lguest.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049
  1. /*P:100
  2. * This is the Launcher code, a simple program which lays out the "physical"
  3. * memory for the new Guest by mapping the kernel image and the virtual
  4. * devices, then opens /dev/lguest to tell the kernel about the Guest and
  5. * control it.
  6. :*/
  7. #define _LARGEFILE64_SOURCE
  8. #define _GNU_SOURCE
  9. #include <stdio.h>
  10. #include <string.h>
  11. #include <unistd.h>
  12. #include <err.h>
  13. #include <stdint.h>
  14. #include <stdlib.h>
  15. #include <elf.h>
  16. #include <sys/mman.h>
  17. #include <sys/param.h>
  18. #include <sys/types.h>
  19. #include <sys/stat.h>
  20. #include <sys/wait.h>
  21. #include <sys/eventfd.h>
  22. #include <fcntl.h>
  23. #include <stdbool.h>
  24. #include <errno.h>
  25. #include <ctype.h>
  26. #include <sys/socket.h>
  27. #include <sys/ioctl.h>
  28. #include <sys/time.h>
  29. #include <time.h>
  30. #include <netinet/in.h>
  31. #include <net/if.h>
  32. #include <linux/sockios.h>
  33. #include <linux/if_tun.h>
  34. #include <sys/uio.h>
  35. #include <termios.h>
  36. #include <getopt.h>
  37. #include <zlib.h>
  38. #include <assert.h>
  39. #include <sched.h>
  40. #include <limits.h>
  41. #include <stddef.h>
  42. #include <signal.h>
  43. #include "linux/lguest_launcher.h"
  44. #include "linux/virtio_config.h"
  45. #include "linux/virtio_net.h"
  46. #include "linux/virtio_blk.h"
  47. #include "linux/virtio_console.h"
  48. #include "linux/virtio_rng.h"
  49. #include "linux/virtio_ring.h"
  50. #include "asm/bootparam.h"
  51. /*L:110
  52. * We can ignore the 42 include files we need for this program, but I do want
  53. * to draw attention to the use of kernel-style types.
  54. *
  55. * As Linus said, "C is a Spartan language, and so should your naming be." I
  56. * like these abbreviations, so we define them here. Note that u64 is always
  57. * unsigned long long, which works on all Linux systems: this means that we can
  58. * use %llu in printf for any u64.
  59. */
  60. typedef unsigned long long u64;
  61. typedef uint32_t u32;
  62. typedef uint16_t u16;
  63. typedef uint8_t u8;
  64. /*:*/
  65. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  66. #define BRIDGE_PFX "bridge:"
  67. #ifndef SIOCBRADDIF
  68. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  69. #endif
  70. /* We can have up to 256 pages for devices. */
  71. #define DEVICE_PAGES 256
  72. /* This will occupy 3 pages: it must be a power of 2. */
  73. #define VIRTQUEUE_NUM 256
  74. /*L:120
  75. * verbose is both a global flag and a macro. The C preprocessor allows
  76. * this, and although I wouldn't recommend it, it works quite nicely here.
  77. */
  78. static bool verbose;
  79. #define verbose(args...) \
  80. do { if (verbose) printf(args); } while(0)
  81. /*:*/
  82. /* The pointer to the start of guest memory. */
  83. static void *guest_base;
  84. /* The maximum guest physical address allowed, and maximum possible. */
  85. static unsigned long guest_limit, guest_max;
  86. /* The /dev/lguest file descriptor. */
  87. static int lguest_fd;
  88. /* a per-cpu variable indicating whose vcpu is currently running */
  89. static unsigned int __thread cpu_id;
  90. /* This is our list of devices. */
  91. struct device_list {
  92. /* Counter to assign interrupt numbers. */
  93. unsigned int next_irq;
  94. /* Counter to print out convenient device numbers. */
  95. unsigned int device_num;
  96. /* The descriptor page for the devices. */
  97. u8 *descpage;
  98. /* A single linked list of devices. */
  99. struct device *dev;
  100. /* And a pointer to the last device for easy append. */
  101. struct device *lastdev;
  102. };
  103. /* The list of Guest devices, based on command line arguments. */
  104. static struct device_list devices;
  105. /* The device structure describes a single device. */
  106. struct device {
  107. /* The linked-list pointer. */
  108. struct device *next;
  109. /* The device's descriptor, as mapped into the Guest. */
  110. struct lguest_device_desc *desc;
  111. /* We can't trust desc values once Guest has booted: we use these. */
  112. unsigned int feature_len;
  113. unsigned int num_vq;
  114. /* The name of this device, for --verbose. */
  115. const char *name;
  116. /* Any queues attached to this device */
  117. struct virtqueue *vq;
  118. /* Is it operational */
  119. bool running;
  120. /* Does Guest want an intrrupt on empty? */
  121. bool irq_on_empty;
  122. /* Device-specific data. */
  123. void *priv;
  124. };
  125. /* The virtqueue structure describes a queue attached to a device. */
  126. struct virtqueue {
  127. struct virtqueue *next;
  128. /* Which device owns me. */
  129. struct device *dev;
  130. /* The configuration for this queue. */
  131. struct lguest_vqconfig config;
  132. /* The actual ring of buffers. */
  133. struct vring vring;
  134. /* Last available index we saw. */
  135. u16 last_avail_idx;
  136. /* How many are used since we sent last irq? */
  137. unsigned int pending_used;
  138. /* Eventfd where Guest notifications arrive. */
  139. int eventfd;
  140. /* Function for the thread which is servicing this virtqueue. */
  141. void (*service)(struct virtqueue *vq);
  142. pid_t thread;
  143. };
  144. /* Remember the arguments to the program so we can "reboot" */
  145. static char **main_args;
  146. /* The original tty settings to restore on exit. */
  147. static struct termios orig_term;
  148. /*
  149. * We have to be careful with barriers: our devices are all run in separate
  150. * threads and so we need to make sure that changes visible to the Guest happen
  151. * in precise order.
  152. */
  153. #define wmb() __asm__ __volatile__("" : : : "memory")
  154. #define mb() __asm__ __volatile__("" : : : "memory")
  155. /*
  156. * Convert an iovec element to the given type.
  157. *
  158. * This is a fairly ugly trick: we need to know the size of the type and
  159. * alignment requirement to check the pointer is kosher. It's also nice to
  160. * have the name of the type in case we report failure.
  161. *
  162. * Typing those three things all the time is cumbersome and error prone, so we
  163. * have a macro which sets them all up and passes to the real function.
  164. */
  165. #define convert(iov, type) \
  166. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  167. static void *_convert(struct iovec *iov, size_t size, size_t align,
  168. const char *name)
  169. {
  170. if (iov->iov_len != size)
  171. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  172. if ((unsigned long)iov->iov_base % align != 0)
  173. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  174. return iov->iov_base;
  175. }
  176. /* Wrapper for the last available index. Makes it easier to change. */
  177. #define lg_last_avail(vq) ((vq)->last_avail_idx)
  178. /*
  179. * The virtio configuration space is defined to be little-endian. x86 is
  180. * little-endian too, but it's nice to be explicit so we have these helpers.
  181. */
  182. #define cpu_to_le16(v16) (v16)
  183. #define cpu_to_le32(v32) (v32)
  184. #define cpu_to_le64(v64) (v64)
  185. #define le16_to_cpu(v16) (v16)
  186. #define le32_to_cpu(v32) (v32)
  187. #define le64_to_cpu(v64) (v64)
  188. /* Is this iovec empty? */
  189. static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
  190. {
  191. unsigned int i;
  192. for (i = 0; i < num_iov; i++)
  193. if (iov[i].iov_len)
  194. return false;
  195. return true;
  196. }
  197. /* Take len bytes from the front of this iovec. */
  198. static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
  199. {
  200. unsigned int i;
  201. for (i = 0; i < num_iov; i++) {
  202. unsigned int used;
  203. used = iov[i].iov_len < len ? iov[i].iov_len : len;
  204. iov[i].iov_base += used;
  205. iov[i].iov_len -= used;
  206. len -= used;
  207. }
  208. assert(len == 0);
  209. }
  210. /* The device virtqueue descriptors are followed by feature bitmasks. */
  211. static u8 *get_feature_bits(struct device *dev)
  212. {
  213. return (u8 *)(dev->desc + 1)
  214. + dev->num_vq * sizeof(struct lguest_vqconfig);
  215. }
  216. /*L:100
  217. * The Launcher code itself takes us out into userspace, that scary place where
  218. * pointers run wild and free! Unfortunately, like most userspace programs,
  219. * it's quite boring (which is why everyone likes to hack on the kernel!).
