pgtable.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. #ifndef _PARISC_PGTABLE_H
  2. #define _PARISC_PGTABLE_H
  3. #include <asm-generic/4level-fixup.h>
  4. #include <asm/fixmap.h>
  5. #ifndef __ASSEMBLY__
  6. /*
  7. * we simulate an x86-style page table for the linux mm code
  8. */
  9. #include <linux/mm.h> /* for vm_area_struct */
  10. #include <linux/bitops.h>
  11. #include <asm/processor.h>
  12. #include <asm/cache.h>
  13. /*
  14. * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
  15. * memory. For the return value to be meaningful, ADDR must be >=
  16. * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
  17. * require a hash-, or multi-level tree-lookup or something of that
  18. * sort) but it guarantees to return TRUE only if accessing the page
  19. * at that address does not cause an error. Note that there may be
  20. * addresses for which kern_addr_valid() returns FALSE even though an
  21. * access would not cause an error (e.g., this is typically true for
  22. * memory mapped I/O regions.
  23. *
  24. * XXX Need to implement this for parisc.
  25. */
  26. #define kern_addr_valid(addr) (1)
  27. /* Certain architectures need to do special things when PTEs
  28. * within a page table are directly modified. Thus, the following
  29. * hook is made available.
  30. */
  31. #define set_pte(pteptr, pteval) \
  32. do{ \
  33. *(pteptr) = (pteval); \
  34. } while(0)
  35. #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  36. #endif /* !__ASSEMBLY__ */
  37. #define pte_ERROR(e) \
  38. printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  39. #define pmd_ERROR(e) \
  40. printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
  41. #define pgd_ERROR(e) \
  42. printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
  43. /* This is the size of the initially mapped kernel memory */
  44. #define KERNEL_INITIAL_ORDER 24 /* 0 to 1<<24 = 16MB */
  45. #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
  46. #if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB)
  47. #define PT_NLEVELS 3
  48. #define PGD_ORDER 1 /* Number of pages per pgd */
  49. #define PMD_ORDER 1 /* Number of pages per pmd */
  50. #define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */
  51. #else
  52. #define PT_NLEVELS 2
  53. #define PGD_ORDER 1 /* Number of pages per pgd */
  54. #define PGD_ALLOC_ORDER PGD_ORDER
  55. #endif
  56. /* Definitions for 3rd level (we use PLD here for Page Lower directory
  57. * because PTE_SHIFT is used lower down to mean shift that has to be
  58. * done to get usable bits out of the PTE) */
  59. #define PLD_SHIFT PAGE_SHIFT
  60. #define PLD_SIZE PAGE_SIZE
  61. #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
  62. #define PTRS_PER_PTE (1UL << BITS_PER_PTE)
  63. /* Definitions for 2nd level */
  64. #define pgtable_cache_init() do { } while (0)
  65. #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
  66. #define PMD_SIZE (1UL << PMD_SHIFT)
  67. #define PMD_MASK (~(PMD_SIZE-1))
  68. #if PT_NLEVELS == 3
  69. #define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
  70. #else
  71. #define BITS_PER_PMD 0
  72. #endif
  73. #define PTRS_PER_PMD (1UL << BITS_PER_PMD)
  74. /* Definitions for 1st level */
  75. #define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD)
  76. #if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
  77. #define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT)
  78. #else
  79. #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
  80. #endif
  81. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  82. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  83. #define PTRS_PER_PGD (1UL << BITS_PER_PGD)
  84. #define USER_PTRS_PER_PGD PTRS_PER_PGD
  85. #ifdef CONFIG_64BIT
  86. #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
  87. #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
  88. #define SPACEID_SHIFT (MAX_ADDRBITS - 32)
  89. #else
  90. #define MAX_ADDRBITS (BITS_PER_LONG)
  91. #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
  92. #define SPACEID_SHIFT 0
  93. #endif
  94. /* This calculates the number of initial pages we need for the initial
  95. * page tables */
  96. #if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
  97. # define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
  98. #else
  99. # define PT_INITIAL (1) /* all initial PTEs fit into one page */
  100. #endif
  101. /*
  102. * pgd entries used up by user/kernel:
  103. */
  104. #define FIRST_USER_ADDRESS 0
  105. /* NB: The tlb miss handlers make certain assumptions about the order */
  106. /* of the following bits, so be careful (One example, bits 25-31 */
  107. /* are moved together in one instruction). */
  108. #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
  109. #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
  110. #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
  111. #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
  112. #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
  113. #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
  114. #define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */
  115. #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
  116. #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
  117. #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
  118. #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
  119. #define _PAGE_FLUSH_BIT 21 /* (0x400) Software: translation valid */
  120. /* for cache flushing only */
  121. #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
  122. /* N.B. The bits are defined in terms of a 32 bit word above, so the */
  123. /* following macro is ok for both 32 and 64 bit. */
  124. #define xlate_pabit(x) (31 - x)
  125. /* this defines the shift to the usable bits in the PTE it is set so
  126. * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
  127. * to zero */
  128. #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
  129. /* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
  130. #define PFN_PTE_SHIFT 12
  131. /* this is how many bits may be used by the file functions */
  132. #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
  133. #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
  134. #define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE })
  135. #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
  136. #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
