fault.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/kernel.h>
  20. #include <linux/errno.h>
  21. #include <linux/string.h>
  22. #include <linux/types.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/mman.h>
  25. #include <linux/mm.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/kprobes.h>
  30. #include <linux/kdebug.h>
  31. #include <linux/perf_event.h>
  32. #include <asm/firmware.h>
  33. #include <asm/page.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/mmu.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/system.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/tlbflush.h>
  40. #include <asm/siginfo.h>
  41. #ifdef CONFIG_KPROBES
  42. static inline int notify_page_fault(struct pt_regs *regs)
  43. {
  44. int ret = 0;
  45. /* kprobe_running() needs smp_processor_id() */
  46. if (!user_mode(regs)) {
  47. preempt_disable();
  48. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  49. ret = 1;
  50. preempt_enable();
  51. }
  52. return ret;
  53. }
  54. #else
  55. static inline int notify_page_fault(struct pt_regs *regs)
  56. {
  57. return 0;
  58. }
  59. #endif
  60. /*
  61. * Check whether the instruction at regs->nip is a store using
  62. * an update addressing form which will update r1.
  63. */
  64. static int store_updates_sp(struct pt_regs *regs)
  65. {
  66. unsigned int inst;
  67. if (get_user(inst, (unsigned int __user *)regs->nip))
  68. return 0;
  69. /* check for 1 in the rA field */
  70. if (((inst >> 16) & 0x1f) != 1)
  71. return 0;
  72. /* check major opcode */
  73. switch (inst >> 26) {
  74. case 37: /* stwu */
  75. case 39: /* stbu */
  76. case 45: /* sthu */
  77. case 53: /* stfsu */
  78. case 55: /* stfdu */
  79. return 1;
  80. case 62: /* std or stdu */
  81. return (inst & 3) == 1;
  82. case 31:
  83. /* check minor opcode */
  84. switch ((inst >> 1) & 0x3ff) {
  85. case 181: /* stdux */
  86. case 183: /* stwux */
  87. case 247: /* stbux */
  88. case 439: /* sthux */
  89. case 695: /* stfsux */
  90. case 759: /* stfdux */
  91. return 1;
  92. }
  93. }
  94. return 0;
  95. }
  96. /*
  97. * For 600- and 800-family processors, the error_code parameter is DSISR
  98. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  99. * the error_code parameter is ESR for a data fault, 0 for an instruction
  100. * fault.
  101. * For 64-bit processors, the error_code parameter is
  102. * - DSISR for a non-SLB data access fault,
  103. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  104. * - 0 any SLB fault.
  105. *
  106. * The return value is 0 if the fault was handled, or the signal
  107. * number if this is a kernel fault that can't be handled here.
  108. */
  109. int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
  110. unsigned long error_code)
  111. {
  112. struct vm_area_struct * vma;
  113. struct mm_struct *mm = current->mm;
  114. siginfo_t info;
  115. int code = SEGV_MAPERR;
  116. int is_write = 0, ret;
  117. int trap = TRAP(regs);
  118. int is_exec = trap == 0x400;
  119. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  120. /*
  121. * Fortunately the bit assignments in SRR1 for an instruction
  122. * fault and DSISR for a data fault are mostly the same for the
  123. * bits we are interested in. But there are some bits which
  124. * indicate errors in DSISR but can validly be set in SRR1.
  125. */
  126. if (trap == 0x400)
  127. error_code &= 0x48200000;
  128. else
  129. is_write = error_code & DSISR_ISSTORE;
  130. #else
  131. is_write = error_code & ESR_DST;
  132. #endif /* CONFIG_4xx || CONFIG_BOOKE */
  133. if (notify_page_fault(regs))
  134. return 0;
  135. if (unlikely(debugger_fault_handler(regs)))
  136. return 0;
  137. /* On a kernel SLB miss we can only check for a valid exception entry */
  138. if (!user_mode(regs) && (address >= TASK_SIZE))
  139. return SIGSEGV;
  140. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  141. if (error_code & DSISR_DABRMATCH) {
  142. /* DABR match */
  143. do_dabr(regs, address, error_code);
  144. return 0;
  145. }
  146. #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
  147. if (in_atomic() || mm == NULL) {
  148. if (!user_mode(regs))
  149. return SIGSEGV;
  150. /* in_atomic() in user mode is really bad,
  151. as is current->mm == NULL. */
  152. printk(KERN_EMERG "Page fault in user mode with "
  153. "in_atomic() = %d mm = %p\n", in_atomic(), mm);
  154. printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
  155. regs->nip, regs->msr);
  156. die("Weird page fault", regs, SIGSEGV);
  157. }
  158. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
  159. /* When running in the kernel we expect faults to occur only to
  160. * addresses in user space. All other faults represent errors in the
  161. * kernel and should generate an OOPS. Unfortunately, in the case of an
  162. * erroneous fault occurring in a code path which already holds mmap_sem
  163. * we will deadlock attempting to validate the fault against the
  164. * address space. Luckily the kernel only validly references user
  165. * space from well defined areas of code, which are listed in the
  166. * exceptions table.