  220. * Perhaps if you make up an Lguest Drinking Game at this point, it will get
  221. * you through this section. Or, maybe not.
  222. *
  223. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  224. * memory and stores it in "guest_base". In other words, Guest physical ==
  225. * Launcher virtual with an offset.
  226. *
  227. * This can be tough to get your head around, but usually it just means that we
  228. * use these trivial conversion functions when the Guest gives us it's
  229. * "physical" addresses:
  230. */
  231. static void *from_guest_phys(unsigned long addr)
  232. {
  233. return guest_base + addr;
  234. }
  235. static unsigned long to_guest_phys(const void *addr)
  236. {
  237. return (addr - guest_base);
  238. }
  239. /*L:130
  240. * Loading the Kernel.
  241. *
  242. * We start with couple of simple helper routines. open_or_die() avoids
  243. * error-checking code cluttering the callers:
  244. */
  245. static int open_or_die(const char *name, int flags)
  246. {
  247. int fd = open(name, flags);
  248. if (fd < 0)
  249. err(1, "Failed to open %s", name);
  250. return fd;
  251. }
  252. /* map_zeroed_pages() takes a number of pages. */
  253. static void *map_zeroed_pages(unsigned int num)
  254. {
  255. int fd = open_or_die("/dev/zero", O_RDONLY);
  256. void *addr;
  257. /*
  258. * We use a private mapping (ie. if we write to the page, it will be
  259. * copied).
  260. */
  261. addr = mmap(NULL, getpagesize() * num,
  262. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  263. if (addr == MAP_FAILED)
  264. err(1, "Mmaping %u pages of /dev/zero", num);
  265. /*
  266. * One neat mmap feature is that you can close the fd, and it
  267. * stays mapped.
  268. */
  269. close(fd);
  270. return addr;
  271. }
  272. /* Get some more pages for a device. */
  273. static void *get_pages(unsigned int num)
  274. {
  275. void *addr = from_guest_phys(guest_limit);
  276. guest_limit += num * getpagesize();
  277. if (guest_limit > guest_max)
  278. errx(1, "Not enough memory for devices");
  279. return addr;
  280. }
  281. /*
  282. * This routine is used to load the kernel or initrd. It tries mmap, but if
  283. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  284. * it falls back to reading the memory in.
  285. */
  286. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  287. {
  288. ssize_t r;
  289. /*
  290. * We map writable even though for some segments are marked read-only.
  291. * The kernel really wants to be writable: it patches its own
  292. * instructions.
  293. *
  294. * MAP_PRIVATE means that the page won't be copied until a write is
  295. * done to it. This allows us to share untouched memory between
  296. * Guests.
  297. */
  298. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  299. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  300. return;
  301. /* pread does a seek and a read in one shot: saves a few lines. */
  302. r = pread(fd, addr, len, offset);
  303. if (r != len)
  304. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  305. }
  306. /*
  307. * This routine takes an open vmlinux image, which is in ELF, and maps it into
  308. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  309. * by all modern binaries on Linux including the kernel.
  310. *
  311. * The ELF headers give *two* addresses: a physical address, and a virtual
  312. * address. We use the physical address; the Guest will map itself to the
  313. * virtual address.
  314. *
  315. * We return the starting address.
  316. */
  317. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  318. {
  319. Elf32_Phdr phdr[ehdr->e_phnum];
  320. unsigned int i;
  321. /*
  322. * Sanity checks on the main ELF header: an x86 executable with a
  323. * reasonable number of correctly-sized program headers.
  324. */
  325. if (ehdr->e_type != ET_EXEC
  326. || ehdr->e_machine != EM_386
  327. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  328. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  329. errx(1, "Malformed elf header");
  330. /*
  331. * An ELF executable contains an ELF header and a number of "program"
  332. * headers which indicate which parts ("segments") of the program to
  333. * load where.
  334. */
  335. /* We read in all the program headers at once: */
  336. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  337. err(1, "Seeking to program headers");
  338. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  339. err(1, "Reading program headers");
  340. /*
  341. * Try all the headers: there are usually only three. A read-only one,
  342. * a read-write one, and a "note" section which we don't load.
  343. */
  344. for (i = 0; i < ehdr->e_phnum; i++) {
  345. /* If this isn't a loadable segment, we ignore it */
  346. if (phdr[i].p_type != PT_LOAD)
  347. continue;
  348. verbose("Section %i: size %i addr %p\n",
  349. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  350. /* We map this section of the file at its physical address. */
  351. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  352. phdr[i].p_offset, phdr[i].p_filesz);
  353. }
  354. /* The entry point is given in the ELF header. */
  355. return ehdr->e_entry;
  356. }
  357. /*L:150
  358. * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
  359. * to jump into it and it will unpack itself. We used to have to perform some
  360. * hairy magic because the unpacking code scared me.
  361. *
  362. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  363. * a small patch to jump over the tricky bits in the Guest, so now we just read
  364. * the funky header so we know where in the file to load, and away we go!
  365. */
  366. static unsigned long load_bzimage(int fd)
  367. {
  368. struct boot_params boot;
  369. int r;
  370. /* Modern bzImages get loaded at 1M. */
  371. void *p = from_guest_phys(0x100000);
  372. /*
  373. * Go back to the start of the file and read the header. It should be
  374. * a Linux boot header (see Documentation/x86/i386/boot.txt)
  375. */
  376. lseek(fd, 0, SEEK_SET);
  377. read(fd, &boot, sizeof(boot));
  378. /* Inside the setup_hdr, we expect the magic "HdrS" */
  379. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  380. errx(1, "This doesn't look like a bzImage to me");
  381. /* Skip over the extra sectors of the header. */
  382. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  383. /* Now read everything into memory. in nice big chunks. */
  384. while ((r = read(fd, p, 65536)) > 0)
  385. p += r;
  386. /* Finally, code32_start tells us where to enter the kernel. */
  387. return boot.hdr.code32_start;
  388. }
  389. /*L:140
  390. * Loading the kernel is easy when it's a "vmlinux", but most kernels
  391. * come wrapped up in the self-decompressing "bzImage" format. With a little
  392. * work, we can load those, too.
  393. */
  394. static unsigned long load_kernel(int fd)
  395. {
  396. Elf32_Ehdr hdr;
  397. /* Read in the first few bytes. */
  398. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  399. err(1, "Reading kernel");
  400. /* If it's an ELF file, it starts with "\177ELF" */
  401. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  402. return map_elf(fd, &hdr);
  403. /* Otherwise we assume it's a bzImage, and try to load it. */
  404. return load_bzimage(fd);
  405. }
  406. /*
  407. * This is a trivial little helper to align pages. Andi Kleen hated it because
  408. * it calls getpagesize() twice: "it's dumb code."
  409. *
  410. * Kernel guys get really het up about optimization, even when it's not
  411. * necessary. I leave this code as a reaction against that.
  412. */
  413. static inline unsigned long page_align(unsigned long addr)
  414. {
  415. /* Add upwards and truncate downwards. */
  416. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  417. }
  418. /*L:180
  419. * An "initial ram disk" is a disk image loaded into memory along with the
  420. * kernel which the kernel can use to boot from without needing any drivers.
  421. * Most distributions now use this as standard: the initrd contains the code to
  422. * load the appropriate driver modules for the current machine.
  423. *
  424. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  425. * kernels. He sent me this (and tells me when I break it).
  426. */
  427. static unsigned long load_initrd(const char *name, unsigned long mem)
  428. {
  429. int ifd;
  430. struct stat st;
  431. unsigned long len;
  432. ifd = open_or_die(name, O_RDONLY);
  433. /* fstat() is needed to get the file size. */
  434. if (fstat(ifd, &st) < 0)
  435. err(1, "fstat() on initrd '%s'", name);
  436. /*
  437. * We map the initrd at the top of memory, but mmap wants it to be
  438. * page-aligned, so we round the size up for that.
  439. */
  440. len = page_align(st.st_size);
  441. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  442. /*
  443. * Once a file is mapped, you can close the file descriptor. It's a
  444. * little odd, but quite useful.
