smp.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. /*
  2. * arch/sh/kernel/smp.c
  3. *
  4. * SMP support for the SuperH processors.
  5. *
  6. * Copyright (C) 2002 - 2008 Paul Mundt
  7. * Copyright (C) 2006 - 2007 Akio Idehara
  8. *
  9. * This file is subject to the terms and conditions of the GNU General Public
  10. * License. See the file "COPYING" in the main directory of this archive
  11. * for more details.
  12. */
  13. #include <linux/err.h>
  14. #include <linux/cache.h>
  15. #include <linux/cpumask.h>
  16. #include <linux/delay.h>
  17. #include <linux/init.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/mm.h>
  20. #include <linux/module.h>
  21. #include <linux/cpu.h>
  22. #include <linux/interrupt.h>
  23. #include <asm/atomic.h>
  24. #include <asm/processor.h>
  25. #include <asm/system.h>
  26. #include <asm/mmu_context.h>
  27. #include <asm/smp.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/sections.h>
  30. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  31. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  32. static inline void __init smp_store_cpu_info(unsigned int cpu)
  33. {
  34. struct sh_cpuinfo *c = cpu_data + cpu;
  35. memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
  36. c->loops_per_jiffy = loops_per_jiffy;
  37. }
  38. void __init smp_prepare_cpus(unsigned int max_cpus)
  39. {
  40. unsigned int cpu = smp_processor_id();
  41. init_new_context(current, &init_mm);
  42. current_thread_info()->cpu = cpu;
  43. plat_prepare_cpus(max_cpus);
  44. #ifndef CONFIG_HOTPLUG_CPU
  45. init_cpu_present(&cpu_possible_map);
  46. #endif
  47. }
  48. void __devinit smp_prepare_boot_cpu(void)
  49. {
  50. unsigned int cpu = smp_processor_id();
  51. __cpu_number_map[0] = cpu;
  52. __cpu_logical_map[0] = cpu;
  53. set_cpu_online(cpu, true);
  54. set_cpu_possible(cpu, true);
  55. }
  56. asmlinkage void __cpuinit start_secondary(void)
  57. {
  58. unsigned int cpu;
  59. struct mm_struct *mm = &init_mm;
  60. atomic_inc(&mm->mm_count);
  61. atomic_inc(&mm->mm_users);
  62. current->active_mm = mm;
  63. BUG_ON(current->mm);
  64. enter_lazy_tlb(mm, current);
  65. per_cpu_trap_init();
  66. preempt_disable();
  67. notify_cpu_starting(smp_processor_id());
  68. local_irq_enable();
  69. cpu = smp_processor_id();
  70. /* Enable local timers */
  71. local_timer_setup(cpu);
  72. calibrate_delay();
  73. smp_store_cpu_info(cpu);
  74. cpu_set(cpu, cpu_online_map);
  75. cpu_idle();
  76. }
  77. extern struct {
  78. unsigned long sp;
  79. unsigned long bss_start;
  80. unsigned long bss_end;
  81. void *start_kernel_fn;
  82. void *cpu_init_fn;
  83. void *thread_info;
  84. } stack_start;
  85. int __cpuinit __cpu_up(unsigned int cpu)
  86. {
  87. struct task_struct *tsk;
  88. unsigned long timeout;
  89. tsk = fork_idle(cpu);
  90. if (IS_ERR(tsk)) {
  91. printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
  92. return PTR_ERR(tsk);
  93. }
  94. /* Fill in data in head.S for secondary cpus */
  95. stack_start.sp = tsk->thread.sp;
  96. stack_start.thread_info = tsk->stack;
  97. stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
  98. stack_start.start_kernel_fn = start_secondary;
  99. flush_cache_all();
  100. plat_start_cpu(cpu, (unsigned long)_stext);
  101. timeout = jiffies + HZ;
  102. while (time_before(jiffies, timeout)) {
  103. if (cpu_online(cpu))
  104. break;
  105. udelay(10);
  106. }
  107. if (cpu_online(cpu))
  108. return 0;
  109. return -ENOENT;
  110. }
  111. void __init smp_cpus_done(unsigned int max_cpus)
  112. {
  113. unsigned long bogosum = 0;
  114. int cpu;
  115. for_each_online_cpu(cpu)
  116. bogosum += cpu_data[cpu].loops_per_jiffy;
  117. printk(KERN_INFO "SMP: Total of %d processors activated "
  118. "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
  119. bogosum / (500000/HZ),
  120. (bogosum / (5000/HZ)) % 100);
  121. }
  122. void smp_send_reschedule(int cpu)
  123. {
  124. plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
  125. }
  126. static void stop_this_cpu(void *unused)
  127. {
  128. cpu_clear(smp_processor_id(), cpu_online_map);
  129. local_irq_disable();
  130. for (;;)
  131. cpu_relax();
  132. }
  133. void smp_send_stop(void)
  134. {
  135. smp_call_function(stop_this_cpu, 0, 0);
  136. }
  137. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  138. {
  139. int cpu;
  140. for_each_cpu(cpu, mask)
  141. plat_send_ipi(cpu, SMP_MSG_FUNCTION);
  142. }
  143. void arch_send_call_function_single_ipi(int cpu)
  144. {
  145. plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
  146. }
  147. void smp_timer_broadcast(const struct cpumask *mask)
  148. {
  149. int cpu;
  150. for_each_cpu(cpu, mask)
  151. plat_send_ipi(cpu, SMP_MSG_TIMER);
  152. }
