kvm-ia64.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/gcc_intrin.h>
  37. #include <asm/pal.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/div64.h>
  40. #include <asm/tlb.h>
  41. #include <asm/elf.h>
  42. #include <asm/sn/addrs.h>
  43. #include <asm/sn/clksupport.h>
  44. #include <asm/sn/shub_mmr.h>
  45. #include "misc.h"
  46. #include "vti.h"
  47. #include "iodev.h"
  48. #include "ioapic.h"
  49. #include "lapic.h"
  50. #include "irq.h"
  51. static unsigned long kvm_vmm_base;
  52. static unsigned long kvm_vsa_base;
  53. static unsigned long kvm_vm_buffer;
  54. static unsigned long kvm_vm_buffer_size;
  55. unsigned long kvm_vmm_gp;
  56. static long vp_env_info;
  57. static struct kvm_vmm_info *kvm_vmm_info;
  58. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  59. struct kvm_stats_debugfs_item debugfs_entries[] = {
  60. { NULL }
  61. };
  62. static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
  63. {
  64. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  65. if (vcpu->kvm->arch.is_sn2)
  66. return rtc_time();
  67. else
  68. #endif
  69. return ia64_getreg(_IA64_REG_AR_ITC);
  70. }
  71. static void kvm_flush_icache(unsigned long start, unsigned long len)
  72. {
  73. int l;
  74. for (l = 0; l < (len + 32); l += 32)
  75. ia64_fc((void *)(start + l));
  76. ia64_sync_i();
  77. ia64_srlz_i();
  78. }
  79. static void kvm_flush_tlb_all(void)
  80. {
  81. unsigned long i, j, count0, count1, stride0, stride1, addr;
  82. long flags;
  83. addr = local_cpu_data->ptce_base;
  84. count0 = local_cpu_data->ptce_count[0];
  85. count1 = local_cpu_data->ptce_count[1];
  86. stride0 = local_cpu_data->ptce_stride[0];
  87. stride1 = local_cpu_data->ptce_stride[1];
  88. local_irq_save(flags);
  89. for (i = 0; i < count0; ++i) {
  90. for (j = 0; j < count1; ++j) {
  91. ia64_ptce(addr);
  92. addr += stride1;
  93. }
  94. addr += stride0;
  95. }
  96. local_irq_restore(flags);
  97. ia64_srlz_i(); /* srlz.i implies srlz.d */
  98. }
  99. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  100. {
  101. struct ia64_pal_retval iprv;
  102. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  103. (u64)opt_handler);
  104. return iprv.status;
  105. }
  106. static DEFINE_SPINLOCK(vp_lock);
  107. void kvm_arch_hardware_enable(void *garbage)
  108. {
  109. long status;
  110. long tmp_base;
  111. unsigned long pte;
  112. unsigned long saved_psr;
  113. int slot;
  114. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  115. local_irq_save(saved_psr);
  116. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  117. local_irq_restore(saved_psr);
  118. if (slot < 0)
  119. return;
  120. spin_lock(&vp_lock);
  121. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  122. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  123. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  124. if (status != 0) {
  125. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  126. return ;
  127. }
  128. if (!kvm_vsa_base) {
  129. kvm_vsa_base = tmp_base;
  130. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  131. }
  132. spin_unlock(&vp_lock);
  133. ia64_ptr_entry(0x3, slot);
  134. }
  135. void kvm_arch_hardware_disable(void *garbage)
  136. {
  137. long status;
  138. int slot;
  139. unsigned long pte;
  140. unsigned long saved_psr;
  141. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  142. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  143. PAGE_KERNEL));
  144. local_irq_save(saved_psr);
  145. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  146. local_irq_restore(saved_psr);
  147. if (slot < 0)
  148. return;
  149. status = ia64_pal_vp_exit_env(host_iva);
  150. if (status)
  151. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  152. status);
  153. ia64_ptr_entry(0x3, slot);
  154. }
  155. void kvm_arch_check_processor_compat(void *rtn)
  156. {
  157. *(int *)rtn = 0;
  158. }
  159. int kvm_dev_ioctl_check_extension(long ext)
  160. {
  161. int r;
  162. switch (ext) {
  163. case KVM_CAP_IRQCHIP:
  164. case KVM_CAP_MP_STATE:
  165. case KVM_CAP_IRQ_INJECT_STATUS:
  166. r = 1;
  167. break;
  168. case KVM_CAP_COALESCED_MMIO:
  169. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  170. break;
  171. case KVM_CAP_IOMMU:
  172. r = iommu_found();
  173. break;
  174. default:
  175. r = 0;
  176. }
  177. return r;
  178. }
  179. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  180. {
  181. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  182. kvm_run->hw.hardware_exit_reason = 1;
  183. return 0;
  184. }
  185. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  186. {
  187. struct kvm_mmio_req *p;
  188. struct kvm_io_device *mmio_dev;
  189. int r;
  190. p = kvm_get_vcpu_ioreq(vcpu);
  191. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  192. goto mmio;
  193. vcpu->mmio_needed = 1;
  194. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  195. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  196. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  197. if (vcpu->mmio_is_write)
  198. memcpy(vcpu->mmio_data, &p->data, p->size);
  199. memcpy(kvm_run->mmio.data, &p->data, p->size);
  200. kvm_run->exit_reason = KVM_EXIT_MMIO;
  201. return 0;
  202. mmio:
  203. if (p->dir)
  204. r = kvm_io_bus_read(&vcpu->kvm->mmio_bus, p->addr,
  205. p->size, &p->data);
  206. else
  207. r = kvm_io_bus_write(&vcpu->kvm->mmio_bus, p->addr,
  208. p->size, &p->data);
  209. if (r)
  210. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  211. p->state = STATE_IORESP_READY;
  212. return 1;
  213. }
  214. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  215. {
  216. struct exit_ctl_data *p;
  217. p = kvm_get_exit_data(vcpu);
  218. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  219. return kvm_pal_emul(vcpu, kvm_run);
  220. else {
  221. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  222. kvm_run->hw.hardware_exit_reason = 2;
  223. return 0;
  224. }
  225. }
  226. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  227. {
  228. struct exit_ctl_data *p;
  229. p = kvm_get_exit_data(vcpu);
  230. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  231. kvm_sal_emul(vcpu);
  232. return 1;
  233. } else {
  234. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  235. kvm_run->hw.hardware_exit_reason = 3;
  236. return 0;
  237. }
  238. }
  239. static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
  240. {
  241. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  242. if (!test_and_set_bit(vector, &vpd->irr[0])) {
  243. vcpu->arch.irq_new_pending = 1;
  244. kvm_vcpu_kick(vcpu);
  245. return 1;
  246. }
  247. return 0;
  248. }
  249. /*
  250. * offset: address offset to IPI space.
