chipcHw.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776
  1. /*****************************************************************************
  2. * Copyright 2003 - 2008 Broadcom Corporation. All rights reserved.
  3. *
  4. * Unless you and Broadcom execute a separate written software license
  5. * agreement governing use of this software, this software is licensed to you
  6. * under the terms of the GNU General Public License version 2, available at
  7. * http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
  8. *
  9. * Notwithstanding the above, under no circumstances may you combine this
  10. * software in any way with any other Broadcom software provided under a
  11. * license other than the GPL, without Broadcom's express prior written
  12. * consent.
  13. *****************************************************************************/
  14. /****************************************************************************/
  15. /**
  16. * @file chipcHw.c
  17. *
  18. * @brief Low level Various CHIP clock controlling routines
  19. *
  20. * @note
  21. *
  22. * These routines provide basic clock controlling functionality only.
  23. */
  24. /****************************************************************************/
  25. /* ---- Include Files ---------------------------------------------------- */
  26. #include <csp/errno.h>
  27. #include <csp/stdint.h>
  28. #include <csp/module.h>
  29. #include <mach/csp/chipcHw_def.h>
  30. #include <mach/csp/chipcHw_inline.h>
  31. #include <csp/reg.h>
  32. #include <csp/delay.h>
  33. /* ---- Private Constants and Types --------------------------------------- */
  34. /* VPM alignment algorithm uses this */
  35. #define MAX_PHASE_ADJUST_COUNT 0xFFFF /* Max number of times allowed to adjust the phase */
  36. #define MAX_PHASE_ALIGN_ATTEMPTS 10 /* Max number of attempt to align the phase */
  37. /* Local definition of clock type */
  38. #define PLL_CLOCK 1 /* PLL Clock */
  39. #define NON_PLL_CLOCK 2 /* Divider clock */
  40. static int chipcHw_divide(int num, int denom)
  41. __attribute__ ((section(".aramtext")));
  42. /****************************************************************************/
  43. /**
  44. * @brief Set clock fequency for miscellaneous configurable clocks
  45. *
  46. * This function sets clock frequency
  47. *
  48. * @return Configured clock frequency in hertz
  49. *
  50. */
  51. /****************************************************************************/
  52. chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock /* [ IN ] Configurable clock */
  53. ) {
  54. volatile uint32_t *pPLLReg = (uint32_t *) 0x0;
  55. volatile uint32_t *pClockCtrl = (uint32_t *) 0x0;
  56. volatile uint32_t *pDependentClock = (uint32_t *) 0x0;
  57. uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */
  58. uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */
  59. uint32_t dependentClockType = 0;
  60. uint32_t vcoHz = 0;
  61. /* Get VCO frequencies */
  62. if ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) {
  63. uint64_t adjustFreq = 0;
  64. vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  65. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  66. ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  67. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  68. /* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */
  69. adjustFreq = (uint64_t) chipcHw_XTAL_FREQ_Hz *
  70. (uint64_t) chipcHw_REG_PLL_DIVIDER_NDIV_f_SS *
  71. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, (chipcHw_REG_PLL_PREDIVIDER_P2 * (uint64_t) chipcHw_REG_PLL_DIVIDER_FRAC));
