process_32.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. /*
  2. * arch/sh/kernel/process.c
  3. *
  4. * This file handles the architecture-dependent parts of process handling..
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. *
  8. * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  9. * Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
  10. * Copyright (C) 2002 - 2008 Paul Mundt
  11. *
  12. * This file is subject to the terms and conditions of the GNU General Public
  13. * License. See the file "COPYING" in the main directory of this archive
  14. * for more details.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/mm.h>
  18. #include <linux/elfcore.h>
  19. #include <linux/pm.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/kexec.h>
  22. #include <linux/kdebug.h>
  23. #include <linux/tick.h>
  24. #include <linux/reboot.h>
  25. #include <linux/fs.h>
  26. #include <linux/ftrace.h>
  27. #include <linux/preempt.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/mmu_context.h>
  30. #include <asm/pgalloc.h>
  31. #include <asm/system.h>
  32. #include <asm/ubc.h>
  33. #include <asm/fpu.h>
  34. #include <asm/syscalls.h>
  35. #include <asm/watchdog.h>
  36. int ubc_usercnt = 0;
  37. #ifdef CONFIG_32BIT
  38. static void watchdog_trigger_immediate(void)
  39. {
  40. sh_wdt_write_cnt(0xFF);
  41. sh_wdt_write_csr(0xC2);
  42. }
  43. void machine_restart(char * __unused)
  44. {
  45. local_irq_disable();
  46. /* Use watchdog timer to trigger reset */
  47. watchdog_trigger_immediate();
  48. while (1)
  49. cpu_sleep();
  50. }
  51. #else
  52. void machine_restart(char * __unused)
  53. {
  54. /* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
  55. asm volatile("ldc %0, sr\n\t"
  56. "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
  57. }
  58. #endif
  59. void machine_halt(void)
  60. {
  61. local_irq_disable();
  62. while (1)
  63. cpu_sleep();
  64. }
  65. void machine_power_off(void)
  66. {
  67. if (pm_power_off)
  68. pm_power_off();
  69. }
  70. void show_regs(struct pt_regs * regs)
  71. {
  72. printk("\n");
  73. printk("Pid : %d, Comm: \t\t%s\n", task_pid_nr(current), current->comm);
  74. printk("CPU : %d \t\t%s (%s %.*s)\n\n",
  75. smp_processor_id(), print_tainted(), init_utsname()->release,
  76. (int)strcspn(init_utsname()->version, " "),
  77. init_utsname()->version);
  78. print_symbol("PC is at %s\n", instruction_pointer(regs));
  79. print_symbol("PR is at %s\n", regs->pr);
  80. printk("PC : %08lx SP : %08lx SR : %08lx ",
  81. regs->pc, regs->regs[15], regs->sr);
  82. #ifdef CONFIG_MMU
  83. printk("TEA : %08x\n", ctrl_inl(MMU_TEA));
  84. #else
  85. printk("\n");
  86. #endif
  87. printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
  88. regs->regs[0],regs->regs[1],
  89. regs->regs[2],regs->regs[3]);
  90. printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
  91. regs->regs[4],regs->regs[5],
  92. regs->regs[6],regs->regs[7]);
  93. printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
  94. regs->regs[8],regs->regs[9],
  95. regs->regs[10],regs->regs[11]);
  96. printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
  97. regs->regs[12],regs->regs[13],
  98. regs->regs[14]);
  99. printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
  100. regs->mach, regs->macl, regs->gbr, regs->pr);
  101. show_trace(NULL, (unsigned long *)regs->regs[15], regs);
  102. show_code(regs);
  103. }
  104. /*
  105. * Create a kernel thread
  106. */
  107. ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
  108. {
  109. do_exit(fn(arg));
  110. }
  111. /* Don't use this in BL=1(cli). Or else, CPU resets! */
  112. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  113. {
  114. struct pt_regs regs;
  115. int pid;
  116. memset(&regs, 0, sizeof(regs));
  117. regs.regs[4] = (unsigned long)arg;
  118. regs.regs[5] = (unsigned long)fn;
  119. regs.pc = (unsigned long)kernel_thread_helper;
  120. regs.sr = (1 << 30);
  121. /* Ok, create the new process.. */
  122. pid = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  123. &regs, 0, NULL, NULL);
  124. return pid;
  125. }
  126. /*
  127. * Free current thread data structures etc..