  251. * value: deliver value.
  252. */
  253. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  254. uint64_t vector)
  255. {
  256. switch (dm) {
  257. case SAPIC_FIXED:
  258. break;
  259. case SAPIC_NMI:
  260. vector = 2;
  261. break;
  262. case SAPIC_EXTINT:
  263. vector = 0;
  264. break;
  265. case SAPIC_INIT:
  266. case SAPIC_PMI:
  267. default:
  268. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  269. return;
  270. }
  271. __apic_accept_irq(vcpu, vector);
  272. }
  273. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  274. unsigned long eid)
  275. {
  276. union ia64_lid lid;
  277. int i;
  278. struct kvm_vcpu *vcpu;
  279. kvm_for_each_vcpu(i, vcpu, kvm) {
  280. lid.val = VCPU_LID(vcpu);
  281. if (lid.id == id && lid.eid == eid)
  282. return vcpu;
  283. }
  284. return NULL;
  285. }
  286. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  287. {
  288. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  289. struct kvm_vcpu *target_vcpu;
  290. struct kvm_pt_regs *regs;
  291. union ia64_ipi_a addr = p->u.ipi_data.addr;
  292. union ia64_ipi_d data = p->u.ipi_data.data;
  293. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  294. if (!target_vcpu)
  295. return handle_vm_error(vcpu, kvm_run);
  296. if (!target_vcpu->arch.launched) {
  297. regs = vcpu_regs(target_vcpu);
  298. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  299. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  300. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  301. if (waitqueue_active(&target_vcpu->wq))
  302. wake_up_interruptible(&target_vcpu->wq);
  303. } else {
  304. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  305. if (target_vcpu != vcpu)
  306. kvm_vcpu_kick(target_vcpu);
  307. }
  308. return 1;
  309. }
  310. struct call_data {
  311. struct kvm_ptc_g ptc_g_data;
  312. struct kvm_vcpu *vcpu;
  313. };
  314. static void vcpu_global_purge(void *info)
  315. {
  316. struct call_data *p = (struct call_data *)info;
  317. struct kvm_vcpu *vcpu = p->vcpu;
  318. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  319. return;
  320. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  321. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  322. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  323. p->ptc_g_data;
  324. } else {
  325. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  326. vcpu->arch.ptc_g_count = 0;
  327. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  328. }
  329. }
  330. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  331. {
  332. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  333. struct kvm *kvm = vcpu->kvm;
  334. struct call_data call_data;
  335. int i;
  336. struct kvm_vcpu *vcpui;
  337. call_data.ptc_g_data = p->u.ptc_g_data;
  338. kvm_for_each_vcpu(i, vcpui, kvm) {
  339. if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
  340. vcpu == vcpui)
  341. continue;
  342. if (waitqueue_active(&vcpui->wq))
  343. wake_up_interruptible(&vcpui->wq);
  344. if (vcpui->cpu != -1) {
  345. call_data.vcpu = vcpui;
  346. smp_call_function_single(vcpui->cpu,
  347. vcpu_global_purge, &call_data, 1);
  348. } else
  349. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  350. }
  351. return 1;
  352. }
  353. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  354. {
  355. return 1;
  356. }
  357. static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
  358. {
  359. unsigned long pte, rtc_phys_addr, map_addr;
  360. int slot;
  361. map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
  362. rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
  363. pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
  364. slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
  365. vcpu->arch.sn_rtc_tr_slot = slot;
  366. if (slot < 0) {
  367. printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
  368. slot = 0;
  369. }
  370. return slot;
  371. }
  372. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  373. {
  374. ktime_t kt;
  375. long itc_diff;
  376. unsigned long vcpu_now_itc;
  377. unsigned long expires;
  378. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  379. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  380. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  381. if (irqchip_in_kernel(vcpu->kvm)) {
  382. vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
  383. if (time_after(vcpu_now_itc, vpd->itm)) {
  384. vcpu->arch.timer_check = 1;
  385. return 1;
  386. }
  387. itc_diff = vpd->itm - vcpu_now_itc;
  388. if (itc_diff < 0)
  389. itc_diff = -itc_diff;
  390. expires = div64_u64(itc_diff, cyc_per_usec);
  391. kt = ktime_set(0, 1000 * expires);
  392. vcpu->arch.ht_active = 1;
  393. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  394. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  395. kvm_vcpu_block(vcpu);
  396. hrtimer_cancel(p_ht);
  397. vcpu->arch.ht_active = 0;
  398. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
  399. kvm_cpu_has_pending_timer(vcpu))
  400. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  401. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  402. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  403. return -EINTR;
  404. return 1;
  405. } else {
  406. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  407. return 0;
  408. }
  409. }
  410. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  411. struct kvm_run *kvm_run)
  412. {
  413. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  414. return 0;
  415. }
  416. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  417. struct kvm_run *kvm_run)
  418. {
  419. return 1;
  420. }
  421. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  422. struct kvm_run *kvm_run)
  423. {
  424. printk("VMM: %s", vcpu->arch.log_buf);
  425. return 1;
  426. }
  427. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  428. struct kvm_run *kvm_run) = {
  429. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  430. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  431. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  432. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  433. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  434. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  435. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  436. [EXIT_REASON_IPI] = handle_ipi,
  437. [EXIT_REASON_PTC_G] = handle_global_purge,
  438. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  439. };
  440. static const int kvm_vti_max_exit_handlers =
  441. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  442. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  443. {
  444. struct exit_ctl_data *p_exit_data;
  445. p_exit_data = kvm_get_exit_data(vcpu);
  446. return p_exit_data->exit_reason;
  447. }
  448. /*
  449. * The guest has exited. See if we can fix it or if we need userspace
  450. * assistance.