  72. vcoFreqPll1Hz += (uint32_t) adjustFreq;
  73. } else {
  74. vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  75. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  76. ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  77. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  78. }
  79. vcoFreqPll2Hz =
  80. chipcHw_XTAL_FREQ_Hz *
  81. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  82. ((pChipcHw->PLLPreDivider2 & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  83. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  84. switch (clock) {
  85. case chipcHw_CLOCK_DDR:
  86. pPLLReg = &pChipcHw->DDRClock;
  87. vcoHz = vcoFreqPll1Hz;
  88. break;
  89. case chipcHw_CLOCK_ARM:
  90. pPLLReg = &pChipcHw->ARMClock;
  91. vcoHz = vcoFreqPll1Hz;
  92. break;
  93. case chipcHw_CLOCK_ESW:
  94. pPLLReg = &pChipcHw->ESWClock;
  95. vcoHz = vcoFreqPll1Hz;
  96. break;
  97. case chipcHw_CLOCK_VPM:
  98. pPLLReg = &pChipcHw->VPMClock;
  99. vcoHz = vcoFreqPll1Hz;
  100. break;
  101. case chipcHw_CLOCK_ESW125:
  102. pPLLReg = &pChipcHw->ESW125Clock;
  103. vcoHz = vcoFreqPll1Hz;
  104. break;
  105. case chipcHw_CLOCK_UART:
  106. pPLLReg = &pChipcHw->UARTClock;
  107. vcoHz = vcoFreqPll1Hz;
  108. break;
  109. case chipcHw_CLOCK_SDIO0:
  110. pPLLReg = &pChipcHw->SDIO0Clock;
  111. vcoHz = vcoFreqPll1Hz;
  112. break;
  113. case chipcHw_CLOCK_SDIO1:
  114. pPLLReg = &pChipcHw->SDIO1Clock;
  115. vcoHz = vcoFreqPll1Hz;
  116. break;
  117. case chipcHw_CLOCK_SPI:
  118. pPLLReg = &pChipcHw->SPIClock;
  119. vcoHz = vcoFreqPll1Hz;
  120. break;
  121. case chipcHw_CLOCK_ETM:
  122. pPLLReg = &pChipcHw->ETMClock;
  123. vcoHz = vcoFreqPll1Hz;
  124. break;
  125. case chipcHw_CLOCK_USB:
  126. pPLLReg = &pChipcHw->USBClock;
  127. vcoHz = vcoFreqPll2Hz;
  128. break;
  129. case chipcHw_CLOCK_LCD:
  130. pPLLReg = &pChipcHw->LCDClock;
  131. vcoHz = vcoFreqPll2Hz;
  132. break;
  133. case chipcHw_CLOCK_APM:
  134. pPLLReg = &pChipcHw->APMClock;
  135. vcoHz = vcoFreqPll2Hz;
  136. break;
  137. case chipcHw_CLOCK_BUS:
  138. pClockCtrl = &pChipcHw->ACLKClock;
  139. pDependentClock = &pChipcHw->ARMClock;
  140. vcoHz = vcoFreqPll1Hz;
  141. dependentClockType = PLL_CLOCK;
  142. break;
  143. case chipcHw_CLOCK_OTP:
  144. pClockCtrl = &pChipcHw->OTPClock;
  145. break;
  146. case chipcHw_CLOCK_I2C:
  147. pClockCtrl = &pChipcHw->I2CClock;
  148. break;
  149. case chipcHw_CLOCK_I2S0:
  150. pClockCtrl = &pChipcHw->I2S0Clock;
  151. break;
  152. case chipcHw_CLOCK_RTBUS:
  153. pClockCtrl = &pChipcHw->RTBUSClock;
  154. pDependentClock = &pChipcHw->ACLKClock;
  155. dependentClockType = NON_PLL_CLOCK;
  156. break;
  157. case chipcHw_CLOCK_APM100:
  158. pClockCtrl = &pChipcHw->APM100Clock;
  159. pDependentClock = &pChipcHw->APMClock;
  160. vcoHz = vcoFreqPll2Hz;
  161. dependentClockType = PLL_CLOCK;
  162. break;
  163. case chipcHw_CLOCK_TSC:
  164. pClockCtrl = &pChipcHw->TSCClock;
  165. break;
  166. case chipcHw_CLOCK_LED:
  167. pClockCtrl = &pChipcHw->LEDClock;
  168. break;
  169. case chipcHw_CLOCK_I2S1:
  170. pClockCtrl = &pChipcHw->I2S1Clock;
  171. break;
  172. }
  173. if (pPLLReg) {
  174. /* Obtain PLL clock frequency */
  175. if (*pPLLReg & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) {
  176. /* Return crystal clock frequency when bypassed */
  177. return chipcHw_XTAL_FREQ_Hz;
  178. } else if (clock == chipcHw_CLOCK_DDR) {
  179. /* DDR frequency is configured in PLLDivider register */
  180. return chipcHw_divide (vcoHz, (((pChipcHw->PLLDivider & 0xFF000000) >> 24) ? ((pChipcHw->PLLDivider & 0xFF000000) >> 24) : 256));