  153. static void ipi_timer(void)
  154. {
  155. irq_enter();
  156. local_timer_interrupt();
  157. irq_exit();
  158. }
  159. void smp_message_recv(unsigned int msg)
  160. {
  161. switch (msg) {
  162. case SMP_MSG_FUNCTION:
  163. generic_smp_call_function_interrupt();
  164. break;
  165. case SMP_MSG_RESCHEDULE:
  166. break;
  167. case SMP_MSG_FUNCTION_SINGLE:
  168. generic_smp_call_function_single_interrupt();
  169. break;
  170. case SMP_MSG_TIMER:
  171. ipi_timer();
  172. break;
  173. default:
  174. printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
  175. smp_processor_id(), __func__, msg);
  176. break;
  177. }
  178. }
  179. /* Not really SMP stuff ... */
  180. int setup_profiling_timer(unsigned int multiplier)
  181. {
  182. return 0;
  183. }
  184. static void flush_tlb_all_ipi(void *info)
  185. {
  186. local_flush_tlb_all();
  187. }
  188. void flush_tlb_all(void)
  189. {
  190. on_each_cpu(flush_tlb_all_ipi, 0, 1);
  191. }
  192. static void flush_tlb_mm_ipi(void *mm)
  193. {
  194. local_flush_tlb_mm((struct mm_struct *)mm);
  195. }
  196. /*
  197. * The following tlb flush calls are invoked when old translations are
  198. * being torn down, or pte attributes are changing. For single threaded
  199. * address spaces, a new context is obtained on the current cpu, and tlb
  200. * context on other cpus are invalidated to force a new context allocation
  201. * at switch_mm time, should the mm ever be used on other cpus. For
  202. * multithreaded address spaces, intercpu interrupts have to be sent.
  203. * Another case where intercpu interrupts are required is when the target
  204. * mm might be active on another cpu (eg debuggers doing the flushes on
  205. * behalf of debugees, kswapd stealing pages from another process etc).
  206. * Kanoj 07/00.
  207. */
  208. void flush_tlb_mm(struct mm_struct *mm)
  209. {
  210. preempt_disable();
  211. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  212. smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
  213. } else {
  214. int i;
  215. for (i = 0; i < num_online_cpus(); i++)
  216. if (smp_processor_id() != i)
  217. cpu_context(i, mm) = 0;
  218. }
  219. local_flush_tlb_mm(mm);
  220. preempt_enable();
  221. }
  222. struct flush_tlb_data {
  223. struct vm_area_struct *vma;
  224. unsigned long addr1;
  225. unsigned long addr2;
  226. };
  227. static void flush_tlb_range_ipi(void *info)
  228. {
  229. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  230. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  231. }
  232. void flush_tlb_range(struct vm_area_struct *vma,
  233. unsigned long start, unsigned long end)
  234. {
  235. struct mm_struct *mm = vma->vm_mm;
  236. preempt_disable();
  237. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  238. struct flush_tlb_data fd;
  239. fd.vma = vma;
  240. fd.addr1 = start;
  241. fd.addr2 = end;
  242. smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
  243. } else {
  244. int i;
  245. for (i = 0; i < num_online_cpus(); i++)
  246. if (smp_processor_id() != i)
  247. cpu_context(i, mm) = 0;
  248. }
  249. local_flush_tlb_range(vma, start, end);
  250. preempt_enable();
  251. }
  252. static void flush_tlb_kernel_range_ipi(void *info)
  253. {
  254. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  255. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  256. }
  257. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  258. {
  259. struct flush_tlb_data fd;
  260. fd.addr1 = start;
  261. fd.addr2 = end;
  262. on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
  263. }
  264. static void flush_tlb_page_ipi(void *info)
  265. {
  266. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  267. local_flush_tlb_page(fd->vma, fd->addr1);
  268. }
  269. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  270. {
  271. preempt_disable();
  272. if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
  273. (current->mm != vma->vm_mm)) {
  274. struct flush_tlb_data fd;
  275. fd.vma = vma;
  276. fd.addr1 = page;
  277. smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
  278. } else {
  279. int i;
  280. for (i = 0; i < num_online_cpus(); i++)
  281. if (smp_processor_id() != i)
  282. cpu_context(i, vma->vm_mm) = 0;
  283. }
  284. local_flush_tlb_page(vma, page);
  285. preempt_enable();
  286. }
  287. static void flush_tlb_one_ipi(void *info)
  288. {
  289. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  290. local_flush_tlb_one(fd->addr1, fd->addr2);
  291. }
  292. void flush_tlb_one(unsigned long asid, unsigned long vaddr)
  293. {
  294. struct flush_tlb_data fd;
  295. fd.addr1 = asid;
  296. fd.addr2 = vaddr;
  297. smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
  298. local_flush_tlb_one(asid, vaddr);
  299. }