  451. */
  452. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  453. {
  454. u32 exit_reason = kvm_get_exit_reason(vcpu);
  455. vcpu->arch.last_exit = exit_reason;
  456. if (exit_reason < kvm_vti_max_exit_handlers
  457. && kvm_vti_exit_handlers[exit_reason])
  458. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  459. else {
  460. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  461. kvm_run->hw.hardware_exit_reason = exit_reason;
  462. }
  463. return 0;
  464. }
  465. static inline void vti_set_rr6(unsigned long rr6)
  466. {
  467. ia64_set_rr(RR6, rr6);
  468. ia64_srlz_i();
  469. }
  470. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  471. {
  472. unsigned long pte;
  473. struct kvm *kvm = vcpu->kvm;
  474. int r;
  475. /*Insert a pair of tr to map vmm*/
  476. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  477. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  478. if (r < 0)
  479. goto out;
  480. vcpu->arch.vmm_tr_slot = r;
  481. /*Insert a pairt of tr to map data of vm*/
  482. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  483. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  484. pte, KVM_VM_DATA_SHIFT);
  485. if (r < 0)
  486. goto out;
  487. vcpu->arch.vm_tr_slot = r;
  488. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  489. if (kvm->arch.is_sn2) {
  490. r = kvm_sn2_setup_mappings(vcpu);
  491. if (r < 0)
  492. goto out;
  493. }
  494. #endif
  495. r = 0;
  496. out:
  497. return r;
  498. }
  499. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  500. {
  501. struct kvm *kvm = vcpu->kvm;
  502. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  503. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  504. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  505. if (kvm->arch.is_sn2)
  506. ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
  507. #endif
  508. }
  509. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  510. {
  511. unsigned long psr;
  512. int r;
  513. int cpu = smp_processor_id();
  514. if (vcpu->arch.last_run_cpu != cpu ||
  515. per_cpu(last_vcpu, cpu) != vcpu) {
  516. per_cpu(last_vcpu, cpu) = vcpu;
  517. vcpu->arch.last_run_cpu = cpu;
  518. kvm_flush_tlb_all();
  519. }
  520. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  521. vti_set_rr6(vcpu->arch.vmm_rr);
  522. local_irq_save(psr);
  523. r = kvm_insert_vmm_mapping(vcpu);
  524. local_irq_restore(psr);
  525. return r;
  526. }
  527. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  528. {
  529. kvm_purge_vmm_mapping(vcpu);
  530. vti_set_rr6(vcpu->arch.host_rr6);
  531. }
  532. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  533. {
  534. union context *host_ctx, *guest_ctx;
  535. int r;
  536. /*
  537. * down_read() may sleep and return with interrupts enabled
  538. */
  539. down_read(&vcpu->kvm->slots_lock);
  540. again:
  541. if (signal_pending(current)) {
  542. r = -EINTR;
  543. kvm_run->exit_reason = KVM_EXIT_INTR;
  544. goto out;
  545. }
  546. preempt_disable();
  547. local_irq_disable();
  548. /*Get host and guest context with guest address space.*/
  549. host_ctx = kvm_get_host_context(vcpu);
  550. guest_ctx = kvm_get_guest_context(vcpu);
  551. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  552. r = kvm_vcpu_pre_transition(vcpu);
  553. if (r < 0)
  554. goto vcpu_run_fail;
  555. up_read(&vcpu->kvm->slots_lock);
  556. kvm_guest_enter();
  557. /*
  558. * Transition to the guest
  559. */
  560. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  561. kvm_vcpu_post_transition(vcpu);
  562. vcpu->arch.launched = 1;
  563. set_bit(KVM_REQ_KICK, &vcpu->requests);
  564. local_irq_enable();
  565. /*
  566. * We must have an instruction between local_irq_enable() and
  567. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  568. * the interrupt shadow. The stat.exits increment will do nicely.
  569. * But we need to prevent reordering, hence this barrier():
  570. */
  571. barrier();
  572. kvm_guest_exit();
  573. preempt_enable();
  574. down_read(&vcpu->kvm->slots_lock);
  575. r = kvm_handle_exit(kvm_run, vcpu);
  576. if (r > 0) {
  577. if (!need_resched())
  578. goto again;
  579. }
  580. out:
  581. up_read(&vcpu->kvm->slots_lock);
  582. if (r > 0) {
  583. kvm_resched(vcpu);
  584. down_read(&vcpu->kvm->slots_lock);
  585. goto again;
  586. }
  587. return r;
  588. vcpu_run_fail:
  589. local_irq_enable();
  590. preempt_enable();
  591. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  592. goto out;
  593. }
  594. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  595. {
  596. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  597. if (!vcpu->mmio_is_write)
  598. memcpy(&p->data, vcpu->mmio_data, 8);
  599. p->state = STATE_IORESP_READY;
  600. }
  601. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  602. {
  603. int r;
  604. sigset_t sigsaved;
  605. vcpu_load(vcpu);
  606. if (vcpu->sigset_active)
  607. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  608. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  609. kvm_vcpu_block(vcpu);
  610. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  611. r = -EAGAIN;
  612. goto out;
  613. }
  614. if (vcpu->mmio_needed) {
  615. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  616. kvm_set_mmio_data(vcpu);
  617. vcpu->mmio_read_completed = 1;
  618. vcpu->mmio_needed = 0;
  619. }
  620. r = __vcpu_run(vcpu, kvm_run);
  621. out:
  622. if (vcpu->sigset_active)
  623. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  624. vcpu_put(vcpu);
  625. return r;
  626. }
  627. static struct kvm *kvm_alloc_kvm(void)
  628. {
  629. struct kvm *kvm;
  630. uint64_t vm_base;
  631. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  632. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  633. if (!vm_base)
  634. return ERR_PTR(-ENOMEM);
  635. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  636. kvm = (struct kvm *)(vm_base +
  637. offsetof(struct kvm_vm_data, kvm_vm_struct));
  638. kvm->arch.vm_base = vm_base;
  639. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  640. return kvm;
