msi_sn.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2006 Silicon Graphics, Inc. All Rights Reserved.
  7. */
  8. #include <linux/types.h>
  9. #include <linux/irq.h>
  10. #include <linux/pci.h>
  11. #include <linux/cpumask.h>
  12. #include <linux/msi.h>
  13. #include <asm/sn/addrs.h>
  14. #include <asm/sn/intr.h>
  15. #include <asm/sn/pcibus_provider_defs.h>
  16. #include <asm/sn/pcidev.h>
  17. #include <asm/sn/nodepda.h>
  18. struct sn_msi_info {
  19. u64 pci_addr;
  20. struct sn_irq_info *sn_irq_info;
  21. };
  22. static struct sn_msi_info sn_msi_info[NR_IRQS];
  23. static struct irq_chip sn_msi_chip;
  24. void sn_teardown_msi_irq(unsigned int irq)
  25. {
  26. nasid_t nasid;
  27. int widget;
  28. struct pci_dev *pdev;
  29. struct pcidev_info *sn_pdev;
  30. struct sn_irq_info *sn_irq_info;
  31. struct pcibus_bussoft *bussoft;
  32. struct sn_pcibus_provider *provider;
  33. sn_irq_info = sn_msi_info[irq].sn_irq_info;
  34. if (sn_irq_info == NULL || sn_irq_info->irq_int_bit >= 0)
  35. return;
  36. sn_pdev = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  37. pdev = sn_pdev->pdi_linux_pcidev;
  38. provider = SN_PCIDEV_BUSPROVIDER(pdev);
  39. (*provider->dma_unmap)(pdev,
  40. sn_msi_info[irq].pci_addr,
  41. PCI_DMA_FROMDEVICE);
  42. sn_msi_info[irq].pci_addr = 0;
  43. bussoft = SN_PCIDEV_BUSSOFT(pdev);
  44. nasid = NASID_GET(bussoft->bs_base);
  45. widget = (nasid & 1) ?
  46. TIO_SWIN_WIDGETNUM(bussoft->bs_base) :
  47. SWIN_WIDGETNUM(bussoft->bs_base);
  48. sn_intr_free(nasid, widget, sn_irq_info);
  49. sn_msi_info[irq].sn_irq_info = NULL;
  50. destroy_irq(irq);
  51. }
  52. int sn_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *entry)
  53. {
  54. struct msi_msg msg;
  55. int widget;
  56. int status;
  57. nasid_t nasid;
  58. u64 bus_addr;
  59. struct sn_irq_info *sn_irq_info;
  60. struct pcibus_bussoft *bussoft = SN_PCIDEV_BUSSOFT(pdev);
  61. struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
  62. int irq;
  63. if (!entry->msi_attrib.is_64)
  64. return -EINVAL;
  65. if (bussoft == NULL)
  66. return -EINVAL;
  67. if (provider == NULL || provider->dma_map_consistent == NULL)
  68. return -EINVAL;
  69. irq = create_irq();
  70. if (irq < 0)
  71. return irq;
  72. /*
  73. * Set up the vector plumbing. Let the prom (via sn_intr_alloc)
  74. * decide which cpu to direct this msi at by default.
  75. */
  76. nasid = NASID_GET(bussoft->bs_base);
  77. widget = (nasid & 1) ?
  78. TIO_SWIN_WIDGETNUM(bussoft->bs_base) :
  79. SWIN_WIDGETNUM(bussoft->bs_base);
  80. sn_irq_info = kzalloc(sizeof(struct sn_irq_info), GFP_KERNEL);
  81. if (! sn_irq_info) {
  82. destroy_irq(irq);
  83. return -ENOMEM;
  84. }
  85. status = sn_intr_alloc(nasid, widget, sn_irq_info, irq, -1, -1);
  86. if (status) {
  87. kfree(sn_irq_info);
  88. destroy_irq(irq);
  89. return -ENOMEM;
  90. }
  91. sn_irq_info->irq_int_bit = -1; /* mark this as an MSI irq */
  92. sn_irq_fixup(pdev, sn_irq_info);
  93. /* Prom probably should fill these in, but doesn't ... */
  94. sn_irq_info->irq_bridge_type = bussoft->bs_asic_type;
  95. sn_irq_info->irq_bridge = (void *)bussoft->bs_base;
  96. /*
  97. * Map the xio address into bus space
  98. */
  99. bus_addr = (*provider->dma_map_consistent)(pdev,
  100. sn_irq_info->irq_xtalkaddr,
  101. sizeof(sn_irq_info->irq_xtalkaddr),
  102. SN_DMA_MSI|SN_DMA_ADDR_XIO);
  103. if (! bus_addr) {
  104. sn_intr_free(nasid, widget, sn_irq_info);
  105. kfree(sn_irq_info);
  106. destroy_irq(irq);
  107. return -ENOMEM;
  108. }
  109. sn_msi_info[irq].sn_irq_info = sn_irq_info;
  110. sn_msi_info[irq].pci_addr = bus_addr;
  111. msg.address_hi = (u32)(bus_addr >> 32);
  112. msg.address_lo = (u32)(bus_addr & 0x00000000ffffffff);
  113. /*
  114. * In the SN platform, bit 16 is a "send vector" bit which
  115. * must be present in order to move the vector through the system.
