dt.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. /*
  2. * Copyright (C) 2005-2006 Michael Ellerman, IBM Corporation
  3. * Copyright (C) 2000-2004, IBM Corporation
  4. *
  5. * Description:
  6. * This file contains all the routines to build a flattened device
  7. * tree for a legacy iSeries machine.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #undef DEBUG
  15. #include <linux/types.h>
  16. #include <linux/init.h>
  17. #include <linux/pci.h>
  18. #include <linux/pci_regs.h>
  19. #include <linux/pci_ids.h>
  20. #include <linux/threads.h>
  21. #include <linux/bitops.h>
  22. #include <linux/string.h>
  23. #include <linux/kernel.h>
  24. #include <linux/if_ether.h> /* ETH_ALEN */
  25. #include <asm/machdep.h>
  26. #include <asm/prom.h>
  27. #include <asm/lppaca.h>
  28. #include <asm/cputable.h>
  29. #include <asm/abs_addr.h>
  30. #include <asm/system.h>
  31. #include <asm/iseries/hv_types.h>
  32. #include <asm/iseries/hv_lp_config.h>
  33. #include <asm/iseries/hv_call_xm.h>
  34. #include <asm/udbg.h>
  35. #include "processor_vpd.h"
  36. #include "call_hpt.h"
  37. #include "call_pci.h"
  38. #include "pci.h"
  39. #include "it_exp_vpd_panel.h"
  40. #include "naca.h"
  41. #ifdef DEBUG
  42. #define DBG(fmt...) udbg_printf(fmt)
  43. #else
  44. #define DBG(fmt...)
  45. #endif
  46. /*
  47. * These are created by the linker script at the start and end
  48. * of the section containing all the strings marked with the DS macro.
  49. */
  50. extern char __dt_strings_start[];
  51. extern char __dt_strings_end[];
  52. #define DS(s) ({ \
  53. static const char __s[] __attribute__((section(".dt_strings"))) = s; \
  54. __s; \
  55. })
  56. struct iseries_flat_dt {
  57. struct boot_param_header header;
  58. u64 reserve_map[2];
  59. };
  60. static void * __initdata dt_data;
  61. /*
  62. * Putting these strings here keeps them out of the .dt_strings section
  63. * that we capture for the strings blob of the flattened device tree.
  64. */
  65. static char __initdata device_type_cpu[] = "cpu";
  66. static char __initdata device_type_memory[] = "memory";
  67. static char __initdata device_type_serial[] = "serial";
  68. static char __initdata device_type_network[] = "network";
  69. static char __initdata device_type_pci[] = "pci";
  70. static char __initdata device_type_vdevice[] = "vdevice";
  71. static char __initdata device_type_vscsi[] = "vscsi";
  72. /* EBCDIC to ASCII conversion routines */
  73. static unsigned char __init e2a(unsigned char x)
  74. {
  75. switch (x) {
  76. case 0x81 ... 0x89:
  77. return x - 0x81 + 'a';
  78. case 0x91 ... 0x99:
  79. return x - 0x91 + 'j';
  80. case 0xA2 ... 0xA9:
  81. return x - 0xA2 + 's';
  82. case 0xC1 ... 0xC9:
  83. return x - 0xC1 + 'A';
  84. case 0xD1 ... 0xD9:
  85. return x - 0xD1 + 'J';
  86. case 0xE2 ... 0xE9:
  87. return x - 0xE2 + 'S';
  88. case 0xF0 ... 0xF9:
  89. return x - 0xF0 + '0';
  90. }
  91. return ' ';
  92. }
  93. static unsigned char * __init strne2a(unsigned char *dest,
  94. const unsigned char *src, size_t n)
  95. {
  96. int i;
  97. n = strnlen(src, n);
  98. for (i = 0; i < n; i++)
  99. dest[i] = e2a(src[i]);
  100. return dest;
  101. }
  102. static struct iseries_flat_dt * __init dt_init(void)
