perf_callchain.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. /*
  2. * Performance counter callchain support - powerpc architecture code
  3. *
  4. * Copyright © 2009 Paul Mackerras, IBM Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/sched.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/percpu.h>
  15. #include <linux/uaccess.h>
  16. #include <linux/mm.h>
  17. #include <asm/ptrace.h>
  18. #include <asm/pgtable.h>
  19. #include <asm/sigcontext.h>
  20. #include <asm/ucontext.h>
  21. #include <asm/vdso.h>
  22. #ifdef CONFIG_PPC64
  23. #include "ppc32.h"
  24. #endif
  25. /*
  26. * Store another value in a callchain_entry.
  27. */
  28. static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  29. {
  30. unsigned int nr = entry->nr;
  31. if (nr < PERF_MAX_STACK_DEPTH) {
  32. entry->ip[nr] = ip;
  33. entry->nr = nr + 1;
  34. }
  35. }
  36. /*
  37. * Is sp valid as the address of the next kernel stack frame after prev_sp?
  38. * The next frame may be in a different stack area but should not go
  39. * back down in the same stack area.
  40. */
  41. static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
  42. {
  43. if (sp & 0xf)
  44. return 0; /* must be 16-byte aligned */
  45. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  46. return 0;
  47. if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
  48. return 1;
  49. /*
  50. * sp could decrease when we jump off an interrupt stack
  51. * back to the regular process stack.
  52. */
  53. if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
  54. return 1;
  55. return 0;
  56. }
  57. static void perf_callchain_kernel(struct pt_regs *regs,
  58. struct perf_callchain_entry *entry)
  59. {
  60. unsigned long sp, next_sp;
  61. unsigned long next_ip;
  62. unsigned long lr;
  63. long level = 0;
  64. unsigned long *fp;
  65. lr = regs->link;
  66. sp = regs->gpr[1];
  67. callchain_store(entry, PERF_CONTEXT_KERNEL);
  68. callchain_store(entry, regs->nip);
  69. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  70. return;
  71. for (;;) {
  72. fp = (unsigned long *) sp;
  73. next_sp = fp[0];
  74. if (next_sp == sp + STACK_INT_FRAME_SIZE &&
  75. fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  76. /*
  77. * This looks like an interrupt frame for an
  78. * interrupt that occurred in the kernel
  79. */
  80. regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
  81. next_ip = regs->nip;
  82. lr = regs->link;
  83. level = 0;
  84. callchain_store(entry, PERF_CONTEXT_KERNEL);
  85. } else {
  86. if (level == 0)
  87. next_ip = lr;
  88. else
  89. next_ip = fp[STACK_FRAME_LR_SAVE];
  90. /*
  91. * We can't tell which of the first two addresses
  92. * we get are valid, but we can filter out the
  93. * obviously bogus ones here. We replace them
  94. * with 0 rather than removing them entirely so
  95. * that userspace can tell which is which.
  96. */
  97. if ((level == 1 && next_ip == lr) ||
  98. (level <= 1 && !kernel_text_address(next_ip)))
  99. next_ip = 0;
  100. ++level;
  101. }
  102. callchain_store(entry, next_ip);
  103. if (!valid_next_sp(next_sp, sp))
  104. return;
  105. sp = next_sp;
  106. }
  107. }
  108. #ifdef CONFIG_PPC64
  109. #ifdef CONFIG_HUGETLB_PAGE
  110. #define is_huge_psize(pagesize) (HPAGE_SHIFT && mmu_huge_psizes[pagesize])
  111. #else
  112. #define is_huge_psize(pagesize) 0
  113. #endif
  114. /*
  115. * On 64-bit we don't want to invoke hash_page on user addresses from
  116. * interrupt context, so if the access faults, we read the page tables
  117. * to find which page (if any) is mapped and access it directly.
  118. */
  119. static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
  120. {
  121. pgd_t *pgdir;
  122. pte_t *ptep, pte;
  123. int pagesize;
  124. unsigned long addr = (unsigned long) ptr;
  125. unsigned long offset;
  126. unsigned long pfn;
  127. void *kaddr;
  128. pgdir = current->mm->pgd;
  129. if (!pgdir)
  130. return -EFAULT;
  131. pagesize = get_slice_psize(current->mm, addr);
  132. /* align address to page boundary */
  133. offset = addr & ((1ul << mmu_psize_defs[pagesize].shift) - 1);
  134. addr -= offset;
  135. if (is_huge_psize(pagesize))
  136. ptep = huge_pte_offset(current->mm, addr);
  137. else
  138. ptep = find_linux_pte(pgdir, addr);
  139. if (ptep == NULL)
  140. return -EFAULT;
  141. pte = *ptep;
  142. if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
  143. return -EFAULT;
  144. pfn = pte_pfn(pte);
  145. if (!page_is_ram(pfn))
  146. return -EFAULT;
  147. /* no highmem to worry about here */
  148. kaddr = pfn_to_kaddr(pfn);
  149. memcpy(ret, kaddr + offset, nb);
  150. return 0;
  151. }
  152. static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
  153. {
  154. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
  155. ((unsigned long)ptr & 7))
  156. return -EFAULT;
  157. if (!__get_user_inatomic(*ret, ptr))
  158. return 0;
  159. return read_user_stack_slow(ptr, ret, 8);
  160. }
  161. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  162. {
  163. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  164. ((unsigned long)ptr & 3))
  165. return -EFAULT;
  166. if (!__get_user_inatomic(*ret, ptr))
  167. return 0;
  168. return read_user_stack_slow(ptr, ret, 4);
  169. }
  170. static inline int valid_user_sp(unsigned long sp, int is_64)
  171. {
  172. if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
  173. return 0;
  174. return 1;
  175. }
  176. /*
  177. * 64-bit user processes use the same stack frame for RT and non-RT signals.
