kprobes.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. /*
  2. * arch/arm/kernel/kprobes.c
  3. *
  4. * Kprobes on ARM
  5. *
  6. * Abhishek Sagar <sagar.abhishek@gmail.com>
  7. * Copyright (C) 2006, 2007 Motorola Inc.
  8. *
  9. * Nicolas Pitre <nico@marvell.com>
  10. * Copyright (C) 2007 Marvell Ltd.
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/module.h>
  24. #include <linux/stop_machine.h>
  25. #include <linux/stringify.h>
  26. #include <asm/traps.h>
  27. #include <asm/cacheflush.h>
  28. #define MIN_STACK_SIZE(addr) \
  29. min((unsigned long)MAX_STACK_SIZE, \
  30. (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
  31. #define flush_insns(addr, cnt) \
  32. flush_icache_range((unsigned long)(addr), \
  33. (unsigned long)(addr) + \
  34. sizeof(kprobe_opcode_t) * (cnt))
  35. /* Used as a marker in ARM_pc to note when we're in a jprobe. */
  36. #define JPROBE_MAGIC_ADDR 0xffffffff
  37. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  38. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  39. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  40. {
  41. kprobe_opcode_t insn;
  42. kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
  43. unsigned long addr = (unsigned long)p->addr;
  44. int is;
  45. if (addr & 0x3 || in_exception_text(addr))
  46. return -EINVAL;
  47. insn = *p->addr;
  48. p->opcode = insn;
  49. p->ainsn.insn = tmp_insn;
  50. switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
  51. case INSN_REJECTED: /* not supported */
  52. return -EINVAL;
  53. case INSN_GOOD: /* instruction uses slot */
  54. p->ainsn.insn = get_insn_slot();
  55. if (!p->ainsn.insn)
  56. return -ENOMEM;
  57. for (is = 0; is < MAX_INSN_SIZE; ++is)
  58. p->ainsn.insn[is] = tmp_insn[is];
  59. flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
  60. break;
  61. case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
  62. p->ainsn.insn = NULL;
  63. break;
  64. }
  65. return 0;
  66. }
  67. void __kprobes arch_arm_kprobe(struct kprobe *p)
  68. {
  69. *p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
  70. flush_insns(p->addr, 1);
  71. }
  72. /*
  73. * The actual disarming is done here on each CPU and synchronized using
  74. * stop_machine. This synchronization is necessary on SMP to avoid removing
  75. * a probe between the moment the 'Undefined Instruction' exception is raised
  76. * and the moment the exception handler reads the faulting instruction from
  77. * memory.
  78. */
  79. int __kprobes __arch_disarm_kprobe(void *p)
  80. {
  81. struct kprobe *kp = p;
  82. *kp->addr = kp->opcode;
  83. flush_insns(kp->addr, 1);
  84. return 0;
  85. }
  86. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  87. {
  88. stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
  89. }
  90. void __kprobes arch_remove_kprobe(struct kprobe *p)
  91. {
  92. if (p->ainsn.insn) {
  93. free_insn_slot(p->ainsn.insn, 0);
  94. p->ainsn.insn = NULL;
  95. }
  96. }
  97. static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  98. {
  99. kcb->prev_kprobe.kp = kprobe_running();
  100. kcb->prev_kprobe.status = kcb->kprobe_status;
  101. }
  102. static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  103. {
  104. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  105. kcb->kprobe_status = kcb->prev_kprobe.status;
  106. }
  107. static void __kprobes set_current_kprobe(struct kprobe *p)
  108. {
  109. __get_cpu_var(current_kprobe) = p;
  110. }
  111. static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
  112. struct kprobe_ctlblk *kcb)
  113. {
  114. regs->ARM_pc += 4;
  115. p->ainsn.insn_handler(p, regs);
  116. }
  117. /*
  118. * Called with IRQs disabled. IRQs must remain disabled from that point
  119. * all the way until processing this kprobe is complete. The current
  120. * kprobes implementation cannot process more than one nested level of
  121. * kprobe, and that level is reserved for user kprobe handlers, so we can't
  122. * risk encountering a new kprobe in an interrupt handler.
  123. */
  124. void __kprobes kprobe_handler(struct pt_regs *regs)
  125. {
  126. struct kprobe *p, *cur;
  127. struct kprobe_ctlblk *kcb;
  128. kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
  129. kcb = get_kprobe_ctlblk();
  130. cur = kprobe_running();
  131. p = get_kprobe(addr);
  132. if (p) {
  133. if (cur) {
  134. /* Kprobe is pending, so we're recursing. */
  135. switch (kcb->kprobe_status) {
  136. case KPROBE_HIT_ACTIVE:
  137. case KPROBE_HIT_SSDONE:
  138. /* A pre- or post-handler probe got us here. */
  139. kprobes_inc_nmissed_count(p);
  140. save_previous_kprobe(kcb);
  141. set_current_kprobe(p);
  142. kcb->kprobe_status = KPROBE_REENTER;
  143. singlestep(p, regs, kcb);
  144. restore_previous_kprobe(kcb);
  145. break;
  146. default:
  147. /* impossible cases */
  148. BUG();
  149. }
  150. } else {
  151. set_current_kprobe(p);
  152. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  153. /*
  154. * If we have no pre-handler or it returned 0, we
  155. * continue with normal processing. If we have a
  156. * pre-handler and it returned non-zero, it prepped
  157. * for calling the break_handler below on re-entry,
  158. * so get out doing nothing more here.