  445. */
  446. close(ifd);
  447. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  448. /* We return the initrd size. */
  449. return len;
  450. }
  451. /*:*/
  452. /*
  453. * Simple routine to roll all the commandline arguments together with spaces
  454. * between them.
  455. */
  456. static void concat(char *dst, char *args[])
  457. {
  458. unsigned int i, len = 0;
  459. for (i = 0; args[i]; i++) {
  460. if (i) {
  461. strcat(dst+len, " ");
  462. len++;
  463. }
  464. strcpy(dst+len, args[i]);
  465. len += strlen(args[i]);
  466. }
  467. /* In case it's empty. */
  468. dst[len] = '\0';
  469. }
  470. /*L:185
  471. * This is where we actually tell the kernel to initialize the Guest. We
  472. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  473. * the base of Guest "physical" memory, the top physical page to allow and the
  474. * entry point for the Guest.
  475. */
  476. static void tell_kernel(unsigned long start)
  477. {
  478. unsigned long args[] = { LHREQ_INITIALIZE,
  479. (unsigned long)guest_base,
  480. guest_limit / getpagesize(), start };
  481. verbose("Guest: %p - %p (%#lx)\n",
  482. guest_base, guest_base + guest_limit, guest_limit);
  483. lguest_fd = open_or_die("/dev/lguest", O_RDWR);
  484. if (write(lguest_fd, args, sizeof(args)) < 0)
  485. err(1, "Writing to /dev/lguest");
  486. }
  487. /*:*/
  488. /*L:200
  489. * Device Handling.
  490. *
  491. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  492. * We need to make sure it's not trying to reach into the Launcher itself, so
  493. * we have a convenient routine which checks it and exits with an error message
  494. * if something funny is going on:
  495. */
  496. static void *_check_pointer(unsigned long addr, unsigned int size,
  497. unsigned int line)
  498. {
  499. /*
  500. * We have to separately check addr and addr+size, because size could
  501. * be huge and addr + size might wrap around.
  502. */
  503. if (addr >= guest_limit || addr + size >= guest_limit)
  504. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  505. /*
  506. * We return a pointer for the caller's convenience, now we know it's
  507. * safe to use.
  508. */
  509. return from_guest_phys(addr);
  510. }
  511. /* A macro which transparently hands the line number to the real function. */
  512. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  513. /*
  514. * Each buffer in the virtqueues is actually a chain of descriptors. This
  515. * function returns the next descriptor in the chain, or vq->vring.num if we're
  516. * at the end.
  517. */
  518. static unsigned next_desc(struct vring_desc *desc,
  519. unsigned int i, unsigned int max)
  520. {
  521. unsigned int next;
  522. /* If this descriptor says it doesn't chain, we're done. */
  523. if (!(desc[i].flags & VRING_DESC_F_NEXT))
  524. return max;
  525. /* Check they're not leading us off end of descriptors. */
  526. next = desc[i].next;
  527. /* Make sure compiler knows to grab that: we don't want it changing! */
  528. wmb();
  529. if (next >= max)
  530. errx(1, "Desc next is %u", next);
  531. return next;
  532. }
  533. /*
  534. * This actually sends the interrupt for this virtqueue, if we've used a
  535. * buffer.
  536. */
  537. static void trigger_irq(struct virtqueue *vq)
  538. {
  539. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  540. /* Don't inform them if nothing used. */
  541. if (!vq->pending_used)
  542. return;
  543. vq->pending_used = 0;
  544. /* If they don't want an interrupt, don't send one... */
  545. if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
  546. /* ... unless they've asked us to force one on empty. */
  547. if (!vq->dev->irq_on_empty
  548. || lg_last_avail(vq) != vq->vring.avail->idx)
  549. return;
  550. }
  551. /* Send the Guest an interrupt tell them we used something up. */
  552. if (write(lguest_fd, buf, sizeof(buf)) != 0)
  553. err(1, "Triggering irq %i", vq->config.irq);
  554. }
  555. /*
  556. * This looks in the virtqueue for the first available buffer, and converts
  557. * it to an iovec for convenient access. Since descriptors consist of some
  558. * number of output then some number of input descriptors, it's actually two
  559. * iovecs, but we pack them into one and note how many of each there were.
  560. *
  561. * This function waits if necessary, and returns the descriptor number found.
  562. */
  563. static unsigned wait_for_vq_desc(struct virtqueue *vq,
  564. struct iovec iov[],
  565. unsigned int *out_num, unsigned int *in_num)
  566. {
  567. unsigned int i, head, max;
  568. struct vring_desc *desc;
  569. u16 last_avail = lg_last_avail(vq);
  570. /* There's nothing available? */
  571. while (last_avail == vq->vring.avail->idx) {
  572. u64 event;
  573. /*
  574. * Since we're about to sleep, now is a good time to tell the
  575. * Guest about what we've used up to now.
  576. */
  577. trigger_irq(vq);
  578. /* OK, now we need to know about added descriptors. */
  579. vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  580. /*
  581. * They could have slipped one in as we were doing that: make
  582. * sure it's written, then check again.
  583. */
  584. mb();
  585. if (last_avail != vq->vring.avail->idx) {
  586. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  587. break;
  588. }
  589. /* Nothing new? Wait for eventfd to tell us they refilled. */
  590. if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
  591. errx(1, "Event read failed?");
  592. /* We don't need to be notified again. */
  593. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  594. }
  595. /* Check it isn't doing very strange things with descriptor numbers. */
  596. if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
  597. errx(1, "Guest moved used index from %u to %u",
  598. last_avail, vq->vring.avail->idx);
  599. /*
  600. * Grab the next descriptor number they're advertising, and increment
  601. * the index we've seen.
  602. */
  603. head = vq->vring.avail->ring[last_avail % vq->vring.num];
  604. lg_last_avail(vq)++;
  605. /* If their number is silly, that's a fatal mistake. */
  606. if (head >= vq->vring.num)
  607. errx(1, "Guest says index %u is available", head);
  608. /* When we start there are none of either input nor output. */
  609. *out_num = *in_num = 0;
  610. max = vq->vring.num;
  611. desc = vq->vring.desc;
  612. i = head;
  613. /*
  614. * If this is an indirect entry, then this buffer contains a descriptor
  615. * table which we handle as if it's any normal descriptor chain.
  616. */
  617. if (desc[i].flags & VRING_DESC_F_INDIRECT) {
  618. if (desc[i].len % sizeof(struct vring_desc))
  619. errx(1, "Invalid size for indirect buffer table");
  620. max = desc[i].len / sizeof(struct vring_desc);
  621. desc = check_pointer(desc[i].addr, desc[i].len);
  622. i = 0;
  623. }
  624. do {
  625. /* Grab the first descriptor, and check it's OK. */
  626. iov[*out_num + *in_num].iov_len = desc[i].len;
  627. iov[*out_num + *in_num].iov_base
  628. = check_pointer(desc[i].addr, desc[i].len);
  629. /* If this is an input descriptor, increment that count. */
  630. if (desc[i].flags & VRING_DESC_F_WRITE)
  631. (*in_num)++;
  632. else {
  633. /*
  634. * If it's an output descriptor, they're all supposed
  635. * to come before any input descriptors.
  636. */
  637. if (*in_num)
  638. errx(1, "Descriptor has out after in");
  639. (*out_num)++;
  640. }
  641. /* If we've got too many, that implies a descriptor loop. */
  642. if (*out_num + *in_num > max)
  643. errx(1, "Looped descriptor");
  644. } while ((i = next_desc(desc, i, max)) != max);
  645. return head;
  646. }
  647. /*
  648. * After we've used one of their buffers, we tell the Guest about it. Sometime
  649. * later we'll want to send them an interrupt using trigger_irq(); note that
  650. * wait_for_vq_desc() does that for us if it has to wait.
  651. */
  652. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  653. {
  654. struct vring_used_elem *used;
  655. /*
  656. * The virtqueue contains a ring of used buffers. Get a pointer to the
  657. * next entry in that used ring.
  658. */
  659. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  660. used->id = head;
  661. used->len = len;
  662. /* Make sure buffer is written before we update index. */
  663. wmb();
  664. vq->vring.used->idx++;
  665. vq->pending_used++;
  666. }
  667. /* And here's the combo meal deal. Supersize me! */
  668. static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
  669. {
  670. add_used(vq, head, len);
  671. trigger_irq(vq);
  672. }
  673. /*
  674. * The Console
  675. *
  676. * We associate some data with the console for our exit hack.
