ptrace.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246
  1. /*
  2. * Kernel support for the ptrace() and syscall tracing interfaces.
  3. *
  4. * Copyright (C) 1999-2005 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Copyright (C) 2006 Intel Co
  7. * 2006-08-12 - IA64 Native Utrace implementation support added by
  8. * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  9. *
  10. * Derived from the x86 and Alpha versions.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/sched.h>
  14. #include <linux/slab.h>
  15. #include <linux/mm.h>
  16. #include <linux/errno.h>
  17. #include <linux/ptrace.h>
  18. #include <linux/user.h>
  19. #include <linux/security.h>
  20. #include <linux/audit.h>
  21. #include <linux/signal.h>
  22. #include <linux/regset.h>
  23. #include <linux/elf.h>
  24. #include <linux/tracehook.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/processor.h>
  27. #include <asm/ptrace_offsets.h>
  28. #include <asm/rse.h>
  29. #include <asm/system.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/unwind.h>
  32. #ifdef CONFIG_PERFMON
  33. #include <asm/perfmon.h>
  34. #endif
  35. #include "entry.h"
  36. /*
  37. * Bits in the PSR that we allow ptrace() to change:
  38. * be, up, ac, mfl, mfh (the user mask; five bits total)
  39. * db (debug breakpoint fault; one bit)
  40. * id (instruction debug fault disable; one bit)
  41. * dd (data debug fault disable; one bit)
  42. * ri (restart instruction; two bits)
  43. * is (instruction set; one bit)
  44. */
  45. #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
  46. | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
  47. #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
  48. #define PFM_MASK MASK(38)
  49. #define PTRACE_DEBUG 0
  50. #if PTRACE_DEBUG
  51. # define dprintk(format...) printk(format)
  52. # define inline
  53. #else
  54. # define dprintk(format...)
  55. #endif
  56. /* Return TRUE if PT was created due to kernel-entry via a system-call. */
  57. static inline int
  58. in_syscall (struct pt_regs *pt)
  59. {
  60. return (long) pt->cr_ifs >= 0;
  61. }
  62. /*
  63. * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
  64. * bitset where bit i is set iff the NaT bit of register i is set.
  65. */
  66. unsigned long
  67. ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
  68. {
  69. # define GET_BITS(first, last, unat) \
  70. ({ \
  71. unsigned long bit = ia64_unat_pos(&pt->r##first); \
  72. unsigned long nbits = (last - first + 1); \
  73. unsigned long mask = MASK(nbits) << first; \
  74. unsigned long dist; \
  75. if (bit < first) \
  76. dist = 64 + bit - first; \
  77. else \
  78. dist = bit - first; \
  79. ia64_rotr(unat, dist) & mask; \
  80. })
  81. unsigned long val;
  82. /*
  83. * Registers that are stored consecutively in struct pt_regs
  84. * can be handled in parallel. If the register order in
  85. * struct_pt_regs changes, this code MUST be updated.
  86. */
  87. val = GET_BITS( 1, 1, scratch_unat);
  88. val |= GET_BITS( 2, 3, scratch_unat);
  89. val |= GET_BITS(12, 13, scratch_unat);
  90. val |= GET_BITS(14, 14, scratch_unat);
  91. val |= GET_BITS(15, 15, scratch_unat);
  92. val |= GET_BITS( 8, 11, scratch_unat);
  93. val |= GET_BITS(16, 31, scratch_unat);
  94. return val;
  95. # undef GET_BITS
  96. }
  97. /*
  98. * Set the NaT bits for the scratch registers according to NAT and
  99. * return the resulting unat (assuming the scratch registers are
  100. * stored in PT).
  101. */
  102. unsigned long
  103. ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
  104. {
  105. # define PUT_BITS(first, last, nat) \
  106. ({ \
  107. unsigned long bit = ia64_unat_pos(&pt->r##first); \
  108. unsigned long nbits = (last - first + 1); \
  109. unsigned long mask = MASK(nbits) << first; \
  110. long dist; \
  111. if (bit < first) \
  112. dist = 64 + bit - first; \
  113. else \
  114. dist = bit - first; \
  115. ia64_rotl(nat & mask, dist); \
  116. })
  117. unsigned long scratch_unat;
  118. /*
  119. * Registers that are stored consecutively in struct pt_regs
  120. * can be handled in parallel. If the register order in
  121. * struct_pt_regs changes, this code MUST be updated.
  122. */
  123. scratch_unat = PUT_BITS( 1, 1, nat);
  124. scratch_unat |= PUT_BITS( 2, 3, nat);
  125. scratch_unat |= PUT_BITS(12, 13, nat);
  126. scratch_unat |= PUT_BITS(14, 14, nat);
  127. scratch_unat |= PUT_BITS(15, 15, nat);
  128. scratch_unat |= PUT_BITS( 8, 11, nat);
  129. scratch_unat |= PUT_BITS(16, 31, nat);
  130. return scratch_unat;
  131. # undef PUT_BITS
  132. }
  133. #define IA64_MLX_TEMPLATE 0x2
  134. #define IA64_MOVL_OPCODE 6
  135. void
  136. ia64_increment_ip (struct pt_regs *regs)
  137. {
  138. unsigned long w0, ri = ia64_psr(regs)->ri + 1;
  139. if (ri > 2) {
  140. ri = 0;
  141. regs->cr_iip += 16;
  142. } else if (ri == 2) {
  143. get_user(w0, (char __user *) regs->cr_iip + 0);
  144. if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
  145. /*
  146. * rfi'ing to slot 2 of an MLX bundle causes
  147. * an illegal operation fault. We don't want
  148. * that to happen...
  149. */
  150. ri = 0;
  151. regs->cr_iip += 16;
  152. }
  153. }
  154. ia64_psr(regs)->ri = ri;
  155. }
  156. void
  157. ia64_decrement_ip (struct pt_regs *regs)
  158. {
  159. unsigned long w0, ri = ia64_psr(regs)->ri - 1;
  160. if (ia64_psr(regs)->ri == 0) {
  161. regs->cr_iip -= 16;
  162. ri = 2;
  163. get_user(w0, (char __user *) regs->cr_iip + 0);
  164. if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
  165. /*
  166. * rfi'ing to slot 2 of an MLX bundle causes
  167. * an illegal operation fault. We don't want
  168. * that to happen...
  169. */
  170. ri = 1;
  171. }
  172. }
  173. ia64_psr(regs)->ri = ri;
  174. }
  175. /*
  176. * This routine is used to read an rnat bits that are stored on the
  177. * kernel backing store. Since, in general, the alignment of the user
  178. * and kernel are different, this is not completely trivial. In
  179. * essence, we need to construct the user RNAT based on up to two
  180. * kernel RNAT values and/or the RNAT value saved in the child's
  181. * pt_regs.
  182. *
  183. * user rbs
  184. *
  185. * +--------+ <-- lowest address
  186. * | slot62 |
  187. * +--------+
  188. * | rnat | 0x....1f8
  189. * +--------+
  190. * | slot00 | \
  191. * +--------+ |
  192. * | slot01 | > child_regs->ar_rnat
  193. * +--------+ |
  194. * | slot02 | / kernel rbs
  195. * +--------+ +--------+
  196. * <- child_regs->ar_bspstore | slot61 | <-- krbs
  197. * +- - - - + +--------+
  198. * | slot62 |
  199. * +- - - - + +--------+
  200. * | rnat |
  201. * +- - - - + +--------+
  202. * vrnat | slot00 |
  203. * +- - - - + +--------+
  204. * = =
  205. * +--------+
  206. * | slot00 | \
  207. * +--------+ |
  208. * | slot01 | > child_stack->ar_rnat
  209. * +--------+ |
  210. * | slot02 | /
  211. * +--------+
  212. * <--- child_stack->ar_bspstore
  213. *
  214. * The way to think of this code is as follows: bit 0 in the user rnat
  215. * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
  216. * value. The kernel rnat value holding this bit is stored in
  217. * variable rnat0. rnat1 is loaded with the kernel rnat value that
  218. * form the upper bits of the user rnat value.
  219. *
  220. * Boundary cases:
  221. *
  222. * o when reading the rnat "below" the first rnat slot on the kernel
  223. * backing store, rnat0/rnat1 are set to 0 and the low order bits are
  224. * merged in from pt->ar_rnat.
  225. *
  226. * o when reading the rnat "above" the last rnat slot on the kernel
  227. * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
  228. */
  229. static unsigned long
  230. get_rnat (struct task_struct *task, struct switch_stack *sw,
  231. unsigned long *krbs, unsigned long *urnat_addr,
  232. unsigned long *urbs_end)
  233. {
  234. unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
  235. unsigned long umask = 0, mask, m;
  236. unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
  237. long num_regs, nbits;
  238. struct pt_regs *pt;
  239. pt = task_pt_regs(task);
  240. kbsp = (unsigned long *) sw->ar_bspstore;
  241. ubspstore = (unsigned long *) pt->ar_bspstore;
  242. if (urbs_end < urnat_addr)
  243. nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
  244. else
  245. nbits = 63;
  246. mask = MASK(nbits);
  247. /*
  248. * First, figure out which bit number slot 0 in user-land maps
  249. * to in the kernel rnat. Do this by figuring out how many
  250. * register slots we're beyond the user's backingstore and
  251. * then computing the equivalent address in kernel space.