  103. {
  104. struct iseries_flat_dt *dt;
  105. unsigned long str_len;
  106. str_len = __dt_strings_end - __dt_strings_start;
  107. dt = (struct iseries_flat_dt *)ALIGN(klimit, 8);
  108. dt->header.off_mem_rsvmap =
  109. offsetof(struct iseries_flat_dt, reserve_map);
  110. dt->header.off_dt_strings = ALIGN(sizeof(*dt), 8);
  111. dt->header.off_dt_struct = dt->header.off_dt_strings
  112. + ALIGN(str_len, 8);
  113. dt_data = (void *)((unsigned long)dt + dt->header.off_dt_struct);
  114. dt->header.dt_strings_size = str_len;
  115. /* There is no notion of hardware cpu id on iSeries */
  116. dt->header.boot_cpuid_phys = smp_processor_id();
  117. memcpy((char *)dt + dt->header.off_dt_strings, __dt_strings_start,
  118. str_len);
  119. dt->header.magic = OF_DT_HEADER;
  120. dt->header.version = 0x10;
  121. dt->header.last_comp_version = 0x10;
  122. dt->reserve_map[0] = 0;
  123. dt->reserve_map[1] = 0;
  124. return dt;
  125. }
  126. static void __init dt_push_u32(struct iseries_flat_dt *dt, u32 value)
  127. {
  128. *((u32 *)dt_data) = value;
  129. dt_data += sizeof(u32);
  130. }
  131. #ifdef notyet
  132. static void __init dt_push_u64(struct iseries_flat_dt *dt, u64 value)
  133. {
  134. *((u64 *)dt_data) = value;
  135. dt_data += sizeof(u64);
  136. }
  137. #endif
  138. static void __init dt_push_bytes(struct iseries_flat_dt *dt, const char *data,
  139. int len)
  140. {
  141. memcpy(dt_data, data, len);
  142. dt_data += ALIGN(len, 4);
  143. }
  144. static void __init dt_start_node(struct iseries_flat_dt *dt, const char *name)
  145. {
  146. dt_push_u32(dt, OF_DT_BEGIN_NODE);
  147. dt_push_bytes(dt, name, strlen(name) + 1);
  148. }
  149. #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
  150. static void __init __dt_prop(struct iseries_flat_dt *dt, const char *name,
  151. const void *data, int len)
  152. {
  153. unsigned long offset;
  154. dt_push_u32(dt, OF_DT_PROP);
  155. /* Length of the data */
  156. dt_push_u32(dt, len);
  157. offset = name - __dt_strings_start;
  158. /* The offset of the properties name in the string blob. */
  159. dt_push_u32(dt, (u32)offset);
  160. /* The actual data. */
  161. dt_push_bytes(dt, data, len);
  162. }
  163. #define dt_prop(dt, name, data, len) __dt_prop((dt), DS(name), (data), (len))
  164. #define dt_prop_str(dt, name, data) \
  165. dt_prop((dt), name, (data), strlen((data)) + 1); /* + 1 for NULL */
  166. static void __init __dt_prop_u32(struct iseries_flat_dt *dt, const char *name,
  167. u32 data)
  168. {
  169. __dt_prop(dt, name, &data, sizeof(u32));
  170. }
  171. #define dt_prop_u32(dt, name, data) __dt_prop_u32((dt), DS(name), (data))
  172. static void __init __maybe_unused __dt_prop_u64(struct iseries_flat_dt *dt,
  173. const char *name, u64 data)
  174. {
  175. __dt_prop(dt, name, &data, sizeof(u64));
  176. }
  177. #define dt_prop_u64(dt, name, data) __dt_prop_u64((dt), DS(name), (data))
  178. #define dt_prop_u64_list(dt, name, data, n) \
  179. dt_prop((dt), name, (data), sizeof(u64) * (n))
  180. #define dt_prop_u32_list(dt, name, data, n) \
  181. dt_prop((dt), name, (data), sizeof(u32) * (n))
  182. #define dt_prop_empty(dt, name) dt_prop((dt), name, NULL, 0)