  167. *
  168. * As the vast majority of faults will be valid we will only perform
  169. * the source reference check when there is a possibility of a deadlock.
  170. * Attempt to lock the address space, if we cannot we then validate the
  171. * source. If this is invalid we can skip the address space check,
  172. * thus avoiding the deadlock.
  173. */
  174. if (!down_read_trylock(&mm->mmap_sem)) {
  175. if (!user_mode(regs) && !search_exception_tables(regs->nip))
  176. goto bad_area_nosemaphore;
  177. down_read(&mm->mmap_sem);
  178. }
  179. vma = find_vma(mm, address);
  180. if (!vma)
  181. goto bad_area;
  182. if (vma->vm_start <= address)
  183. goto good_area;
  184. if (!(vma->vm_flags & VM_GROWSDOWN))
  185. goto bad_area;
  186. /*
  187. * N.B. The POWER/Open ABI allows programs to access up to
  188. * 288 bytes below the stack pointer.
  189. * The kernel signal delivery code writes up to about 1.5kB
  190. * below the stack pointer (r1) before decrementing it.
  191. * The exec code can write slightly over 640kB to the stack
  192. * before setting the user r1. Thus we allow the stack to
  193. * expand to 1MB without further checks.
  194. */
  195. if (address + 0x100000 < vma->vm_end) {
  196. /* get user regs even if this fault is in kernel mode */
  197. struct pt_regs *uregs = current->thread.regs;
  198. if (uregs == NULL)
  199. goto bad_area;
  200. /*
  201. * A user-mode access to an address a long way below
  202. * the stack pointer is only valid if the instruction
  203. * is one which would update the stack pointer to the
  204. * address accessed if the instruction completed,
  205. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  206. * (or the byte, halfword, float or double forms).
  207. *
  208. * If we don't check this then any write to the area
  209. * between the last mapped region and the stack will
  210. * expand the stack rather than segfaulting.
  211. */
  212. if (address + 2048 < uregs->gpr[1]
  213. && (!user_mode(regs) || !store_updates_sp(regs)))
  214. goto bad_area;
  215. }
  216. if (expand_stack(vma, address))
  217. goto bad_area;
  218. good_area:
  219. code = SEGV_ACCERR;
  220. #if defined(CONFIG_6xx)
  221. if (error_code & 0x95700000)
  222. /* an error such as lwarx to I/O controller space,
  223. address matching DABR, eciwx, etc. */
  224. goto bad_area;
  225. #endif /* CONFIG_6xx */
  226. #if defined(CONFIG_8xx)
  227. /* The MPC8xx seems to always set 0x80000000, which is
  228. * "undefined". Of those that can be set, this is the only
  229. * one which seems bad.
  230. */
  231. if (error_code & 0x10000000)
  232. /* Guarded storage error. */
  233. goto bad_area;
  234. #endif /* CONFIG_8xx */
  235. if (is_exec) {
  236. #ifdef CONFIG_PPC_STD_MMU
  237. /* Protection fault on exec go straight to failure on
  238. * Hash based MMUs as they either don't support per-page
  239. * execute permission, or if they do, it's handled already
  240. * at the hash level. This test would probably have to
  241. * be removed if we change the way this works to make hash
  242. * processors use the same I/D cache coherency mechanism
  243. * as embedded.
  244. */
  245. if (error_code & DSISR_PROTFAULT)
  246. goto bad_area;
  247. #endif /* CONFIG_PPC_STD_MMU */
  248. /*
  249. * Allow execution from readable areas if the MMU does not
  250. * provide separate controls over reading and executing.
  251. *
  252. * Note: That code used to not be enabled for 4xx/BookE.