  252. */
  253. num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
  254. slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
  255. shift = ia64_rse_slot_num(slot0_kaddr);
  256. rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
  257. rnat0_kaddr = rnat1_kaddr - 64;
  258. if (ubspstore + 63 > urnat_addr) {
  259. /* some bits need to be merged in from pt->ar_rnat */
  260. umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
  261. urnat = (pt->ar_rnat & umask);
  262. mask &= ~umask;
  263. if (!mask)
  264. return urnat;
  265. }
  266. m = mask << shift;
  267. if (rnat0_kaddr >= kbsp)
  268. rnat0 = sw->ar_rnat;
  269. else if (rnat0_kaddr > krbs)
  270. rnat0 = *rnat0_kaddr;
  271. urnat |= (rnat0 & m) >> shift;
  272. m = mask >> (63 - shift);
  273. if (rnat1_kaddr >= kbsp)
  274. rnat1 = sw->ar_rnat;
  275. else if (rnat1_kaddr > krbs)
  276. rnat1 = *rnat1_kaddr;
  277. urnat |= (rnat1 & m) << (63 - shift);
  278. return urnat;
  279. }
  280. /*
  281. * The reverse of get_rnat.
  282. */
  283. static void
  284. put_rnat (struct task_struct *task, struct switch_stack *sw,
  285. unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
  286. unsigned long *urbs_end)
  287. {
  288. unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
  289. unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
  290. long num_regs, nbits;
  291. struct pt_regs *pt;
  292. unsigned long cfm, *urbs_kargs;
  293. pt = task_pt_regs(task);
  294. kbsp = (unsigned long *) sw->ar_bspstore;
  295. ubspstore = (unsigned long *) pt->ar_bspstore;
  296. urbs_kargs = urbs_end;
  297. if (in_syscall(pt)) {
  298. /*
  299. * If entered via syscall, don't allow user to set rnat bits
  300. * for syscall args.
  301. */
  302. cfm = pt->cr_ifs;
  303. urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
  304. }
  305. if (urbs_kargs >= urnat_addr)
  306. nbits = 63;
  307. else {
  308. if ((urnat_addr - 63) >= urbs_kargs)
  309. return;
  310. nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
  311. }
  312. mask = MASK(nbits);
  313. /*
  314. * First, figure out which bit number slot 0 in user-land maps
  315. * to in the kernel rnat. Do this by figuring out how many
  316. * register slots we're beyond the user's backingstore and
  317. * then computing the equivalent address in kernel space.
  318. */
  319. num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
  320. slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
  321. shift = ia64_rse_slot_num(slot0_kaddr);
  322. rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
  323. rnat0_kaddr = rnat1_kaddr - 64;
  324. if (ubspstore + 63 > urnat_addr) {
  325. /* some bits need to be place in pt->ar_rnat: */
  326. umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
  327. pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
  328. mask &= ~umask;
  329. if (!mask)
  330. return;
  331. }
  332. /*
  333. * Note: Section 11.1 of the EAS guarantees that bit 63 of an
  334. * rnat slot is ignored. so we don't have to clear it here.
  335. */
  336. rnat0 = (urnat << shift);
  337. m = mask << shift;
  338. if (rnat0_kaddr >= kbsp)
  339. sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
  340. else if (rnat0_kaddr > krbs)
  341. *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
  342. rnat1 = (urnat >> (63 - shift));
  343. m = mask >> (63 - shift);
  344. if (rnat1_kaddr >= kbsp)
  345. sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
  346. else if (rnat1_kaddr > krbs)
  347. *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
  348. }
  349. static inline int
  350. on_kernel_rbs (unsigned long addr, unsigned long bspstore,
  351. unsigned long urbs_end)
  352. {
  353. unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
  354. urbs_end);
  355. return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
  356. }
  357. /*
  358. * Read a word from the user-level backing store of task CHILD. ADDR
  359. * is the user-level address to read the word from, VAL a pointer to
  360. * the return value, and USER_BSP gives the end of the user-level
  361. * backing store (i.e., it's the address that would be in ar.bsp after
  362. * the user executed a "cover" instruction).
  363. *
  364. * This routine takes care of accessing the kernel register backing
  365. * store for those registers that got spilled there. It also takes
  366. * care of calculating the appropriate RNaT collection words.
  367. */
  368. long
  369. ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
  370. unsigned long user_rbs_end, unsigned long addr, long *val)
  371. {
  372. unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
  373. struct pt_regs *child_regs;
  374. size_t copied;
  375. long ret;
  376. urbs_end = (long *) user_rbs_end;
  377. laddr = (unsigned long *) addr;
  378. child_regs = task_pt_regs(child);
  379. bspstore = (unsigned long *) child_regs->ar_bspstore;
  380. krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
  381. if (on_kernel_rbs(addr, (unsigned long) bspstore,
  382. (unsigned long) urbs_end))
  383. {
  384. /*
  385. * Attempt to read the RBS in an area that's actually
  386. * on the kernel RBS => read the corresponding bits in
  387. * the kernel RBS.
  388. */
  389. rnat_addr = ia64_rse_rnat_addr(laddr);
  390. ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
  391. if (laddr == rnat_addr) {
  392. /* return NaT collection word itself */
  393. *val = ret;
  394. return 0;
  395. }
  396. if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
  397. /*
  398. * It is implementation dependent whether the
  399. * data portion of a NaT value gets saved on a
  400. * st8.spill or RSE spill (e.g., see EAS 2.6,
  401. * 4.4.4.6 Register Spill and Fill). To get
  402. * consistent behavior across all possible
  403. * IA-64 implementations, we return zero in
  404. * this case.
  405. */
  406. *val = 0;
  407. return 0;
  408. }
  409. if (laddr < urbs_end) {
  410. /*
  411. * The desired word is on the kernel RBS and
  412. * is not a NaT.
  413. */
  414. regnum = ia64_rse_num_regs(bspstore, laddr);
  415. *val = *ia64_rse_skip_regs(krbs, regnum);
  416. return 0;
  417. }
  418. }
  419. copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
  420. if (copied != sizeof(ret))
  421. return -EIO;
  422. *val = ret;
  423. return 0;
  424. }
  425. long
  426. ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
  427. unsigned long user_rbs_end, unsigned long addr, long val)
  428. {
  429. unsigned long *bspstore, *krbs, regnum, *laddr;
  430. unsigned long *urbs_end = (long *) user_rbs_end;
  431. struct pt_regs *child_regs;
  432. laddr = (unsigned long *) addr;
  433. child_regs = task_pt_regs(child);
  434. bspstore = (unsigned long *) child_regs->ar_bspstore;
  435. krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
  436. if (on_kernel_rbs(addr, (unsigned long) bspstore,
  437. (unsigned long) urbs_end))
  438. {
  439. /*
  440. * Attempt to write the RBS in an area that's actually
  441. * on the kernel RBS => write the corresponding bits
  442. * in the kernel RBS.
  443. */
  444. if (ia64_rse_is_rnat_slot(laddr))
  445. put_rnat(child, child_stack, krbs, laddr, val,
  446. urbs_end);
  447. else {
  448. if (laddr < urbs_end) {
  449. regnum = ia64_rse_num_regs(bspstore, laddr);
  450. *ia64_rse_skip_regs(krbs, regnum) = val;
  451. }
  452. }
  453. } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
  454. != sizeof(val))
  455. return -EIO;
  456. return 0;
  457. }
  458. /*
  459. * Calculate the address of the end of the user-level register backing
  460. * store. This is the address that would have been stored in ar.bsp
  461. * if the user had executed a "cover" instruction right before
  462. * entering the kernel. If CFMP is not NULL, it is used to return the
  463. * "current frame mask" that was active at the time the kernel was
  464. * entered.
  465. */
  466. unsigned long
  467. ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
  468. unsigned long *cfmp)
  469. {
  470. unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
  471. long ndirty;
  472. krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
  473. bspstore = (unsigned long *) pt->ar_bspstore;
  474. ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
  475. if (in_syscall(pt))
  476. ndirty += (cfm & 0x7f);
  477. else
  478. cfm &= ~(1UL << 63); /* clear valid bit */
  479. if (cfmp)
  480. *cfmp = cfm;
  481. return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
  482. }
  483. /*
  484. * Synchronize (i.e, write) the RSE backing store living in kernel
  485. * space to the VM of the CHILD task. SW and PT are the pointers to
  486. * the switch_stack and pt_regs structures, respectively.
