ioremap_32.c 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. /*
  2. * arch/sh/mm/ioremap.c
  3. *
  4. * Re-map IO memory to kernel address space so that we can access it.
  5. * This is needed for high PCI addresses that aren't mapped in the
  6. * 640k-1MB IO memory area on PC's
  7. *
  8. * (C) Copyright 1995 1996 Linus Torvalds
  9. * (C) Copyright 2005, 2006 Paul Mundt
  10. *
  11. * This file is subject to the terms and conditions of the GNU General
  12. * Public License. See the file "COPYING" in the main directory of this
  13. * archive for more details.
  14. */
  15. #include <linux/vmalloc.h>
  16. #include <linux/module.h>
  17. #include <linux/mm.h>
  18. #include <linux/pci.h>
  19. #include <linux/io.h>
  20. #include <asm/page.h>
  21. #include <asm/pgalloc.h>
  22. #include <asm/addrspace.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/tlbflush.h>
  25. #include <asm/mmu.h>
  26. /*
  27. * Remap an arbitrary physical address space into the kernel virtual
  28. * address space. Needed when the kernel wants to access high addresses
  29. * directly.
  30. *
  31. * NOTE! We need to allow non-page-aligned mappings too: we will obviously
  32. * have to convert them into an offset in a page-aligned mapping, but the
  33. * caller shouldn't need to know that small detail.
  34. */
  35. void __iomem *__ioremap(unsigned long phys_addr, unsigned long size,
  36. unsigned long flags)
  37. {
  38. struct vm_struct * area;
  39. unsigned long offset, last_addr, addr, orig_addr;
  40. pgprot_t pgprot;
  41. /* Don't allow wraparound or zero size */
  42. last_addr = phys_addr + size - 1;
  43. if (!size || last_addr < phys_addr)
  44. return NULL;
  45. /*
  46. * If we're in the fixed PCI memory range, mapping through page
  47. * tables is not only pointless, but also fundamentally broken.
  48. * Just return the physical address instead.
  49. *
  50. * For boards that map a small PCI memory aperture somewhere in
  51. * P1/P2 space, ioremap() will already do the right thing,
  52. * and we'll never get this far.
  53. */
  54. if (is_pci_memory_fixed_range(phys_addr, size))
  55. return (void __iomem *)phys_addr;
  56. /*
  57. * Mappings have to be page-aligned
  58. */
  59. offset = phys_addr & ~PAGE_MASK;
  60. phys_addr &= PAGE_MASK;
  61. size = PAGE_ALIGN(last_addr+1) - phys_addr;
  62. /*
  63. * Ok, go for it..
  64. */
  65. area = get_vm_area(size, VM_IOREMAP);
  66. if (!area)
  67. return NULL;
  68. area->phys_addr = phys_addr;
  69. orig_addr = addr = (unsigned long)area->addr;
  70. #ifdef CONFIG_PMB
  71. /*
  72. * First try to remap through the PMB once a valid VMA has been
  73. * established. Smaller allocations (or the rest of the size
  74. * remaining after a PMB mapping due to the size not being
  75. * perfectly aligned on a PMB size boundary) are then mapped
  76. * through the UTLB using conventional page tables.
  77. *
  78. * PMB entries are all pre-faulted.
  79. */
  80. if (unlikely(phys_addr >= P1SEG)) {
  81. unsigned long mapped = pmb_remap(addr, phys_addr, size, flags);
  82. if (likely(mapped)) {
  83. addr += mapped;
  84. phys_addr += mapped;
  85. size -= mapped;
  86. }
  87. }
  88. #endif
  89. pgprot = __pgprot(pgprot_val(PAGE_KERNEL_NOCACHE) | flags);
  90. if (likely(size))
  91. if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) {
  92. vunmap((void *)orig_addr);
  93. return NULL;
  94. }
  95. return (void __iomem *)(offset + (char *)orig_addr);
  96. }
  97. EXPORT_SYMBOL(__ioremap);
  98. void __iounmap(void __iomem *addr)
  99. {
  100. unsigned long vaddr = (unsigned long __force)addr;
  101. unsigned long seg = PXSEG(vaddr);
  102. struct vm_struct *p;
  103. if (seg < P3SEG || vaddr >= P3_ADDR_MAX)
  104. return;
  105. if (is_pci_memory_fixed_range(vaddr, 0))
  106. return;
  107. #ifdef CONFIG_PMB
  108. /*
  109. * Purge any PMB entries that may have been established for this
  110. * mapping, then proceed with conventional VMA teardown.
  111. *
  112. * XXX: Note that due to the way that remove_vm_area() does
  113. * matching of the resultant VMA, we aren't able to fast-forward
  114. * the address past the PMB space until the end of the VMA where
  115. * the page tables reside. As such, unmap_vm_area() will be
  116. * forced to linearly scan over the area until it finds the page
  117. * tables where PTEs that need to be unmapped actually reside,
  118. * which is far from optimal. Perhaps we need to use a separate
  119. * VMA for the PMB mappings?
  120. * -- PFM.
  121. */
  122. pmb_unmap(vaddr);
  123. #endif
  124. p = remove_vm_area((void *)(vaddr & PAGE_MASK));
  125. if (!p) {
  126. printk(KERN_ERR "%s: bad address %p\n", __func__, addr);
  127. return;
  128. }
  129. kfree(p);
  130. }
  131. EXPORT_SYMBOL(__iounmap);