each_online_cpu(cpu) {
  155. if (!per_cpu(wd_enabled, cpu))
  156. continue;
  157. if (get_nmi_count(cpu) - prev_nmi_count[cpu] <= 5)
  158. report_broken_nmi(cpu, prev_nmi_count);
  159. }
  160. endflag = 1;
  161. if (!atomic_read(&nmi_active)) {
  162. kfree(prev_nmi_count);
  163. atomic_set(&nmi_active, -1);
  164. err = -ENODEV;
  165. goto error;
  166. }
  167. printk("OK.\n");
  168. nmi_hz = 1;
  169. kfree(prev_nmi_count);
  170. return 0;
  171. error:
  172. on_each_cpu(stop_nmi_watchdog, NULL, 1);
  173. return err;
  174. }
  175. void start_nmi_watchdog(void *unused)
  176. {
  177. __get_cpu_var(wd_enabled) = 1;
  178. atomic_inc(&nmi_active);
  179. pcr_ops->write(PCR_PIC_PRIV);
  180. write_pic(picl_value(nmi_hz));
  181. pcr_ops->write(pcr_enable);
  182. }
  183. static void nmi_adjust_hz_one(void *unused)
  184. {
  185. if (!__get_cpu_var(wd_enabled))
  186. return;
  187. pcr_ops->write(PCR_PIC_PRIV);
  188. write_pic(picl_value(nmi_hz));
  189. pcr_ops->write(pcr_enable);
  190. }
  191. void nmi_adjust_hz(unsigned int new_hz)
  192. {
  193. nmi_hz = new_hz;
  194. on_each_cpu(nmi_adjust_hz_one, NULL, 1);
  195. }
  196. EXPORT_SYMBOL_GPL(nmi_adjust_hz);
  197. static int nmi_shutdown(struct notifier_block *nb, unsigned long cmd, void *p)
  198. {
  199. on_each_cpu(stop_nmi_watchdog, NULL, 1);
  200. return 0;
  201. }
  202. static struct notifier_block nmi_reboot_notifier = {
  203. .notifier_call = nmi_shutdown,
  204. };
  205. int __init nmi_init(void)
  206. {
  207. int err;
  208. on_each_cpu(start_nmi_watchdog, NULL, 1);
  209. err = check_nmi_watchdog();
  210. if (!err) {
  211. err = register_reboot_notifier(&nmi_reboot_notifier);
  212. if (err) {
  213. on_each_cpu(stop_nmi_watchdog, NULL, 1);
  214. atomic_set(&nmi_active, -1);
  215. }
  216. }
  217. if (!err)
  218. init_hw_perf_events();
  219. return err;
  220. }
  221. static int __init setup_nmi_watchdog(char *str)
  222. {
  223. if (!strncmp(str, "panic", 5))
  224. panic_on_timeout = 1;
  225. return 0;
  226. }
  227. __setup("nmi_watchdog=", setup_nmi_watchdog);