  487. * USER_RBS_END is the user-level address at which the backing store
  488. * ends.
  489. */
  490. long
  491. ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
  492. unsigned long user_rbs_start, unsigned long user_rbs_end)
  493. {
  494. unsigned long addr, val;
  495. long ret;
  496. /* now copy word for word from kernel rbs to user rbs: */
  497. for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
  498. ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
  499. if (ret < 0)
  500. return ret;
  501. if (access_process_vm(child, addr, &val, sizeof(val), 1)
  502. != sizeof(val))
  503. return -EIO;
  504. }
  505. return 0;
  506. }
  507. static long
  508. ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
  509. unsigned long user_rbs_start, unsigned long user_rbs_end)
  510. {
  511. unsigned long addr, val;
  512. long ret;
  513. /* now copy word for word from user rbs to kernel rbs: */
  514. for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
  515. if (access_process_vm(child, addr, &val, sizeof(val), 0)
  516. != sizeof(val))
  517. return -EIO;
  518. ret = ia64_poke(child, sw, user_rbs_end, addr, val);
  519. if (ret < 0)
  520. return ret;
  521. }
  522. return 0;
  523. }
  524. typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
  525. unsigned long, unsigned long);
  526. static void do_sync_rbs(struct unw_frame_info *info, void *arg)
  527. {
  528. struct pt_regs *pt;
  529. unsigned long urbs_end;
  530. syncfunc_t fn = arg;
  531. if (unw_unwind_to_user(info) < 0)
  532. return;
  533. pt = task_pt_regs(info->task);
  534. urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
  535. fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
  536. }
  537. /*
  538. * when a thread is stopped (ptraced), debugger might change thread's user
  539. * stack (change memory directly), and we must avoid the RSE stored in kernel
  540. * to override user stack (user space's RSE is newer than kernel's in the
  541. * case). To workaround the issue, we copy kernel RSE to user RSE before the
  542. * task is stopped, so user RSE has updated data. we then copy user RSE to
  543. * kernel after the task is resummed from traced stop and kernel will use the
  544. * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
  545. * synchronize user RSE to kernel.
  546. */
  547. void ia64_ptrace_stop(void)
  548. {
  549. if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
  550. return;
  551. set_notify_resume(current);
  552. unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
  553. }
  554. /*
  555. * This is called to read back the register backing store.
  556. */
  557. void ia64_sync_krbs(void)
  558. {
  559. clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
  560. unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
  561. }
  562. /*
  563. * After PTRACE_ATTACH, a thread's register backing store area in user
  564. * space is assumed to contain correct data whenever the thread is
  565. * stopped. arch_ptrace_stop takes care of this on tracing stops.
  566. * But if the child was already stopped for job control when we attach
  567. * to it, then it might not ever get into ptrace_stop by the time we
  568. * want to examine the user memory containing the RBS.
  569. */
  570. void
  571. ptrace_attach_sync_user_rbs (struct task_struct *child)
  572. {
  573. int stopped = 0;
  574. struct unw_frame_info info;
  575. /*
  576. * If the child is in TASK_STOPPED, we need to change that to
  577. * TASK_TRACED momentarily while we operate on it. This ensures
  578. * that the child won't be woken up and return to user mode while
  579. * we are doing the sync. (It can only be woken up for SIGKILL.)
  580. */
  581. read_lock(&tasklist_lock);
  582. if (child->signal) {
  583. spin_lock_irq(&child->sighand->siglock);
  584. if (child->state == TASK_STOPPED &&
  585. !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
  586. set_notify_resume(child);
  587. child->state = TASK_TRACED;
  588. stopped = 1;
  589. }
  590. spin_unlock_irq(&child->sighand->siglock);
  591. }
  592. read_unlock(&tasklist_lock);
  593. if (!stopped)
  594. return;
  595. unw_init_from_blocked_task(&info, child);
  596. do_sync_rbs(&info, ia64_sync_user_rbs);
  597. /*
  598. * Now move the child back into TASK_STOPPED if it should be in a
  599. * job control stop, so that SIGCONT can be used to wake it up.
  600. */
  601. read_lock(&tasklist_lock);
  602. if (child->signal) {
  603. spin_lock_irq(&child->sighand->siglock);
  604. if (child->state == TASK_TRACED &&
  605. (child->signal->flags & SIGNAL_STOP_STOPPED)) {
  606. child->state = TASK_STOPPED;
  607. }
  608. spin_unlock_irq(&child->sighand->siglock);
  609. }
  610. read_unlock(&tasklist_lock);
  611. }
  612. static inline int
  613. thread_matches (struct task_struct *thread, unsigned long addr)
  614. {
  615. unsigned long thread_rbs_end;
  616. struct pt_regs *thread_regs;
  617. if (ptrace_check_attach(thread, 0) < 0)
  618. /*
  619. * If the thread is not in an attachable state, we'll
  620. * ignore it. The net effect is that if ADDR happens
  621. * to overlap with the portion of the thread's
  622. * register backing store that is currently residing
  623. * on the thread's kernel stack, then ptrace() may end
  624. * up accessing a stale value. But if the thread
  625. * isn't stopped, that's a problem anyhow, so we're
  626. * doing as well as we can...
  627. */
  628. return 0;
  629. thread_regs = task_pt_regs(thread);
  630. thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
  631. if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
  632. return 0;
  633. return 1; /* looks like we've got a winner */
  634. }
  635. /*
  636. * Write f32-f127 back to task->thread.fph if it has been modified.
  637. */
  638. inline void
  639. ia64_flush_fph (struct task_struct *task)
  640. {
  641. struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
  642. /*
  643. * Prevent migrating this task while
  644. * we're fiddling with the FPU state
  645. */
  646. preempt_disable();
  647. if (ia64_is_local_fpu_owner(task) && psr->mfh) {
  648. psr->mfh = 0;
  649. task->thread.flags |= IA64_THREAD_FPH_VALID;
  650. ia64_save_fpu(&task->thread.fph[0]);
  651. }
  652. preempt_enable();
  653. }
  654. /*
  655. * Sync the fph state of the task so that it can be manipulated
  656. * through thread.fph. If necessary, f32-f127 are written back to
  657. * thread.fph or, if the fph state hasn't been used before, thread.fph
  658. * is cleared to zeroes. Also, access to f32-f127 is disabled to
  659. * ensure that the task picks up the state from thread.fph when it
  660. * executes again.
  661. */
  662. void
  663. ia64_sync_fph (struct task_struct *task)
  664. {
  665. struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
  666. ia64_flush_fph(task);
  667. if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
  668. task->thread.flags |= IA64_THREAD_FPH_VALID;
  669. memset(&task->thread.fph, 0, sizeof(task->thread.fph));
  670. }
  671. ia64_drop_fpu(task);
  672. psr->dfh = 1;
  673. }
  674. /*
  675. * Change the machine-state of CHILD such that it will return via the normal
  676. * kernel exit-path, rather than the syscall-exit path.
  677. */
  678. static void
  679. convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
  680. unsigned long cfm)
  681. {
  682. struct unw_frame_info info, prev_info;
  683. unsigned long ip, sp, pr;
  684. unw_init_from_blocked_task(&info, child);
  685. while (1) {
  686. prev_info = info;
  687. if (unw_unwind(&info) < 0)
  688. return;
  689. unw_get_sp(&info, &sp);
  690. if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
  691. < IA64_PT_REGS_SIZE) {
  692. dprintk("ptrace.%s: ran off the top of the kernel "
  693. "stack\n", __func__);
  694. return;
  695. }
  696. if (unw_get_pr (&prev_info, &pr) < 0) {
  697. unw_get_rp(&prev_info, &ip);
  698. dprintk("ptrace.%s: failed to read "
  699. "predicate register (ip=0x%lx)\n",
  700. __func__, ip);
  701. return;
  702. }
  703. if (unw_is_intr_frame(&info)
  704. && (pr & (1UL << PRED_USER_STACK)))
  705. break;
  706. }
  707. /*
  708. * Note: at the time of this call, the target task is blocked
  709. * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
  710. * (aka, "pLvSys") we redirect execution from
  711. * .work_pending_syscall_end to .work_processed_kernel.
  712. */
  713. unw_get_pr(&prev_info, &pr);
  714. pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
  715. pr |= (1UL << PRED_NON_SYSCALL);
  716. unw_set_pr(&prev_info, pr);
  717. pt->cr_ifs = (1UL << 63) | cfm;
  718. /*
  719. * Clear the memory that is NOT written on syscall-entry to
  720. * ensure we do not leak kernel-state to user when execution
  721. * resumes.
