clock-sh7366.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. /*
  2. * arch/sh/kernel/cpu/sh4a/clock-sh7366.c
  3. *
  4. * SH7366 clock framework support
  5. *
  6. * Copyright (C) 2009 Magnus Damm
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/kernel.h>
  23. #include <linux/io.h>
  24. #include <asm/clock.h>
  25. /* SH7366 registers */
  26. #define FRQCR 0xa4150000
  27. #define VCLKCR 0xa4150004
  28. #define SCLKACR 0xa4150008
  29. #define SCLKBCR 0xa415000c
  30. #define PLLCR 0xa4150024
  31. #define MSTPCR0 0xa4150030
  32. #define MSTPCR1 0xa4150034
  33. #define MSTPCR2 0xa4150038
  34. #define DLLFRQ 0xa4150050
  35. /* Fixed 32 KHz root clock for RTC and Power Management purposes */
  36. static struct clk r_clk = {
  37. .name = "rclk",
  38. .id = -1,
  39. .rate = 32768,
  40. };
  41. /*
  42. * Default rate for the root input clock, reset this with clk_set_rate()
  43. * from the platform code.
  44. */
  45. struct clk extal_clk = {
  46. .name = "extal",
  47. .id = -1,
  48. .rate = 33333333,
  49. };
  50. /* The dll block multiplies the 32khz r_clk, may be used instead of extal */
  51. static unsigned long dll_recalc(struct clk *clk)
  52. {
  53. unsigned long mult;
  54. if (__raw_readl(PLLCR) & 0x1000)
  55. mult = __raw_readl(DLLFRQ);
  56. else
  57. mult = 0;
  58. return clk->parent->rate * mult;
  59. }
  60. static struct clk_ops dll_clk_ops = {
  61. .recalc = dll_recalc,
  62. };
  63. static struct clk dll_clk = {
  64. .name = "dll_clk",
  65. .id = -1,
  66. .ops = &dll_clk_ops,
  67. .parent = &r_clk,
  68. .flags = CLK_ENABLE_ON_INIT,
  69. };
  70. static unsigned long pll_recalc(struct clk *clk)
  71. {
  72. unsigned long mult = 1;
  73. unsigned long div = 1;
  74. if (__raw_readl(PLLCR) & 0x4000)
  75. mult = (((__raw_readl(FRQCR) >> 24) & 0x1f) + 1);
  76. else
  77. div = 2;
  78. return (clk->parent->rate * mult) / div;
  79. }
  80. static struct clk_ops pll_clk_ops = {
  81. .recalc = pll_recalc,
  82. };
  83. static struct clk pll_clk = {
  84. .name = "pll_clk",
  85. .id = -1,
  86. .ops = &pll_clk_ops,
  87. .flags = CLK_ENABLE_ON_INIT,
  88. };
  89. struct clk *main_clks[] = {
  90. &r_clk,
  91. &extal_clk,
  92. &dll_clk,
  93. &pll_clk,
  94. };
  95. static int multipliers[] = { 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
  96. static int divisors[] = { 1, 3, 2, 5, 3, 4, 5, 6, 8, 10, 12, 16, 20 };
  97. static struct clk_div_mult_table div4_table = {
  98. .divisors = divisors,
  99. .nr_divisors = ARRAY_SIZE(divisors),
  100. .multipliers = multipliers,
  101. .nr_multipliers = ARRAY_SIZE(multipliers),
  102. };
  103. enum { DIV4_I, DIV4_U, DIV4_SH, DIV4_B, DIV4_B3, DIV4_P,
  104. DIV4_SIUA, DIV4_SIUB, DIV4_NR };
  105. #define DIV4(_str, _reg, _bit, _mask, _flags) \
  106. SH_CLK_DIV4(_str, &pll_clk, _reg, _bit, _mask, _flags)
  107. struct clk div4_clks[DIV4_NR] = {
  108. [DIV4_I] = DIV4("cpu_clk", FRQCR, 20, 0x1fef, CLK_ENABLE_ON_INIT),
  109. [DIV4_U] = DIV4("umem_clk", FRQCR, 16, 0x1fff, CLK_ENABLE_ON_INIT),
  110. [DIV4_SH] = DIV4("shyway_clk", FRQCR, 12, 0x1fff, CLK_ENABLE_ON_INIT),
  111. [DIV4_B] = DIV4("bus_clk", FRQCR, 8, 0x1fff, CLK_ENABLE_ON_INIT),
  112. [DIV4_B3] = DIV4("b3_clk", FRQCR, 4, 0x1fff, CLK_ENABLE_ON_INIT),
  113. [DIV4_P] = DIV4("peripheral_clk", FRQCR, 0, 0x1fff, 0),