  183. static void __init dt_cpus(struct iseries_flat_dt *dt)
  184. {
  185. unsigned char buf[32];
  186. unsigned char *p;
  187. unsigned int i, index;
  188. struct IoHriProcessorVpd *d;
  189. u32 pft_size[2];
  190. /* yuck */
  191. snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
  192. p = strchr(buf, ' ');
  193. if (!p) p = buf + strlen(buf);
  194. dt_start_node(dt, "cpus");
  195. dt_prop_u32(dt, "#address-cells", 1);
  196. dt_prop_u32(dt, "#size-cells", 0);
  197. pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
  198. pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
  199. for (i = 0; i < NR_CPUS; i++) {
  200. if (lppaca[i].dyn_proc_status >= 2)
  201. continue;
  202. snprintf(p, 32 - (p - buf), "@%d", i);
  203. dt_start_node(dt, buf);
  204. dt_prop_str(dt, "device_type", device_type_cpu);
  205. index = lppaca[i].dyn_hv_phys_proc_index;
  206. d = &xIoHriProcessorVpd[index];
  207. dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
  208. dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
  209. dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
  210. dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
  211. /* magic conversions to Hz copied from old code */
  212. dt_prop_u32(dt, "clock-frequency",
  213. ((1UL << 34) * 1000000) / d->xProcFreq);
  214. dt_prop_u32(dt, "timebase-frequency",
  215. ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
  216. dt_prop_u32(dt, "reg", i);
  217. dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
  218. dt_end_node(dt);
  219. }
  220. dt_end_node(dt);
  221. }
  222. static void __init dt_model(struct iseries_flat_dt *dt)
  223. {
  224. char buf[16] = "IBM,";
  225. /* N.B. lparcfg.c knows about the "IBM," prefixes ... */
  226. /* "IBM," + mfgId[2:3] + systemSerial[1:5] */
  227. strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
  228. strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
  229. buf[11] = '\0';
  230. dt_prop_str(dt, "system-id", buf);
  231. /* "IBM," + machineType[0:4] */
  232. strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
  233. buf[8] = '\0';
  234. dt_prop_str(dt, "model", buf);
  235. dt_prop_str(dt, "compatible", "IBM,iSeries");
  236. dt_prop_u32(dt, "ibm,partition-no", HvLpConfig_getLpIndex());
  237. }
  238. static void __init dt_initrd(struct iseries_flat_dt *dt)
  239. {
  240. #ifdef CONFIG_BLK_DEV_INITRD
  241. if (naca.xRamDisk) {
  242. dt_prop_u64(dt, "linux,initrd-start", (u64)naca.xRamDisk);
  243. dt_prop_u64(dt, "linux,initrd-end",
  244. (u64)naca.xRamDisk + naca.xRamDiskSize * HW_PAGE_SIZE);
  245. }
  246. #endif
  247. }
  248. static void __init dt_do_vdevice(struct iseries_flat_dt *dt,
  249. const char *name, u32 reg, int unit,
  250. const char *type, const char *compat, int end)
  251. {
  252. char buf[32];
  253. snprintf(buf, 32, "%s@%08x", name, reg + ((unit >= 0) ? unit : 0));
  254. dt_start_node(dt, buf);
  255. dt_prop_str(dt, "device_type", type);
  256. if (compat)
  257. dt_prop_str(dt, "compatible", compat);
  258. dt_prop_u32(dt, "reg", reg + ((unit >= 0) ? unit : 0));
  259. if (unit >= 0)
  260. dt_prop_u32(dt, "linux,unit_address", unit);
  261. if (end)
  262. dt_end_node(dt);
  263. }
