time.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /*
  2. * linux/arch/arm/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994-2001 Russell King
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This file contains the ARM-specific time handling details:
  12. * reading the RTC at bootup, etc...
  13. *
  14. * 1994-07-02 Alan Modra
  15. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  16. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  17. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/time.h>
  23. #include <linux/init.h>
  24. #include <linux/sched.h>
  25. #include <linux/smp.h>
  26. #include <linux/timex.h>
  27. #include <linux/errno.h>
  28. #include <linux/profile.h>
  29. #include <linux/sysdev.h>
  30. #include <linux/timer.h>
  31. #include <linux/irq.h>
  32. #include <linux/mc146818rtc.h>
  33. #include <asm/leds.h>
  34. #include <asm/thread_info.h>
  35. #include <asm/stacktrace.h>
  36. #include <asm/mach/time.h>
  37. /*
  38. * Our system timer.
  39. */
  40. struct sys_timer *system_timer;
  41. #if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE)
  42. /* this needs a better home */
  43. DEFINE_SPINLOCK(rtc_lock);
  44. #ifdef CONFIG_RTC_DRV_CMOS_MODULE
  45. EXPORT_SYMBOL(rtc_lock);
  46. #endif
  47. #endif /* pc-style 'CMOS' RTC support */
  48. /* change this if you have some constant time drift */
  49. #define USECS_PER_JIFFY (1000000/HZ)
  50. #ifdef CONFIG_SMP
  51. unsigned long profile_pc(struct pt_regs *regs)
  52. {
  53. struct stackframe frame;
  54. if (!in_lock_functions(regs->ARM_pc))
  55. return regs->ARM_pc;
  56. frame.fp = regs->ARM_fp;
  57. frame.sp = regs->ARM_sp;
  58. frame.lr = regs->ARM_lr;
  59. frame.pc = regs->ARM_pc;
  60. do {
  61. int ret = unwind_frame(&frame);
  62. if (ret < 0)
  63. return 0;
  64. } while (in_lock_functions(frame.pc));
  65. return frame.pc;
  66. }
  67. EXPORT_SYMBOL(profile_pc);
  68. #endif
  69. /*
  70. * hook for setting the RTC's idea of the current time.
  71. */
  72. int (*set_rtc)(void);
  73. #ifndef CONFIG_GENERIC_TIME
  74. static unsigned long dummy_gettimeoffset(void)
  75. {
  76. return 0;
  77. }
  78. #endif
  79. static unsigned long next_rtc_update;
  80. /*
  81. * If we have an externally synchronized linux clock, then update
  82. * CMOS clock accordingly every ~11 minutes. set_rtc() has to be
  83. * called as close as possible to 500 ms before the new second
  84. * starts.
  85. */
  86. static inline void do_set_rtc(void)
  87. {
  88. if (!ntp_synced() || set_rtc == NULL)
  89. return;
  90. if (next_rtc_update &&
  91. time_before((unsigned long)xtime.tv_sec, next_rtc_update))
  92. return;
  93. if (xtime.tv_nsec < 500000000 - ((unsigned) tick_nsec >> 1) &&
  94. xtime.tv_nsec >= 500000000 + ((unsigned) tick_nsec >> 1))
  95. return;
  96. if (set_rtc())
  97. /*
  98. * rtc update failed. Try again in 60s
  99. */
  100. next_rtc_update = xtime.tv_sec + 60;
  101. else
  102. next_rtc_update = xtime.tv_sec + 660;
  103. }
  104. #ifdef CONFIG_LEDS
  105. static void dummy_leds_event(led_event_t evt)
  106. {
  107. }
  108. void (*leds_event)(led_event_t) = dummy_leds_event;
  109. struct leds_evt_name {
  110. const char name[8];
  111. int on;
  112. int off;
  113. };
  114. static const struct leds_evt_name evt_names[] = {
  115. { "amber", led_amber_on, led_amber_off },
  116. { "blue", led_blue_on, led_blue_off },
  117. { "green", led_green_on, led_green_off },