  181. } else {
  182. /* From chip revision number B0, LCD clock is internally divided by 2 */
  183. if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) {
  184. vcoHz >>= 1;
  185. }
  186. /* Obtain PLL clock frequency using VCO dividers */
  187. return chipcHw_divide(vcoHz, ((*pPLLReg & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (*pPLLReg & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256));
  188. }
  189. } else if (pClockCtrl) {
  190. /* Obtain divider clock frequency */
  191. uint32_t div;
  192. uint32_t freq = 0;
  193. if (*pClockCtrl & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) {
  194. /* Return crystal clock frequency when bypassed */
  195. return chipcHw_XTAL_FREQ_Hz;
  196. } else if (pDependentClock) {
  197. /* Identify the dependent clock frequency */
  198. switch (dependentClockType) {
  199. case PLL_CLOCK:
  200. if (*pDependentClock & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) {
  201. /* Use crystal clock frequency when dependent PLL clock is bypassed */
  202. freq = chipcHw_XTAL_FREQ_Hz;
  203. } else {
  204. /* Obtain PLL clock frequency using VCO dividers */
  205. div = *pDependentClock & chipcHw_REG_PLL_CLOCK_MDIV_MASK;
  206. freq = div ? chipcHw_divide(vcoHz, div) : 0;
  207. }
  208. break;
  209. case NON_PLL_CLOCK:
  210. if (pDependentClock == (uint32_t *) &pChipcHw->ACLKClock) {
  211. freq = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS);
  212. } else {
  213. if (*pDependentClock & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) {
  214. /* Use crystal clock frequency when dependent divider clock is bypassed */
  215. freq = chipcHw_XTAL_FREQ_Hz;
  216. } else {
  217. /* Obtain divider clock frequency using XTAL dividers */
  218. div = *pDependentClock & chipcHw_REG_DIV_CLOCK_DIV_MASK;
  219. freq = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, (div ? div : 256));
  220. }
  221. }
  222. break;
  223. }
  224. } else {
  225. /* Dependent on crystal clock */
  226. freq = chipcHw_XTAL_FREQ_Hz;
  227. }
  228. div = *pClockCtrl & chipcHw_REG_DIV_CLOCK_DIV_MASK;
  229. return chipcHw_divide(freq, (div ? div : 256));
  230. }
  231. return 0;
  232. }
  233. /****************************************************************************/
  234. /**
  235. * @brief Set clock fequency for miscellaneous configurable clocks
  236. *
  237. * This function sets clock frequency
  238. *
  239. * @return Configured clock frequency in Hz
  240. *
  241. */
  242. /****************************************************************************/
  243. chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configurable clock */
  244. uint32_t freq /* [ IN ] Clock frequency in Hz */
  245. ) {
  246. volatile uint32_t *pPLLReg = (uint32_t *) 0x0;
  247. volatile uint32_t *pClockCtrl = (uint32_t *) 0x0;
  248. volatile uint32_t *pDependentClock = (uint32_t *) 0x0;
  249. uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */
  250. uint32_t desVcoFreqPll1Hz = 0; /* Desired VCO frequency for PLL1 in Hz */
  251. uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */
  252. uint32_t dependentClockType = 0;
  253. uint32_t vcoHz = 0;
  254. uint32_t desVcoHz = 0;
  255. /* Get VCO frequencies */
  256. if ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) {
  257. uint64_t adjustFreq = 0;
  258. vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  259. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  260. ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  261. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  262. /* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */
  263. adjustFreq = (uint64_t) chipcHw_XTAL_FREQ_Hz *
  264. (uint64_t) chipcHw_REG_PLL_DIVIDER_NDIV_f_SS *
  265. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, (chipcHw_REG_PLL_PREDIVIDER_P2 * (uint64_t) chipcHw_REG_PLL_DIVIDER_FRAC));
  266. vcoFreqPll1Hz += (uint32_t) adjustFreq;
  267. /* Desired VCO frequency */
  268. desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  269. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  270. (((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  271. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT) + 1);
  272. } else {
  273. vcoFreqPll1Hz = desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
  274. chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  275. ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  276. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  277. }
  278. vcoFreqPll2Hz = chipcHw_XTAL_FREQ_Hz * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
  279. ((pChipcHw->PLLPreDivider2 & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
  280. chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
  281. switch (clock) {
  282. case chipcHw_CLOCK_DDR:
  283. /* Configure the DDR_ctrl:BUS ratio settings */
  284. {
  285. REG_LOCAL_IRQ_SAVE;
  286. /* Dvide DDR_phy by two to obtain DDR_ctrl clock */
  287. pChipcHw->DDRClock = (pChipcHw->DDRClock & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((((freq / 2) / chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1)
  288. << chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT);
  289. REG_LOCAL_IRQ_RESTORE;
  290. }
  291. pPLLReg = &pChipcHw->DDRClock;
  292. vcoHz = vcoFreqPll1Hz;
  293. desVcoHz = desVcoFreqPll1Hz;
  294. break;
  295. case chipcHw_CLOCK_ARM:
  296. pPLLReg = &pChipcHw->ARMClock;
  297. vcoHz = vcoFreqPll1Hz;
  298. desVcoHz = desVcoFreqPll1Hz;
  299. break;
  300. case chipcHw_CLOCK_ESW:
  301. pPLLReg = &pChipcHw->ESWClock;
  302. vcoHz = vcoFreqPll1Hz;
  303. desVcoHz = desVcoFreqPll1Hz;
  304. break;
  305. case chipcHw_CLOCK_VPM:
  306. /* Configure the VPM:BUS ratio settings */
  307. {
  308. REG_LOCAL_IRQ_SAVE;
  309. pChipcHw->VPMClock = (pChipcHw->VPMClock & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((chipcHw_divide (freq, chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1)
  310. << chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT);
  311. REG_LOCAL_IRQ_RESTORE;
  312. }
  313. pPLLReg = &pChipcHw->VPMClock;
  314. vcoHz = vcoFreqPll1Hz;
  315. desVcoHz = desVcoFreqPll1Hz;
  316. break;
  317. case chipcHw_CLOCK_ESW125:
  318. pPLLReg = &pChipcHw->ESW125Clock;
  319. vcoHz = vcoFreqPll1Hz;
  320. desVcoHz = desVcoFreqPll1Hz;
  321. break;
  322. case chipcHw_CLOCK_UART:
  323. pPLLReg = &pChipcHw->UARTClock;
  324. vcoHz = vcoFreqPll1Hz;
  325. desVcoHz = desVcoFreqPll1Hz;
  326. break;
  327. case chipcHw_CLOCK_SDIO0:
  328. pPLLReg = &pChipcHw->SDIO0Clock;
  329. vcoHz = vcoFreqPll1Hz;
  330. desVcoHz = desVcoFreqPll1Hz;
  331. break;
  332. case chipcHw_CLOCK_SDIO1:
  333. pPLLReg = &pChipcHw->SDIO1Clock;
  334. vcoHz = vcoFreqPll1Hz;
  335. desVcoHz = desVcoFreqPll1Hz;
  336. break;
  337. case chipcHw_CLOCK_SPI:
  338. pPLLReg = &pChipcHw->SPIClock;
  339. vcoHz = vcoFreqPll1Hz;
  340. desVcoHz = desVcoFreqPll1Hz;
  341. break;
  342. case chipcHw_CLOCK_ETM:
  343. pPLLReg = &pChipcHw->ETMClock;
  344. vcoHz = vcoFreqPll1Hz;
  345. desVcoHz = desVcoFreqPll1Hz;
  346. break;
  347. case chipcHw_CLOCK_USB:
  348. pPLLReg = &pChipcHw->USBClock;
