tick-broadcast.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546
  1. /*
  2. * linux/kernel/time/tick-broadcast.c
  3. *
  4. * This file contains functions which emulate a local clock-event
  5. * device via a broadcast event source.
  6. *
  7. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9. * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10. *
  11. * This code is licenced under the GPL version 2. For details see
  12. * kernel-base/COPYING.
  13. */
  14. #include <linux/cpu.h>
  15. #include <linux/err.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/percpu.h>
  19. #include <linux/profile.h>
  20. #include <linux/sched.h>
  21. #include <linux/tick.h>
  22. #include "tick-internal.h"
  23. /*
  24. * Broadcast support for broken x86 hardware, where the local apic
  25. * timer stops in C3 state.
  26. */
  27. struct tick_device tick_broadcast_device;
  28. static cpumask_t tick_broadcast_mask;
  29. static DEFINE_SPINLOCK(tick_broadcast_lock);
  30. static int tick_broadcast_force;
  31. #ifdef CONFIG_TICK_ONESHOT
  32. static void tick_broadcast_clear_oneshot(int cpu);
  33. #else
  34. static inline void tick_broadcast_clear_oneshot(int cpu) { }
  35. #endif
  36. /*
  37. * Debugging: see timer_list.c
  38. */
  39. struct tick_device *tick_get_broadcast_device(void)
  40. {
  41. return &tick_broadcast_device;
  42. }
  43. cpumask_t *tick_get_broadcast_mask(void)
  44. {
  45. return &tick_broadcast_mask;
  46. }
  47. /*
  48. * Start the device in periodic mode
  49. */
  50. static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  51. {
  52. if (bc)
  53. tick_setup_periodic(bc, 1);
  54. }
  55. /*
  56. * Check, if the device can be utilized as broadcast device:
  57. */
  58. int tick_check_broadcast_device(struct clock_event_device *dev)
  59. {
  60. if ((tick_broadcast_device.evtdev &&
  61. tick_broadcast_device.evtdev->rating >= dev->rating) ||
  62. (dev->features & CLOCK_EVT_FEAT_C3STOP))
  63. return 0;
  64. clockevents_exchange_device(NULL, dev);
  65. tick_broadcast_device.evtdev = dev;
  66. if (!cpus_empty(tick_broadcast_mask))
  67. tick_broadcast_start_periodic(dev);
  68. return 1;
  69. }
  70. /*
  71. * Check, if the device is the broadcast device
  72. */
  73. int tick_is_broadcast_device(struct clock_event_device *dev)
  74. {
  75. return (dev && tick_broadcast_device.evtdev == dev);
  76. }
  77. /*
  78. * Check, if the device is disfunctional and a place holder, which
  79. * needs to be handled by the broadcast device.
  80. */
  81. int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
  82. {
  83. unsigned long flags;
  84. int ret = 0;
  85. spin_lock_irqsave(&tick_broadcast_lock, flags);
  86. /*
  87. * Devices might be registered with both periodic and oneshot
  88. * mode disabled. This signals, that the device needs to be
  89. * operated from the broadcast device and is a placeholder for
  90. * the cpu local device.
  91. */
  92. if (!tick_device_is_functional(dev)) {
  93. dev->event_handler = tick_handle_periodic;
  94. cpu_set(cpu, tick_broadcast_mask);
  95. tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
  96. ret = 1;
  97. } else {
  98. /*
  99. * When the new device is not affected by the stop
  100. * feature and the cpu is marked in the broadcast mask
  101. * then clear the broadcast bit.