  128. */
  129. void exit_thread(void)
  130. {
  131. if (current->thread.ubc_pc) {
  132. current->thread.ubc_pc = 0;
  133. ubc_usercnt -= 1;
  134. }
  135. }
  136. void flush_thread(void)
  137. {
  138. #if defined(CONFIG_SH_FPU)
  139. struct task_struct *tsk = current;
  140. /* Forget lazy FPU state */
  141. clear_fpu(tsk, task_pt_regs(tsk));
  142. clear_used_math();
  143. #endif
  144. }
  145. void release_thread(struct task_struct *dead_task)
  146. {
  147. /* do nothing */
  148. }
  149. /* Fill in the fpu structure for a core dump.. */
  150. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  151. {
  152. int fpvalid = 0;
  153. #if defined(CONFIG_SH_FPU)
  154. struct task_struct *tsk = current;
  155. fpvalid = !!tsk_used_math(tsk);
  156. if (fpvalid)
  157. fpvalid = !fpregs_get(tsk, NULL, 0,
  158. sizeof(struct user_fpu_struct),
  159. fpu, NULL);
  160. #endif
  161. return fpvalid;
  162. }
  163. asmlinkage void ret_from_fork(void);
  164. int copy_thread(unsigned long clone_flags, unsigned long usp,
  165. unsigned long unused,
  166. struct task_struct *p, struct pt_regs *regs)
  167. {
  168. struct thread_info *ti = task_thread_info(p);
  169. struct pt_regs *childregs;
  170. #if defined(CONFIG_SH_FPU) || defined(CONFIG_SH_DSP)
  171. struct task_struct *tsk = current;
  172. #endif
  173. #if defined(CONFIG_SH_FPU)
  174. unlazy_fpu(tsk, regs);
  175. p->thread.fpu = tsk->thread.fpu;
  176. copy_to_stopped_child_used_math(p);
  177. #endif
  178. #if defined(CONFIG_SH_DSP)
  179. if (is_dsp_enabled(tsk)) {
  180. /* We can use the __save_dsp or just copy the struct:
  181. * __save_dsp(p);
  182. * p->thread.dsp_status.status |= SR_DSP
  183. */
  184. p->thread.dsp_status = tsk->thread.dsp_status;
  185. }
  186. #endif
  187. childregs = task_pt_regs(p);
  188. *childregs = *regs;
  189. if (user_mode(regs)) {
  190. childregs->regs[15] = usp;
  191. ti->addr_limit = USER_DS;
  192. } else {
  193. childregs->regs[15] = (unsigned long)childregs;
  194. ti->addr_limit = KERNEL_DS;
  195. }
  196. if (clone_flags & CLONE_SETTLS)
  197. childregs->gbr = childregs->regs[0];
  198. childregs->regs[0] = 0; /* Set return value for child */
  199. p->thread.sp = (unsigned long) childregs;
  200. p->thread.pc = (unsigned long) ret_from_fork;
  201. p->thread.ubc_pc = 0;
  202. return 0;
  203. }
  204. /* Tracing by user break controller. */
  205. static void ubc_set_tracing(int asid, unsigned long pc)
  206. {
  207. #if defined(CONFIG_CPU_SH4A)
  208. unsigned long val;
  209. val = (UBC_CBR_ID_INST | UBC_CBR_RW_READ | UBC_CBR_CE);
  210. val |= (UBC_CBR_AIE | UBC_CBR_AIV_SET(asid));
  211. ctrl_outl(val, UBC_CBR0);
  212. ctrl_outl(pc, UBC_CAR0);
  213. ctrl_outl(0x0, UBC_CAMR0);
  214. ctrl_outl(0x0, UBC_CBCR);
  215. val = (UBC_CRR_RES | UBC_CRR_PCB | UBC_CRR_BIE);
  216. ctrl_outl(val, UBC_CRR0);
  217. /* Read UBC register that we wrote last, for checking update */
  218. val = ctrl_inl(UBC_CRR0);
  219. #else /* CONFIG_CPU_SH4A */
  220. ctrl_outl(pc, UBC_BARA);
  221. #ifdef CONFIG_MMU
  222. ctrl_outb(asid, UBC_BASRA);
  223. #endif
  224. ctrl_outl(0, UBC_BAMRA);
  225. if (current_cpu_data.type == CPU_SH7729 ||
  226. current_cpu_data.type == CPU_SH7710 ||
  227. current_cpu_data.type == CPU_SH7712 ||
  228. current_cpu_data.type == CPU_SH7203){
  229. ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
  230. ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
  231. } else {
  232. ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
  233. ctrl_outw(BRCR_PCBA, UBC_BRCR);
  234. }
  235. #endif /* CONFIG_CPU_SH4A */
  236. }
  237. /*
  238. * switch_to(x,y) should switch tasks from x to y.