  641. }
  642. struct kvm_io_range {
  643. unsigned long start;
  644. unsigned long size;
  645. unsigned long type;
  646. };
  647. static const struct kvm_io_range io_ranges[] = {
  648. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  649. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  650. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  651. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  652. {PIB_START, PIB_SIZE, GPFN_PIB},
  653. };
  654. static void kvm_build_io_pmt(struct kvm *kvm)
  655. {
  656. unsigned long i, j;
  657. /* Mark I/O ranges */
  658. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  659. i++) {
  660. for (j = io_ranges[i].start;
  661. j < io_ranges[i].start + io_ranges[i].size;
  662. j += PAGE_SIZE)
  663. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  664. io_ranges[i].type, 0);
  665. }
  666. }
  667. /*Use unused rids to virtualize guest rid.*/
  668. #define GUEST_PHYSICAL_RR0 0x1739
  669. #define GUEST_PHYSICAL_RR4 0x2739
  670. #define VMM_INIT_RR 0x1660
  671. static void kvm_init_vm(struct kvm *kvm)
  672. {
  673. BUG_ON(!kvm);
  674. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  675. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  676. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  677. /*
  678. *Fill P2M entries for MMIO/IO ranges
  679. */
  680. kvm_build_io_pmt(kvm);
  681. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  682. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  683. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  684. }
  685. struct kvm *kvm_arch_create_vm(void)
  686. {
  687. struct kvm *kvm = kvm_alloc_kvm();
  688. if (IS_ERR(kvm))
  689. return ERR_PTR(-ENOMEM);
  690. kvm->arch.is_sn2 = ia64_platform_is("sn2");
  691. kvm_init_vm(kvm);
  692. return kvm;
  693. }
  694. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  695. struct kvm_irqchip *chip)
  696. {
  697. int r;
  698. r = 0;
  699. switch (chip->chip_id) {
  700. case KVM_IRQCHIP_IOAPIC:
  701. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  702. sizeof(struct kvm_ioapic_state));
  703. break;
  704. default:
  705. r = -EINVAL;
  706. break;
  707. }
  708. return r;
  709. }
  710. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  711. {
  712. int r;
  713. r = 0;
  714. switch (chip->chip_id) {
  715. case KVM_IRQCHIP_IOAPIC:
  716. memcpy(ioapic_irqchip(kvm),
  717. &chip->chip.ioapic,
  718. sizeof(struct kvm_ioapic_state));
  719. break;
  720. default:
  721. r = -EINVAL;
  722. break;
  723. }
  724. return r;
  725. }
  726. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  727. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  728. {
  729. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  730. int i;
  731. vcpu_load(vcpu);
  732. for (i = 0; i < 16; i++) {
  733. vpd->vgr[i] = regs->vpd.vgr[i];
  734. vpd->vbgr[i] = regs->vpd.vbgr[i];
  735. }
  736. for (i = 0; i < 128; i++)
  737. vpd->vcr[i] = regs->vpd.vcr[i];
  738. vpd->vhpi = regs->vpd.vhpi;
  739. vpd->vnat = regs->vpd.vnat;
  740. vpd->vbnat = regs->vpd.vbnat;
  741. vpd->vpsr = regs->vpd.vpsr;
  742. vpd->vpr = regs->vpd.vpr;
  743. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  744. RESTORE_REGS(mp_state);
  745. RESTORE_REGS(vmm_rr);
  746. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  747. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  748. RESTORE_REGS(itr_regions);
  749. RESTORE_REGS(dtr_regions);
  750. RESTORE_REGS(tc_regions);
  751. RESTORE_REGS(irq_check);
  752. RESTORE_REGS(itc_check);
  753. RESTORE_REGS(timer_check);
  754. RESTORE_REGS(timer_pending);
  755. RESTORE_REGS(last_itc);
  756. for (i = 0; i < 8; i++) {
  757. vcpu->arch.vrr[i] = regs->vrr[i];
  758. vcpu->arch.ibr[i] = regs->ibr[i];
  759. vcpu->arch.dbr[i] = regs->dbr[i];
  760. }
  761. for (i = 0; i < 4; i++)
  762. vcpu->arch.insvc[i] = regs->insvc[i];
  763. RESTORE_REGS(xtp);
  764. RESTORE_REGS(metaphysical_rr0);
  765. RESTORE_REGS(metaphysical_rr4);
  766. RESTORE_REGS(metaphysical_saved_rr0);
  767. RESTORE_REGS(metaphysical_saved_rr4);
  768. RESTORE_REGS(fp_psr);
  769. RESTORE_REGS(saved_gp);
  770. vcpu->arch.irq_new_pending = 1;
  771. vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
  772. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  773. vcpu_put(vcpu);
  774. return 0;
  775. }
  776. long kvm_arch_vm_ioctl(struct file *filp,
  777. unsigned int ioctl, unsigned long arg)
  778. {
  779. struct kvm *kvm = filp->private_data;
  780. void __user *argp = (void __user *)arg;
  781. int r = -EINVAL;
  782. switch (ioctl) {
  783. case KVM_SET_MEMORY_REGION: {
  784. struct kvm_memory_region kvm_mem;
  785. struct kvm_userspace_memory_region kvm_userspace_mem;
  786. r = -EFAULT;
  787. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  788. goto out;
  789. kvm_userspace_mem.slot = kvm_mem.slot;
  790. kvm_userspace_mem.flags = kvm_mem.flags;
  791. kvm_userspace_mem.guest_phys_addr =
  792. kvm_mem.guest_phys_addr;
  793. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  794. r = kvm_vm_ioctl_set_memory_region(kvm,
  795. &kvm_userspace_mem, 0);
  796. if (r)
  797. goto out;
  798. break;
  799. }
  800. case KVM_CREATE_IRQCHIP:
  801. r = -EFAULT;
  802. r = kvm_ioapic_init(kvm);
  803. if (r)
  804. goto out;
  805. r = kvm_setup_default_irq_routing(kvm);
  806. if (r) {
  807. kfree(kvm->arch.vioapic);
  808. goto out;
  809. }
  810. break;
  811. case KVM_IRQ_LINE_STATUS:
  812. case KVM_IRQ_LINE: {
  813. struct kvm_irq_level irq_event;
  814. r = -EFAULT;
  815. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  816. goto out;
  817. if (irqchip_in_kernel(kvm)) {
  818. __s32 status;
  819. mutex_lock(&kvm->irq_lock);
  820. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  821. irq_event.irq, irq_event.level);
  822. mutex_unlock(&kvm->irq_lock);
  823. if (ioctl == KVM_IRQ_LINE_STATUS) {
  824. irq_event.status = status;
  825. if (copy_to_user(argp, &irq_event,
  826. sizeof irq_event))
  827. goto out;
  828. }
  829. r = 0;
  830. }