  722. */
  723. pt->r2 = 0;
  724. pt->r3 = 0;
  725. pt->r14 = 0;
  726. memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
  727. memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
  728. pt->b7 = 0;
  729. pt->ar_ccv = 0;
  730. pt->ar_csd = 0;
  731. pt->ar_ssd = 0;
  732. }
  733. static int
  734. access_nat_bits (struct task_struct *child, struct pt_regs *pt,
  735. struct unw_frame_info *info,
  736. unsigned long *data, int write_access)
  737. {
  738. unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
  739. char nat = 0;
  740. if (write_access) {
  741. nat_bits = *data;
  742. scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
  743. if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
  744. dprintk("ptrace: failed to set ar.unat\n");
  745. return -1;
  746. }
  747. for (regnum = 4; regnum <= 7; ++regnum) {
  748. unw_get_gr(info, regnum, &dummy, &nat);
  749. unw_set_gr(info, regnum, dummy,
  750. (nat_bits >> regnum) & 1);
  751. }
  752. } else {
  753. if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
  754. dprintk("ptrace: failed to read ar.unat\n");
  755. return -1;
  756. }
  757. nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
  758. for (regnum = 4; regnum <= 7; ++regnum) {
  759. unw_get_gr(info, regnum, &dummy, &nat);
  760. nat_bits |= (nat != 0) << regnum;
  761. }
  762. *data = nat_bits;
  763. }
  764. return 0;
  765. }
  766. static int
  767. access_uarea (struct task_struct *child, unsigned long addr,
  768. unsigned long *data, int write_access);
  769. static long
  770. ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
  771. {
  772. unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
  773. struct unw_frame_info info;
  774. struct ia64_fpreg fpval;
  775. struct switch_stack *sw;
  776. struct pt_regs *pt;
  777. long ret, retval = 0;
  778. char nat = 0;
  779. int i;
  780. if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
  781. return -EIO;
  782. pt = task_pt_regs(child);
  783. sw = (struct switch_stack *) (child->thread.ksp + 16);
  784. unw_init_from_blocked_task(&info, child);
  785. if (unw_unwind_to_user(&info) < 0) {
  786. return -EIO;
  787. }
  788. if (((unsigned long) ppr & 0x7) != 0) {
  789. dprintk("ptrace:unaligned register address %p\n", ppr);
  790. return -EIO;
  791. }
  792. if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
  793. || access_uarea(child, PT_AR_EC, &ec, 0) < 0
  794. || access_uarea(child, PT_AR_LC, &lc, 0) < 0
  795. || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
  796. || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
  797. || access_uarea(child, PT_CFM, &cfm, 0)
  798. || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
  799. return -EIO;
  800. /* control regs */
  801. retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
  802. retval |= __put_user(psr, &ppr->cr_ipsr);
  803. /* app regs */
  804. retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
  805. retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
  806. retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
  807. retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
  808. retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
  809. retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
  810. retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
  811. retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
  812. retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
  813. retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
  814. retval |= __put_user(cfm, &ppr->cfm);
  815. /* gr1-gr3 */
  816. retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
  817. retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
  818. /* gr4-gr7 */
  819. for (i = 4; i < 8; i++) {
  820. if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
  821. return -EIO;
  822. retval |= __put_user(val, &ppr->gr[i]);
  823. }
  824. /* gr8-gr11 */
  825. retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
  826. /* gr12-gr15 */
  827. retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
  828. retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
  829. retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
  830. /* gr16-gr31 */
  831. retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
  832. /* b0 */
  833. retval |= __put_user(pt->b0, &ppr->br[0]);
  834. /* b1-b5 */
  835. for (i = 1; i < 6; i++) {
  836. if (unw_access_br(&info, i, &val, 0) < 0)
  837. return -EIO;
  838. __put_user(val, &ppr->br[i]);
  839. }
  840. /* b6-b7 */
  841. retval |= __put_user(pt->b6, &ppr->br[6]);
  842. retval |= __put_user(pt->b7, &ppr->br[7]);
  843. /* fr2-fr5 */
  844. for (i = 2; i < 6; i++) {
  845. if (unw_get_fr(&info, i, &fpval) < 0)
  846. return -EIO;
  847. retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
  848. }
  849. /* fr6-fr11 */
  850. retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
  851. sizeof(struct ia64_fpreg) * 6);
  852. /* fp scratch regs(12-15) */
  853. retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
  854. sizeof(struct ia64_fpreg) * 4);
  855. /* fr16-fr31 */
  856. for (i = 16; i < 32; i++) {
  857. if (unw_get_fr(&info, i, &fpval) < 0)
  858. return -EIO;
  859. retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
  860. }
  861. /* fph */
  862. ia64_flush_fph(child);
  863. retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
  864. sizeof(ppr->fr[32]) * 96);
  865. /* preds */
  866. retval |= __put_user(pt->pr, &ppr->pr);
  867. /* nat bits */
  868. retval |= __put_user(nat_bits, &ppr->nat);
  869. ret = retval ? -EIO : 0;
  870. return ret;
  871. }
  872. static long
  873. ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
  874. {
  875. unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
  876. struct unw_frame_info info;
  877. struct switch_stack *sw;
  878. struct ia64_fpreg fpval;
  879. struct pt_regs *pt;
  880. long ret, retval = 0;
  881. int i;
  882. memset(&fpval, 0, sizeof(fpval));
  883. if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
  884. return -EIO;
  885. pt = task_pt_regs(child);
  886. sw = (struct switch_stack *) (child->thread.ksp + 16);
  887. unw_init_from_blocked_task(&info, child);
  888. if (unw_unwind_to_user(&info) < 0) {
  889. return -EIO;
  890. }
  891. if (((unsigned long) ppr & 0x7) != 0) {
  892. dprintk("ptrace:unaligned register address %p\n", ppr);
  893. return -EIO;
  894. }
  895. /* control regs */
  896. retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
  897. retval |= __get_user(psr, &ppr->cr_ipsr);
  898. /* app regs */
  899. retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
  900. retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
  901. retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
  902. retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
  903. retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
  904. retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
  905. retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
  906. retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
  907. retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
  908. retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
  909. retval |= __get_user(cfm, &ppr->cfm);
  910. /* gr1-gr3 */
  911. retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
  912. retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
  913. /* gr4-gr7 */
  914. for (i = 4; i < 8; i++) {
  915. retval |= __get_user(val, &ppr->gr[i]);
  916. /* NaT bit will be set via PT_NAT_BITS: */
  917. if (unw_set_gr(&info, i, val, 0) < 0)
  918. return -EIO;
  919. }
  920. /* gr8-gr11 */
  921. retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
  922. /* gr12-gr15 */
  923. retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
  924. retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
  925. retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
  926. /* gr16-gr31 */
  927. retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
  928. /* b0 */
  929. retval |= __get_user(pt->b0, &ppr->br[0]);
  930. /* b1-b5 */
  931. for (i = 1; i < 6; i++) {
  932. retval |= __get_user(val, &ppr->br[i]);
  933. unw_set_br(&info, i, val);
  934. }
  935. /* b6-b7 */
  936. retval |= __get_user(pt->b6, &ppr->br[6]);
  937. retval |= __get_user(pt->b7, &ppr->br[7]);
  938. /* fr2-fr5 */
  939. for (i = 2; i < 6; i++) {
  940. retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
  941. if (unw_set_fr(&info, i, fpval) < 0)
  942. return -EIO;
  943. }
  944. /* fr6-fr11 */
  945. retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
  946. sizeof(ppr->fr[6]) * 6);
  947. /* fp scratch regs(12-15) */
  948. retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
  949. sizeof(ppr->fr[12]) * 4);
  950. /* fr16-fr31 */
  951. for (i = 16; i < 32; i++) {
  952. retval |= __copy_from_user(&fpval, &ppr->fr[i],
  953. sizeof(fpval));
  954. if (unw_set_fr(&info, i, fpval) < 0)
  955. return -EIO;
  956. }
  957. /* fph */
  958. ia64_sync_fph(child);
  959. retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
  960. sizeof(ppr->fr[32]) * 96);
  961. /* preds */
  962. retval |= __get_user(pt->pr, &ppr->pr);
  963. /* nat bits */
  964. retval |= __get_user(nat_bits, &ppr->nat);
  965. retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
  966. retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
  967. retval |= access_uarea(child, PT_AR_EC, &ec, 1);
  968. retval |= access_uarea(child, PT_AR_LC, &lc, 1);
  969. retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
  970. retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
  971. retval |= access_uarea(child, PT_CFM, &cfm, 1);
  972. retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
  973. ret = retval ? -EIO : 0;
  974. return ret;
  975. }
  976. void
  977. user_enable_single_step (struct task_struct *child)
  978. {
  979. struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
  980. set_tsk_thread_flag(child, TIF_SINGLESTEP);
  981. child_psr->ss = 1;
  982. }
  983. void
  984. user_enable_block_step (struct task_struct *child)
  985. {
  986. struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
  987. set_tsk_thread_flag(child, TIF_SINGLESTEP);
  988. child_psr->tb = 1;
  989. }
  990. void
  991. user_disable_single_step (struct task_struct *child)
  992. {
  993. struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
  994. /* make sure the single step/taken-branch trap bits are not set: */
  995. clear_tsk_thread_flag(child, TIF_SINGLESTEP);
  996. child_psr->ss = 0;
  997. child_psr->tb = 0;
  998. }
  999. /*
  1000. * Called by kernel/ptrace.c when detaching..
