time-ts.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. /*
  2. * Based on arm clockevents implementation and old bfin time tick.
  3. *
  4. * Copyright 2008-2009 Analog Devics Inc.
  5. * 2008 GeoTechnologies
  6. * Vitja Makarov
  7. *
  8. * Licensed under the GPL-2
  9. */
  10. #include <linux/module.h>
  11. #include <linux/profile.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/time.h>
  14. #include <linux/timex.h>
  15. #include <linux/irq.h>
  16. #include <linux/clocksource.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpufreq.h>
  19. #include <asm/blackfin.h>
  20. #include <asm/time.h>
  21. #include <asm/gptimers.h>
  22. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  23. /* Accelerators for sched_clock()
  24. * convert from cycles(64bits) => nanoseconds (64bits)
  25. * basic equation:
  26. * ns = cycles / (freq / ns_per_sec)
  27. * ns = cycles * (ns_per_sec / freq)
  28. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  29. * ns = cycles * (10^6 / cpu_khz)
  30. *
  31. * Then we use scaling math (suggested by george@mvista.com) to get:
  32. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  33. * ns = cycles * cyc2ns_scale / SC
  34. *
  35. * And since SC is a constant power of two, we can convert the div
  36. * into a shift.
  37. *
  38. * We can use khz divisor instead of mhz to keep a better precision, since
  39. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  40. * (mathieu.desnoyers@polymtl.ca)
  41. *
  42. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  43. */
  44. static unsigned long cyc2ns_scale;
  45. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  46. static inline void set_cyc2ns_scale(unsigned long cpu_khz)
  47. {
  48. cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR) / cpu_khz;
  49. }
  50. static inline unsigned long long cycles_2_ns(cycle_t cyc)
  51. {
  52. return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
  53. }
  54. static cycle_t bfin_read_cycles(struct clocksource *cs)
  55. {
  56. return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
  57. }
  58. static struct clocksource bfin_cs_cycles = {
  59. .name = "bfin_cs_cycles",
  60. .rating = 400,
  61. .read = bfin_read_cycles,
  62. .mask = CLOCKSOURCE_MASK(64),
  63. .shift = 22,
  64. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  65. };
  66. unsigned long long sched_clock(void)
  67. {
  68. return cycles_2_ns(bfin_read_cycles(&bfin_cs_cycles));
  69. }
  70. static int __init bfin_cs_cycles_init(void)
  71. {
  72. set_cyc2ns_scale(get_cclk() / 1000);
  73. bfin_cs_cycles.mult = \
  74. clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
  75. if (clocksource_register(&bfin_cs_cycles))
  76. panic("failed to register clocksource");
  77. return 0;
  78. }
  79. #else
  80. # define bfin_cs_cycles_init()
  81. #endif
  82. #ifdef CONFIG_GPTMR0_CLOCKSOURCE
  83. void __init setup_gptimer0(void)
  84. {
  85. disable_gptimers(TIMER0bit);
  86. set_gptimer_config(TIMER0_id, \
  87. TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  88. set_gptimer_period(TIMER0_id, -1);
  89. set_gptimer_pwidth(TIMER0_id, -2);
  90. SSYNC();
  91. enable_gptimers(TIMER0bit);
  92. }
  93. static cycle_t bfin_read_gptimer0(void)
  94. {
  95. return bfin_read_TIMER0_COUNTER();
  96. }
  97. static struct clocksource bfin_cs_gptimer0 = {
  98. .name = "bfin_cs_gptimer0",
  99. .rating = 350,
  100. .read = bfin_read_gptimer0,
  101. .mask = CLOCKSOURCE_MASK(32),
  102. .shift = 22,