  102. */
  103. if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
  104. int cpu = smp_processor_id();
  105. cpu_clear(cpu, tick_broadcast_mask);
  106. tick_broadcast_clear_oneshot(cpu);
  107. }
  108. }
  109. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  110. return ret;
  111. }
  112. /*
  113. * Broadcast the event to the cpus, which are set in the mask
  114. */
  115. static void tick_do_broadcast(cpumask_t mask)
  116. {
  117. int cpu = smp_processor_id();
  118. struct tick_device *td;
  119. /*
  120. * Check, if the current cpu is in the mask
  121. */
  122. if (cpu_isset(cpu, mask)) {
  123. cpu_clear(cpu, mask);
  124. td = &per_cpu(tick_cpu_device, cpu);
  125. td->evtdev->event_handler(td->evtdev);
  126. }
  127. if (!cpus_empty(mask)) {
  128. /*
  129. * It might be necessary to actually check whether the devices
  130. * have different broadcast functions. For now, just use the
  131. * one of the first device. This works as long as we have this
  132. * misfeature only on x86 (lapic)
  133. */
  134. cpu = first_cpu(mask);
  135. td = &per_cpu(tick_cpu_device, cpu);
  136. td->evtdev->broadcast(mask);
  137. }
  138. }
  139. /*
  140. * Periodic broadcast:
  141. * - invoke the broadcast handlers
  142. */
  143. static void tick_do_periodic_broadcast(void)
  144. {
  145. cpumask_t mask;
  146. spin_lock(&tick_broadcast_lock);
  147. cpus_and(mask, cpu_online_map, tick_broadcast_mask);
  148. tick_do_broadcast(mask);
  149. spin_unlock(&tick_broadcast_lock);
  150. }
  151. /*
  152. * Event handler for periodic broadcast ticks
  153. */
  154. static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
  155. {
  156. ktime_t next;
  157. tick_do_periodic_broadcast();
  158. /*
  159. * The device is in periodic mode. No reprogramming necessary:
  160. */
  161. if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
  162. return;
  163. /*
  164. * Setup the next period for devices, which do not have
  165. * periodic mode. We read dev->next_event first and add to it
  166. * when the event alrady expired. clockevents_program_event()
  167. * sets dev->next_event only when the event is really
  168. * programmed to the device.
  169. */
  170. for (next = dev->next_event; ;) {
  171. next = ktime_add(next, tick_period);
  172. if (!clockevents_program_event(dev, next, ktime_get()))
  173. return;
  174. tick_do_periodic_broadcast();
  175. }
  176. }
  177. /*
  178. * Powerstate information: The system enters/leaves a state, where
  179. * affected devices might stop
  180. */
  181. static void tick_do_broadcast_on_off(void *why)
  182. {
  183. struct clock_event_device *bc, *dev;
  184. struct tick_device *td;
  185. unsigned long flags, *reason = why;
  186. int cpu;
  187. spin_lock_irqsave(&tick_broadcast_lock, flags);
  188. cpu = smp_processor_id();
  189. td = &per_cpu(tick_cpu_device, cpu);
  190. dev = td->evtdev;
  191. bc = tick_broadcast_device.evtdev;
  192. /*
  193. * Is the device not affected by the powerstate ?
  194. */
  195. if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
  196. goto out;
  197. if (!tick_device_is_functional(dev))
  198. goto out;
  199. switch (*reason) {
  200. case CLOCK_EVT_NOTIFY_BROADCAST_ON:
  201. case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
  202. if (!cpu_isset(cpu, tick_broadcast_mask)) {
  203. cpu_set(cpu, tick_broadcast_mask);
  204. if (td->mode == TICKDEV_MODE_PERIODIC)
  205. clockevents_set_mode(dev,
  206. CLOCK_EVT_MODE_SHUTDOWN);
  207. }
  208. if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
  209. tick_broadcast_force = 1;
  210. break;
  211. case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
  212. if (!tick_broadcast_force &&
  213. cpu_isset(cpu, tick_broadcast_mask)) {
  214. cpu_clear(cpu, tick_broadcast_mask);
  215. if (td->mode == TICKDEV_MODE_PERIODIC)
  216. tick_setup_periodic(dev, 0);
  217. }
  218. break;
  219. }
  220. if (cpus_empty(tick_broadcast_mask))
  221. clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
  222. else {
  223. if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
  224. tick_broadcast_start_periodic(bc);
  225. else
  226. tick_broadcast_setup_oneshot(bc);
  227. }
  228. out:
  229. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  230. }
  231. /*
  232. * Powerstate information: The system enters/leaves a state, where
  233. * affected devices might stop.