  677. */
  678. struct console_abort {
  679. /* How many times have they hit ^C? */
  680. int count;
  681. /* When did they start? */
  682. struct timeval start;
  683. };
  684. /* This is the routine which handles console input (ie. stdin). */
  685. static void console_input(struct virtqueue *vq)
  686. {
  687. int len;
  688. unsigned int head, in_num, out_num;
  689. struct console_abort *abort = vq->dev->priv;
  690. struct iovec iov[vq->vring.num];
  691. /* Make sure there's a descriptor available. */
  692. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  693. if (out_num)
  694. errx(1, "Output buffers in console in queue?");
  695. /* Read into it. This is where we usually wait. */
  696. len = readv(STDIN_FILENO, iov, in_num);
  697. if (len <= 0) {
  698. /* Ran out of input? */
  699. warnx("Failed to get console input, ignoring console.");
  700. /*
  701. * For simplicity, dying threads kill the whole Launcher. So
  702. * just nap here.
  703. */
  704. for (;;)
  705. pause();
  706. }
  707. /* Tell the Guest we used a buffer. */
  708. add_used_and_trigger(vq, head, len);
  709. /*
  710. * Three ^C within one second? Exit.
  711. *
  712. * This is such a hack, but works surprisingly well. Each ^C has to
  713. * be in a buffer by itself, so they can't be too fast. But we check
  714. * that we get three within about a second, so they can't be too
  715. * slow.
  716. */
  717. if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
  718. abort->count = 0;
  719. return;
  720. }
  721. abort->count++;
  722. if (abort->count == 1)
  723. gettimeofday(&abort->start, NULL);
  724. else if (abort->count == 3) {
  725. struct timeval now;
  726. gettimeofday(&now, NULL);
  727. /* Kill all Launcher processes with SIGINT, like normal ^C */
  728. if (now.tv_sec <= abort->start.tv_sec+1)
  729. kill(0, SIGINT);
  730. abort->count = 0;
  731. }
  732. }
  733. /* This is the routine which handles console output (ie. stdout). */
  734. static void console_output(struct virtqueue *vq)
  735. {
  736. unsigned int head, out, in;
  737. struct iovec iov[vq->vring.num];
  738. /* We usually wait in here, for the Guest to give us something. */
  739. head = wait_for_vq_desc(vq, iov, &out, &in);
  740. if (in)
  741. errx(1, "Input buffers in console output queue?");
  742. /* writev can return a partial write, so we loop here. */
  743. while (!iov_empty(iov, out)) {
  744. int len = writev(STDOUT_FILENO, iov, out);
  745. if (len <= 0)
  746. err(1, "Write to stdout gave %i", len);
  747. iov_consume(iov, out, len);
  748. }
  749. /*
  750. * We're finished with that buffer: if we're going to sleep,
  751. * wait_for_vq_desc() will prod the Guest with an interrupt.
  752. */
  753. add_used(vq, head, 0);
  754. }
  755. /*
  756. * The Network
  757. *
  758. * Handling output for network is also simple: we get all the output buffers
  759. * and write them to /dev/net/tun.
  760. */
  761. struct net_info {
  762. int tunfd;
  763. };
  764. static void net_output(struct virtqueue *vq)
  765. {
  766. struct net_info *net_info = vq->dev->priv;
  767. unsigned int head, out, in;
  768. struct iovec iov[vq->vring.num];
  769. /* We usually wait in here for the Guest to give us a packet. */
  770. head = wait_for_vq_desc(vq, iov, &out, &in);
  771. if (in)
  772. errx(1, "Input buffers in net output queue?");
  773. /*
  774. * Send the whole thing through to /dev/net/tun. It expects the exact
  775. * same format: what a coincidence!
  776. */
  777. if (writev(net_info->tunfd, iov, out) < 0)
  778. errx(1, "Write to tun failed?");
  779. /*
  780. * Done with that one; wait_for_vq_desc() will send the interrupt if
  781. * all packets are processed.
  782. */
  783. add_used(vq, head, 0);
  784. }
  785. /*
  786. * Handling network input is a bit trickier, because I've tried to optimize it.
  787. *
  788. * First we have a helper routine which tells is if from this file descriptor
  789. * (ie. the /dev/net/tun device) will block:
  790. */
  791. static bool will_block(int fd)
  792. {
  793. fd_set fdset;
  794. struct timeval zero = { 0, 0 };
  795. FD_ZERO(&fdset);
  796. FD_SET(fd, &fdset);
  797. return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
  798. }
  799. /*
  800. * This handles packets coming in from the tun device to our Guest. Like all
  801. * service routines, it gets called again as soon as it returns, so you don't
  802. * see a while(1) loop here.
  803. */
  804. static void net_input(struct virtqueue *vq)
  805. {
  806. int len;
  807. unsigned int head, out, in;
  808. struct iovec iov[vq->vring.num];
  809. struct net_info *net_info = vq->dev->priv;
  810. /*
  811. * Get a descriptor to write an incoming packet into. This will also
  812. * send an interrupt if they're out of descriptors.
  813. */
  814. head = wait_for_vq_desc(vq, iov, &out, &in);
  815. if (out)
  816. errx(1, "Output buffers in net input queue?");
  817. /*
  818. * If it looks like we'll block reading from the tun device, send them
  819. * an interrupt.
  820. */
  821. if (vq->pending_used && will_block(net_info->tunfd))
  822. trigger_irq(vq);
  823. /*
  824. * Read in the packet. This is where we normally wait (when there's no
  825. * incoming network traffic).
  826. */
  827. len = readv(net_info->tunfd, iov, in);
  828. if (len <= 0)
  829. err(1, "Failed to read from tun.");
  830. /*
  831. * Mark that packet buffer as used, but don't interrupt here. We want
  832. * to wait until we've done as much work as we can.
  833. */
  834. add_used(vq, head, len);
  835. }
  836. /*:*/
  837. /* This is the helper to create threads: run the service routine in a loop. */
  838. static int do_thread(void *_vq)
  839. {
  840. struct virtqueue *vq = _vq;
  841. for (;;)
  842. vq->service(vq);
  843. return 0;
  844. }
  845. /*
  846. * When a child dies, we kill our entire process group with SIGTERM. This
  847. * also has the side effect that the shell restores the console for us!
  848. */
  849. static void kill_launcher(int signal)
  850. {
  851. kill(0, SIGTERM);
  852. }
  853. static void reset_device(struct device *dev)
  854. {
  855. struct virtqueue *vq;
  856. verbose("Resetting device %s\n", dev->name);
  857. /* Clear any features they've acked. */
  858. memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
  859. /* We're going to be explicitly killing threads, so ignore them. */
  860. signal(SIGCHLD, SIG_IGN);
  861. /* Zero out the virtqueues, get rid of their threads */
  862. for (vq = dev->vq; vq; vq = vq->next) {
  863. if (vq->thread != (pid_t)-1) {
  864. kill(vq->thread, SIGTERM);
  865. waitpid(vq->thread, NULL, 0);
  866. vq->thread = (pid_t)-1;
  867. }
  868. memset(vq->vring.desc, 0,
  869. vring_size(vq->config.num, LGUEST_VRING_ALIGN));
  870. lg_last_avail(vq) = 0;
  871. }
  872. dev->running = false;
  873. /* Now we care if threads die. */
  874. signal(SIGCHLD, (void *)kill_launcher);
  875. }
  876. /*L:216
  877. * This actually creates the thread which services the virtqueue for a device.
  878. */
  879. static void create_thread(struct virtqueue *vq)
  880. {
  881. /*
  882. * Create stack for thread. Since the stack grows upwards, we point
  883. * the stack pointer to the end of this region.
  884. */
  885. char *stack = malloc(32768);
  886. unsigned long args[] = { LHREQ_EVENTFD,
  887. vq->config.pfn*getpagesize(), 0 };
  888. /* Create a zero-initialized eventfd. */
  889. vq->eventfd = eventfd(0, 0);
  890. if (vq->eventfd < 0)
  891. err(1, "Creating eventfd");
  892. args[2] = vq->eventfd;
  893. /*
  894. * Attach an eventfd to this virtqueue: it will go off when the Guest
  895. * does an LHCALL_NOTIFY for this vq.
  896. */
  897. if (write(lguest_fd, &args, sizeof(args)) != 0)
  898. err(1, "Attaching eventfd");
  899. /*
  900. * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
  901. * we get a signal if it dies.