  349. vcoHz = vcoFreqPll2Hz;
  350. desVcoHz = vcoFreqPll2Hz;
  351. break;
  352. case chipcHw_CLOCK_LCD:
  353. pPLLReg = &pChipcHw->LCDClock;
  354. vcoHz = vcoFreqPll2Hz;
  355. desVcoHz = vcoFreqPll2Hz;
  356. break;
  357. case chipcHw_CLOCK_APM:
  358. pPLLReg = &pChipcHw->APMClock;
  359. vcoHz = vcoFreqPll2Hz;
  360. desVcoHz = vcoFreqPll2Hz;
  361. break;
  362. case chipcHw_CLOCK_BUS:
  363. pClockCtrl = &pChipcHw->ACLKClock;
  364. pDependentClock = &pChipcHw->ARMClock;
  365. vcoHz = vcoFreqPll1Hz;
  366. desVcoHz = desVcoFreqPll1Hz;
  367. dependentClockType = PLL_CLOCK;
  368. break;
  369. case chipcHw_CLOCK_OTP:
  370. pClockCtrl = &pChipcHw->OTPClock;
  371. break;
  372. case chipcHw_CLOCK_I2C:
  373. pClockCtrl = &pChipcHw->I2CClock;
  374. break;
  375. case chipcHw_CLOCK_I2S0:
  376. pClockCtrl = &pChipcHw->I2S0Clock;
  377. break;
  378. case chipcHw_CLOCK_RTBUS:
  379. pClockCtrl = &pChipcHw->RTBUSClock;
  380. pDependentClock = &pChipcHw->ACLKClock;
  381. dependentClockType = NON_PLL_CLOCK;
  382. break;
  383. case chipcHw_CLOCK_APM100:
  384. pClockCtrl = &pChipcHw->APM100Clock;
  385. pDependentClock = &pChipcHw->APMClock;
  386. vcoHz = vcoFreqPll2Hz;
  387. desVcoHz = vcoFreqPll2Hz;
  388. dependentClockType = PLL_CLOCK;
  389. break;
  390. case chipcHw_CLOCK_TSC:
  391. pClockCtrl = &pChipcHw->TSCClock;
  392. break;
  393. case chipcHw_CLOCK_LED:
  394. pClockCtrl = &pChipcHw->LEDClock;
  395. break;
  396. case chipcHw_CLOCK_I2S1:
  397. pClockCtrl = &pChipcHw->I2S1Clock;
  398. break;
  399. }
  400. if (pPLLReg) {
  401. /* Select XTAL as bypass source */
  402. reg32_modify_and(pPLLReg, ~chipcHw_REG_PLL_CLOCK_SOURCE_GPIO);
  403. reg32_modify_or(pPLLReg, chipcHw_REG_PLL_CLOCK_BYPASS_SELECT);
  404. /* For DDR settings use only the PLL divider clock */
  405. if (pPLLReg == &pChipcHw->DDRClock) {
  406. /* Set M1DIV for PLL1, which controls the DDR clock */
  407. reg32_write(&pChipcHw->PLLDivider, (pChipcHw->PLLDivider & 0x00FFFFFF) | ((chipcHw_REG_PLL_DIVIDER_MDIV (desVcoHz, freq)) << 24));
  408. /* Calculate expected frequency */
  409. freq = chipcHw_divide(vcoHz, (((pChipcHw->PLLDivider & 0xFF000000) >> 24) ? ((pChipcHw->PLLDivider & 0xFF000000) >> 24) : 256));
  410. } else {
  411. /* From chip revision number B0, LCD clock is internally divided by 2 */
  412. if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) {
  413. desVcoHz >>= 1;
  414. vcoHz >>= 1;
  415. }
  416. /* Set MDIV to change the frequency */
  417. reg32_modify_and(pPLLReg, ~(chipcHw_REG_PLL_CLOCK_MDIV_MASK));
  418. reg32_modify_or(pPLLReg, chipcHw_REG_PLL_DIVIDER_MDIV(desVcoHz, freq));
  419. /* Calculate expected frequency */
  420. freq = chipcHw_divide(vcoHz, ((*(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (*(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256));
  421. }
  422. /* Wait for for atleast 200ns as per the protocol to change frequency */
  423. udelay(1);
  424. /* Do not bypass */
  425. reg32_modify_and(pPLLReg, ~chipcHw_REG_PLL_CLOCK_BYPASS_SELECT);
  426. /* Return the configured frequency */
  427. return freq;
  428. } else if (pClockCtrl) {
  429. uint32_t divider = 0;
  430. /* Divider clock should not be bypassed */
  431. reg32_modify_and(pClockCtrl,
  432. ~chipcHw_REG_DIV_CLOCK_BYPASS_SELECT);
  433. /* Identify the clock source */
  434. if (pDependentClock) {
  435. switch (dependentClockType) {
  436. case PLL_CLOCK:
  437. divider = chipcHw_divide(chipcHw_divide (desVcoHz, (*pDependentClock & chipcHw_REG_PLL_CLOCK_MDIV_MASK)), freq);
  438. break;
  439. case NON_PLL_CLOCK:
  440. {
  441. uint32_t sourceClock = 0;