  1001. *
  1002. * Make sure the single step bit is not set.
  1003. */
  1004. void
  1005. ptrace_disable (struct task_struct *child)
  1006. {
  1007. user_disable_single_step(child);
  1008. }
  1009. long
  1010. arch_ptrace (struct task_struct *child, long request, long addr, long data)
  1011. {
  1012. switch (request) {
  1013. case PTRACE_PEEKTEXT:
  1014. case PTRACE_PEEKDATA:
  1015. /* read word at location addr */
  1016. if (access_process_vm(child, addr, &data, sizeof(data), 0)
  1017. != sizeof(data))
  1018. return -EIO;
  1019. /* ensure return value is not mistaken for error code */
  1020. force_successful_syscall_return();
  1021. return data;
  1022. /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
  1023. * by the generic ptrace_request().
  1024. */
  1025. case PTRACE_PEEKUSR:
  1026. /* read the word at addr in the USER area */
  1027. if (access_uarea(child, addr, &data, 0) < 0)
  1028. return -EIO;
  1029. /* ensure return value is not mistaken for error code */
  1030. force_successful_syscall_return();
  1031. return data;
  1032. case PTRACE_POKEUSR:
  1033. /* write the word at addr in the USER area */
  1034. if (access_uarea(child, addr, &data, 1) < 0)
  1035. return -EIO;
  1036. return 0;
  1037. case PTRACE_OLD_GETSIGINFO:
  1038. /* for backwards-compatibility */
  1039. return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
  1040. case PTRACE_OLD_SETSIGINFO:
  1041. /* for backwards-compatibility */
  1042. return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
  1043. case PTRACE_GETREGS:
  1044. return ptrace_getregs(child,
  1045. (struct pt_all_user_regs __user *) data);
  1046. case PTRACE_SETREGS:
  1047. return ptrace_setregs(child,
  1048. (struct pt_all_user_regs __user *) data);
  1049. default:
  1050. return ptrace_request(child, request, addr, data);
  1051. }
  1052. }
  1053. /* "asmlinkage" so the input arguments are preserved... */
  1054. asmlinkage long
  1055. syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
  1056. long arg4, long arg5, long arg6, long arg7,
  1057. struct pt_regs regs)
  1058. {
  1059. if (test_thread_flag(TIF_SYSCALL_TRACE))
  1060. if (tracehook_report_syscall_entry(&regs))
  1061. return -ENOSYS;
  1062. /* copy user rbs to kernel rbs */
  1063. if (test_thread_flag(TIF_RESTORE_RSE))
  1064. ia64_sync_krbs();
  1065. if (unlikely(current->audit_context)) {
  1066. long syscall;
  1067. int arch;
  1068. if (IS_IA32_PROCESS(&regs)) {
  1069. syscall = regs.r1;
  1070. arch = AUDIT_ARCH_I386;
  1071. } else {
  1072. syscall = regs.r15;
  1073. arch = AUDIT_ARCH_IA64;
  1074. }
  1075. audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
  1076. }
  1077. return 0;
  1078. }
  1079. /* "asmlinkage" so the input arguments are preserved... */
  1080. asmlinkage void
  1081. syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
  1082. long arg4, long arg5, long arg6, long arg7,
  1083. struct pt_regs regs)
  1084. {
  1085. int step;
  1086. if (unlikely(current->audit_context)) {
  1087. int success = AUDITSC_RESULT(regs.r10);
  1088. long result = regs.r8;
  1089. if (success != AUDITSC_SUCCESS)
  1090. result = -result;
  1091. audit_syscall_exit(success, result);
  1092. }
  1093. step = test_thread_flag(TIF_SINGLESTEP);
  1094. if (step || test_thread_flag(TIF_SYSCALL_TRACE))
  1095. tracehook_report_syscall_exit(&regs, step);
  1096. /* copy user rbs to kernel rbs */
  1097. if (test_thread_flag(TIF_RESTORE_RSE))
  1098. ia64_sync_krbs();
  1099. }
  1100. /* Utrace implementation starts here */
  1101. struct regset_get {
  1102. void *kbuf;
  1103. void __user *ubuf;
  1104. };
  1105. struct regset_set {
  1106. const void *kbuf;
  1107. const void __user *ubuf;
  1108. };
  1109. struct regset_getset {
  1110. struct task_struct *target;
  1111. const struct user_regset *regset;
  1112. union {
  1113. struct regset_get get;
  1114. struct regset_set set;
  1115. } u;
  1116. unsigned int pos;
  1117. unsigned int count;
  1118. int ret;
  1119. };
  1120. static int
  1121. access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
  1122. unsigned long addr, unsigned long *data, int write_access)
  1123. {
  1124. struct pt_regs *pt;
  1125. unsigned long *ptr = NULL;
  1126. int ret;
  1127. char nat = 0;
  1128. pt = task_pt_regs(target);
  1129. switch (addr) {
  1130. case ELF_GR_OFFSET(1):
  1131. ptr = &pt->r1;
  1132. break;
  1133. case ELF_GR_OFFSET(2):
  1134. case ELF_GR_OFFSET(3):
  1135. ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
  1136. break;
  1137. case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
  1138. if (write_access) {
  1139. /* read NaT bit first: */
  1140. unsigned long dummy;
  1141. ret = unw_get_gr(info, addr/8, &dummy, &nat);
  1142. if (ret < 0)
  1143. return ret;
  1144. }
  1145. return unw_access_gr(info, addr/8, data, &nat, write_access);
  1146. case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
  1147. ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
  1148. break;
  1149. case ELF_GR_OFFSET(12):
  1150. case ELF_GR_OFFSET(13):
  1151. ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
  1152. break;
  1153. case ELF_GR_OFFSET(14):
  1154. ptr = &pt->r14;
  1155. break;
  1156. case ELF_GR_OFFSET(15):
  1157. ptr = &pt->r15;
  1158. }
  1159. if (write_access)
  1160. *ptr = *data;
  1161. else
  1162. *data = *ptr;
  1163. return 0;
  1164. }
  1165. static int
  1166. access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
  1167. unsigned long addr, unsigned long *data, int write_access)
  1168. {
  1169. struct pt_regs *pt;
  1170. unsigned long *ptr = NULL;
  1171. pt = task_pt_regs(target);
  1172. switch (addr) {
  1173. case ELF_BR_OFFSET(0):
  1174. ptr = &pt->b0;
  1175. break;
  1176. case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
  1177. return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
  1178. data, write_access);
  1179. case ELF_BR_OFFSET(6):
  1180. ptr = &pt->b6;
  1181. break;
  1182. case ELF_BR_OFFSET(7):
  1183. ptr = &pt->b7;
  1184. }
  1185. if (write_access)
  1186. *ptr = *data;
  1187. else
  1188. *data = *ptr;
  1189. return 0;
  1190. }
  1191. static int
  1192. access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
  1193. unsigned long addr, unsigned long *data, int write_access)
  1194. {
  1195. struct pt_regs *pt;
  1196. unsigned long cfm, urbs_end;
  1197. unsigned long *ptr = NULL;
  1198. pt = task_pt_regs(target);
  1199. if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
  1200. switch (addr) {
  1201. case ELF_AR_RSC_OFFSET:
  1202. /* force PL3 */
  1203. if (write_access)
  1204. pt->ar_rsc = *data | (3 << 2);
  1205. else
  1206. *data = pt->ar_rsc;
  1207. return 0;
  1208. case ELF_AR_BSP_OFFSET:
  1209. /*
  1210. * By convention, we use PT_AR_BSP to refer to
  1211. * the end of the user-level backing store.
  1212. * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
  1213. * to get the real value of ar.bsp at the time
  1214. * the kernel was entered.
  1215. *
  1216. * Furthermore, when changing the contents of
  1217. * PT_AR_BSP (or PT_CFM) while the task is
  1218. * blocked in a system call, convert the state
  1219. * so that the non-system-call exit
  1220. * path is used. This ensures that the proper
  1221. * state will be picked up when resuming
  1222. * execution. However, it *also* means that
  1223. * once we write PT_AR_BSP/PT_CFM, it won't be
  1224. * possible to modify the syscall arguments of
  1225. * the pending system call any longer. This
  1226. * shouldn't be an issue because modifying
  1227. * PT_AR_BSP/PT_CFM generally implies that
  1228. * we're either abandoning the pending system
  1229. * call or that we defer it's re-execution
  1230. * (e.g., due to GDB doing an inferior
  1231. * function call).