  902. */
  903. vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
  904. if (vq->thread == (pid_t)-1)
  905. err(1, "Creating clone");
  906. /* We close our local copy now the child has it. */
  907. close(vq->eventfd);
  908. }
  909. static bool accepted_feature(struct device *dev, unsigned int bit)
  910. {
  911. const u8 *features = get_feature_bits(dev) + dev->feature_len;
  912. if (dev->feature_len < bit / CHAR_BIT)
  913. return false;
  914. return features[bit / CHAR_BIT] & (1 << (bit % CHAR_BIT));
  915. }
  916. static void start_device(struct device *dev)
  917. {
  918. unsigned int i;
  919. struct virtqueue *vq;
  920. verbose("Device %s OK: offered", dev->name);
  921. for (i = 0; i < dev->feature_len; i++)
  922. verbose(" %02x", get_feature_bits(dev)[i]);
  923. verbose(", accepted");
  924. for (i = 0; i < dev->feature_len; i++)
  925. verbose(" %02x", get_feature_bits(dev)
  926. [dev->feature_len+i]);
  927. dev->irq_on_empty = accepted_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  928. for (vq = dev->vq; vq; vq = vq->next) {
  929. if (vq->service)
  930. create_thread(vq);
  931. }
  932. dev->running = true;
  933. }
  934. static void cleanup_devices(void)
  935. {
  936. struct device *dev;
  937. for (dev = devices.dev; dev; dev = dev->next)
  938. reset_device(dev);
  939. /* If we saved off the original terminal settings, restore them now. */
  940. if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
  941. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  942. }
  943. /* When the Guest tells us they updated the status field, we handle it. */
  944. static void update_device_status(struct device *dev)
  945. {
  946. /* A zero status is a reset, otherwise it's a set of flags. */
  947. if (dev->desc->status == 0)
  948. reset_device(dev);
  949. else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  950. warnx("Device %s configuration FAILED", dev->name);
  951. if (dev->running)
  952. reset_device(dev);
  953. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  954. if (!dev->running)
  955. start_device(dev);
  956. }
  957. }
  958. /*L:215
  959. * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
  960. * particular, it's used to notify us of device status changes during boot.
  961. */
  962. static void handle_output(unsigned long addr)
  963. {
  964. struct device *i;
  965. /* Check each device. */
  966. for (i = devices.dev; i; i = i->next) {
  967. struct virtqueue *vq;
  968. /*
  969. * Notifications to device descriptors mean they updated the
  970. * device status.
  971. */
  972. if (from_guest_phys(addr) == i->desc) {
  973. update_device_status(i);
  974. return;
  975. }
  976. /*
  977. * Devices *can* be used before status is set to DRIVER_OK.
  978. * The original plan was that they would never do this: they
  979. * would always finish setting up their status bits before
  980. * actually touching the virtqueues. In practice, we allowed
  981. * them to, and they do (eg. the disk probes for partition
  982. * tables as part of initialization).
  983. *
  984. * If we see this, we start the device: once it's running, we
  985. * expect the device to catch all the notifications.
  986. */
  987. for (vq = i->vq; vq; vq = vq->next) {
  988. if (addr != vq->config.pfn*getpagesize())
  989. continue;
  990. if (i->running)
  991. errx(1, "Notification on running %s", i->name);
  992. /* This just calls create_thread() for each virtqueue */
  993. start_device(i);
  994. return;
  995. }
  996. }
  997. /*
  998. * Early console write is done using notify on a nul-terminated string
  999. * in Guest memory. It's also great for hacking debugging messages
  1000. * into a Guest.
  1001. */
  1002. if (addr >= guest_limit)
  1003. errx(1, "Bad NOTIFY %#lx", addr);
  1004. write(STDOUT_FILENO, from_guest_phys(addr),
  1005. strnlen(from_guest_phys(addr), guest_limit - addr));
  1006. }
  1007. /*L:190
  1008. * Device Setup
  1009. *
  1010. * All devices need a descriptor so the Guest knows it exists, and a "struct
  1011. * device" so the Launcher can keep track of it. We have common helper
  1012. * routines to allocate and manage them.
  1013. */
  1014. /*
  1015. * The layout of the device page is a "struct lguest_device_desc" followed by a
  1016. * number of virtqueue descriptors, then two sets of feature bits, then an
  1017. * array of configuration bytes. This routine returns the configuration
  1018. * pointer.
  1019. */
  1020. static u8 *device_config(const struct device *dev)
  1021. {
  1022. return (void *)(dev->desc + 1)
  1023. + dev->num_vq * sizeof(struct lguest_vqconfig)
  1024. + dev->feature_len * 2;
  1025. }
  1026. /*
  1027. * This routine allocates a new "struct lguest_device_desc" from descriptor
  1028. * table page just above the Guest's normal memory. It returns a pointer to
  1029. * that descriptor.
  1030. */
  1031. static struct lguest_device_desc *new_dev_desc(u16 type)
  1032. {
  1033. struct lguest_device_desc d = { .type = type };
  1034. void *p;
  1035. /* Figure out where the next device config is, based on the last one. */
  1036. if (devices.lastdev)
  1037. p = device_config(devices.lastdev)
  1038. + devices.lastdev->desc->config_len;
  1039. else
  1040. p = devices.descpage;
  1041. /* We only have one page for all the descriptors. */
  1042. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  1043. errx(1, "Too many devices");
  1044. /* p might not be aligned, so we memcpy in. */
  1045. return memcpy(p, &d, sizeof(d));
  1046. }
  1047. /*
  1048. * Each device descriptor is followed by the description of its virtqueues. We
  1049. * specify how many descriptors the virtqueue is to have.
  1050. */
  1051. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  1052. void (*service)(struct virtqueue *))
  1053. {
  1054. unsigned int pages;
  1055. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  1056. void *p;
  1057. /* First we need some memory for this virtqueue. */
  1058. pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
  1059. / getpagesize();
  1060. p = get_pages(pages);
  1061. /* Initialize the virtqueue */
  1062. vq->next = NULL;
  1063. vq->last_avail_idx = 0;
  1064. vq->dev = dev;
  1065. /*
  1066. * This is the routine the service thread will run, and its Process ID
  1067. * once it's running.
  1068. */
  1069. vq->service = service;
  1070. vq->thread = (pid_t)-1;
  1071. /* Initialize the configuration. */
  1072. vq->config.num = num_descs;
  1073. vq->config.irq = devices.next_irq++;
  1074. vq->config.pfn = to_guest_phys(p) / getpagesize();
  1075. /* Initialize the vring. */
  1076. vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
  1077. /*
  1078. * Append virtqueue to this device's descriptor. We use
  1079. * device_config() to get the end of the device's current virtqueues;
  1080. * we check that we haven't added any config or feature information
  1081. * yet, otherwise we'd be overwriting them.
  1082. */
  1083. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  1084. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  1085. dev->num_vq++;
  1086. dev->desc->num_vq++;
  1087. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  1088. /*
  1089. * Add to tail of list, so dev->vq is first vq, dev->vq->next is
  1090. * second.
  1091. */
  1092. for (i = &dev->vq; *i; i = &(*i)->next);
  1093. *i = vq;
  1094. }
  1095. /*
  1096. * The first half of the feature bitmask is for us to advertise features. The
  1097. * second half is for the Guest to accept features.
  1098. */
  1099. static void add_feature(struct device *dev, unsigned bit)
  1100. {
  1101. u8 *features = get_feature_bits(dev);
  1102. /* We can't extend the feature bits once we've added config bytes */
  1103. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  1104. assert(dev->desc->config_len == 0);
  1105. dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
  1106. }
  1107. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  1108. }
  1109. /*
  1110. * This routine sets the configuration fields for an existing device's
  1111. * descriptor. It only works for the last device, but that's OK because that's
  1112. * how we use it.
  1113. */
  1114. static void set_config(struct device *dev, unsigned len, const void *conf)
  1115. {
  1116. /* Check we haven't overflowed our single page. */
  1117. if (device_config(dev) + len > devices.descpage + getpagesize())
  1118. errx(1, "Too many devices");
  1119. /* Copy in the config information, and store the length. */
  1120. memcpy(device_config(dev), conf, len);
  1121. dev->desc->config_len = len;
  1122. /* Size must fit in config_len field (8 bits)! */
  1123. assert(dev->desc->config_len == len);
  1124. }
  1125. /*
  1126. * This routine does all the creation and setup of a new device, including
  1127. * calling new_dev_desc() to allocate the descriptor and device memory. We
  1128. * don't actually start the service threads until later.