  442. if (pDependentClock == (uint32_t *) &pChipcHw->ACLKClock) {
  443. sourceClock = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS);
  444. } else {
  445. uint32_t div = *pDependentClock & chipcHw_REG_DIV_CLOCK_DIV_MASK;
  446. sourceClock = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, ((div) ? div : 256));
  447. }
  448. divider = chipcHw_divide(sourceClock, freq);
  449. }
  450. break;
  451. }
  452. } else {
  453. divider = chipcHw_divide(chipcHw_XTAL_FREQ_Hz, freq);
  454. }
  455. if (divider) {
  456. REG_LOCAL_IRQ_SAVE;
  457. /* Set the divider to obtain the required frequency */
  458. *pClockCtrl = (*pClockCtrl & (~chipcHw_REG_DIV_CLOCK_DIV_MASK)) | (((divider > 256) ? chipcHw_REG_DIV_CLOCK_DIV_256 : divider) & chipcHw_REG_DIV_CLOCK_DIV_MASK);
  459. REG_LOCAL_IRQ_RESTORE;
  460. return freq;
  461. }
  462. }
  463. return 0;
  464. }
  465. EXPORT_SYMBOL(chipcHw_setClockFrequency);
  466. /****************************************************************************/
  467. /**
  468. * @brief Set VPM clock in sync with BUS clock for Chip Rev #A0
  469. *
  470. * This function does the phase adjustment between VPM and BUS clock
  471. *
  472. * @return >= 0 : On success (# of adjustment required)
  473. * -1 : On failure
  474. *
  475. */
  476. /****************************************************************************/
  477. static int vpmPhaseAlignA0(void)
  478. {
  479. uint32_t phaseControl;
  480. uint32_t phaseValue;
  481. uint32_t prevPhaseComp;
  482. int iter = 0;
  483. int adjustCount = 0;
  484. int count = 0;
  485. for (iter = 0; (iter < MAX_PHASE_ALIGN_ATTEMPTS) && (adjustCount < MAX_PHASE_ADJUST_COUNT); iter++) {
  486. phaseControl = (pChipcHw->VPMClock & chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT;
  487. phaseValue = 0;
  488. prevPhaseComp = 0;
  489. /* Step 1: Look for falling PH_COMP transition */
  490. /* Read the contents of VPM Clock resgister */
  491. phaseValue = pChipcHw->VPMClock;
  492. do {
  493. /* Store previous value of phase comparator */
  494. prevPhaseComp = phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP;
  495. /* Change the value of PH_CTRL. */
  496. reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  497. /* Wait atleast 20 ns */
  498. udelay(1);
  499. /* Toggle the LOAD_CH after phase control is written. */
  500. pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
  501. /* Read the contents of VPM Clock resgister. */
  502. phaseValue = pChipcHw->VPMClock;
  503. if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) {
  504. phaseControl = (0x3F & (phaseControl - 1));
  505. } else {
  506. /* Increment to the Phase count value for next write, if Phase is not stable. */
  507. phaseControl = (0x3F & (phaseControl + 1));
  508. }
  509. /* Count number of adjustment made */
  510. adjustCount++;
  511. } while (((prevPhaseComp == (phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP)) || /* Look for a transition */
  512. ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) != 0x0)) && /* Look for a falling edge */
  513. (adjustCount < MAX_PHASE_ADJUST_COUNT) /* Do not exceed the limit while trying */
  514. );
  515. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  516. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  517. return -1;
  518. }
  519. /* Step 2: Keep moving forward to make sure falling PH_COMP transition was valid */
  520. for (count = 0; (count < 5) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) {
  521. phaseControl = (0x3F & (phaseControl + 1));