  264. static void __init dt_vdevices(struct iseries_flat_dt *dt)
  265. {
  266. u32 reg = 0;
  267. HvLpIndexMap vlan_map;
  268. int i;
  269. dt_start_node(dt, "vdevice");
  270. dt_prop_str(dt, "device_type", device_type_vdevice);
  271. dt_prop_str(dt, "compatible", "IBM,iSeries-vdevice");
  272. dt_prop_u32(dt, "#address-cells", 1);
  273. dt_prop_u32(dt, "#size-cells", 0);
  274. dt_do_vdevice(dt, "vty", reg, -1, device_type_serial,
  275. "IBM,iSeries-vty", 1);
  276. reg++;
  277. dt_do_vdevice(dt, "v-scsi", reg, -1, device_type_vscsi,
  278. "IBM,v-scsi", 1);
  279. reg++;
  280. vlan_map = HvLpConfig_getVirtualLanIndexMap();
  281. for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) {
  282. unsigned char mac_addr[ETH_ALEN];
  283. if ((vlan_map & (0x8000 >> i)) == 0)
  284. continue;
  285. dt_do_vdevice(dt, "l-lan", reg, i, device_type_network,
  286. "IBM,iSeries-l-lan", 0);
  287. mac_addr[0] = 0x02;
  288. mac_addr[1] = 0x01;
  289. mac_addr[2] = 0xff;
  290. mac_addr[3] = i;
  291. mac_addr[4] = 0xff;
  292. mac_addr[5] = HvLpConfig_getLpIndex_outline();
  293. dt_prop(dt, "local-mac-address", (char *)mac_addr, ETH_ALEN);
  294. dt_prop(dt, "mac-address", (char *)mac_addr, ETH_ALEN);
  295. dt_prop_u32(dt, "max-frame-size", 9000);
  296. dt_prop_u32(dt, "address-bits", 48);
  297. dt_end_node(dt);
  298. }
  299. dt_end_node(dt);
  300. }
  301. struct pci_class_name {
  302. u16 code;
  303. const char *name;
  304. const char *type;
  305. };
  306. static struct pci_class_name __initdata pci_class_name[] = {
  307. { PCI_CLASS_NETWORK_ETHERNET, "ethernet", device_type_network },
  308. };
  309. static struct pci_class_name * __init dt_find_pci_class_name(u16 class_code)
  310. {
  311. struct pci_class_name *cp;
  312. for (cp = pci_class_name;
  313. cp < &pci_class_name[ARRAY_SIZE(pci_class_name)]; cp++)
  314. if (cp->code == class_code)
  315. return cp;
  316. return NULL;
  317. }
  318. /*
  319. * This assumes that the node slot is always on the primary bus!
  320. */
  321. static void __init scan_bridge_slot(struct iseries_flat_dt *dt,
  322. HvBusNumber bus, struct HvCallPci_BridgeInfo *bridge_info)
  323. {
  324. HvSubBusNumber sub_bus = bridge_info->subBusNumber;
  325. u16 vendor_id;
  326. u16 device_id;
  327. u32 class_id;
  328. int err;
  329. char buf[32];
  330. u32 reg[5];
  331. int id_sel = ISERIES_GET_DEVICE_FROM_SUBBUS(sub_bus);
  332. int function = ISERIES_GET_FUNCTION_FROM_SUBBUS(sub_bus);
  333. HvAgentId eads_id_sel = ISERIES_PCI_AGENTID(id_sel, function);
  334. u8 devfn;
  335. struct pci_class_name *cp;
  336. /*
  337. * Connect all functions of any device found.
  338. */
  339. for (id_sel = 1; id_sel <= bridge_info->maxAgents; id_sel++) {
  340. for (function = 0; function < 8; function++) {
  341. HvAgentId agent_id = ISERIES_PCI_AGENTID(id_sel,
  342. function);
  343. err = HvCallXm_connectBusUnit(bus, sub_bus,
  344. agent_id, 0);
  345. if (err) {
  346. if (err != 0x302)
  347. DBG("connectBusUnit(%x, %x, %x) %x\n",
  348. bus, sub_bus, agent_id, err);
  349. continue;
  350. }
  351. err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
  352. PCI_VENDOR_ID, &vendor_id);
  353. if (err) {
  354. DBG("ReadVendor(%x, %x, %x) %x\n",
  355. bus, sub_bus, agent_id, err);