  831. break;
  832. }
  833. case KVM_GET_IRQCHIP: {
  834. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  835. struct kvm_irqchip chip;
  836. r = -EFAULT;
  837. if (copy_from_user(&chip, argp, sizeof chip))
  838. goto out;
  839. r = -ENXIO;
  840. if (!irqchip_in_kernel(kvm))
  841. goto out;
  842. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  843. if (r)
  844. goto out;
  845. r = -EFAULT;
  846. if (copy_to_user(argp, &chip, sizeof chip))
  847. goto out;
  848. r = 0;
  849. break;
  850. }
  851. case KVM_SET_IRQCHIP: {
  852. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  853. struct kvm_irqchip chip;
  854. r = -EFAULT;
  855. if (copy_from_user(&chip, argp, sizeof chip))
  856. goto out;
  857. r = -ENXIO;
  858. if (!irqchip_in_kernel(kvm))
  859. goto out;
  860. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  861. if (r)
  862. goto out;
  863. r = 0;
  864. break;
  865. }
  866. default:
  867. ;
  868. }
  869. out:
  870. return r;
  871. }
  872. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  873. struct kvm_sregs *sregs)
  874. {
  875. return -EINVAL;
  876. }
  877. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  878. struct kvm_sregs *sregs)
  879. {
  880. return -EINVAL;
  881. }
  882. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  883. struct kvm_translation *tr)
  884. {
  885. return -EINVAL;
  886. }
  887. static int kvm_alloc_vmm_area(void)
  888. {
  889. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  890. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  891. get_order(KVM_VMM_SIZE));
  892. if (!kvm_vmm_base)
  893. return -ENOMEM;
  894. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  895. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  896. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  897. kvm_vmm_base, kvm_vm_buffer);
  898. }
  899. return 0;
  900. }
  901. static void kvm_free_vmm_area(void)
  902. {
  903. if (kvm_vmm_base) {
  904. /*Zero this area before free to avoid bits leak!!*/
  905. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  906. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  907. kvm_vmm_base = 0;
  908. kvm_vm_buffer = 0;
  909. kvm_vsa_base = 0;
  910. }
  911. }
  912. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  913. {
  914. int i;
  915. union cpuid3_t cpuid3;
  916. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  917. if (IS_ERR(vpd))
  918. return PTR_ERR(vpd);
  919. /* CPUID init */
  920. for (i = 0; i < 5; i++)
  921. vpd->vcpuid[i] = ia64_get_cpuid(i);
  922. /* Limit the CPUID number to 5 */
  923. cpuid3.value = vpd->vcpuid[3];
  924. cpuid3.number = 4; /* 5 - 1 */
  925. vpd->vcpuid[3] = cpuid3.value;
  926. /*Set vac and vdc fields*/
  927. vpd->vac.a_from_int_cr = 1;
  928. vpd->vac.a_to_int_cr = 1;
  929. vpd->vac.a_from_psr = 1;
  930. vpd->vac.a_from_cpuid = 1;
  931. vpd->vac.a_cover = 1;
  932. vpd->vac.a_bsw = 1;
  933. vpd->vac.a_int = 1;
  934. vpd->vdc.d_vmsw = 1;
  935. /*Set virtual buffer*/
  936. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  937. return 0;
  938. }
  939. static int vti_create_vp(struct kvm_vcpu *vcpu)
  940. {
  941. long ret;
  942. struct vpd *vpd = vcpu->arch.vpd;
  943. unsigned long vmm_ivt;
  944. vmm_ivt = kvm_vmm_info->vmm_ivt;
  945. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  946. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  947. if (ret) {
  948. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  949. return -EINVAL;
  950. }
  951. return 0;
  952. }
  953. static void init_ptce_info(struct kvm_vcpu *vcpu)
  954. {
  955. ia64_ptce_info_t ptce = {0};
  956. ia64_get_ptce(&ptce);
  957. vcpu->arch.ptce_base = ptce.base;
  958. vcpu->arch.ptce_count[0] = ptce.count[0];
  959. vcpu->arch.ptce_count[1] = ptce.count[1];
  960. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  961. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  962. }
  963. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  964. {
  965. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  966. if (hrtimer_cancel(p_ht))
  967. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  968. }
  969. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  970. {
  971. struct kvm_vcpu *vcpu;
  972. wait_queue_head_t *q;
  973. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  974. q = &vcpu->wq;
  975. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  976. goto out;
  977. if (waitqueue_active(q))
  978. wake_up_interruptible(q);
  979. out:
  980. vcpu->arch.timer_fired = 1;
  981. vcpu->arch.timer_check = 1;
  982. return HRTIMER_NORESTART;
  983. }
  984. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  985. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  986. {
  987. struct kvm_vcpu *v;
  988. int r;
  989. int i;
  990. long itc_offset;
  991. struct kvm *kvm = vcpu->kvm;
  992. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  993. union context *p_ctx = &vcpu->arch.guest;
  994. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  995. /*Init vcpu context for first run.*/
  996. if (IS_ERR(vmm_vcpu))
  997. return PTR_ERR(vmm_vcpu);
  998. if (kvm_vcpu_is_bsp(vcpu)) {
  999. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  1000. /*Set entry address for first run.*/
  1001. regs->cr_iip = PALE_RESET_ENTRY;
  1002. /*Initialize itc offset for vcpus*/
  1003. itc_offset = 0UL - kvm_get_itc(vcpu);
  1004. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  1005. v = (struct kvm_vcpu *)((char *)vcpu +
  1006. sizeof(struct kvm_vcpu_data) * i);
  1007. v->arch.itc_offset = itc_offset;
  1008. v->arch.last_itc = 0;
  1009. }
  1010. } else
  1011. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  1012. r = -ENOMEM;
  1013. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  1014. if (!vcpu->arch.apic)
  1015. goto out;
  1016. vcpu->arch.apic->vcpu = vcpu;
  1017. p_ctx->gr[1] = 0;
  1018. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  1019. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  1020. p_ctx->psr = 0x1008522000UL;