  1232. */
  1233. urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
  1234. if (write_access) {
  1235. if (*data != urbs_end) {
  1236. if (in_syscall(pt))
  1237. convert_to_non_syscall(target,
  1238. pt,
  1239. cfm);
  1240. /*
  1241. * Simulate user-level write
  1242. * of ar.bsp:
  1243. */
  1244. pt->loadrs = 0;
  1245. pt->ar_bspstore = *data;
  1246. }
  1247. } else
  1248. *data = urbs_end;
  1249. return 0;
  1250. case ELF_AR_BSPSTORE_OFFSET:
  1251. ptr = &pt->ar_bspstore;
  1252. break;
  1253. case ELF_AR_RNAT_OFFSET:
  1254. ptr = &pt->ar_rnat;
  1255. break;
  1256. case ELF_AR_CCV_OFFSET:
  1257. ptr = &pt->ar_ccv;
  1258. break;
  1259. case ELF_AR_UNAT_OFFSET:
  1260. ptr = &pt->ar_unat;
  1261. break;
  1262. case ELF_AR_FPSR_OFFSET:
  1263. ptr = &pt->ar_fpsr;
  1264. break;
  1265. case ELF_AR_PFS_OFFSET:
  1266. ptr = &pt->ar_pfs;
  1267. break;
  1268. case ELF_AR_LC_OFFSET:
  1269. return unw_access_ar(info, UNW_AR_LC, data,
  1270. write_access);
  1271. case ELF_AR_EC_OFFSET:
  1272. return unw_access_ar(info, UNW_AR_EC, data,
  1273. write_access);
  1274. case ELF_AR_CSD_OFFSET:
  1275. ptr = &pt->ar_csd;
  1276. break;
  1277. case ELF_AR_SSD_OFFSET:
  1278. ptr = &pt->ar_ssd;
  1279. }
  1280. } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
  1281. switch (addr) {
  1282. case ELF_CR_IIP_OFFSET:
  1283. ptr = &pt->cr_iip;
  1284. break;
  1285. case ELF_CFM_OFFSET:
  1286. urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
  1287. if (write_access) {
  1288. if (((cfm ^ *data) & PFM_MASK) != 0) {
  1289. if (in_syscall(pt))
  1290. convert_to_non_syscall(target,
  1291. pt,
  1292. cfm);
  1293. pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
  1294. | (*data & PFM_MASK));
  1295. }
  1296. } else
  1297. *data = cfm;
  1298. return 0;
  1299. case ELF_CR_IPSR_OFFSET:
  1300. if (write_access) {
  1301. unsigned long tmp = *data;
  1302. /* psr.ri==3 is a reserved value: SDM 2:25 */
  1303. if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
  1304. tmp &= ~IA64_PSR_RI;
  1305. pt->cr_ipsr = ((tmp & IPSR_MASK)
  1306. | (pt->cr_ipsr & ~IPSR_MASK));
  1307. } else
  1308. *data = (pt->cr_ipsr & IPSR_MASK);
  1309. return 0;
  1310. }
  1311. } else if (addr == ELF_NAT_OFFSET)
  1312. return access_nat_bits(target, pt, info,
  1313. data, write_access);
  1314. else if (addr == ELF_PR_OFFSET)
  1315. ptr = &pt->pr;
  1316. else
  1317. return -1;
  1318. if (write_access)
  1319. *ptr = *data;
  1320. else
  1321. *data = *ptr;
  1322. return 0;
  1323. }
  1324. static int
  1325. access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
  1326. unsigned long addr, unsigned long *data, int write_access)
  1327. {
  1328. if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
  1329. return access_elf_gpreg(target, info, addr, data, write_access);
  1330. else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
  1331. return access_elf_breg(target, info, addr, data, write_access);
  1332. else
  1333. return access_elf_areg(target, info, addr, data, write_access);
  1334. }
  1335. void do_gpregs_get(struct unw_frame_info *info, void *arg)
  1336. {
  1337. struct pt_regs *pt;
  1338. struct regset_getset *dst = arg;
  1339. elf_greg_t tmp[16];
  1340. unsigned int i, index, min_copy;
  1341. if (unw_unwind_to_user(info) < 0)
  1342. return;
  1343. /*
  1344. * coredump format:
  1345. * r0-r31
  1346. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  1347. * predicate registers (p0-p63)
  1348. * b0-b7
  1349. * ip cfm user-mask
  1350. * ar.rsc ar.bsp ar.bspstore ar.rnat
  1351. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  1352. */
  1353. /* Skip r0 */
  1354. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
  1355. dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
  1356. &dst->u.get.kbuf,
  1357. &dst->u.get.ubuf,
  1358. 0, ELF_GR_OFFSET(1));
  1359. if (dst->ret || dst->count == 0)
  1360. return;
  1361. }
  1362. /* gr1 - gr15 */
  1363. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
  1364. index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
  1365. min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
  1366. (dst->pos + dst->count) : ELF_GR_OFFSET(16);
  1367. for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
  1368. index++)
  1369. if (access_elf_reg(dst->target, info, i,
  1370. &tmp[index], 0) < 0) {
  1371. dst->ret = -EIO;
  1372. return;
  1373. }
  1374. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1375. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1376. ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
  1377. if (dst->ret || dst->count == 0)
  1378. return;
  1379. }
  1380. /* r16-r31 */
  1381. if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
  1382. pt = task_pt_regs(dst->target);
  1383. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1384. &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
  1385. ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
  1386. if (dst->ret || dst->count == 0)
  1387. return;
  1388. }
  1389. /* nat, pr, b0 - b7 */
  1390. if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
  1391. index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
  1392. min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
  1393. (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
  1394. for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
  1395. index++)
  1396. if (access_elf_reg(dst->target, info, i,
  1397. &tmp[index], 0) < 0) {
  1398. dst->ret = -EIO;
  1399. return;
  1400. }
  1401. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1402. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1403. ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
  1404. if (dst->ret || dst->count == 0)
  1405. return;
  1406. }
  1407. /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
  1408. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
  1409. */
  1410. if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
  1411. index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
  1412. min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
  1413. (dst->pos + dst->count) : ELF_AR_END_OFFSET;
  1414. for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
  1415. index++)
  1416. if (access_elf_reg(dst->target, info, i,
  1417. &tmp[index], 0) < 0) {
  1418. dst->ret = -EIO;
  1419. return;
  1420. }
  1421. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1422. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1423. ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
  1424. }
  1425. }
  1426. void do_gpregs_set(struct unw_frame_info *info, void *arg)
  1427. {
  1428. struct pt_regs *pt;
  1429. struct regset_getset *dst = arg;
  1430. elf_greg_t tmp[16];
  1431. unsigned int i, index;
  1432. if (unw_unwind_to_user(info) < 0)
  1433. return;
  1434. /* Skip r0 */
  1435. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
  1436. dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
  1437. &dst->u.set.kbuf,
  1438. &dst->u.set.ubuf,
  1439. 0, ELF_GR_OFFSET(1));
  1440. if (dst->ret || dst->count == 0)
  1441. return;
  1442. }
  1443. /* gr1-gr15 */
  1444. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
  1445. i = dst->pos;
  1446. index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
  1447. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1448. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1449. ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
  1450. if (dst->ret)
  1451. return;
  1452. for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
  1453. if (access_elf_reg(dst->target, info, i,
  1454. &tmp[index], 1) < 0) {
  1455. dst->ret = -EIO;
  1456. return;
  1457. }
  1458. if (dst->count == 0)
  1459. return;
  1460. }
  1461. /* gr16-gr31 */
  1462. if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
  1463. pt = task_pt_regs(dst->target);
  1464. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1465. &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
  1466. ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
  1467. if (dst->ret || dst->count == 0)
  1468. return;
  1469. }
  1470. /* nat, pr, b0 - b7 */
  1471. if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
  1472. i = dst->pos;