  356. continue;
  357. }
  358. err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
  359. PCI_DEVICE_ID, &device_id);
  360. if (err) {
  361. DBG("ReadDevice(%x, %x, %x) %x\n",
  362. bus, sub_bus, agent_id, err);
  363. continue;
  364. }
  365. err = HvCallPci_configLoad32(bus, sub_bus, agent_id,
  366. PCI_CLASS_REVISION , &class_id);
  367. if (err) {
  368. DBG("ReadClass(%x, %x, %x) %x\n",
  369. bus, sub_bus, agent_id, err);
  370. continue;
  371. }
  372. devfn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(eads_id_sel),
  373. function);
  374. cp = dt_find_pci_class_name(class_id >> 16);
  375. if (cp && cp->name)
  376. strncpy(buf, cp->name, sizeof(buf) - 1);
  377. else
  378. snprintf(buf, sizeof(buf), "pci%x,%x",
  379. vendor_id, device_id);
  380. buf[sizeof(buf) - 1] = '\0';
  381. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
  382. "@%x", PCI_SLOT(devfn));
  383. buf[sizeof(buf) - 1] = '\0';
  384. if (function != 0)
  385. snprintf(buf + strlen(buf),
  386. sizeof(buf) - strlen(buf),
  387. ",%x", function);
  388. dt_start_node(dt, buf);
  389. reg[0] = (bus << 16) | (devfn << 8);
  390. reg[1] = 0;
  391. reg[2] = 0;
  392. reg[3] = 0;
  393. reg[4] = 0;
  394. dt_prop_u32_list(dt, "reg", reg, 5);
  395. if (cp && (cp->type || cp->name))
  396. dt_prop_str(dt, "device_type",
  397. cp->type ? cp->type : cp->name);
  398. dt_prop_u32(dt, "vendor-id", vendor_id);
  399. dt_prop_u32(dt, "device-id", device_id);
  400. dt_prop_u32(dt, "class-code", class_id >> 8);
  401. dt_prop_u32(dt, "revision-id", class_id & 0xff);
  402. dt_prop_u32(dt, "linux,subbus", sub_bus);
  403. dt_prop_u32(dt, "linux,agent-id", agent_id);
  404. dt_prop_u32(dt, "linux,logical-slot-number",
  405. bridge_info->logicalSlotNumber);
  406. dt_end_node(dt);
  407. }
  408. }
  409. }
  410. static void __init scan_bridge(struct iseries_flat_dt *dt, HvBusNumber bus,
  411. HvSubBusNumber sub_bus, int id_sel)
  412. {
  413. struct HvCallPci_BridgeInfo bridge_info;
  414. HvAgentId agent_id;
  415. int function;
  416. int ret;
  417. /* Note: hvSubBus and irq is always be 0 at this level! */
  418. for (function = 0; function < 8; ++function) {
  419. agent_id = ISERIES_PCI_AGENTID(id_sel, function);
  420. ret = HvCallXm_connectBusUnit(bus, sub_bus, agent_id, 0);
  421. if (ret != 0) {
  422. if (ret != 0xb)
  423. DBG("connectBusUnit(%x, %x, %x) %x\n",
  424. bus, sub_bus, agent_id, ret);
  425. continue;
  426. }
  427. DBG("found device at bus %d idsel %d func %d (AgentId %x)\n",
  428. bus, id_sel, function, agent_id);
  429. ret = HvCallPci_getBusUnitInfo(bus, sub_bus, agent_id,
  430. iseries_hv_addr(&bridge_info),
  431. sizeof(struct HvCallPci_BridgeInfo));
  432. if (ret != 0)
  433. continue;
  434. DBG("bridge info: type %x subbus %x "
  435. "maxAgents %x maxsubbus %x logslot %x\n",
  436. bridge_info.busUnitInfo.deviceType,
  437. bridge_info.subBusNumber,
  438. bridge_info.maxAgents,
  439. bridge_info.maxSubBusNumber,
  440. bridge_info.logicalSlotNumber);
  441. if (bridge_info.busUnitInfo.deviceType ==
  442. HvCallPci_BridgeDevice)
  443. scan_bridge_slot(dt, bus, &bridge_info);
  444. else
  445. DBG("PCI: Invalid Bridge Configuration(0x%02X)",