  1129. *
  1130. * See what I mean about userspace being boring?
  1131. */
  1132. static struct device *new_device(const char *name, u16 type)
  1133. {
  1134. struct device *dev = malloc(sizeof(*dev));
  1135. /* Now we populate the fields one at a time. */
  1136. dev->desc = new_dev_desc(type);
  1137. dev->name = name;
  1138. dev->vq = NULL;
  1139. dev->feature_len = 0;
  1140. dev->num_vq = 0;
  1141. dev->running = false;
  1142. /*
  1143. * Append to device list. Prepending to a single-linked list is
  1144. * easier, but the user expects the devices to be arranged on the bus
  1145. * in command-line order. The first network device on the command line
  1146. * is eth0, the first block device /dev/vda, etc.
  1147. */
  1148. if (devices.lastdev)
  1149. devices.lastdev->next = dev;
  1150. else
  1151. devices.dev = dev;
  1152. devices.lastdev = dev;
  1153. return dev;
  1154. }
  1155. /*
  1156. * Our first setup routine is the console. It's a fairly simple device, but
  1157. * UNIX tty handling makes it uglier than it could be.
  1158. */
  1159. static void setup_console(void)
  1160. {
  1161. struct device *dev;
  1162. /* If we can save the initial standard input settings... */
  1163. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1164. struct termios term = orig_term;
  1165. /*
  1166. * Then we turn off echo, line buffering and ^C etc: We want a
  1167. * raw input stream to the Guest.
  1168. */
  1169. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1170. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1171. }
  1172. dev = new_device("console", VIRTIO_ID_CONSOLE);
  1173. /* We store the console state in dev->priv, and initialize it. */
  1174. dev->priv = malloc(sizeof(struct console_abort));
  1175. ((struct console_abort *)dev->priv)->count = 0;
  1176. /*
  1177. * The console needs two virtqueues: the input then the output. When
  1178. * they put something the input queue, we make sure we're listening to
  1179. * stdin. When they put something in the output queue, we write it to
  1180. * stdout.
  1181. */
  1182. add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
  1183. add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
  1184. verbose("device %u: console\n", ++devices.device_num);
  1185. }
  1186. /*:*/
  1187. /*M:010
  1188. * Inter-guest networking is an interesting area. Simplest is to have a
  1189. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1190. * used to send packets to another guest in a 1:1 manner.
  1191. *
  1192. * More sopisticated is to use one of the tools developed for project like UML
  1193. * to do networking.
  1194. *
  1195. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1196. * completely generic ("here's my vring, attach to your vring") and would work
  1197. * for any traffic. Of course, namespace and permissions issues need to be
  1198. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1199. * multiple inter-guest channels behind one interface, although it would
  1200. * require some manner of hotplugging new virtio channels.
  1201. *
  1202. * Finally, we could implement a virtio network switch in the kernel.
  1203. :*/
  1204. static u32 str2ip(const char *ipaddr)
  1205. {
  1206. unsigned int b[4];
  1207. if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
  1208. errx(1, "Failed to parse IP address '%s'", ipaddr);
  1209. return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
  1210. }
  1211. static void str2mac(const char *macaddr, unsigned char mac[6])
  1212. {
  1213. unsigned int m[6];
  1214. if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
  1215. &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
  1216. errx(1, "Failed to parse mac address '%s'", macaddr);
  1217. mac[0] = m[0];
  1218. mac[1] = m[1];
  1219. mac[2] = m[2];
  1220. mac[3] = m[3];
  1221. mac[4] = m[4];
  1222. mac[5] = m[5];
  1223. }
  1224. /*
  1225. * This code is "adapted" from libbridge: it attaches the Host end of the
  1226. * network device to the bridge device specified by the command line.
  1227. *
  1228. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1229. * dislike bridging), and I just try not to break it.
  1230. */
  1231. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1232. {
  1233. int ifidx;
  1234. struct ifreq ifr;
  1235. if (!*br_name)
  1236. errx(1, "must specify bridge name");
  1237. ifidx = if_nametoindex(if_name);
  1238. if (!ifidx)
  1239. errx(1, "interface %s does not exist!", if_name);
  1240. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1241. ifr.ifr_name[IFNAMSIZ-1] = '\0';
  1242. ifr.ifr_ifindex = ifidx;
  1243. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1244. err(1, "can't add %s to bridge %s", if_name, br_name);
  1245. }
  1246. /*
  1247. * This sets up the Host end of the network device with an IP address, brings
  1248. * it up so packets will flow, the copies the MAC address into the hwaddr
  1249. * pointer.
  1250. */
  1251. static void configure_device(int fd, const char *tapif, u32 ipaddr)
  1252. {
  1253. struct ifreq ifr;
  1254. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1255. memset(&ifr, 0, sizeof(ifr));
  1256. strcpy(ifr.ifr_name, tapif);
  1257. /* Don't read these incantations. Just cut & paste them like I did! */
  1258. sin->sin_family = AF_INET;
  1259. sin->sin_addr.s_addr = htonl(ipaddr);
  1260. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1261. err(1, "Setting %s interface address", tapif);
  1262. ifr.ifr_flags = IFF_UP;
  1263. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1264. err(1, "Bringing interface %s up", tapif);
  1265. }
  1266. static int get_tun_device(char tapif[IFNAMSIZ])
  1267. {
  1268. struct ifreq ifr;
  1269. int netfd;
  1270. /* Start with this zeroed. Messy but sure. */
  1271. memset(&ifr, 0, sizeof(ifr));
  1272. /*
  1273. * We open the /dev/net/tun device and tell it we want a tap device. A
  1274. * tap device is like a tun device, only somehow different. To tell
  1275. * the truth, I completely blundered my way through this code, but it
  1276. * works now!
  1277. */
  1278. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1279. ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
  1280. strcpy(ifr.ifr_name, "tap%d");
  1281. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1282. err(1, "configuring /dev/net/tun");
  1283. if (ioctl(netfd, TUNSETOFFLOAD,
  1284. TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
  1285. err(1, "Could not set features for tun device");
  1286. /*
  1287. * We don't need checksums calculated for packets coming in this
  1288. * device: trust us!
  1289. */
  1290. ioctl(netfd, TUNSETNOCSUM, 1);
  1291. memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
  1292. return netfd;
  1293. }
  1294. /*L:195
  1295. * Our network is a Host<->Guest network. This can either use bridging or
  1296. * routing, but the principle is the same: it uses the "tun" device to inject
  1297. * packets into the Host as if they came in from a normal network card. We
  1298. * just shunt packets between the Guest and the tun device.
  1299. */
  1300. static void setup_tun_net(char *arg)
  1301. {
  1302. struct device *dev;
  1303. struct net_info *net_info = malloc(sizeof(*net_info));
  1304. int ipfd;
  1305. u32 ip = INADDR_ANY;
  1306. bool bridging = false;
  1307. char tapif[IFNAMSIZ], *p;
  1308. struct virtio_net_config conf;
  1309. net_info->tunfd = get_tun_device(tapif);
  1310. /* First we create a new network device. */
  1311. dev = new_device("net", VIRTIO_ID_NET);
  1312. dev->priv = net_info;
  1313. /* Network devices need a recv and a send queue, just like console. */
  1314. add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
  1315. add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
  1316. /*
  1317. * We need a socket to perform the magic network ioctls to bring up the
  1318. * tap interface, connect to the bridge etc. Any socket will do!