  178. */
  179. struct signal_frame_64 {
  180. char dummy[__SIGNAL_FRAMESIZE];
  181. struct ucontext uc;
  182. unsigned long unused[2];
  183. unsigned int tramp[6];
  184. struct siginfo *pinfo;
  185. void *puc;
  186. struct siginfo info;
  187. char abigap[288];
  188. };
  189. static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
  190. {
  191. if (nip == fp + offsetof(struct signal_frame_64, tramp))
  192. return 1;
  193. if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
  194. nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
  195. return 1;
  196. return 0;
  197. }
  198. /*
  199. * Do some sanity checking on the signal frame pointed to by sp.
  200. * We check the pinfo and puc pointers in the frame.
  201. */
  202. static int sane_signal_64_frame(unsigned long sp)
  203. {
  204. struct signal_frame_64 __user *sf;
  205. unsigned long pinfo, puc;
  206. sf = (struct signal_frame_64 __user *) sp;
  207. if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
  208. read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
  209. return 0;
  210. return pinfo == (unsigned long) &sf->info &&
  211. puc == (unsigned long) &sf->uc;
  212. }
  213. static void perf_callchain_user_64(struct pt_regs *regs,
  214. struct perf_callchain_entry *entry)
  215. {
  216. unsigned long sp, next_sp;
  217. unsigned long next_ip;
  218. unsigned long lr;
  219. long level = 0;
  220. struct signal_frame_64 __user *sigframe;
  221. unsigned long __user *fp, *uregs;
  222. next_ip = regs->nip;
  223. lr = regs->link;
  224. sp = regs->gpr[1];
  225. callchain_store(entry, PERF_CONTEXT_USER);
  226. callchain_store(entry, next_ip);
  227. for (;;) {
  228. fp = (unsigned long __user *) sp;
  229. if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
  230. return;
  231. if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
  232. return;
  233. /*
  234. * Note: the next_sp - sp >= signal frame size check
  235. * is true when next_sp < sp, which can happen when
  236. * transitioning from an alternate signal stack to the
  237. * normal stack.
  238. */
  239. if (next_sp - sp >= sizeof(struct signal_frame_64) &&
  240. (is_sigreturn_64_address(next_ip, sp) ||
  241. (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
  242. sane_signal_64_frame(sp)) {
  243. /*
  244. * This looks like an signal frame
  245. */
  246. sigframe = (struct signal_frame_64 __user *) sp;
  247. uregs = sigframe->uc.uc_mcontext.gp_regs;
  248. if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
  249. read_user_stack_64(&uregs[PT_LNK], &lr) ||
  250. read_user_stack_64(&uregs[PT_R1], &sp))
  251. return;
  252. level = 0;
  253. callchain_store(entry, PERF_CONTEXT_USER);
  254. callchain_store(entry, next_ip);
  255. continue;
  256. }
  257. if (level == 0)
  258. next_ip = lr;
  259. callchain_store(entry, next_ip);
  260. ++level;
  261. sp = next_sp;
  262. }
  263. }
  264. static inline int current_is_64bit(void)
  265. {
  266. /*
  267. * We can't use test_thread_flag() here because we may be on an
  268. * interrupt stack, and the thread flags don't get copied over
  269. * from the thread_info on the main stack to the interrupt stack.
  270. */
  271. return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
  272. }
  273. #else /* CONFIG_PPC64 */
  274. /*
  275. * On 32-bit we just access the address and let hash_page create a
  276. * HPTE if necessary, so there is no need to fall back to reading
  277. * the page tables. Since this is called at interrupt level,
  278. * do_page_fault() won't treat a DSI as a page fault.