  1021. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  1022. p_ctx->caller_unat = 0;
  1023. p_ctx->pr = 0x0;
  1024. p_ctx->ar[36] = 0x0; /*unat*/
  1025. p_ctx->ar[19] = 0x0; /*rnat*/
  1026. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  1027. ((sizeof(struct kvm_vcpu)+15) & ~15);
  1028. p_ctx->ar[64] = 0x0; /*pfs*/
  1029. p_ctx->cr[0] = 0x7e04UL;
  1030. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  1031. p_ctx->cr[8] = 0x3c;
  1032. /*Initilize region register*/
  1033. p_ctx->rr[0] = 0x30;
  1034. p_ctx->rr[1] = 0x30;
  1035. p_ctx->rr[2] = 0x30;
  1036. p_ctx->rr[3] = 0x30;
  1037. p_ctx->rr[4] = 0x30;
  1038. p_ctx->rr[5] = 0x30;
  1039. p_ctx->rr[7] = 0x30;
  1040. /*Initilize branch register 0*/
  1041. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1042. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1043. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1044. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1045. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1046. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1047. vcpu->arch.last_run_cpu = -1;
  1048. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1049. vcpu->arch.vsa_base = kvm_vsa_base;
  1050. vcpu->arch.__gp = kvm_vmm_gp;
  1051. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1052. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1053. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1054. init_ptce_info(vcpu);
  1055. r = 0;
  1056. out:
  1057. return r;
  1058. }
  1059. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1060. {
  1061. unsigned long psr;
  1062. int r;
  1063. local_irq_save(psr);
  1064. r = kvm_insert_vmm_mapping(vcpu);
  1065. local_irq_restore(psr);
  1066. if (r)
  1067. goto fail;
  1068. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1069. if (r)
  1070. goto fail;
  1071. r = vti_init_vpd(vcpu);
  1072. if (r) {
  1073. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1074. goto uninit;
  1075. }
  1076. r = vti_create_vp(vcpu);
  1077. if (r)
  1078. goto uninit;
  1079. kvm_purge_vmm_mapping(vcpu);
  1080. return 0;
  1081. uninit:
  1082. kvm_vcpu_uninit(vcpu);
  1083. fail:
  1084. return r;
  1085. }
  1086. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1087. unsigned int id)
  1088. {
  1089. struct kvm_vcpu *vcpu;
  1090. unsigned long vm_base = kvm->arch.vm_base;
  1091. int r;
  1092. int cpu;
  1093. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1094. r = -EINVAL;
  1095. if (id >= KVM_MAX_VCPUS) {
  1096. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1097. KVM_MAX_VCPUS);
  1098. goto fail;
  1099. }
  1100. r = -ENOMEM;
  1101. if (!vm_base) {
  1102. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1103. goto fail;
  1104. }
  1105. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1106. vcpu_data[id].vcpu_struct));
  1107. vcpu->kvm = kvm;
  1108. cpu = get_cpu();
  1109. r = vti_vcpu_setup(vcpu, id);
  1110. put_cpu();
  1111. if (r) {
  1112. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1113. goto fail;
  1114. }
  1115. return vcpu;
  1116. fail:
  1117. return ERR_PTR(r);
  1118. }
  1119. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1120. {
  1121. return 0;
  1122. }
  1123. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1124. {
  1125. return -EINVAL;
  1126. }
  1127. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1128. {
  1129. return -EINVAL;
  1130. }
  1131. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1132. struct kvm_guest_debug *dbg)
  1133. {
  1134. return -EINVAL;
  1135. }
  1136. static void free_kvm(struct kvm *kvm)
  1137. {
  1138. unsigned long vm_base = kvm->arch.vm_base;
  1139. if (vm_base) {
  1140. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1141. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1142. }
  1143. }
  1144. static void kvm_release_vm_pages(struct kvm *kvm)
  1145. {
  1146. struct kvm_memory_slot *memslot;
  1147. int i, j;
  1148. unsigned long base_gfn;
  1149. for (i = 0; i < kvm->nmemslots; i++) {
  1150. memslot = &kvm->memslots[i];
  1151. base_gfn = memslot->base_gfn;
  1152. for (j = 0; j < memslot->npages; j++) {
  1153. if (memslot->rmap[j])
  1154. put_page((struct page *)memslot->rmap[j]);
  1155. }
  1156. }
  1157. }
  1158. void kvm_arch_sync_events(struct kvm *kvm)
  1159. {
  1160. }
  1161. void kvm_arch_destroy_vm(struct kvm *kvm)
  1162. {
  1163. kvm_iommu_unmap_guest(kvm);
  1164. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1165. kvm_free_all_assigned_devices(kvm);
  1166. #endif
  1167. kfree(kvm->arch.vioapic);
  1168. kvm_release_vm_pages(kvm);
  1169. kvm_free_physmem(kvm);
  1170. free_kvm(kvm);
  1171. }
  1172. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1173. {
  1174. }
  1175. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1176. {
  1177. if (cpu != vcpu->cpu) {
  1178. vcpu->cpu = cpu;
  1179. if (vcpu->arch.ht_active)
  1180. kvm_migrate_hlt_timer(vcpu);
  1181. }
  1182. }
  1183. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1184. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1185. {
  1186. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1187. int i;
  1188. vcpu_load(vcpu);
  1189. for (i = 0; i < 16; i++) {
  1190. regs->vpd.vgr[i] = vpd->vgr[i];
  1191. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1192. }
  1193. for (i = 0; i < 128; i++)
  1194. regs->vpd.vcr[i] = vpd->vcr[i];
  1195. regs->vpd.vhpi = vpd->vhpi;
  1196. regs->vpd.vnat = vpd->vnat;
  1197. regs->vpd.vbnat = vpd->vbnat;
  1198. regs->vpd.vpsr = vpd->vpsr;
  1199. regs->vpd.vpr = vpd->vpr;
  1200. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1201. SAVE_REGS(mp_state);
  1202. SAVE_REGS(vmm_rr);
  1203. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1204. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1205. SAVE_REGS(itr_regions);
  1206. SAVE_REGS(dtr_regions);
  1207. SAVE_REGS(tc_regions);
  1208. SAVE_REGS(irq_check);
  1209. SAVE_REGS(itc_check);
  1210. SAVE_REGS(timer_check);
  1211. SAVE_REGS(timer_pending);
  1212. SAVE_REGS(last_itc);
  1213. for (i = 0; i < 8; i++) {