  116. */
  117. msg.data = 0x100 + irq;
  118. set_irq_msi(irq, entry);
  119. write_msi_msg(irq, &msg);
  120. set_irq_chip_and_handler(irq, &sn_msi_chip, handle_edge_irq);
  121. return 0;
  122. }
  123. #ifdef CONFIG_SMP
  124. static int sn_set_msi_irq_affinity(unsigned int irq,
  125. const struct cpumask *cpu_mask)
  126. {
  127. struct msi_msg msg;
  128. int slice;
  129. nasid_t nasid;
  130. u64 bus_addr;
  131. struct pci_dev *pdev;
  132. struct pcidev_info *sn_pdev;
  133. struct sn_irq_info *sn_irq_info;
  134. struct sn_irq_info *new_irq_info;
  135. struct sn_pcibus_provider *provider;
  136. unsigned int cpu;
  137. cpu = cpumask_first(cpu_mask);
  138. sn_irq_info = sn_msi_info[irq].sn_irq_info;
  139. if (sn_irq_info == NULL || sn_irq_info->irq_int_bit >= 0)
  140. return -1;
  141. /*
  142. * Release XIO resources for the old MSI PCI address
  143. */
  144. read_msi_msg(irq, &msg);
  145. sn_pdev = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  146. pdev = sn_pdev->pdi_linux_pcidev;
  147. provider = SN_PCIDEV_BUSPROVIDER(pdev);
  148. bus_addr = (u64)(msg.address_hi) << 32 | (u64)(msg.address_lo);
  149. (*provider->dma_unmap)(pdev, bus_addr, PCI_DMA_FROMDEVICE);
  150. sn_msi_info[irq].pci_addr = 0;
  151. nasid = cpuid_to_nasid(cpu);
  152. slice = cpuid_to_slice(cpu);
  153. new_irq_info = sn_retarget_vector(sn_irq_info, nasid, slice);
  154. sn_msi_info[irq].sn_irq_info = new_irq_info;
  155. if (new_irq_info == NULL)
  156. return -1;
  157. /*
  158. * Map the xio address into bus space
  159. */
  160. bus_addr = (*provider->dma_map_consistent)(pdev,
  161. new_irq_info->irq_xtalkaddr,
  162. sizeof(new_irq_info->irq_xtalkaddr),
  163. SN_DMA_MSI|SN_DMA_ADDR_XIO);
  164. sn_msi_info[irq].pci_addr = bus_addr;
  165. msg.address_hi = (u32)(bus_addr >> 32);
  166. msg.address_lo = (u32)(bus_addr & 0x00000000ffffffff);
  167. write_msi_msg(irq, &msg);
  168. cpumask_copy(irq_desc[irq].affinity, cpu_mask);
  169. return 0;
  170. }
  171. #endif /* CONFIG_SMP */
  172. static void sn_ack_msi_irq(unsigned int irq)
  173. {
  174. move_native_irq(irq);
  175. ia64_eoi();
  176. }
  177. static int sn_msi_retrigger_irq(unsigned int irq)
  178. {
  179. unsigned int vector = irq;
  180. ia64_resend_irq(vector);
  181. return 1;
  182. }
  183. static struct irq_chip sn_msi_chip = {
  184. .name = "PCI-MSI",
  185. .mask = mask_msi_irq,
  186. .unmask = unmask_msi_irq,
  187. .ack = sn_ack_msi_irq,
  188. #ifdef CONFIG_SMP
  189. .set_affinity = sn_set_msi_irq_affinity,
  190. #endif
  191. .retrigger = sn_msi_retrigger_irq,
  192. };