  279. */
  280. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  281. {
  282. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  283. ((unsigned long)ptr & 3))
  284. return -EFAULT;
  285. return __get_user_inatomic(*ret, ptr);
  286. }
  287. static inline void perf_callchain_user_64(struct pt_regs *regs,
  288. struct perf_callchain_entry *entry)
  289. {
  290. }
  291. static inline int current_is_64bit(void)
  292. {
  293. return 0;
  294. }
  295. static inline int valid_user_sp(unsigned long sp, int is_64)
  296. {
  297. if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
  298. return 0;
  299. return 1;
  300. }
  301. #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
  302. #define sigcontext32 sigcontext
  303. #define mcontext32 mcontext
  304. #define ucontext32 ucontext
  305. #define compat_siginfo_t struct siginfo
  306. #endif /* CONFIG_PPC64 */
  307. /*
  308. * Layout for non-RT signal frames
  309. */
  310. struct signal_frame_32 {
  311. char dummy[__SIGNAL_FRAMESIZE32];
  312. struct sigcontext32 sctx;
  313. struct mcontext32 mctx;
  314. int abigap[56];
  315. };
  316. /*
  317. * Layout for RT signal frames
  318. */
  319. struct rt_signal_frame_32 {
  320. char dummy[__SIGNAL_FRAMESIZE32 + 16];
  321. compat_siginfo_t info;
  322. struct ucontext32 uc;
  323. int abigap[56];
  324. };
  325. static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
  326. {
  327. if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
  328. return 1;
  329. if (vdso32_sigtramp && current->mm->context.vdso_base &&
  330. nip == current->mm->context.vdso_base + vdso32_sigtramp)
  331. return 1;
  332. return 0;
  333. }
  334. static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
  335. {
  336. if (nip == fp + offsetof(struct rt_signal_frame_32,
  337. uc.uc_mcontext.mc_pad))
  338. return 1;
  339. if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
  340. nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
  341. return 1;
  342. return 0;
  343. }
  344. static int sane_signal_32_frame(unsigned int sp)
  345. {
  346. struct signal_frame_32 __user *sf;
  347. unsigned int regs;
  348. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  349. if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
  350. return 0;
  351. return regs == (unsigned long) &sf->mctx;
  352. }
  353. static int sane_rt_signal_32_frame(unsigned int sp)
  354. {
  355. struct rt_signal_frame_32 __user *sf;
  356. unsigned int regs;
  357. sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  358. if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
  359. return 0;
  360. return regs == (unsigned long) &sf->uc.uc_mcontext;
  361. }
  362. static unsigned int __user *signal_frame_32_regs(unsigned int sp,
  363. unsigned int next_sp, unsigned int next_ip)
  364. {
  365. struct mcontext32 __user *mctx = NULL;
  366. struct signal_frame_32 __user *sf;
  367. struct rt_signal_frame_32 __user *rt_sf;
  368. /*
  369. * Note: the next_sp - sp >= signal frame size check
  370. * is true when next_sp < sp, for example, when
  371. * transitioning from an alternate signal stack to the
  372. * normal stack.
  373. */
  374. if (next_sp - sp >= sizeof(struct signal_frame_32) &&
  375. is_sigreturn_32_address(next_ip, sp) &&
  376. sane_signal_32_frame(sp)) {
  377. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  378. mctx = &sf->mctx;
  379. }
  380. if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
  381. is_rt_sigreturn_32_address(next_ip, sp) &&
  382. sane_rt_signal_32_frame(sp)) {
  383. rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  384. mctx = &rt_sf->uc.uc_mcontext;
  385. }
  386. if (!mctx)
  387. return NULL;
  388. return mctx->mc_gregs;
  389. }
  390. static void perf_callchain_user_32(struct pt_regs *regs,
  391. struct perf_callchain_entry *entry)
  392. {
  393. unsigned int sp, next_sp;
  394. unsigned int next_ip;
  395. unsigned int lr;
  396. long level = 0;
  397. unsigned int __user *fp, *uregs;
  398. next_ip = regs->nip;
  399. lr = regs->link;
  400. sp = regs->gpr[1];
  401. callchain_store(entry, PERF_CONTEXT_USER);
  402. callchain_store(entry, next_ip);
  403. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  404. fp = (unsigned int __user *) (unsigned long) sp;
  405. if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
  406. return;
  407. if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
  408. return;
  409. uregs = signal_frame_32_regs(sp, next_sp, next_ip);
  410. if (!uregs && level <= 1)
  411. uregs = signal_frame_32_regs(sp, next_sp, lr);
  412. if (uregs) {
  413. /*
  414. * This looks like an signal frame, so restart
  415. * the stack trace with the values in it.
  416. */
  417. if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
  418. read_user_stack_32(&uregs[PT_LNK], &lr) ||
  419. read_user_stack_32(&uregs[PT_R1], &sp))
  420. return;
  421. level = 0;
  422. callchain_store(entry, PERF_CONTEXT_USER);
  423. callchain_store(entry, next_ip);
  424. continue;
  425. }
  426. if (level == 0)
  427. next_ip = lr;
  428. callchain_store(entry, next_ip);
  429. ++level;
  430. sp = next_sp;
  431. }
  432. }
  433. /*
  434. * Since we can't get PMU interrupts inside a PMU interrupt handler,
  435. * we don't need separate irq and nmi entries here.
  436. */
  437. static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
  438. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  439. {
  440. struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
  441. entry->nr = 0;
  442. if (current->pid == 0) /* idle task? */
  443. return entry;
  444. if (!user_mode(regs)) {
  445. perf_callchain_kernel(regs, entry);
  446. if (current->mm)
  447. regs = task_pt_regs(current);
  448. else
  449. regs = NULL;
  450. }
  451. if (regs) {
  452. if (current_is_64bit())
  453. perf_callchain_user_64(regs, entry);
  454. else
  455. perf_callchain_user_32(regs, entry);
  456. }
  457. return entry;
  458. }