cache.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326
  1. /*
  2. * arch/sh/mm/cache.c
  3. *
  4. * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
  5. * Copyright (C) 2002 - 2009 Paul Mundt
  6. *
  7. * Released under the terms of the GNU GPL v2.0.
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/init.h>
  11. #include <linux/mutex.h>
  12. #include <linux/fs.h>
  13. #include <linux/smp.h>
  14. #include <linux/highmem.h>
  15. #include <linux/module.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/cacheflush.h>
  18. void (*local_flush_cache_all)(void *args) = cache_noop;
  19. void (*local_flush_cache_mm)(void *args) = cache_noop;
  20. void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
  21. void (*local_flush_cache_page)(void *args) = cache_noop;
  22. void (*local_flush_cache_range)(void *args) = cache_noop;
  23. void (*local_flush_dcache_page)(void *args) = cache_noop;
  24. void (*local_flush_icache_range)(void *args) = cache_noop;
  25. void (*local_flush_icache_page)(void *args) = cache_noop;
  26. void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
  27. void (*__flush_wback_region)(void *start, int size);
  28. void (*__flush_purge_region)(void *start, int size);
  29. void (*__flush_invalidate_region)(void *start, int size);
  30. static inline void noop__flush_region(void *start, int size)
  31. {
  32. }
  33. static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
  34. int wait)
  35. {
  36. preempt_disable();
  37. smp_call_function(func, info, wait);
  38. func(info);
  39. preempt_enable();
  40. }
  41. void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
  42. unsigned long vaddr, void *dst, const void *src,
  43. unsigned long len)
  44. {
  45. if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
  46. !test_bit(PG_dcache_dirty, &page->flags)) {
  47. void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
  48. memcpy(vto, src, len);
  49. kunmap_coherent(vto);
  50. } else {
  51. memcpy(dst, src, len);
  52. if (boot_cpu_data.dcache.n_aliases)
  53. set_bit(PG_dcache_dirty, &page->flags);
  54. }
  55. if (vma->vm_flags & VM_EXEC)
  56. flush_cache_page(vma, vaddr, page_to_pfn(page));
  57. }
  58. void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
  59. unsigned long vaddr, void *dst, const void *src,
  60. unsigned long len)
  61. {
  62. if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
  63. !test_bit(PG_dcache_dirty, &page->flags)) {
  64. void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
  65. memcpy(dst, vfrom, len);
  66. kunmap_coherent(vfrom);
  67. } else {
  68. memcpy(dst, src, len);
  69. if (boot_cpu_data.dcache.n_aliases)
  70. set_bit(PG_dcache_dirty, &page->flags);
  71. }
  72. }
  73. void copy_user_highpage(struct page *to, struct page *from,
  74. unsigned long vaddr, struct vm_area_struct *vma)
  75. {
  76. void *vfrom, *vto;
  77. vto = kmap_atomic(to, KM_USER1);
  78. if (boot_cpu_data.dcache.n_aliases && page_mapped(from) &&
  79. !test_bit(PG_dcache_dirty, &from->flags)) {
  80. vfrom = kmap_coherent(from, vaddr);
  81. copy_page(vto, vfrom);
  82. kunmap_coherent(vfrom);
  83. } else {
  84. vfrom = kmap_atomic(from, KM_USER0);
  85. copy_page(vto, vfrom);
  86. kunmap_atomic(vfrom, KM_USER0);
  87. }
  88. if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
  89. __flush_purge_region(vto, PAGE_SIZE);
  90. kunmap_atomic(vto, KM_USER1);
  91. /* Make sure this page is cleared on other CPU's too before using it */
  92. smp_wmb();
  93. }
  94. EXPORT_SYMBOL(copy_user_highpage);
  95. void clear_user_highpage(struct page *page, unsigned long vaddr)
  96. {
  97. void *kaddr = kmap_atomic(page, KM_USER0);
  98. clear_page(kaddr);
  99. if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
  100. __flush_purge_region(kaddr, PAGE_SIZE);
  101. kunmap_atomic(kaddr, KM_USER0);
  102. }
  103. EXPORT_SYMBOL(clear_user_highpage);
  104. void __update_cache(struct vm_area_struct *vma,
  105. unsigned long address, pte_t pte)
  106. {
  107. struct page *page;
  108. unsigned long pfn = pte_pfn(pte);
  109. if (!boot_cpu_data.dcache.n_aliases)
  110. return;
  111. page = pfn_to_page(pfn);
  112. if (pfn_valid(pfn)) {
  113. int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
  114. if (dirty) {
  115. unsigned long addr = (unsigned long)page_address(page);
  116. if (pages_do_alias(addr, address & PAGE_MASK))
  117. __flush_purge_region((void *)addr, PAGE_SIZE);
  118. }
  119. }
  120. }
  121. void __flush_anon_page(struct page *page, unsigned long vmaddr)
  122. {
  123. unsigned long addr = (unsigned long) page_address(page);
  124. if (pages_do_alias(addr, vmaddr)) {
  125. if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
  126. !test_bit(PG_dcache_dirty, &page->flags)) {
  127. void *kaddr;
  128. kaddr = kmap_coherent(page, vmaddr);
  129. /* XXX.. For now kunmap_coherent() does a purge */
  130. /* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