  114. [DIV4_SIUA] = DIV4("siua_clk", SCLKACR, 0, 0x1fff, 0),
  115. [DIV4_SIUB] = DIV4("siub_clk", SCLKBCR, 0, 0x1fff, 0),
  116. };
  117. struct clk div6_clks[] = {
  118. SH_CLK_DIV6("video_clk", &pll_clk, VCLKCR, 0),
  119. };
  120. #define MSTP(_str, _parent, _reg, _bit, _flags) \
  121. SH_CLK_MSTP32(_str, -1, _parent, _reg, _bit, _flags)
  122. static struct clk mstp_clks[] = {
  123. /* See page 52 of Datasheet V0.40: Overview -> Block Diagram */
  124. MSTP("tlb0", &div4_clks[DIV4_I], MSTPCR0, 31, CLK_ENABLE_ON_INIT),
  125. MSTP("ic0", &div4_clks[DIV4_I], MSTPCR0, 30, CLK_ENABLE_ON_INIT),
  126. MSTP("oc0", &div4_clks[DIV4_I], MSTPCR0, 29, CLK_ENABLE_ON_INIT),
  127. MSTP("rsmem0", &div4_clks[DIV4_SH], MSTPCR0, 28, CLK_ENABLE_ON_INIT),
  128. MSTP("xymem0", &div4_clks[DIV4_B], MSTPCR0, 26, CLK_ENABLE_ON_INIT),
  129. MSTP("intc3", &div4_clks[DIV4_P], MSTPCR0, 23, 0),
  130. MSTP("intc0", &div4_clks[DIV4_P], MSTPCR0, 22, 0),
  131. MSTP("dmac0", &div4_clks[DIV4_P], MSTPCR0, 21, 0),
  132. MSTP("sh0", &div4_clks[DIV4_P], MSTPCR0, 20, 0),
  133. MSTP("hudi0", &div4_clks[DIV4_P], MSTPCR0, 19, 0),
  134. MSTP("ubc0", &div4_clks[DIV4_P], MSTPCR0, 17, 0),
  135. MSTP("tmu0", &div4_clks[DIV4_P], MSTPCR0, 15, 0),
  136. MSTP("cmt0", &r_clk, MSTPCR0, 14, 0),
  137. MSTP("rwdt0", &r_clk, MSTPCR0, 13, 0),
  138. MSTP("mfi0", &div4_clks[DIV4_P], MSTPCR0, 11, 0),
  139. MSTP("flctl0", &div4_clks[DIV4_P], MSTPCR0, 10, 0),
  140. MSTP("scif0", &div4_clks[DIV4_P], MSTPCR0, 7, 0),
  141. MSTP("scif1", &div4_clks[DIV4_P], MSTPCR0, 6, 0),
  142. MSTP("scif2", &div4_clks[DIV4_P], MSTPCR0, 5, 0),
  143. MSTP("msiof0", &div4_clks[DIV4_P], MSTPCR0, 2, 0),
  144. MSTP("sbr0", &div4_clks[DIV4_P], MSTPCR0, 1, 0),
  145. MSTP("i2c0", &div4_clks[DIV4_P], MSTPCR1, 9, 0),
  146. MSTP("icb0", &div4_clks[DIV4_P], MSTPCR2, 27, 0),
  147. MSTP("meram0", &div4_clks[DIV4_P], MSTPCR2, 26, 0),
  148. MSTP("dacy1", &div4_clks[DIV4_P], MSTPCR2, 24, 0),
  149. MSTP("dacy0", &div4_clks[DIV4_P], MSTPCR2, 23, 0),
  150. MSTP("tsif0", &div4_clks[DIV4_P], MSTPCR2, 22, 0),
  151. MSTP("sdhi0", &div4_clks[DIV4_P], MSTPCR2, 18, 0),
  152. MSTP("mmcif0", &div4_clks[DIV4_P], MSTPCR2, 17, 0),
  153. MSTP("usbf0", &div4_clks[DIV4_P], MSTPCR2, 11, 0),
  154. MSTP("siu0", &div4_clks[DIV4_B], MSTPCR2, 9, 0),
  155. MSTP("veu1", &div4_clks[DIV4_B], MSTPCR2, 7, CLK_ENABLE_ON_INIT),
  156. MSTP("vou0", &div4_clks[DIV4_B], MSTPCR2, 5, 0),
  157. MSTP("beu0", &div4_clks[DIV4_B], MSTPCR2, 4, 0),
  158. MSTP("ceu0", &div4_clks[DIV4_B], MSTPCR2, 3, 0),
  159. MSTP("veu0", &div4_clks[DIV4_B], MSTPCR2, 2, CLK_ENABLE_ON_INIT),
  160. MSTP("vpu0", &div4_clks[DIV4_B], MSTPCR2, 1, CLK_ENABLE_ON_INIT),
  161. MSTP("lcdc0", &div4_clks[DIV4_B], MSTPCR2, 0, 0),
  162. };
  163. int __init arch_clk_init(void)
  164. {
  165. int k, ret = 0;
  166. /* autodetect extal or dll configuration */
  167. if (__raw_readl(PLLCR) & 0x1000)
  168. pll_clk.parent = &dll_clk;
  169. else
  170. pll_clk.parent = &extal_clk;
  171. for (k = 0; !ret && (k < ARRAY_SIZE(main_clks)); k++)
  172. ret = clk_register(main_clks[k]);
  173. if (!ret)
  174. ret = sh_clk_div4_register(div4_clks, DIV4_NR, &div4_table);
  175. if (!ret)
  176. ret = sh_clk_div6_register(div6_clks, ARRAY_SIZE(div6_clks));
  177. if (!ret)
  178. ret = sh_clk_mstp32_register(mstp_clks, ARRAY_SIZE(mstp_clks));
  179. return ret;
  180. }