  1319. */
  1320. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1321. if (ipfd < 0)
  1322. err(1, "opening IP socket");
  1323. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1324. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1325. arg += strlen(BRIDGE_PFX);
  1326. bridging = true;
  1327. }
  1328. /* A mac address may follow the bridge name or IP address */
  1329. p = strchr(arg, ':');
  1330. if (p) {
  1331. str2mac(p+1, conf.mac);
  1332. add_feature(dev, VIRTIO_NET_F_MAC);
  1333. *p = '\0';
  1334. }
  1335. /* arg is now either an IP address or a bridge name */
  1336. if (bridging)
  1337. add_to_bridge(ipfd, tapif, arg);
  1338. else
  1339. ip = str2ip(arg);
  1340. /* Set up the tun device. */
  1341. configure_device(ipfd, tapif, ip);
  1342. add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  1343. /* Expect Guest to handle everything except UFO */
  1344. add_feature(dev, VIRTIO_NET_F_CSUM);
  1345. add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
  1346. add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
  1347. add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
  1348. add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
  1349. add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
  1350. add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
  1351. add_feature(dev, VIRTIO_NET_F_HOST_ECN);
  1352. /* We handle indirect ring entries */
  1353. add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
  1354. set_config(dev, sizeof(conf), &conf);
  1355. /* We don't need the socket any more; setup is done. */
  1356. close(ipfd);
  1357. devices.device_num++;
  1358. if (bridging)
  1359. verbose("device %u: tun %s attached to bridge: %s\n",
  1360. devices.device_num, tapif, arg);
  1361. else
  1362. verbose("device %u: tun %s: %s\n",
  1363. devices.device_num, tapif, arg);
  1364. }
  1365. /*:*/
  1366. /* This hangs off device->priv. */
  1367. struct vblk_info {
  1368. /* The size of the file. */
  1369. off64_t len;
  1370. /* The file descriptor for the file. */
  1371. int fd;
  1372. };
  1373. /*L:210
  1374. * The Disk
  1375. *
  1376. * The disk only has one virtqueue, so it only has one thread. It is really
  1377. * simple: the Guest asks for a block number and we read or write that position
  1378. * in the file.
  1379. *
  1380. * Before we serviced each virtqueue in a separate thread, that was unacceptably
  1381. * slow: the Guest waits until the read is finished before running anything
  1382. * else, even if it could have been doing useful work.
  1383. *
  1384. * We could have used async I/O, except it's reputed to suck so hard that
  1385. * characters actually go missing from your code when you try to use it.
  1386. */
  1387. static void blk_request(struct virtqueue *vq)
  1388. {
  1389. struct vblk_info *vblk = vq->dev->priv;
  1390. unsigned int head, out_num, in_num, wlen;
  1391. int ret;
  1392. u8 *in;
  1393. struct virtio_blk_outhdr *out;
  1394. struct iovec iov[vq->vring.num];
  1395. off64_t off;
  1396. /*
  1397. * Get the next request, where we normally wait. It triggers the
  1398. * interrupt to acknowledge previously serviced requests (if any).
  1399. */
  1400. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  1401. /*
  1402. * Every block request should contain at least one output buffer
  1403. * (detailing the location on disk and the type of request) and one
  1404. * input buffer (to hold the result).
  1405. */
  1406. if (out_num == 0 || in_num == 0)
  1407. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1408. head, out_num, in_num);
  1409. out = convert(&iov[0], struct virtio_blk_outhdr);
  1410. in = convert(&iov[out_num+in_num-1], u8);
  1411. /*
  1412. * For historical reasons, block operations are expressed in 512 byte
  1413. * "sectors".
  1414. */
  1415. off = out->sector * 512;
  1416. /*
  1417. * The block device implements "barriers", where the Guest indicates
  1418. * that it wants all previous writes to occur before this write. We
  1419. * don't have a way of asking our kernel to do a barrier, so we just
  1420. * synchronize all the data in the file. Pretty poor, no?
  1421. */
  1422. if (out->type & VIRTIO_BLK_T_BARRIER)
  1423. fdatasync(vblk->fd);
  1424. /*
  1425. * In general the virtio block driver is allowed to try SCSI commands.
  1426. * It'd be nice if we supported eject, for example, but we don't.
  1427. */
  1428. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1429. fprintf(stderr, "Scsi commands unsupported\n");
  1430. *in = VIRTIO_BLK_S_UNSUPP;
  1431. wlen = sizeof(*in);
  1432. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1433. /*
  1434. * Write
  1435. *
  1436. * Move to the right location in the block file. This can fail
  1437. * if they try to write past end.
  1438. */
  1439. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1440. err(1, "Bad seek to sector %llu", out->sector);
  1441. ret = writev(vblk->fd, iov+1, out_num-1);
  1442. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1443. /*
  1444. * Grr... Now we know how long the descriptor they sent was, we
  1445. * make sure they didn't try to write over the end of the block
  1446. * file (possibly extending it).
  1447. */
  1448. if (ret > 0 && off + ret > vblk->len) {
  1449. /* Trim it back to the correct length */
  1450. ftruncate64(vblk->fd, vblk->len);
  1451. /* Die, bad Guest, die. */
  1452. errx(1, "Write past end %llu+%u", off, ret);
  1453. }
  1454. wlen = sizeof(*in);
  1455. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1456. } else {
  1457. /*
  1458. * Read
  1459. *
  1460. * Move to the right location in the block file. This can fail
  1461. * if they try to read past end.
  1462. */
  1463. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1464. err(1, "Bad seek to sector %llu", out->sector);
  1465. ret = readv(vblk->fd, iov+1, in_num-1);
  1466. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1467. if (ret >= 0) {
  1468. wlen = sizeof(*in) + ret;
  1469. *in = VIRTIO_BLK_S_OK;
  1470. } else {
  1471. wlen = sizeof(*in);
  1472. *in = VIRTIO_BLK_S_IOERR;
  1473. }
  1474. }
  1475. /*
  1476. * OK, so we noted that it was pretty poor to use an fdatasync as a
  1477. * barrier. But Christoph Hellwig points out that we need a sync
  1478. * *afterwards* as well: "Barriers specify no reordering to the front
  1479. * or the back." And Jens Axboe confirmed it, so here we are:
  1480. */
  1481. if (out->type & VIRTIO_BLK_T_BARRIER)
  1482. fdatasync(vblk->fd);
  1483. /* Finished that request. */
  1484. add_used(vq, head, wlen);
  1485. }
  1486. /*L:198 This actually sets up a virtual block device. */
  1487. static void setup_block_file(const char *filename)
  1488. {
  1489. struct device *dev;
  1490. struct vblk_info *vblk;
  1491. struct virtio_blk_config conf;
  1492. /* Creat the device. */
  1493. dev = new_device("block", VIRTIO_ID_BLOCK);
  1494. /* The device has one virtqueue, where the Guest places requests. */
  1495. add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
  1496. /* Allocate the room for our own bookkeeping */
  1497. vblk = dev->priv = malloc(sizeof(*vblk));
  1498. /* First we open the file and store the length. */
  1499. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1500. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1501. /* We support barriers. */
  1502. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1503. /* Tell Guest how many sectors this device has. */
  1504. conf.capacity = cpu_to_le64(vblk->len / 512);
  1505. /*
  1506. * Tell Guest not to put in too many descriptors at once: two are used
  1507. * for the in and out elements.
  1508. */
  1509. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1510. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1511. /* Don't try to put whole struct: we have 8 bit limit. */
  1512. set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
  1513. verbose("device %u: virtblock %llu sectors\n",
  1514. ++devices.device_num, le64_to_cpu(conf.capacity));
  1515. }
  1516. /*L:211
  1517. * Our random number generator device reads from /dev/random into the Guest's
  1518. * input buffers. The usual case is that the Guest doesn't want random numbers
  1519. * and so has no buffers although /dev/random is still readable, whereas
  1520. * console is the reverse.
  1521. *
  1522. * The same logic applies, however.
  1523. */
  1524. struct rng_info {
  1525. int rfd;
  1526. };
  1527. static void rng_input(struct virtqueue *vq)
  1528. {
  1529. int len;
  1530. unsigned int head, in_num, out_num, totlen = 0;
  1531. struct rng_info *rng_info = vq->dev->priv;
  1532. struct iovec iov[vq->vring.num];
  1533. /* First we need a buffer from the Guests's virtqueue. */
  1534. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  1535. if (out_num)
  1536. errx(1, "Output buffers in rng?");
  1537. /*
  1538. * Just like the console write, we loop to cover the whole iovec.
  1539. * In this case, short reads actually happen quite a bit.
  1540. */
  1541. while (!iov_empty(iov, in_num)) {
  1542. len = readv(rng_info->rfd, iov, in_num);
  1543. if (len <= 0)
  1544. err(1, "Read from /dev/random gave %i", len);
  1545. iov_consume(iov, in_num, len);
  1546. totlen += len;
  1547. }
  1548. /* Tell the Guest about the new input. */
  1549. add_used(vq, head, totlen);
  1550. }
  1551. /*L:199
  1552. * This creates a "hardware" random number device for the Guest.