  131. kunmap_coherent(kaddr);
  132. } else
  133. __flush_purge_region((void *)addr, PAGE_SIZE);
  134. }
  135. }
  136. void flush_cache_all(void)
  137. {
  138. cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
  139. }
  140. void flush_cache_mm(struct mm_struct *mm)
  141. {
  142. cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
  143. }
  144. void flush_cache_dup_mm(struct mm_struct *mm)
  145. {
  146. cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
  147. }
  148. void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
  149. unsigned long pfn)
  150. {
  151. struct flusher_data data;
  152. data.vma = vma;
  153. data.addr1 = addr;
  154. data.addr2 = pfn;
  155. cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
  156. }
  157. void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
  158. unsigned long end)
  159. {
  160. struct flusher_data data;
  161. data.vma = vma;
  162. data.addr1 = start;
  163. data.addr2 = end;
  164. cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
  165. }
  166. void flush_dcache_page(struct page *page)
  167. {
  168. cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
  169. }
  170. void flush_icache_range(unsigned long start, unsigned long end)
  171. {
  172. struct flusher_data data;
  173. data.vma = NULL;
  174. data.addr1 = start;
  175. data.addr2 = end;
  176. cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
  177. }
  178. void flush_icache_page(struct vm_area_struct *vma, struct page *page)
  179. {
  180. /* Nothing uses the VMA, so just pass the struct page along */
  181. cacheop_on_each_cpu(local_flush_icache_page, page, 1);
  182. }
  183. void flush_cache_sigtramp(unsigned long address)
  184. {
  185. cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
  186. }
  187. static void compute_alias(struct cache_info *c)
  188. {
  189. c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
  190. c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
  191. }
  192. static void __init emit_cache_params(void)
  193. {
  194. printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
  195. boot_cpu_data.icache.ways,
  196. boot_cpu_data.icache.sets,
  197. boot_cpu_data.icache.way_incr);
  198. printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
  199. boot_cpu_data.icache.entry_mask,
  200. boot_cpu_data.icache.alias_mask,
  201. boot_cpu_data.icache.n_aliases);
  202. printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
  203. boot_cpu_data.dcache.ways,
  204. boot_cpu_data.dcache.sets,
  205. boot_cpu_data.dcache.way_incr);
  206. printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
  207. boot_cpu_data.dcache.entry_mask,
  208. boot_cpu_data.dcache.alias_mask,
  209. boot_cpu_data.dcache.n_aliases);
  210. /*
  211. * Emit Secondary Cache parameters if the CPU has a probed L2.
  212. */
  213. if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
  214. printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
  215. boot_cpu_data.scache.ways,
  216. boot_cpu_data.scache.sets,
  217. boot_cpu_data.scache.way_incr);
  218. printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
  219. boot_cpu_data.scache.entry_mask,
  220. boot_cpu_data.scache.alias_mask,
  221. boot_cpu_data.scache.n_aliases);
  222. }
  223. }
  224. void __init cpu_cache_init(void)
  225. {
  226. unsigned int cache_disabled = !(__raw_readl(CCR) & CCR_CACHE_ENABLE);
  227. compute_alias(&boot_cpu_data.icache);
  228. compute_alias(&boot_cpu_data.dcache);
  229. compute_alias(&boot_cpu_data.scache);
  230. __flush_wback_region = noop__flush_region;
  231. __flush_purge_region = noop__flush_region;
  232. __flush_invalidate_region = noop__flush_region;
  233. /*
  234. * No flushing is necessary in the disabled cache case so we can
  235. * just keep the noop functions in local_flush_..() and __flush_..()
  236. */
  237. if (unlikely(cache_disabled))
  238. goto skip;
  239. if (boot_cpu_data.family == CPU_FAMILY_SH2) {
  240. extern void __weak sh2_cache_init(void);
  241. sh2_cache_init();
  242. }
  243. if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
  244. extern void __weak sh2a_cache_init(void);
  245. sh2a_cache_init();
  246. }
  247. if (boot_cpu_data.family == CPU_FAMILY_SH3) {
  248. extern void __weak sh3_cache_init(void);
  249. sh3_cache_init();
  250. if ((boot_cpu_data.type == CPU_SH7705) &&
  251. (boot_cpu_data.dcache.sets == 512)) {
  252. extern void __weak sh7705_cache_init(void);
  253. sh7705_cache_init();
  254. }
  255. }
  256. if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
  257. (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
  258. (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
  259. extern void __weak sh4_cache_init(void);
  260. sh4_cache_init();
  261. }
  262. if (boot_cpu_data.family == CPU_FAMILY_SH5) {
  263. extern void __weak sh5_cache_init(void);
  264. sh5_cache_init();
  265. }
  266. skip:
  267. emit_cache_params();
  268. }