  118. { "red", led_red_on, led_red_off },
  119. };
  120. static ssize_t leds_store(struct sys_device *dev,
  121. struct sysdev_attribute *attr,
  122. const char *buf, size_t size)
  123. {
  124. int ret = -EINVAL, len = strcspn(buf, " ");
  125. if (len > 0 && buf[len] == '\0')
  126. len--;
  127. if (strncmp(buf, "claim", len) == 0) {
  128. leds_event(led_claim);
  129. ret = size;
  130. } else if (strncmp(buf, "release", len) == 0) {
  131. leds_event(led_release);
  132. ret = size;
  133. } else {
  134. int i;
  135. for (i = 0; i < ARRAY_SIZE(evt_names); i++) {
  136. if (strlen(evt_names[i].name) != len ||
  137. strncmp(buf, evt_names[i].name, len) != 0)
  138. continue;
  139. if (strncmp(buf+len, " on", 3) == 0) {
  140. leds_event(evt_names[i].on);
  141. ret = size;
  142. } else if (strncmp(buf+len, " off", 4) == 0) {
  143. leds_event(evt_names[i].off);
  144. ret = size;
  145. }
  146. break;
  147. }
  148. }
  149. return ret;
  150. }
  151. static SYSDEV_ATTR(event, 0200, NULL, leds_store);
  152. static int leds_suspend(struct sys_device *dev, pm_message_t state)
  153. {
  154. leds_event(led_stop);
  155. return 0;
  156. }
  157. static int leds_resume(struct sys_device *dev)
  158. {
  159. leds_event(led_start);
  160. return 0;
  161. }
  162. static int leds_shutdown(struct sys_device *dev)
  163. {
  164. leds_event(led_halted);
  165. return 0;
  166. }
  167. static struct sysdev_class leds_sysclass = {
  168. .name = "leds",
  169. .shutdown = leds_shutdown,
  170. .suspend = leds_suspend,
  171. .resume = leds_resume,
  172. };
  173. static struct sys_device leds_device = {
  174. .id = 0,
  175. .cls = &leds_sysclass,
  176. };
  177. static int __init leds_init(void)
  178. {
  179. int ret;
  180. ret = sysdev_class_register(&leds_sysclass);
  181. if (ret == 0)
  182. ret = sysdev_register(&leds_device);
  183. if (ret == 0)
  184. ret = sysdev_create_file(&leds_device, &attr_event);
  185. return ret;
  186. }
  187. device_initcall(leds_init);
  188. EXPORT_SYMBOL(leds_event);
  189. #endif
  190. #ifdef CONFIG_LEDS_TIMER
  191. static inline void do_leds(void)
  192. {
  193. static unsigned int count = HZ/2;
  194. if (--count == 0) {
  195. count = HZ/2;
  196. leds_event(led_timer);
  197. }
  198. }
  199. #else
  200. #define do_leds()
  201. #endif
  202. #ifndef CONFIG_GENERIC_TIME
  203. void do_gettimeofday(struct timeval *tv)
  204. {
  205. unsigned long flags;
  206. unsigned long seq;
  207. unsigned long usec, sec;
  208. do {
  209. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  210. usec = system_timer->offset();
  211. sec = xtime.tv_sec;
  212. usec += xtime.tv_nsec / 1000;
  213. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  214. /* usec may have gone up a lot: be safe */
  215. while (usec >= 1000000) {
  216. usec -= 1000000;
  217. sec++;
  218. }
  219. tv->tv_sec = sec;
  220. tv->tv_usec = usec;
  221. }
  222. EXPORT_SYMBOL(do_gettimeofday);
  223. int do_settimeofday(struct timespec *tv)
  224. {
  225. time_t wtm_sec, sec = tv->tv_sec;
  226. long wtm_nsec, nsec = tv->tv_nsec;
  227. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  228. return -EINVAL;
  229. write_seqlock_irq(&xtime_lock);
  230. /*
  231. * This is revolting. We need to set "xtime" correctly. However, the
  232. * value in this location is the value at the most recent update of
  233. * wall time. Discover what correction gettimeofday() would have
  234. * done, and then undo it!