  103. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  104. };
  105. static int __init bfin_cs_gptimer0_init(void)
  106. {
  107. setup_gptimer0();
  108. bfin_cs_gptimer0.mult = \
  109. clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
  110. if (clocksource_register(&bfin_cs_gptimer0))
  111. panic("failed to register clocksource");
  112. return 0;
  113. }
  114. #else
  115. # define bfin_cs_gptimer0_init()
  116. #endif
  117. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  118. __attribute__((l1_text))
  119. #endif
  120. irqreturn_t timer_interrupt(int irq, void *dev_id);
  121. static int bfin_timer_set_next_event(unsigned long, \
  122. struct clock_event_device *);
  123. static void bfin_timer_set_mode(enum clock_event_mode, \
  124. struct clock_event_device *);
  125. static struct clock_event_device clockevent_bfin = {
  126. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  127. .name = "bfin_gptimer0",
  128. .rating = 300,
  129. .irq = IRQ_TIMER0,
  130. #else
  131. .name = "bfin_core_timer",
  132. .rating = 350,
  133. .irq = IRQ_CORETMR,
  134. #endif
  135. .shift = 32,
  136. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  137. .set_next_event = bfin_timer_set_next_event,
  138. .set_mode = bfin_timer_set_mode,
  139. };
  140. static struct irqaction bfin_timer_irq = {
  141. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  142. .name = "Blackfin GPTimer0",
  143. #else
  144. .name = "Blackfin CoreTimer",
  145. #endif
  146. .flags = IRQF_DISABLED | IRQF_TIMER | \
  147. IRQF_IRQPOLL | IRQF_PERCPU,
  148. .handler = timer_interrupt,
  149. .dev_id = &clockevent_bfin,
  150. };
  151. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  152. static int bfin_timer_set_next_event(unsigned long cycles,
  153. struct clock_event_device *evt)
  154. {
  155. disable_gptimers(TIMER0bit);
  156. /* it starts counting three SCLK cycles after the TIMENx bit is set */
  157. set_gptimer_pwidth(TIMER0_id, cycles - 3);
  158. enable_gptimers(TIMER0bit);
  159. return 0;
  160. }
  161. static void bfin_timer_set_mode(enum clock_event_mode mode,
  162. struct clock_event_device *evt)
  163. {
  164. switch (mode) {
  165. case CLOCK_EVT_MODE_PERIODIC: {
  166. set_gptimer_config(TIMER0_id, \
  167. TIMER_OUT_DIS | TIMER_IRQ_ENA | \
  168. TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  169. set_gptimer_period(TIMER0_id, get_sclk() / HZ);
  170. set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
  171. enable_gptimers(TIMER0bit);
  172. break;
  173. }
  174. case CLOCK_EVT_MODE_ONESHOT:
  175. disable_gptimers(TIMER0bit);
  176. set_gptimer_config(TIMER0_id, \
  177. TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
  178. set_gptimer_period(TIMER0_id, 0);
  179. break;
  180. case CLOCK_EVT_MODE_UNUSED:
  181. case CLOCK_EVT_MODE_SHUTDOWN:
  182. disable_gptimers(TIMER0bit);
  183. break;
  184. case CLOCK_EVT_MODE_RESUME:
  185. break;
  186. }
  187. }
  188. static void bfin_timer_ack(void)
  189. {
  190. set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
  191. }
  192. static void __init bfin_timer_init(void)
  193. {
  194. disable_gptimers(TIMER0bit);
  195. }
  196. static unsigned long __init bfin_clockevent_check(void)
  197. {
  198. setup_irq(IRQ_TIMER0, &bfin_timer_irq);
  199. return get_sclk();
  200. }
  201. #else /* CONFIG_TICKSOURCE_CORETMR */
  202. static int bfin_timer_set_next_event(unsigned long cycles,
  203. struct clock_event_device *evt)
  204. {
  205. bfin_write_TCNTL(TMPWR);