  1214. regs->vrr[i] = vcpu->arch.vrr[i];
  1215. regs->ibr[i] = vcpu->arch.ibr[i];
  1216. regs->dbr[i] = vcpu->arch.dbr[i];
  1217. }
  1218. for (i = 0; i < 4; i++)
  1219. regs->insvc[i] = vcpu->arch.insvc[i];
  1220. regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
  1221. SAVE_REGS(xtp);
  1222. SAVE_REGS(metaphysical_rr0);
  1223. SAVE_REGS(metaphysical_rr4);
  1224. SAVE_REGS(metaphysical_saved_rr0);
  1225. SAVE_REGS(metaphysical_saved_rr4);
  1226. SAVE_REGS(fp_psr);
  1227. SAVE_REGS(saved_gp);
  1228. vcpu_put(vcpu);
  1229. return 0;
  1230. }
  1231. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1232. struct kvm_ia64_vcpu_stack *stack)
  1233. {
  1234. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1235. return 0;
  1236. }
  1237. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1238. struct kvm_ia64_vcpu_stack *stack)
  1239. {
  1240. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1241. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1242. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1243. return 0;
  1244. }
  1245. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1246. {
  1247. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1248. kfree(vcpu->arch.apic);
  1249. }
  1250. long kvm_arch_vcpu_ioctl(struct file *filp,
  1251. unsigned int ioctl, unsigned long arg)
  1252. {
  1253. struct kvm_vcpu *vcpu = filp->private_data;
  1254. void __user *argp = (void __user *)arg;
  1255. struct kvm_ia64_vcpu_stack *stack = NULL;
  1256. long r;
  1257. switch (ioctl) {
  1258. case KVM_IA64_VCPU_GET_STACK: {
  1259. struct kvm_ia64_vcpu_stack __user *user_stack;
  1260. void __user *first_p = argp;
  1261. r = -EFAULT;
  1262. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1263. goto out;
  1264. if (!access_ok(VERIFY_WRITE, user_stack,
  1265. sizeof(struct kvm_ia64_vcpu_stack))) {
  1266. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1267. "Illegal user destination address for stack\n");
  1268. goto out;
  1269. }
  1270. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1271. if (!stack) {
  1272. r = -ENOMEM;
  1273. goto out;
  1274. }
  1275. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1276. if (r)
  1277. goto out;
  1278. if (copy_to_user(user_stack, stack,
  1279. sizeof(struct kvm_ia64_vcpu_stack)))
  1280. goto out;
  1281. break;
  1282. }
  1283. case KVM_IA64_VCPU_SET_STACK: {
  1284. struct kvm_ia64_vcpu_stack __user *user_stack;
  1285. void __user *first_p = argp;
  1286. r = -EFAULT;
  1287. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1288. goto out;
  1289. if (!access_ok(VERIFY_READ, user_stack,
  1290. sizeof(struct kvm_ia64_vcpu_stack))) {
  1291. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1292. "Illegal user address for stack\n");
  1293. goto out;
  1294. }
  1295. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1296. if (!stack) {
  1297. r = -ENOMEM;
  1298. goto out;
  1299. }
  1300. if (copy_from_user(stack, user_stack,
  1301. sizeof(struct kvm_ia64_vcpu_stack)))
  1302. goto out;
  1303. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1304. break;
  1305. }
  1306. default:
  1307. r = -EINVAL;
  1308. }
  1309. out:
  1310. kfree(stack);
  1311. return r;
  1312. }
  1313. int kvm_arch_set_memory_region(struct kvm *kvm,
  1314. struct kvm_userspace_memory_region *mem,
  1315. struct kvm_memory_slot old,
  1316. int user_alloc)
  1317. {
  1318. unsigned long i;
  1319. unsigned long pfn;
  1320. int npages = mem->memory_size >> PAGE_SHIFT;
  1321. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1322. unsigned long base_gfn = memslot->base_gfn;
  1323. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1324. return -ENOMEM;
  1325. for (i = 0; i < npages; i++) {
  1326. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1327. if (!kvm_is_mmio_pfn(pfn)) {
  1328. kvm_set_pmt_entry(kvm, base_gfn + i,
  1329. pfn << PAGE_SHIFT,
  1330. _PAGE_AR_RWX | _PAGE_MA_WB);
  1331. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1332. } else {
  1333. kvm_set_pmt_entry(kvm, base_gfn + i,
  1334. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1335. _PAGE_MA_UC);
  1336. memslot->rmap[i] = 0;
  1337. }
  1338. }
  1339. return 0;
  1340. }
  1341. void kvm_arch_flush_shadow(struct kvm *kvm)
  1342. {
  1343. kvm_flush_remote_tlbs(kvm);
  1344. }
  1345. long kvm_arch_dev_ioctl(struct file *filp,
  1346. unsigned int ioctl, unsigned long arg)
  1347. {
  1348. return -EINVAL;
  1349. }
  1350. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1351. {
  1352. kvm_vcpu_uninit(vcpu);
  1353. }
  1354. static int vti_cpu_has_kvm_support(void)
  1355. {
  1356. long avail = 1, status = 1, control = 1;
  1357. long ret;
  1358. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1359. if (ret)
  1360. goto out;
  1361. if (!(avail & PAL_PROC_VM_BIT))
  1362. goto out;
  1363. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1364. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1365. if (ret)
  1366. goto out;
  1367. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1368. if (!(vp_env_info & VP_OPCODE)) {
  1369. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1370. "vm_env_info:0x%lx\n", vp_env_info);
  1371. }
  1372. return 1;
  1373. out:
  1374. return 0;
  1375. }
  1376. /*
  1377. * On SN2, the ITC isn't stable, so copy in fast path code to use the
  1378. * SN2 RTC, replacing the ITC based default verion.
  1379. */
  1380. static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
  1381. struct module *module)
  1382. {
  1383. unsigned long new_ar, new_ar_sn2;
  1384. unsigned long module_base;
  1385. if (!ia64_platform_is("sn2"))
  1386. return;
  1387. module_base = (unsigned long)module->module_core;
  1388. new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
  1389. new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
  1390. printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
  1391. "as source\n");
  1392. /*
  1393. * Copy the SN2 version of mov_ar into place. They are both
  1394. * the same size, so 6 bundles is sufficient (6 * 0x10).