  1553. */
  1554. static void setup_rng(void)
  1555. {
  1556. struct device *dev;
  1557. struct rng_info *rng_info = malloc(sizeof(*rng_info));
  1558. /* Our device's privat info simply contains the /dev/random fd. */
  1559. rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
  1560. /* Create the new device. */
  1561. dev = new_device("rng", VIRTIO_ID_RNG);
  1562. dev->priv = rng_info;
  1563. /* The device has one virtqueue, where the Guest places inbufs. */
  1564. add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
  1565. verbose("device %u: rng\n", devices.device_num++);
  1566. }
  1567. /* That's the end of device setup. */
  1568. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1569. static void __attribute__((noreturn)) restart_guest(void)
  1570. {
  1571. unsigned int i;
  1572. /*
  1573. * Since we don't track all open fds, we simply close everything beyond
  1574. * stderr.
  1575. */
  1576. for (i = 3; i < FD_SETSIZE; i++)
  1577. close(i);
  1578. /* Reset all the devices (kills all threads). */
  1579. cleanup_devices();
  1580. execv(main_args[0], main_args);
  1581. err(1, "Could not exec %s", main_args[0]);
  1582. }
  1583. /*L:220
  1584. * Finally we reach the core of the Launcher which runs the Guest, serves
  1585. * its input and output, and finally, lays it to rest.
  1586. */
  1587. static void __attribute__((noreturn)) run_guest(void)
  1588. {
  1589. for (;;) {
  1590. unsigned long notify_addr;
  1591. int readval;
  1592. /* We read from the /dev/lguest device to run the Guest. */
  1593. readval = pread(lguest_fd, &notify_addr,
  1594. sizeof(notify_addr), cpu_id);
  1595. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1596. if (readval == sizeof(notify_addr)) {
  1597. verbose("Notify on address %#lx\n", notify_addr);
  1598. handle_output(notify_addr);
  1599. /* ENOENT means the Guest died. Reading tells us why. */
  1600. } else if (errno == ENOENT) {
  1601. char reason[1024] = { 0 };
  1602. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1603. errx(1, "%s", reason);
  1604. /* ERESTART means that we need to reboot the guest */
  1605. } else if (errno == ERESTART) {
  1606. restart_guest();
  1607. /* Anything else means a bug or incompatible change. */
  1608. } else
  1609. err(1, "Running guest failed");
  1610. }
  1611. }
  1612. /*L:240
  1613. * This is the end of the Launcher. The good news: we are over halfway
  1614. * through! The bad news: the most fiendish part of the code still lies ahead
  1615. * of us.
  1616. *
  1617. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1618. * "make Host".
  1619. :*/
  1620. static struct option opts[] = {
  1621. { "verbose", 0, NULL, 'v' },
  1622. { "tunnet", 1, NULL, 't' },
  1623. { "block", 1, NULL, 'b' },
  1624. { "rng", 0, NULL, 'r' },
  1625. { "initrd", 1, NULL, 'i' },
  1626. { NULL },
  1627. };
  1628. static void usage(void)
  1629. {
  1630. errx(1, "Usage: lguest [--verbose] "
  1631. "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
  1632. "|--block=<filename>|--initrd=<filename>]...\n"
  1633. "<mem-in-mb> vmlinux [args...]");
  1634. }
  1635. /*L:105 The main routine is where the real work begins: */
  1636. int main(int argc, char *argv[])
  1637. {
  1638. /* Memory, code startpoint and size of the (optional) initrd. */
  1639. unsigned long mem = 0, start, initrd_size = 0;
  1640. /* Two temporaries. */
  1641. int i, c;
  1642. /* The boot information for the Guest. */
  1643. struct boot_params *boot;
  1644. /* If they specify an initrd file to load. */
  1645. const char *initrd_name = NULL;
  1646. /* Save the args: we "reboot" by execing ourselves again. */
  1647. main_args = argv;
  1648. /*
  1649. * First we initialize the device list. We keep a pointer to the last
  1650. * device, and the next interrupt number to use for devices (1:
  1651. * remember that 0 is used by the timer).
  1652. */
  1653. devices.lastdev = NULL;
  1654. devices.next_irq = 1;
  1655. /* We're CPU 0. In fact, that's the only CPU possible right now. */
  1656. cpu_id = 0;
  1657. /*
  1658. * We need to know how much memory so we can set up the device
  1659. * descriptor and memory pages for the devices as we parse the command
  1660. * line. So we quickly look through the arguments to find the amount
  1661. * of memory now.
  1662. */
  1663. for (i = 1; i < argc; i++) {
  1664. if (argv[i][0] != '-') {
  1665. mem = atoi(argv[i]) * 1024 * 1024;
  1666. /*
  1667. * We start by mapping anonymous pages over all of
  1668. * guest-physical memory range. This fills it with 0,
  1669. * and ensures that the Guest won't be killed when it
  1670. * tries to access it.
  1671. */
  1672. guest_base = map_zeroed_pages(mem / getpagesize()
  1673. + DEVICE_PAGES);
  1674. guest_limit = mem;
  1675. guest_max = mem + DEVICE_PAGES*getpagesize();
  1676. devices.descpage = get_pages(1);
  1677. break;
  1678. }
  1679. }
  1680. /* The options are fairly straight-forward */
  1681. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1682. switch (c) {
  1683. case 'v':
  1684. verbose = true;
  1685. break;
  1686. case 't':
  1687. setup_tun_net(optarg);
  1688. break;
  1689. case 'b':
  1690. setup_block_file(optarg);
  1691. break;
  1692. case 'r':
  1693. setup_rng();
  1694. break;
  1695. case 'i':
  1696. initrd_name = optarg;
  1697. break;
  1698. default:
  1699. warnx("Unknown argument %s", argv[optind]);
  1700. usage();
  1701. }
  1702. }
  1703. /*
  1704. * After the other arguments we expect memory and kernel image name,
  1705. * followed by command line arguments for the kernel.
  1706. */
  1707. if (optind + 2 > argc)
  1708. usage();
  1709. verbose("Guest base is at %p\n", guest_base);
  1710. /* We always have a console device */
  1711. setup_console();
  1712. /* Now we load the kernel */
  1713. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1714. /* Boot information is stashed at physical address 0 */
  1715. boot = from_guest_phys(0);
  1716. /* Map the initrd image if requested (at top of physical memory) */
  1717. if (initrd_name) {
  1718. initrd_size = load_initrd(initrd_name, mem);
  1719. /*
  1720. * These are the location in the Linux boot header where the
  1721. * start and size of the initrd are expected to be found.
  1722. */
  1723. boot->hdr.ramdisk_image = mem - initrd_size;
  1724. boot->hdr.ramdisk_size = initrd_size;
  1725. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1726. boot->hdr.type_of_loader = 0xFF;
  1727. }
  1728. /*
  1729. * The Linux boot header contains an "E820" memory map: ours is a
  1730. * simple, single region.
  1731. */
  1732. boot->e820_entries = 1;
  1733. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1734. /*
  1735. * The boot header contains a command line pointer: we put the command
  1736. * line after the boot header.
  1737. */
  1738. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1739. /* We use a simple helper to copy the arguments separated by spaces. */
  1740. concat((char *)(boot + 1), argv+optind+2);
  1741. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1742. boot->hdr.version = 0x207;
  1743. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1744. boot->hdr.hardware_subarch = 1;
  1745. /* Tell the entry path not to try to reload segment registers. */
  1746. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1747. /*
  1748. * We tell the kernel to initialize the Guest: this returns the open
  1749. * /dev/lguest file descriptor.
  1750. */
  1751. tell_kernel(start);
  1752. /* Ensure that we terminate if a device-servicing child dies. */
  1753. signal(SIGCHLD, kill_launcher);
  1754. /* If we exit via err(), this kills all the threads, restores tty. */
  1755. atexit(cleanup_devices);
  1756. /* Finally, run the Guest. This doesn't return. */
  1757. run_guest();
  1758. }
  1759. /*:*/
  1760. /*M:999
  1761. * Mastery is done: you now know everything I do.
  1762. *
  1763. * But surely you have seen code, features and bugs in your wanderings which
  1764. * you now yearn to attack? That is the real game, and I look forward to you
  1765. * patching and forking lguest into the Your-Name-Here-visor.
  1766. *
  1767. * Farewell, and good coding!
  1768. * Rusty Russell.
  1769. */