  239. *
  240. */
  241. __notrace_funcgraph struct task_struct *
  242. __switch_to(struct task_struct *prev, struct task_struct *next)
  243. {
  244. #if defined(CONFIG_SH_FPU)
  245. unlazy_fpu(prev, task_pt_regs(prev));
  246. #endif
  247. #ifdef CONFIG_MMU
  248. /*
  249. * Restore the kernel mode register
  250. * k7 (r7_bank1)
  251. */
  252. asm volatile("ldc %0, r7_bank"
  253. : /* no output */
  254. : "r" (task_thread_info(next)));
  255. #endif
  256. /* If no tasks are using the UBC, we're done */
  257. if (ubc_usercnt == 0)
  258. /* If no tasks are using the UBC, we're done */;
  259. else if (next->thread.ubc_pc && next->mm) {
  260. int asid = 0;
  261. #ifdef CONFIG_MMU
  262. asid |= cpu_asid(smp_processor_id(), next->mm);
  263. #endif
  264. ubc_set_tracing(asid, next->thread.ubc_pc);
  265. } else {
  266. #if defined(CONFIG_CPU_SH4A)
  267. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  268. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  269. #else
  270. ctrl_outw(0, UBC_BBRA);
  271. ctrl_outw(0, UBC_BBRB);
  272. #endif
  273. }
  274. return prev;
  275. }
  276. asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
  277. unsigned long r6, unsigned long r7,
  278. struct pt_regs __regs)
  279. {
  280. #ifdef CONFIG_MMU
  281. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  282. return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
  283. #else
  284. /* fork almost works, enough to trick you into looking elsewhere :-( */
  285. return -EINVAL;
  286. #endif
  287. }
  288. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  289. unsigned long parent_tidptr,
  290. unsigned long child_tidptr,
  291. struct pt_regs __regs)
  292. {
  293. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  294. if (!newsp)
  295. newsp = regs->regs[15];
  296. return do_fork(clone_flags, newsp, regs, 0,
  297. (int __user *)parent_tidptr,
  298. (int __user *)child_tidptr);
  299. }
  300. /*
  301. * This is trivial, and on the face of it looks like it
  302. * could equally well be done in user mode.
  303. *
  304. * Not so, for quite unobvious reasons - register pressure.
  305. * In user mode vfork() cannot have a stack frame, and if
  306. * done by calling the "clone()" system call directly, you
  307. * do not have enough call-clobbered registers to hold all
  308. * the information you need.
  309. */
  310. asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
  311. unsigned long r6, unsigned long r7,
  312. struct pt_regs __regs)
  313. {
  314. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  315. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
  316. 0, NULL, NULL);
  317. }
  318. /*
  319. * sys_execve() executes a new program.
  320. */
  321. asmlinkage int sys_execve(char __user *ufilename, char __user * __user *uargv,
  322. char __user * __user *uenvp, unsigned long r7,
  323. struct pt_regs __regs)
  324. {
  325. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  326. int error;
  327. char *filename;
  328. filename = getname(ufilename);
  329. error = PTR_ERR(filename);
  330. if (IS_ERR(filename))
  331. goto out;
  332. error = do_execve(filename, uargv, uenvp, regs);
  333. putname(filename);
  334. out:
  335. return error;
  336. }
  337. unsigned long get_wchan(struct task_struct *p)
  338. {
  339. unsigned long pc;
  340. if (!p || p == current || p->state == TASK_RUNNING)
  341. return 0;
  342. /*
  343. * The same comment as on the Alpha applies here, too ...
  344. */
  345. pc = thread_saved_pc(p);
  346. #ifdef CONFIG_FRAME_POINTER
  347. if (in_sched_functions(pc)) {
  348. unsigned long schedule_frame = (unsigned long)p->thread.sp;
  349. return ((unsigned long *)schedule_frame)[21];
  350. }
  351. #endif
  352. return pc;
  353. }
  354. asmlinkage void break_point_trap(void)
  355. {
  356. /* Clear tracing. */
  357. #if defined(CONFIG_CPU_SH4A)
  358. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  359. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  360. #else
  361. ctrl_outw(0, UBC_BBRA);
  362. ctrl_outw(0, UBC_BBRB);
  363. ctrl_outl(0, UBC_BRCR);
  364. #endif
  365. current->thread.ubc_pc = 0;
  366. ubc_usercnt -= 1;
  367. force_sig(SIGTRAP, current);
  368. }