  206. CSYNC();
  207. bfin_write_TCOUNT(cycles);
  208. CSYNC();
  209. bfin_write_TCNTL(TMPWR | TMREN);
  210. return 0;
  211. }
  212. static void bfin_timer_set_mode(enum clock_event_mode mode,
  213. struct clock_event_device *evt)
  214. {
  215. switch (mode) {
  216. case CLOCK_EVT_MODE_PERIODIC: {
  217. unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
  218. bfin_write_TCNTL(TMPWR);
  219. CSYNC();
  220. bfin_write_TSCALE(TIME_SCALE - 1);
  221. bfin_write_TPERIOD(tcount);
  222. bfin_write_TCOUNT(tcount);
  223. CSYNC();
  224. bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
  225. break;
  226. }
  227. case CLOCK_EVT_MODE_ONESHOT:
  228. bfin_write_TCNTL(TMPWR);
  229. CSYNC();
  230. bfin_write_TSCALE(TIME_SCALE - 1);
  231. bfin_write_TPERIOD(0);
  232. bfin_write_TCOUNT(0);
  233. break;
  234. case CLOCK_EVT_MODE_UNUSED:
  235. case CLOCK_EVT_MODE_SHUTDOWN:
  236. bfin_write_TCNTL(0);
  237. CSYNC();
  238. break;
  239. case CLOCK_EVT_MODE_RESUME:
  240. break;
  241. }
  242. }
  243. static void bfin_timer_ack(void)
  244. {
  245. }
  246. static void __init bfin_timer_init(void)
  247. {
  248. /* power up the timer, but don't enable it just yet */
  249. bfin_write_TCNTL(TMPWR);
  250. CSYNC();
  251. /*
  252. * the TSCALE prescaler counter.
  253. */
  254. bfin_write_TSCALE(TIME_SCALE - 1);
  255. bfin_write_TPERIOD(0);
  256. bfin_write_TCOUNT(0);
  257. CSYNC();
  258. }
  259. static unsigned long __init bfin_clockevent_check(void)
  260. {
  261. setup_irq(IRQ_CORETMR, &bfin_timer_irq);
  262. return get_cclk() / TIME_SCALE;
  263. }
  264. void __init setup_core_timer(void)
  265. {
  266. bfin_timer_init();
  267. bfin_timer_set_mode(CLOCK_EVT_MODE_PERIODIC, NULL);
  268. }
  269. #endif /* CONFIG_TICKSOURCE_GPTMR0 */
  270. /*
  271. * timer_interrupt() needs to keep up the real-time clock,
  272. * as well as call the "do_timer()" routine every clocktick
  273. */
  274. irqreturn_t timer_interrupt(int irq, void *dev_id)
  275. {
  276. struct clock_event_device *evt = dev_id;
  277. smp_mb();
  278. evt->event_handler(evt);
  279. bfin_timer_ack();
  280. return IRQ_HANDLED;
  281. }
  282. static int __init bfin_clockevent_init(void)
  283. {
  284. unsigned long timer_clk;
  285. timer_clk = bfin_clockevent_check();
  286. bfin_timer_init();
  287. clockevent_bfin.mult = div_sc(timer_clk, NSEC_PER_SEC, clockevent_bfin.shift);
  288. clockevent_bfin.max_delta_ns = clockevent_delta2ns(-1, &clockevent_bfin);
  289. clockevent_bfin.min_delta_ns = clockevent_delta2ns(100, &clockevent_bfin);
  290. clockevent_bfin.cpumask = cpumask_of(0);
  291. clockevents_register_device(&clockevent_bfin);
  292. return 0;
  293. }
  294. void __init time_init(void)
  295. {
  296. time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
  297. #ifdef CONFIG_RTC_DRV_BFIN
  298. /* [#2663] hack to filter junk RTC values that would cause
  299. * userspace to have to deal with time values greater than
  300. * 2^31 seconds (which uClibc cannot cope with yet)
  301. */
  302. if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
  303. printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
  304. bfin_write_RTC_STAT(0);
  305. }
  306. #endif
  307. /* Initialize xtime. From now on, xtime is updated with timer interrupts */
  308. xtime.tv_sec = secs_since_1970;
  309. xtime.tv_nsec = 0;
  310. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  311. bfin_cs_cycles_init();
  312. bfin_cs_gptimer0_init();
  313. bfin_clockevent_init();
  314. }