  522. reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  523. /* Wait atleast 20 ns */
  524. udelay(1);
  525. /* Toggle the LOAD_CH after phase control is written. */
  526. pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
  527. phaseValue = pChipcHw->VPMClock;
  528. /* Count number of adjustment made */
  529. adjustCount++;
  530. }
  531. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  532. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  533. return -1;
  534. }
  535. if (count != 5) {
  536. /* Detected false transition */
  537. continue;
  538. }
  539. /* Step 3: Keep moving backward to make sure falling PH_COMP transition was stable */
  540. for (count = 0; (count < 3) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) {
  541. phaseControl = (0x3F & (phaseControl - 1));
  542. reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  543. /* Wait atleast 20 ns */
  544. udelay(1);
  545. /* Toggle the LOAD_CH after phase control is written. */
  546. pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
  547. phaseValue = pChipcHw->VPMClock;
  548. /* Count number of adjustment made */
  549. adjustCount++;
  550. }
  551. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  552. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  553. return -1;
  554. }
  555. if (count != 3) {
  556. /* Detected noisy transition */
  557. continue;
  558. }
  559. /* Step 4: Keep moving backward before the original transition took place. */
  560. for (count = 0; (count < 5); count++) {
  561. phaseControl = (0x3F & (phaseControl - 1));
  562. reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  563. /* Wait atleast 20 ns */
  564. udelay(1);
  565. /* Toggle the LOAD_CH after phase control is written. */
  566. pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
  567. phaseValue = pChipcHw->VPMClock;
  568. /* Count number of adjustment made */
  569. adjustCount++;
  570. }
  571. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  572. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  573. return -1;
  574. }
  575. if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0) {
  576. /* Detected false transition */
  577. continue;
  578. }
  579. /* Step 5: Re discover the valid transition */
  580. do {
  581. /* Store previous value of phase comparator */
  582. prevPhaseComp = phaseValue;
  583. /* Change the value of PH_CTRL. */
  584. reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  585. /* Wait atleast 20 ns */
  586. udelay(1);
  587. /* Toggle the LOAD_CH after phase control is written. */
  588. pChipcHw->VPMClock ^=
  589. chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
  590. /* Read the contents of VPM Clock resgister. */
  591. phaseValue = pChipcHw->VPMClock;
  592. if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) {
  593. phaseControl = (0x3F & (phaseControl - 1));
  594. } else {
  595. /* Increment to the Phase count value for next write, if Phase is not stable. */
  596. phaseControl = (0x3F & (phaseControl + 1));
  597. }
  598. /* Count number of adjustment made */
  599. adjustCount++;
  600. } while (((prevPhaseComp == (phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP)) || ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) != 0x0)) && (adjustCount < MAX_PHASE_ADJUST_COUNT));
  601. if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
  602. /* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
  603. return -1;
  604. } else {
  605. /* Valid phase must have detected */
  606. break;
  607. }
  608. }
  609. /* For VPM Phase should be perfectly aligned. */