  253. * It is now as I/D cache coherency for these is done at
  254. * set_pte_at() time and I see no reason why the test
  255. * below wouldn't be valid on those processors. This -may-
  256. * break programs compiled with a really old ABI though.
  257. */
  258. if (!(vma->vm_flags & VM_EXEC) &&
  259. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  260. !(vma->vm_flags & (VM_READ | VM_WRITE))))
  261. goto bad_area;
  262. /* a write */
  263. } else if (is_write) {
  264. if (!(vma->vm_flags & VM_WRITE))
  265. goto bad_area;
  266. /* a read */
  267. } else {
  268. /* protection fault */
  269. if (error_code & 0x08000000)
  270. goto bad_area;
  271. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  272. goto bad_area;
  273. }
  274. /*
  275. * If for any reason at all we couldn't handle the fault,
  276. * make sure we exit gracefully rather than endlessly redo
  277. * the fault.
  278. */
  279. survive:
  280. ret = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0);
  281. if (unlikely(ret & VM_FAULT_ERROR)) {
  282. if (ret & VM_FAULT_OOM)
  283. goto out_of_memory;
  284. else if (ret & VM_FAULT_SIGBUS)
  285. goto do_sigbus;
  286. BUG();
  287. }
  288. if (ret & VM_FAULT_MAJOR) {
  289. current->maj_flt++;
  290. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
  291. regs, address);
  292. #ifdef CONFIG_PPC_SMLPAR
  293. if (firmware_has_feature(FW_FEATURE_CMO)) {
  294. preempt_disable();
  295. get_lppaca()->page_ins += (1 << PAGE_FACTOR);
  296. preempt_enable();
  297. }
  298. #endif
  299. } else {
  300. current->min_flt++;
  301. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
  302. regs, address);
  303. }
  304. up_read(&mm->mmap_sem);
  305. return 0;
  306. bad_area:
  307. up_read(&mm->mmap_sem);
  308. bad_area_nosemaphore:
  309. /* User mode accesses cause a SIGSEGV */
  310. if (user_mode(regs)) {
  311. _exception(SIGSEGV, regs, code, address);
  312. return 0;
  313. }
  314. if (is_exec && (error_code & DSISR_PROTFAULT)
  315. && printk_ratelimit())
  316. printk(KERN_CRIT "kernel tried to execute NX-protected"
  317. " page (%lx) - exploit attempt? (uid: %d)\n",
  318. address, current_uid());
  319. return SIGSEGV;
  320. /*
  321. * We ran out of memory, or some other thing happened to us that made
  322. * us unable to handle the page fault gracefully.
  323. */
  324. out_of_memory:
  325. up_read(&mm->mmap_sem);
  326. if (is_global_init(current)) {
  327. yield();
  328. down_read(&mm->mmap_sem);
  329. goto survive;
  330. }
  331. printk("VM: killing process %s\n", current->comm);
  332. if (user_mode(regs))
  333. do_group_exit(SIGKILL);
  334. return SIGKILL;
  335. do_sigbus:
  336. up_read(&mm->mmap_sem);
  337. if (user_mode(regs)) {
  338. info.si_signo = SIGBUS;
  339. info.si_errno = 0;
  340. info.si_code = BUS_ADRERR;
  341. info.si_addr = (void __user *)address;
  342. force_sig_info(SIGBUS, &info, current);
  343. return 0;
  344. }
  345. return SIGBUS;
  346. }
  347. /*
  348. * bad_page_fault is called when we have a bad access from the kernel.
  349. * It is called from the DSI and ISI handlers in head.S and from some
  350. * of the procedures in traps.c.
  351. */
  352. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  353. {
  354. const struct exception_table_entry *entry;
  355. /* Are we prepared to handle this fault? */
  356. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  357. regs->nip = entry->fixup;
  358. return;
  359. }
  360. /* kernel has accessed a bad area */
  361. switch (regs->trap) {
  362. case 0x300:
  363. case 0x380:
  364. printk(KERN_ALERT "Unable to handle kernel paging request for "
  365. "data at address 0x%08lx\n", regs->dar);
  366. break;
  367. case 0x400:
  368. case 0x480:
  369. printk(KERN_ALERT "Unable to handle kernel paging request for "
  370. "instruction fetch\n");
  371. break;
  372. default:
  373. printk(KERN_ALERT "Unable to handle kernel paging request for "
  374. "unknown fault\n");
  375. break;
  376. }
  377. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  378. regs->nip);
  379. die("Kernel access of bad area", regs, sig);
  380. }