  159. */
  160. if (!p->pre_handler || !p->pre_handler(p, regs)) {
  161. kcb->kprobe_status = KPROBE_HIT_SS;
  162. singlestep(p, regs, kcb);
  163. if (p->post_handler) {
  164. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  165. p->post_handler(p, regs, 0);
  166. }
  167. reset_current_kprobe();
  168. }
  169. }
  170. } else if (cur) {
  171. /* We probably hit a jprobe. Call its break handler. */
  172. if (cur->break_handler && cur->break_handler(cur, regs)) {
  173. kcb->kprobe_status = KPROBE_HIT_SS;
  174. singlestep(cur, regs, kcb);
  175. if (cur->post_handler) {
  176. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  177. cur->post_handler(cur, regs, 0);
  178. }
  179. }
  180. reset_current_kprobe();
  181. } else {
  182. /*
  183. * The probe was removed and a race is in progress.
  184. * There is nothing we can do about it. Let's restart
  185. * the instruction. By the time we can restart, the
  186. * real instruction will be there.
  187. */
  188. }
  189. }
  190. static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
  191. {
  192. unsigned long flags;
  193. local_irq_save(flags);
  194. kprobe_handler(regs);
  195. local_irq_restore(flags);
  196. return 0;
  197. }
  198. int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
  199. {
  200. struct kprobe *cur = kprobe_running();
  201. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  202. switch (kcb->kprobe_status) {
  203. case KPROBE_HIT_SS:
  204. case KPROBE_REENTER:
  205. /*
  206. * We are here because the instruction being single
  207. * stepped caused a page fault. We reset the current
  208. * kprobe and the PC to point back to the probe address
  209. * and allow the page fault handler to continue as a
  210. * normal page fault.
  211. */
  212. regs->ARM_pc = (long)cur->addr;
  213. if (kcb->kprobe_status == KPROBE_REENTER) {
  214. restore_previous_kprobe(kcb);
  215. } else {
  216. reset_current_kprobe();
  217. }
  218. break;
  219. case KPROBE_HIT_ACTIVE:
  220. case KPROBE_HIT_SSDONE:
  221. /*
  222. * We increment the nmissed count for accounting,
  223. * we can also use npre/npostfault count for accounting
  224. * these specific fault cases.
  225. */
  226. kprobes_inc_nmissed_count(cur);
  227. /*
  228. * We come here because instructions in the pre/post
  229. * handler caused the page_fault, this could happen
  230. * if handler tries to access user space by
  231. * copy_from_user(), get_user() etc. Let the
  232. * user-specified handler try to fix it.
  233. */
  234. if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
  235. return 1;
  236. break;
  237. default:
  238. break;
  239. }
  240. return 0;
  241. }
  242. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  243. unsigned long val, void *data)
  244. {
  245. /*
  246. * notify_die() is currently never called on ARM,
  247. * so this callback is currently empty.
  248. */
  249. return NOTIFY_DONE;
  250. }
  251. /*
  252. * When a retprobed function returns, trampoline_handler() is called,
  253. * calling the kretprobe's handler. We construct a struct pt_regs to
  254. * give a view of registers r0-r11 to the user return-handler. This is
  255. * not a complete pt_regs structure, but that should be plenty sufficient
  256. * for kretprobe handlers which should normally be interested in r0 only
  257. * anyway.
  258. */
  259. void __naked __kprobes kretprobe_trampoline(void)
  260. {
  261. __asm__ __volatile__ (
  262. "stmdb sp!, {r0 - r11} \n\t"
  263. "mov r0, sp \n\t"
  264. "bl trampoline_handler \n\t"
  265. "mov lr, r0 \n\t"
  266. "ldmia sp!, {r0 - r11} \n\t"
  267. "mov pc, lr \n\t"
  268. : : : "memory");
  269. }
  270. /* Called from kretprobe_trampoline */
  271. static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
  272. {
  273. struct kretprobe_instance *ri = NULL;
  274. struct hlist_head *head, empty_rp;
  275. struct hlist_node *node, *tmp;
  276. unsigned long flags, orig_ret_address = 0;
  277. unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
  278. INIT_HLIST_HEAD(&empty_rp);
  279. kretprobe_hash_lock(current, &head, &flags);
  280. /*
  281. * It is possible to have multiple instances associated with a given
  282. * task either because multiple functions in the call path have
  283. * a return probe installed on them, and/or more than one return
  284. * probe was registered for a target function.