  446. bridge_info.busUnitInfo.deviceType);
  447. }
  448. }
  449. static void __init scan_phb(struct iseries_flat_dt *dt, HvBusNumber bus)
  450. {
  451. struct HvCallPci_DeviceInfo dev_info;
  452. const HvSubBusNumber sub_bus = 0; /* EADs is always 0. */
  453. int err;
  454. int id_sel;
  455. const int max_agents = 8;
  456. /*
  457. * Probe for EADs Bridges
  458. */
  459. for (id_sel = 1; id_sel < max_agents; ++id_sel) {
  460. err = HvCallPci_getDeviceInfo(bus, sub_bus, id_sel,
  461. iseries_hv_addr(&dev_info),
  462. sizeof(struct HvCallPci_DeviceInfo));
  463. if (err) {
  464. if (err != 0x302)
  465. DBG("getDeviceInfo(%x, %x, %x) %x\n",
  466. bus, sub_bus, id_sel, err);
  467. continue;
  468. }
  469. if (dev_info.deviceType != HvCallPci_NodeDevice) {
  470. DBG("PCI: Invalid System Configuration"
  471. "(0x%02X) for bus 0x%02x id 0x%02x.\n",
  472. dev_info.deviceType, bus, id_sel);
  473. continue;
  474. }
  475. scan_bridge(dt, bus, sub_bus, id_sel);
  476. }
  477. }
  478. static void __init dt_pci_devices(struct iseries_flat_dt *dt)
  479. {
  480. HvBusNumber bus;
  481. char buf[32];
  482. u32 buses[2];
  483. int phb_num = 0;
  484. /* Check all possible buses. */
  485. for (bus = 0; bus < 256; bus++) {
  486. int err = HvCallXm_testBus(bus);
  487. if (err) {
  488. /*
  489. * Check for Unexpected Return code, a clue that
  490. * something has gone wrong.
  491. */
  492. if (err != 0x0301)
  493. DBG("Unexpected Return on Probe(0x%02X) "
  494. "0x%04X\n", bus, err);
  495. continue;
  496. }
  497. DBG("bus %d appears to exist\n", bus);
  498. snprintf(buf, 32, "pci@%d", phb_num);
  499. dt_start_node(dt, buf);
  500. dt_prop_str(dt, "device_type", device_type_pci);
  501. dt_prop_str(dt, "compatible", "IBM,iSeries-Logical-PHB");
  502. dt_prop_u32(dt, "#address-cells", 3);
  503. dt_prop_u32(dt, "#size-cells", 2);
  504. buses[0] = buses[1] = bus;
  505. dt_prop_u32_list(dt, "bus-range", buses, 2);
  506. scan_phb(dt, bus);
  507. dt_end_node(dt);
  508. phb_num++;
  509. }
  510. }
  511. static void dt_finish(struct iseries_flat_dt *dt)
  512. {
  513. dt_push_u32(dt, OF_DT_END);
  514. dt->header.totalsize = (unsigned long)dt_data - (unsigned long)dt;
  515. klimit = ALIGN((unsigned long)dt_data, 8);
  516. }
  517. void * __init build_flat_dt(unsigned long phys_mem_size)
  518. {
  519. struct iseries_flat_dt *iseries_dt;
  520. u64 tmp[2];
  521. iseries_dt = dt_init();
  522. dt_start_node(iseries_dt, "");
  523. dt_prop_u32(iseries_dt, "#address-cells", 2);
  524. dt_prop_u32(iseries_dt, "#size-cells", 2);
  525. dt_model(iseries_dt);
  526. /* /memory */
  527. dt_start_node(iseries_dt, "memory@0");
  528. dt_prop_str(iseries_dt, "device_type", device_type_memory);
  529. tmp[0] = 0;
  530. tmp[1] = phys_mem_size;
  531. dt_prop_u64_list(iseries_dt, "reg", tmp, 2);
  532. dt_end_node(iseries_dt);
  533. /* /chosen */
  534. dt_start_node(iseries_dt, "chosen");
  535. dt_prop_str(iseries_dt, "bootargs", cmd_line);
  536. dt_initrd(iseries_dt);
  537. dt_end_node(iseries_dt);
  538. dt_cpus(iseries_dt);
  539. dt_vdevices(iseries_dt);
  540. dt_pci_devices(iseries_dt);
  541. dt_end_node(iseries_dt);
  542. dt_finish(iseries_dt);
  543. return iseries_dt;
  544. }