  137. #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
  138. #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
  139. #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
  140. #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
  141. #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
  142. #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
  143. #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
  144. #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
  145. #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
  146. #define _PAGE_FLUSH (1 << xlate_pabit(_PAGE_FLUSH_BIT))
  147. #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
  148. #define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT))
  149. #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
  150. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  151. #define _PAGE_KERNEL (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
  152. /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
  153. * are page-aligned, we don't care about the PAGE_OFFSET bits, except
  154. * for a few meta-information bits, so we shift the address to be
  155. * able to effectively address 40/42/44-bits of physical address space
  156. * depending on 4k/16k/64k PAGE_SIZE */
  157. #define _PxD_PRESENT_BIT 31
  158. #define _PxD_ATTACHED_BIT 30
  159. #define _PxD_VALID_BIT 29
  160. #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
  161. #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
  162. #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
  163. #define PxD_FLAG_MASK (0xf)
  164. #define PxD_FLAG_SHIFT (4)
  165. #define PxD_VALUE_SHIFT (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */
  166. #ifndef __ASSEMBLY__
  167. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  168. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
  169. /* Others seem to make this executable, I don't know if that's correct
  170. or not. The stack is mapped this way though so this is necessary
  171. in the short term - dhd@linuxcare.com, 2000-08-08 */
  172. #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
  173. #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
  174. #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
  175. #define PAGE_COPY PAGE_EXECREAD
  176. #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
  177. #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
  178. #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
  179. #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
  180. #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
  181. #define PAGE_FLUSH __pgprot(_PAGE_FLUSH)
  182. /*
  183. * We could have an execute only page using "gateway - promote to priv
  184. * level 3", but that is kind of silly. So, the way things are defined
  185. * now, we must always have read permission for pages with execute
  186. * permission. For the fun of it we'll go ahead and support write only
  187. * pages.
  188. */
  189. /*xwr*/
  190. #define __P000 PAGE_NONE
  191. #define __P001 PAGE_READONLY
  192. #define __P010 __P000 /* copy on write */
  193. #define __P011 __P001 /* copy on write */
  194. #define __P100 PAGE_EXECREAD
  195. #define __P101 PAGE_EXECREAD
  196. #define __P110 __P100 /* copy on write */
  197. #define __P111 __P101 /* copy on write */
  198. #define __S000 PAGE_NONE
  199. #define __S001 PAGE_READONLY
  200. #define __S010 PAGE_WRITEONLY
  201. #define __S011 PAGE_SHARED
  202. #define __S100 PAGE_EXECREAD
  203. #define __S101 PAGE_EXECREAD
  204. #define __S110 PAGE_RWX
  205. #define __S111 PAGE_RWX
  206. extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
  207. /* initial page tables for 0-8MB for kernel */
  208. extern pte_t pg0[];
  209. /* zero page used for uninitialized stuff */
  210. extern unsigned long *empty_zero_page;
  211. /*
  212. * ZERO_PAGE is a global shared page that is always zero: used
  213. * for zero-mapped memory areas etc..
  214. */
  215. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  216. #define pte_none(x) ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH))
  217. #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
  218. #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0)
  219. #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
  220. #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
  221. #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
  222. #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
  223. #if PT_NLEVELS == 3
  224. /* The first entry of the permanent pmd is not there if it contains
  225. * the gateway marker */
  226. #define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
  227. #else
  228. #define pmd_none(x) (!pmd_val(x))
  229. #endif
  230. #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
  231. #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
  232. static inline void pmd_clear(pmd_t *pmd) {
  233. #if PT_NLEVELS == 3
  234. if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
  235. /* This is the entry pointing to the permanent pmd
  236. * attached to the pgd; cannot clear it */
  237. __pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
  238. else
  239. #endif
  240. __pmd_val_set(*pmd, 0);
  241. }
  242. #if PT_NLEVELS == 3
  243. #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
  244. #define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd))
  245. /* For 64 bit we have three level tables */
  246. #define pgd_none(x) (!pgd_val(x))
  247. #define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID))
  248. #define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT)
  249. static inline void pgd_clear(pgd_t *pgd) {
  250. #if PT_NLEVELS == 3
  251. if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
  252. /* This is the permanent pmd attached to the pgd; cannot
  253. * free it */
  254. return;
  255. #endif
  256. __pgd_val_set(*pgd, 0);
  257. }
  258. #else
  259. /*
  260. * The "pgd_xxx()" functions here are trivial for a folded two-level
  261. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  262. * into the pgd entry)
  263. */
  264. static inline int pgd_none(pgd_t pgd) { return 0; }
  265. static inline int pgd_bad(pgd_t pgd) { return 0; }
  266. static inline int pgd_present(pgd_t pgd) { return 1; }
  267. static inline void pgd_clear(pgd_t * pgdp) { }
  268. #endif
  269. /*
  270. * The following only work if pte_present() is true.