  285. *
  286. * We can handle this because:
  287. * - instances are always inserted at the head of the list
  288. * - when multiple return probes are registered for the same
  289. * function, the first instance's ret_addr will point to the
  290. * real return address, and all the rest will point to
  291. * kretprobe_trampoline
  292. */
  293. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  294. if (ri->task != current)
  295. /* another task is sharing our hash bucket */
  296. continue;
  297. if (ri->rp && ri->rp->handler) {
  298. __get_cpu_var(current_kprobe) = &ri->rp->kp;
  299. get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
  300. ri->rp->handler(ri, regs);
  301. __get_cpu_var(current_kprobe) = NULL;
  302. }
  303. orig_ret_address = (unsigned long)ri->ret_addr;
  304. recycle_rp_inst(ri, &empty_rp);
  305. if (orig_ret_address != trampoline_address)
  306. /*
  307. * This is the real return address. Any other
  308. * instances associated with this task are for
  309. * other calls deeper on the call stack
  310. */
  311. break;
  312. }
  313. kretprobe_assert(ri, orig_ret_address, trampoline_address);
  314. kretprobe_hash_unlock(current, &flags);
  315. hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
  316. hlist_del(&ri->hlist);
  317. kfree(ri);
  318. }
  319. return (void *)orig_ret_address;
  320. }
  321. void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
  322. struct pt_regs *regs)
  323. {
  324. ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
  325. /* Replace the return addr with trampoline addr. */
  326. regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
  327. }
  328. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  329. {
  330. struct jprobe *jp = container_of(p, struct jprobe, kp);
  331. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  332. long sp_addr = regs->ARM_sp;
  333. kcb->jprobe_saved_regs = *regs;
  334. memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
  335. regs->ARM_pc = (long)jp->entry;
  336. regs->ARM_cpsr |= PSR_I_BIT;
  337. preempt_disable();
  338. return 1;
  339. }
  340. void __kprobes jprobe_return(void)
  341. {
  342. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  343. __asm__ __volatile__ (
  344. /*
  345. * Setup an empty pt_regs. Fill SP and PC fields as
  346. * they're needed by longjmp_break_handler.
  347. */
  348. "sub sp, %0, %1 \n\t"
  349. "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
  350. "str %0, [sp, %2] \n\t"
  351. "str r0, [sp, %3] \n\t"
  352. "mov r0, sp \n\t"
  353. "bl kprobe_handler \n\t"
  354. /*
  355. * Return to the context saved by setjmp_pre_handler
  356. * and restored by longjmp_break_handler.
  357. */
  358. "ldr r0, [sp, %4] \n\t"
  359. "msr cpsr_cxsf, r0 \n\t"
  360. "ldmia sp, {r0 - pc} \n\t"
  361. :
  362. : "r" (kcb->jprobe_saved_regs.ARM_sp),
  363. "I" (sizeof(struct pt_regs)),
  364. "J" (offsetof(struct pt_regs, ARM_sp)),
  365. "J" (offsetof(struct pt_regs, ARM_pc)),
  366. "J" (offsetof(struct pt_regs, ARM_cpsr))
  367. : "memory", "cc");
  368. }
  369. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  370. {
  371. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  372. long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
  373. long orig_sp = regs->ARM_sp;
  374. struct jprobe *jp = container_of(p, struct jprobe, kp);
  375. if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
  376. if (orig_sp != stack_addr) {
  377. struct pt_regs *saved_regs =
  378. (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
  379. printk("current sp %lx does not match saved sp %lx\n",
  380. orig_sp, stack_addr);
  381. printk("Saved registers for jprobe %p\n", jp);
  382. show_regs(saved_regs);
  383. printk("Current registers\n");
  384. show_regs(regs);
  385. BUG();
  386. }
  387. *regs = kcb->jprobe_saved_regs;
  388. memcpy((void *)stack_addr, kcb->jprobes_stack,
  389. MIN_STACK_SIZE(stack_addr));
  390. preempt_enable_no_resched();
  391. return 1;
  392. }
  393. return 0;
  394. }
  395. int __kprobes arch_trampoline_kprobe(struct kprobe *p)
  396. {
  397. return 0;
  398. }
  399. static struct undef_hook kprobes_break_hook = {
  400. .instr_mask = 0xffffffff,
  401. .instr_val = KPROBE_BREAKPOINT_INSTRUCTION,
  402. .cpsr_mask = MODE_MASK,
  403. .cpsr_val = SVC_MODE,
  404. .fn = kprobe_trap_handler,
  405. };
  406. int __init arch_init_kprobes()
  407. {
  408. arm_kprobe_decode_init();
  409. register_undef_hook(&kprobes_break_hook);
  410. return 0;
  411. }