  610. phaseControl = (((pChipcHw->VPMClock >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT) - 1) & 0x3F);
  611. {
  612. REG_LOCAL_IRQ_SAVE;
  613. pChipcHw->VPMClock = (pChipcHw->VPMClock & ~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT);
  614. /* Load new phase value */
  615. pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
  616. REG_LOCAL_IRQ_RESTORE;
  617. }
  618. /* Return the status */
  619. return (int)adjustCount;
  620. }
  621. /****************************************************************************/
  622. /**
  623. * @brief Set VPM clock in sync with BUS clock
  624. *
  625. * This function does the phase adjustment between VPM and BUS clock
  626. *
  627. * @return >= 0 : On success (# of adjustment required)
  628. * -1 : On failure
  629. *
  630. */
  631. /****************************************************************************/
  632. int chipcHw_vpmPhaseAlign(void)
  633. {
  634. if (chipcHw_getChipRevisionNumber() == chipcHw_REV_NUMBER_A0) {
  635. return vpmPhaseAlignA0();
  636. } else {
  637. uint32_t phaseControl = chipcHw_getVpmPhaseControl();
  638. uint32_t phaseValue = 0;
  639. int adjustCount = 0;
  640. /* Disable VPM access */
  641. pChipcHw->Spare1 &= ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE;
  642. /* Disable HW VPM phase alignment */
  643. chipcHw_vpmHwPhaseAlignDisable();
  644. /* Enable SW VPM phase alignment */
  645. chipcHw_vpmSwPhaseAlignEnable();
  646. /* Adjust VPM phase */
  647. while (adjustCount < MAX_PHASE_ADJUST_COUNT) {
  648. phaseValue = chipcHw_getVpmHwPhaseAlignStatus();
  649. /* Adjust phase control value */
  650. if (phaseValue > 0xF) {
  651. /* Increment phase control value */
  652. phaseControl++;
  653. } else if (phaseValue < 0xF) {
  654. /* Decrement phase control value */
  655. phaseControl--;
  656. } else {
  657. /* Enable VPM access */
  658. pChipcHw->Spare1 |= chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE;
  659. /* Return adjust count */
  660. return adjustCount;
  661. }
  662. /* Change the value of PH_CTRL. */
  663. reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
  664. /* Wait atleast 20 ns */
  665. udelay(1);
  666. /* Toggle the LOAD_CH after phase control is written. */
  667. pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
  668. /* Count adjustment */
  669. adjustCount++;
  670. }
  671. }
  672. /* Disable VPM access */
  673. pChipcHw->Spare1 &= ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE;
  674. return -1;
  675. }
  676. /****************************************************************************/
  677. /**
  678. * @brief Local Divide function
  679. *
  680. * This function does the divide
  681. *
  682. * @return divide value
  683. *
  684. */
  685. /****************************************************************************/
  686. static int chipcHw_divide(int num, int denom)
  687. {
  688. int r;
  689. int t = 1;
  690. /* Shift denom and t up to the largest value to optimize algorithm */
  691. /* t contains the units of each divide */
  692. while ((denom & 0x40000000) == 0) { /* fails if denom=0 */
  693. denom = denom << 1;
  694. t = t << 1;
  695. }
  696. /* Intialize the result */
  697. r = 0;
  698. do {
  699. /* Determine if there exists a positive remainder */
  700. if ((num - denom) >= 0) {
  701. /* Accumlate t to the result and calculate a new remainder */
  702. num = num - denom;
  703. r = r + t;
  704. }
  705. /* Continue to shift denom and shift t down to 0 */
  706. denom = denom >> 1;
  707. t = t >> 1;
  708. } while (t != 0);
  709. return r;
  710. }