  235. */
  236. nsec -= system_timer->offset() * NSEC_PER_USEC;
  237. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  238. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  239. set_normalized_timespec(&xtime, sec, nsec);
  240. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  241. ntp_clear();
  242. write_sequnlock_irq(&xtime_lock);
  243. clock_was_set();
  244. return 0;
  245. }
  246. EXPORT_SYMBOL(do_settimeofday);
  247. #endif /* !CONFIG_GENERIC_TIME */
  248. /**
  249. * save_time_delta - Save the offset between system time and RTC time
  250. * @delta: pointer to timespec to store delta
  251. * @rtc: pointer to timespec for current RTC time
  252. *
  253. * Return a delta between the system time and the RTC time, such
  254. * that system time can be restored later with restore_time_delta()
  255. */
  256. void save_time_delta(struct timespec *delta, struct timespec *rtc)
  257. {
  258. set_normalized_timespec(delta,
  259. xtime.tv_sec - rtc->tv_sec,
  260. xtime.tv_nsec - rtc->tv_nsec);
  261. }
  262. EXPORT_SYMBOL(save_time_delta);
  263. /**
  264. * restore_time_delta - Restore the current system time
  265. * @delta: delta returned by save_time_delta()
  266. * @rtc: pointer to timespec for current RTC time
  267. */
  268. void restore_time_delta(struct timespec *delta, struct timespec *rtc)
  269. {
  270. struct timespec ts;
  271. set_normalized_timespec(&ts,
  272. delta->tv_sec + rtc->tv_sec,
  273. delta->tv_nsec + rtc->tv_nsec);
  274. do_settimeofday(&ts);
  275. }
  276. EXPORT_SYMBOL(restore_time_delta);
  277. #ifndef CONFIG_GENERIC_CLOCKEVENTS
  278. /*
  279. * Kernel system timer support.
  280. */
  281. void timer_tick(void)
  282. {
  283. profile_tick(CPU_PROFILING);
  284. do_leds();
  285. do_set_rtc();
  286. write_seqlock(&xtime_lock);
  287. do_timer(1);
  288. write_sequnlock(&xtime_lock);
  289. #ifndef CONFIG_SMP
  290. update_process_times(user_mode(get_irq_regs()));
  291. #endif
  292. }
  293. #endif
  294. #if defined(CONFIG_PM) && !defined(CONFIG_GENERIC_CLOCKEVENTS)
  295. static int timer_suspend(struct sys_device *dev, pm_message_t state)
  296. {
  297. struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
  298. if (timer->suspend != NULL)
  299. timer->suspend();
  300. return 0;
  301. }
  302. static int timer_resume(struct sys_device *dev)
  303. {
  304. struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
  305. if (timer->resume != NULL)
  306. timer->resume();
  307. return 0;
  308. }
  309. #else
  310. #define timer_suspend NULL
  311. #define timer_resume NULL
  312. #endif
  313. static struct sysdev_class timer_sysclass = {
  314. .name = "timer",
  315. .suspend = timer_suspend,
  316. .resume = timer_resume,
  317. };
  318. static int __init timer_init_sysfs(void)
  319. {
  320. int ret = sysdev_class_register(&timer_sysclass);
  321. if (ret == 0) {
  322. system_timer->dev.cls = &timer_sysclass;
  323. ret = sysdev_register(&system_timer->dev);
  324. }
  325. return ret;
  326. }
  327. device_initcall(timer_init_sysfs);
  328. void __init time_init(void)
  329. {
  330. #ifndef CONFIG_GENERIC_TIME
  331. if (system_timer->offset == NULL)
  332. system_timer->offset = dummy_gettimeoffset;
  333. #endif
  334. system_timer->init();
  335. }