  1395. */
  1396. memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
  1397. }
  1398. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1399. struct module *module)
  1400. {
  1401. unsigned long module_base;
  1402. unsigned long vmm_size;
  1403. unsigned long vmm_offset, func_offset, fdesc_offset;
  1404. struct fdesc *p_fdesc;
  1405. BUG_ON(!module);
  1406. if (!kvm_vmm_base) {
  1407. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1408. return -EFAULT;
  1409. }
  1410. /*Calculate new position of relocated vmm module.*/
  1411. module_base = (unsigned long)module->module_core;
  1412. vmm_size = module->core_size;
  1413. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1414. return -EFAULT;
  1415. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1416. kvm_patch_vmm(vmm_info, module);
  1417. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1418. /*Recalculate kvm_vmm_info based on new VMM*/
  1419. vmm_offset = vmm_info->vmm_ivt - module_base;
  1420. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1421. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1422. kvm_vmm_info->vmm_ivt);
  1423. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1424. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1425. fdesc_offset);
  1426. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1427. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1428. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1429. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1430. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1431. KVM_VMM_BASE+func_offset);
  1432. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1433. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1434. fdesc_offset);
  1435. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1436. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1437. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1438. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1439. kvm_vmm_gp = p_fdesc->gp;
  1440. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1441. kvm_vmm_info->vmm_entry);
  1442. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1443. KVM_VMM_BASE + func_offset);
  1444. return 0;
  1445. }
  1446. int kvm_arch_init(void *opaque)
  1447. {
  1448. int r;
  1449. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1450. if (!vti_cpu_has_kvm_support()) {
  1451. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1452. r = -EOPNOTSUPP;
  1453. goto out;
  1454. }
  1455. if (kvm_vmm_info) {
  1456. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1457. r = -EEXIST;
  1458. goto out;
  1459. }
  1460. r = -ENOMEM;
  1461. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1462. if (!kvm_vmm_info)
  1463. goto out;
  1464. if (kvm_alloc_vmm_area())
  1465. goto out_free0;
  1466. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1467. if (r)
  1468. goto out_free1;
  1469. return 0;
  1470. out_free1:
  1471. kvm_free_vmm_area();
  1472. out_free0:
  1473. kfree(kvm_vmm_info);
  1474. out:
  1475. return r;
  1476. }
  1477. void kvm_arch_exit(void)
  1478. {
  1479. kvm_free_vmm_area();
  1480. kfree(kvm_vmm_info);
  1481. kvm_vmm_info = NULL;
  1482. }
  1483. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1484. struct kvm_dirty_log *log)
  1485. {
  1486. struct kvm_memory_slot *memslot;
  1487. int r, i;
  1488. long n, base;
  1489. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1490. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1491. r = -EINVAL;
  1492. if (log->slot >= KVM_MEMORY_SLOTS)
  1493. goto out;
  1494. memslot = &kvm->memslots[log->slot];
  1495. r = -ENOENT;
  1496. if (!memslot->dirty_bitmap)
  1497. goto out;
  1498. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1499. base = memslot->base_gfn / BITS_PER_LONG;
  1500. for (i = 0; i < n/sizeof(long); ++i) {
  1501. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1502. dirty_bitmap[base + i] = 0;
  1503. }
  1504. r = 0;
  1505. out:
  1506. return r;
  1507. }
  1508. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1509. struct kvm_dirty_log *log)
  1510. {
  1511. int r;
  1512. int n;
  1513. struct kvm_memory_slot *memslot;
  1514. int is_dirty = 0;
  1515. spin_lock(&kvm->arch.dirty_log_lock);
  1516. r = kvm_ia64_sync_dirty_log(kvm, log);
  1517. if (r)
  1518. goto out;
  1519. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1520. if (r)
  1521. goto out;
  1522. /* If nothing is dirty, don't bother messing with page tables. */
  1523. if (is_dirty) {
  1524. kvm_flush_remote_tlbs(kvm);
  1525. memslot = &kvm->memslots[log->slot];
  1526. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1527. memset(memslot->dirty_bitmap, 0, n);
  1528. }
  1529. r = 0;
  1530. out:
  1531. spin_unlock(&kvm->arch.dirty_log_lock);
  1532. return r;
  1533. }
  1534. int kvm_arch_hardware_setup(void)
  1535. {
  1536. return 0;
  1537. }
  1538. void kvm_arch_hardware_unsetup(void)
  1539. {
  1540. }
  1541. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1542. {
  1543. int me;
  1544. int cpu = vcpu->cpu;
  1545. if (waitqueue_active(&vcpu->wq))
  1546. wake_up_interruptible(&vcpu->wq);
  1547. me = get_cpu();
  1548. if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
  1549. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  1550. smp_send_reschedule(cpu);
  1551. put_cpu();
  1552. }
  1553. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
  1554. {
  1555. return __apic_accept_irq(vcpu, irq->vector);
  1556. }
  1557. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1558. {
  1559. return apic->vcpu->vcpu_id == dest;
  1560. }
  1561. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1562. {
  1563. return 0;
  1564. }
  1565. int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
  1566. {
  1567. return vcpu1->arch.xtp - vcpu2->arch.xtp;
  1568. }
  1569. int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
  1570. int short_hand, int dest, int dest_mode)
  1571. {
  1572. struct kvm_lapic *target = vcpu->arch.apic;
  1573. return (dest_mode == 0) ?
  1574. kvm_apic_match_physical_addr(target, dest) :
  1575. kvm_apic_match_logical_addr(target, dest);
  1576. }
  1577. static int find_highest_bits(int *dat)
  1578. {
  1579. u32 bits, bitnum;
  1580. int i;
  1581. /* loop for all 256 bits */
  1582. for (i = 7; i >= 0 ; i--) {
  1583. bits = dat[i];
  1584. if (bits) {
  1585. bitnum = fls(bits);
  1586. return i * 32 + bitnum - 1;
  1587. }
  1588. }
  1589. return -1;
  1590. }
  1591. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1592. {
  1593. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1594. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1595. return NMI_VECTOR;
  1596. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1597. return ExtINT_VECTOR;
  1598. return find_highest_bits((int *)&vpd->irr[0]);
  1599. }
  1600. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1601. {
  1602. return vcpu->arch.timer_fired;
  1603. }
  1604. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1605. {
  1606. return gfn;
  1607. }
  1608. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1609. {
  1610. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
  1611. (kvm_highest_pending_irq(vcpu) != -1);
  1612. }
  1613. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1614. struct kvm_mp_state *mp_state)
  1615. {
  1616. vcpu_load(vcpu);
  1617. mp_state->mp_state = vcpu->arch.mp_state;
  1618. vcpu_put(vcpu);
  1619. return 0;
  1620. }
  1621. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1622. {
  1623. int r;
  1624. long psr;
  1625. local_irq_save(psr);
  1626. r = kvm_insert_vmm_mapping(vcpu);
  1627. local_irq_restore(psr);
  1628. if (r)
  1629. goto fail;
  1630. vcpu->arch.launched = 0;
  1631. kvm_arch_vcpu_uninit(vcpu);
  1632. r = kvm_arch_vcpu_init(vcpu);
  1633. if (r)
  1634. goto fail;
  1635. kvm_purge_vmm_mapping(vcpu);
  1636. r = 0;
  1637. fail:
  1638. return r;
  1639. }
  1640. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1641. struct kvm_mp_state *mp_state)
  1642. {
  1643. int r = 0;
  1644. vcpu_load(vcpu);
  1645. vcpu->arch.mp_state = mp_state->mp_state;
  1646. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1647. r = vcpu_reset(vcpu);
  1648. vcpu_put(vcpu);
  1649. return r;
  1650. }