  1473. index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
  1474. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1475. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1476. ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
  1477. if (dst->ret)
  1478. return;
  1479. for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
  1480. if (access_elf_reg(dst->target, info, i,
  1481. &tmp[index], 1) < 0) {
  1482. dst->ret = -EIO;
  1483. return;
  1484. }
  1485. if (dst->count == 0)
  1486. return;
  1487. }
  1488. /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
  1489. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
  1490. */
  1491. if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
  1492. i = dst->pos;
  1493. index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
  1494. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1495. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1496. ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
  1497. if (dst->ret)
  1498. return;
  1499. for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
  1500. if (access_elf_reg(dst->target, info, i,
  1501. &tmp[index], 1) < 0) {
  1502. dst->ret = -EIO;
  1503. return;
  1504. }
  1505. }
  1506. }
  1507. #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
  1508. void do_fpregs_get(struct unw_frame_info *info, void *arg)
  1509. {
  1510. struct regset_getset *dst = arg;
  1511. struct task_struct *task = dst->target;
  1512. elf_fpreg_t tmp[30];
  1513. int index, min_copy, i;
  1514. if (unw_unwind_to_user(info) < 0)
  1515. return;
  1516. /* Skip pos 0 and 1 */
  1517. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
  1518. dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
  1519. &dst->u.get.kbuf,
  1520. &dst->u.get.ubuf,
  1521. 0, ELF_FP_OFFSET(2));
  1522. if (dst->count == 0 || dst->ret)
  1523. return;
  1524. }
  1525. /* fr2-fr31 */
  1526. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
  1527. index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
  1528. min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
  1529. dst->pos + dst->count);
  1530. for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
  1531. index++)
  1532. if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
  1533. &tmp[index])) {
  1534. dst->ret = -EIO;
  1535. return;
  1536. }
  1537. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1538. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1539. ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
  1540. if (dst->count == 0 || dst->ret)
  1541. return;
  1542. }
  1543. /* fph */
  1544. if (dst->count > 0) {
  1545. ia64_flush_fph(dst->target);
  1546. if (task->thread.flags & IA64_THREAD_FPH_VALID)
  1547. dst->ret = user_regset_copyout(
  1548. &dst->pos, &dst->count,
  1549. &dst->u.get.kbuf, &dst->u.get.ubuf,
  1550. &dst->target->thread.fph,
  1551. ELF_FP_OFFSET(32), -1);
  1552. else
  1553. /* Zero fill instead. */
  1554. dst->ret = user_regset_copyout_zero(
  1555. &dst->pos, &dst->count,
  1556. &dst->u.get.kbuf, &dst->u.get.ubuf,
  1557. ELF_FP_OFFSET(32), -1);
  1558. }
  1559. }
  1560. void do_fpregs_set(struct unw_frame_info *info, void *arg)
  1561. {
  1562. struct regset_getset *dst = arg;
  1563. elf_fpreg_t fpreg, tmp[30];
  1564. int index, start, end;
  1565. if (unw_unwind_to_user(info) < 0)
  1566. return;
  1567. /* Skip pos 0 and 1 */
  1568. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
  1569. dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
  1570. &dst->u.set.kbuf,
  1571. &dst->u.set.ubuf,
  1572. 0, ELF_FP_OFFSET(2));
  1573. if (dst->count == 0 || dst->ret)
  1574. return;
  1575. }
  1576. /* fr2-fr31 */
  1577. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
  1578. start = dst->pos;
  1579. end = min(((unsigned int)ELF_FP_OFFSET(32)),
  1580. dst->pos + dst->count);
  1581. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1582. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1583. ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
  1584. if (dst->ret)
  1585. return;
  1586. if (start & 0xF) { /* only write high part */
  1587. if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
  1588. &fpreg)) {
  1589. dst->ret = -EIO;
  1590. return;
  1591. }
  1592. tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
  1593. = fpreg.u.bits[0];
  1594. start &= ~0xFUL;
  1595. }
  1596. if (end & 0xF) { /* only write low part */
  1597. if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
  1598. &fpreg)) {
  1599. dst->ret = -EIO;
  1600. return;
  1601. }
  1602. tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
  1603. = fpreg.u.bits[1];
  1604. end = (end + 0xF) & ~0xFUL;
  1605. }
  1606. for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
  1607. index = start / sizeof(elf_fpreg_t);
  1608. if (unw_set_fr(info, index, tmp[index - 2])) {
  1609. dst->ret = -EIO;
  1610. return;
  1611. }
  1612. }
  1613. if (dst->ret || dst->count == 0)
  1614. return;
  1615. }
  1616. /* fph */
  1617. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
  1618. ia64_sync_fph(dst->target);
  1619. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1620. &dst->u.set.kbuf,
  1621. &dst->u.set.ubuf,
  1622. &dst->target->thread.fph,
  1623. ELF_FP_OFFSET(32), -1);
  1624. }
  1625. }
  1626. static int
  1627. do_regset_call(void (*call)(struct unw_frame_info *, void *),
  1628. struct task_struct *target,
  1629. const struct user_regset *regset,
  1630. unsigned int pos, unsigned int count,
  1631. const void *kbuf, const void __user *ubuf)
  1632. {
  1633. struct regset_getset info = { .target = target, .regset = regset,
  1634. .pos = pos, .count = count,
  1635. .u.set = { .kbuf = kbuf, .ubuf = ubuf },
  1636. .ret = 0 };
  1637. if (target == current)
  1638. unw_init_running(call, &info);
  1639. else {
  1640. struct unw_frame_info ufi;
  1641. memset(&ufi, 0, sizeof(ufi));
  1642. unw_init_from_blocked_task(&ufi, target);
  1643. (*call)(&ufi, &info);
  1644. }
  1645. return info.ret;
  1646. }
  1647. static int
  1648. gpregs_get(struct task_struct *target,
  1649. const struct user_regset *regset,
  1650. unsigned int pos, unsigned int count,
  1651. void *kbuf, void __user *ubuf)
  1652. {
  1653. return do_regset_call(do_gpregs_get, target, regset, pos, count,
  1654. kbuf, ubuf);
  1655. }
  1656. static int gpregs_set(struct task_struct *target,
  1657. const struct user_regset *regset,
  1658. unsigned int pos, unsigned int count,
  1659. const void *kbuf, const void __user *ubuf)
  1660. {
  1661. return do_regset_call(do_gpregs_set, target, regset, pos, count,
  1662. kbuf, ubuf);
  1663. }
  1664. static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
  1665. {
  1666. do_sync_rbs(info, ia64_sync_user_rbs);
  1667. }
  1668. /*
  1669. * This is called to write back the register backing store.
  1670. * ptrace does this before it stops, so that a tracer reading the user
  1671. * memory after the thread stops will get the current register data.
  1672. */
  1673. static int
  1674. gpregs_writeback(struct task_struct *target,
  1675. const struct user_regset *regset,
  1676. int now)
  1677. {
  1678. if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
  1679. return 0;
  1680. set_notify_resume(target);
  1681. return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
  1682. NULL, NULL);
  1683. }
  1684. static int
  1685. fpregs_active(struct task_struct *target, const struct user_regset *regset)
  1686. {
  1687. return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
  1688. }
  1689. static int fpregs_get(struct task_struct *target,
  1690. const struct user_regset *regset,
  1691. unsigned int pos, unsigned int count,
  1692. void *kbuf, void __user *ubuf)
  1693. {
  1694. return do_regset_call(do_fpregs_get, target, regset, pos, count,
  1695. kbuf, ubuf);
  1696. }
  1697. static int fpregs_set(struct task_struct *target,
  1698. const struct user_regset *regset,
  1699. unsigned int pos, unsigned int count,
  1700. const void *kbuf, const void __user *ubuf)
  1701. {
  1702. return do_regset_call(do_fpregs_set, target, regset, pos, count,
  1703. kbuf, ubuf);
  1704. }
  1705. static int