  271. * Undefined behaviour if not..
  272. */
  273. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
  274. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
  275. static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
  276. static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
  277. static inline int pte_special(pte_t pte) { return 0; }
  278. static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
  279. static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  280. static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
  281. static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
  282. static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  283. static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
  284. static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
  285. /*
  286. * Conversion functions: convert a page and protection to a page entry,
  287. * and a page entry and page directory to the page they refer to.
  288. */
  289. #define __mk_pte(addr,pgprot) \
  290. ({ \
  291. pte_t __pte; \
  292. \
  293. pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \
  294. \
  295. __pte; \
  296. })
  297. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  298. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
  299. {
  300. pte_t pte;
  301. pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
  302. return pte;
  303. }
  304. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  305. { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
  306. /* Permanent address of a page. On parisc we don't have highmem. */
  307. #define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT)
  308. #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
  309. #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd)))
  310. #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
  311. #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
  312. #define pgd_index(address) ((address) >> PGDIR_SHIFT)
  313. /* to find an entry in a page-table-directory */
  314. #define pgd_offset(mm, address) \
  315. ((mm)->pgd + ((address) >> PGDIR_SHIFT))
  316. /* to find an entry in a kernel page-table-directory */
  317. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  318. /* Find an entry in the second-level page table.. */
  319. #if PT_NLEVELS == 3
  320. #define pmd_offset(dir,address) \
  321. ((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1)))
  322. #else
  323. #define pmd_offset(dir,addr) ((pmd_t *) dir)
  324. #endif
  325. /* Find an entry in the third-level page table.. */
  326. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  327. #define pte_offset_kernel(pmd, address) \
  328. ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
  329. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  330. #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
  331. #define pte_unmap(pte) do { } while (0)
  332. #define pte_unmap_nested(pte) do { } while (0)
  333. #define pte_unmap(pte) do { } while (0)
  334. #define pte_unmap_nested(pte) do { } while (0)
  335. extern void paging_init (void);
  336. /* Used for deferring calls to flush_dcache_page() */
  337. #define PG_dcache_dirty PG_arch_1
  338. extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
  339. /* Encode and de-code a swap entry */
  340. #define __swp_type(x) ((x).val & 0x1f)
  341. #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \
  342. (((x).val >> 8) & ~0x7) )
  343. #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \
  344. ((offset & 0x7) << 6) | \
  345. ((offset & ~0x7) << 8) })
  346. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  347. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  348. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
  349. {
  350. #ifdef CONFIG_SMP
  351. if (!pte_young(*ptep))
  352. return 0;
  353. return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep));
  354. #else
  355. pte_t pte = *ptep;
  356. if (!pte_young(pte))
  357. return 0;
  358. set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
  359. return 1;
  360. #endif
  361. }
  362. extern spinlock_t pa_dbit_lock;
  363. struct mm_struct;
  364. static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  365. {
  366. pte_t old_pte;
  367. pte_t pte;
  368. spin_lock(&pa_dbit_lock);
  369. pte = old_pte = *ptep;
  370. pte_val(pte) &= ~_PAGE_PRESENT;
  371. pte_val(pte) |= _PAGE_FLUSH;
  372. set_pte_at(mm,addr,ptep,pte);
  373. spin_unlock(&pa_dbit_lock);
  374. return old_pte;
  375. }
  376. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  377. {
  378. #ifdef CONFIG_SMP
  379. unsigned long new, old;
  380. do {
  381. old = pte_val(*ptep);
  382. new = pte_val(pte_wrprotect(__pte (old)));
  383. } while (cmpxchg((unsigned long *) ptep, old, new) != old);
  384. #else
  385. pte_t old_pte = *ptep;
  386. set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
  387. #endif
  388. }
  389. #define pte_same(A,B) (pte_val(A) == pte_val(B))
  390. #endif /* !__ASSEMBLY__ */
  391. /* TLB page size encoding - see table 3-1 in parisc20.pdf */
  392. #define _PAGE_SIZE_ENCODING_4K 0
  393. #define _PAGE_SIZE_ENCODING_16K 1
  394. #define _PAGE_SIZE_ENCODING_64K 2
  395. #define _PAGE_SIZE_ENCODING_256K 3
  396. #define _PAGE_SIZE_ENCODING_1M 4
  397. #define _PAGE_SIZE_ENCODING_4M 5
  398. #define _PAGE_SIZE_ENCODING_16M 6
  399. #define _PAGE_SIZE_ENCODING_64M 7
  400. #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
  401. # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
  402. #elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
  403. # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
  404. #elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
  405. # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
  406. #endif
  407. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  408. remap_pfn_range(vma, vaddr, pfn, size, prot)
  409. #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
  410. /* We provide our own get_unmapped_area to provide cache coherency */
  411. #define HAVE_ARCH_UNMAPPED_AREA
  412. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  413. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  414. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  415. #define __HAVE_ARCH_PTE_SAME
  416. #include <asm-generic/pgtable.h>
  417. #endif /* _PARISC_PGTABLE_H */