  1706. access_uarea(struct task_struct *child, unsigned long addr,
  1707. unsigned long *data, int write_access)
  1708. {
  1709. unsigned int pos = -1; /* an invalid value */
  1710. int ret;
  1711. unsigned long *ptr, regnum;
  1712. if ((addr & 0x7) != 0) {
  1713. dprintk("ptrace: unaligned register address 0x%lx\n", addr);
  1714. return -1;
  1715. }
  1716. if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
  1717. (addr >= PT_R7 + 8 && addr < PT_B1) ||
  1718. (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
  1719. (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
  1720. dprintk("ptrace: rejecting access to register "
  1721. "address 0x%lx\n", addr);
  1722. return -1;
  1723. }
  1724. switch (addr) {
  1725. case PT_F32 ... (PT_F127 + 15):
  1726. pos = addr - PT_F32 + ELF_FP_OFFSET(32);
  1727. break;
  1728. case PT_F2 ... (PT_F5 + 15):
  1729. pos = addr - PT_F2 + ELF_FP_OFFSET(2);
  1730. break;
  1731. case PT_F10 ... (PT_F31 + 15):
  1732. pos = addr - PT_F10 + ELF_FP_OFFSET(10);
  1733. break;
  1734. case PT_F6 ... (PT_F9 + 15):
  1735. pos = addr - PT_F6 + ELF_FP_OFFSET(6);
  1736. break;
  1737. }
  1738. if (pos != -1) {
  1739. if (write_access)
  1740. ret = fpregs_set(child, NULL, pos,
  1741. sizeof(unsigned long), data, NULL);
  1742. else
  1743. ret = fpregs_get(child, NULL, pos,
  1744. sizeof(unsigned long), data, NULL);
  1745. if (ret != 0)
  1746. return -1;
  1747. return 0;
  1748. }
  1749. switch (addr) {
  1750. case PT_NAT_BITS:
  1751. pos = ELF_NAT_OFFSET;
  1752. break;
  1753. case PT_R4 ... PT_R7:
  1754. pos = addr - PT_R4 + ELF_GR_OFFSET(4);
  1755. break;
  1756. case PT_B1 ... PT_B5:
  1757. pos = addr - PT_B1 + ELF_BR_OFFSET(1);
  1758. break;
  1759. case PT_AR_EC:
  1760. pos = ELF_AR_EC_OFFSET;
  1761. break;
  1762. case PT_AR_LC:
  1763. pos = ELF_AR_LC_OFFSET;
  1764. break;
  1765. case PT_CR_IPSR:
  1766. pos = ELF_CR_IPSR_OFFSET;
  1767. break;
  1768. case PT_CR_IIP:
  1769. pos = ELF_CR_IIP_OFFSET;
  1770. break;
  1771. case PT_CFM:
  1772. pos = ELF_CFM_OFFSET;
  1773. break;
  1774. case PT_AR_UNAT:
  1775. pos = ELF_AR_UNAT_OFFSET;
  1776. break;
  1777. case PT_AR_PFS:
  1778. pos = ELF_AR_PFS_OFFSET;
  1779. break;
  1780. case PT_AR_RSC:
  1781. pos = ELF_AR_RSC_OFFSET;
  1782. break;
  1783. case PT_AR_RNAT:
  1784. pos = ELF_AR_RNAT_OFFSET;
  1785. break;
  1786. case PT_AR_BSPSTORE:
  1787. pos = ELF_AR_BSPSTORE_OFFSET;
  1788. break;
  1789. case PT_PR:
  1790. pos = ELF_PR_OFFSET;
  1791. break;
  1792. case PT_B6:
  1793. pos = ELF_BR_OFFSET(6);
  1794. break;
  1795. case PT_AR_BSP:
  1796. pos = ELF_AR_BSP_OFFSET;
  1797. break;
  1798. case PT_R1 ... PT_R3:
  1799. pos = addr - PT_R1 + ELF_GR_OFFSET(1);
  1800. break;
  1801. case PT_R12 ... PT_R15:
  1802. pos = addr - PT_R12 + ELF_GR_OFFSET(12);
  1803. break;
  1804. case PT_R8 ... PT_R11:
  1805. pos = addr - PT_R8 + ELF_GR_OFFSET(8);
  1806. break;
  1807. case PT_R16 ... PT_R31:
  1808. pos = addr - PT_R16 + ELF_GR_OFFSET(16);
  1809. break;
  1810. case PT_AR_CCV:
  1811. pos = ELF_AR_CCV_OFFSET;
  1812. break;
  1813. case PT_AR_FPSR:
  1814. pos = ELF_AR_FPSR_OFFSET;
  1815. break;
  1816. case PT_B0:
  1817. pos = ELF_BR_OFFSET(0);
  1818. break;
  1819. case PT_B7:
  1820. pos = ELF_BR_OFFSET(7);
  1821. break;
  1822. case PT_AR_CSD:
  1823. pos = ELF_AR_CSD_OFFSET;
  1824. break;
  1825. case PT_AR_SSD:
  1826. pos = ELF_AR_SSD_OFFSET;
  1827. break;
  1828. }
  1829. if (pos != -1) {
  1830. if (write_access)
  1831. ret = gpregs_set(child, NULL, pos,
  1832. sizeof(unsigned long), data, NULL);
  1833. else
  1834. ret = gpregs_get(child, NULL, pos,
  1835. sizeof(unsigned long), data, NULL);
  1836. if (ret != 0)
  1837. return -1;
  1838. return 0;
  1839. }
  1840. /* access debug registers */
  1841. if (addr >= PT_IBR) {
  1842. regnum = (addr - PT_IBR) >> 3;
  1843. ptr = &child->thread.ibr[0];
  1844. } else {
  1845. regnum = (addr - PT_DBR) >> 3;
  1846. ptr = &child->thread.dbr[0];
  1847. }
  1848. if (regnum >= 8) {
  1849. dprintk("ptrace: rejecting access to register "
  1850. "address 0x%lx\n", addr);
  1851. return -1;
  1852. }
  1853. #ifdef CONFIG_PERFMON
  1854. /*
  1855. * Check if debug registers are used by perfmon. This
  1856. * test must be done once we know that we can do the
  1857. * operation, i.e. the arguments are all valid, but
  1858. * before we start modifying the state.
  1859. *
  1860. * Perfmon needs to keep a count of how many processes
  1861. * are trying to modify the debug registers for system
  1862. * wide monitoring sessions.
  1863. *
  1864. * We also include read access here, because they may
  1865. * cause the PMU-installed debug register state
  1866. * (dbr[], ibr[]) to be reset. The two arrays are also
  1867. * used by perfmon, but we do not use
  1868. * IA64_THREAD_DBG_VALID. The registers are restored
  1869. * by the PMU context switch code.
  1870. */
  1871. if (pfm_use_debug_registers(child))
  1872. return -1;
  1873. #endif
  1874. if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
  1875. child->thread.flags |= IA64_THREAD_DBG_VALID;
  1876. memset(child->thread.dbr, 0,
  1877. sizeof(child->thread.dbr));
  1878. memset(child->thread.ibr, 0,
  1879. sizeof(child->thread.ibr));
  1880. }
  1881. ptr += regnum;
  1882. if ((regnum & 1) && write_access) {
  1883. /* don't let the user set kernel-level breakpoints: */
  1884. *ptr = *data & ~(7UL << 56);
  1885. return 0;
  1886. }
  1887. if (write_access)
  1888. *ptr = *data;
  1889. else
  1890. *data = *ptr;
  1891. return 0;
  1892. }
  1893. static const struct user_regset native_regsets[] = {
  1894. {
  1895. .core_note_type = NT_PRSTATUS,
  1896. .n = ELF_NGREG,
  1897. .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
  1898. .get = gpregs_get, .set = gpregs_set,
  1899. .writeback = gpregs_writeback
  1900. },
  1901. {
  1902. .core_note_type = NT_PRFPREG,
  1903. .n = ELF_NFPREG,
  1904. .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
  1905. .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
  1906. },
  1907. };
  1908. static const struct user_regset_view user_ia64_view = {
  1909. .name = "ia64",
  1910. .e_machine = EM_IA_64,
  1911. .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
  1912. };
  1913. const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
  1914. {
  1915. #ifdef CONFIG_IA32_SUPPORT
  1916. extern const struct user_regset_view user_ia32_view;
  1917. if (IS_IA32_PROCESS(task_pt_regs(tsk)))
  1918. return &user_ia32_view;
  1919. #endif
  1920. return &user_ia64_view;
  1921. }
  1922. struct syscall_get_set_args {
  1923. unsigned int i;
  1924. unsigned int n;
  1925. unsigned long *args;
  1926. struct pt_regs *regs;
  1927. int rw;
  1928. };
  1929. static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
  1930. {
  1931. struct syscall_get_set_args *args = data;
  1932. struct pt_regs *pt = args->regs;
  1933. unsigned long *krbs, cfm, ndirty;
  1934. int i, count;
  1935. if (unw_unwind_to_user(info) < 0)
  1936. return;
  1937. cfm = pt->cr_ifs;
  1938. krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
  1939. ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
  1940. count = 0;
  1941. if (in_syscall(pt))
  1942. count = min_t(int, args->n, cfm & 0x7f);
  1943. for (i = 0; i < count; i++) {
  1944. if (args->rw)
  1945. *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
  1946. args->args[i];
  1947. else
  1948. args->args[i] = *ia64_rse_skip_regs(krbs,
  1949. ndirty + i + args->i);
  1950. }
  1951. if (!args->rw) {
  1952. while (i < args->n) {
  1953. args->args[i] = 0;
  1954. i++;
  1955. }
  1956. }
  1957. }
  1958. void ia64_syscall_get_set_arguments(struct task_struct *task,
  1959. struct pt_regs *regs, unsigned int i, unsigned int n,
  1960. unsigned long *args, int rw)
  1961. {
  1962. struct syscall_get_set_args data = {
  1963. .i = i,
  1964. .n = n,
  1965. .args = args,
  1966. .regs = regs,
  1967. .rw = rw,
  1968. };
  1969. if (task == current)
  1970. unw_init_running(syscall_get_set_args_cb, &data);
  1971. else {
  1972. struct unw_frame_info ufi;
  1973. memset(&ufi, 0, sizeof(ufi));
  1974. unw_init_from_blocked_task(&ufi, task);
  1975. syscall_get_set_args_cb(&ufi, &data);
  1976. }
  1977. }