  234. */
  235. void tick_broadcast_on_off(unsigned long reason, int *oncpu)
  236. {
  237. if (!cpu_isset(*oncpu, cpu_online_map))
  238. printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
  239. "offline CPU #%d\n", *oncpu);
  240. else
  241. smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
  242. &reason, 1);
  243. }
  244. /*
  245. * Set the periodic handler depending on broadcast on/off
  246. */
  247. void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
  248. {
  249. if (!broadcast)
  250. dev->event_handler = tick_handle_periodic;
  251. else
  252. dev->event_handler = tick_handle_periodic_broadcast;
  253. }
  254. /*
  255. * Remove a CPU from broadcasting
  256. */
  257. void tick_shutdown_broadcast(unsigned int *cpup)
  258. {
  259. struct clock_event_device *bc;
  260. unsigned long flags;
  261. unsigned int cpu = *cpup;
  262. spin_lock_irqsave(&tick_broadcast_lock, flags);
  263. bc = tick_broadcast_device.evtdev;
  264. cpu_clear(cpu, tick_broadcast_mask);
  265. if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
  266. if (bc && cpus_empty(tick_broadcast_mask))
  267. clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
  268. }
  269. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  270. }
  271. void tick_suspend_broadcast(void)
  272. {
  273. struct clock_event_device *bc;
  274. unsigned long flags;
  275. spin_lock_irqsave(&tick_broadcast_lock, flags);
  276. bc = tick_broadcast_device.evtdev;
  277. if (bc)
  278. clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
  279. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  280. }
  281. int tick_resume_broadcast(void)
  282. {
  283. struct clock_event_device *bc;
  284. unsigned long flags;
  285. int broadcast = 0;
  286. spin_lock_irqsave(&tick_broadcast_lock, flags);
  287. bc = tick_broadcast_device.evtdev;
  288. if (bc) {
  289. clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
  290. switch (tick_broadcast_device.mode) {
  291. case TICKDEV_MODE_PERIODIC:
  292. if(!cpus_empty(tick_broadcast_mask))
  293. tick_broadcast_start_periodic(bc);
  294. broadcast = cpu_isset(smp_processor_id(),
  295. tick_broadcast_mask);
  296. break;
  297. case TICKDEV_MODE_ONESHOT:
  298. broadcast = tick_resume_broadcast_oneshot(bc);
  299. break;
  300. }
  301. }
  302. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  303. return broadcast;
  304. }
  305. #ifdef CONFIG_TICK_ONESHOT
  306. static cpumask_t tick_broadcast_oneshot_mask;
  307. /*
  308. * Debugging: see timer_list.c
  309. */
  310. cpumask_t *tick_get_broadcast_oneshot_mask(void)
  311. {
  312. return &tick_broadcast_oneshot_mask;
  313. }
  314. static int tick_broadcast_set_event(ktime_t expires, int force)
  315. {
  316. struct clock_event_device *bc = tick_broadcast_device.evtdev;
  317. ktime_t now = ktime_get();
  318. int res;
  319. for(;;) {
  320. res = clockevents_program_event(bc, expires, now);
  321. if (!res || !force)
  322. return res;
  323. now = ktime_get();
  324. expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
  325. }
  326. }
  327. int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
  328. {
  329. clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
  330. return 0;
  331. }
  332. /*
  333. * Handle oneshot mode broadcasting
  334. */
  335. static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
  336. {
  337. struct tick_device *td;
  338. cpumask_t mask;
  339. ktime_t now, next_event;
  340. int cpu;
  341. spin_lock(&tick_broadcast_lock);
  342. again:
  343. dev->next_event.tv64 = KTIME_MAX;
  344. next_event.tv64 = KTIME_MAX;
  345. mask = CPU_MASK_NONE;
  346. now = ktime_get();
  347. /* Find all expired events */
  348. for_each_cpu_mask_nr(cpu, tick_broadcast_oneshot_mask) {
  349. td = &per_cpu(tick_cpu_device, cpu);
  350. if (td->evtdev->next_event.tv64 <= now.tv64)
  351. cpu_set(cpu, mask);
  352. else if (td->evtdev->next_event.tv64 < next_event.tv64)
  353. next_event.tv64 = td->evtdev->next_event.tv64;
  354. }
  355. /*
  356. * Wakeup the cpus which have an expired event.
  357. */
  358. tick_do_broadcast(mask);
  359. /*
  360. * Two reasons for reprogram:
  361. *
  362. * - The global event did not expire any CPU local
  363. * events. This happens in dyntick mode, as the maximum PIT
  364. * delta is quite small.
  365. *
  366. * - There are pending events on sleeping CPUs which were not
  367. * in the event mask
  368. */
  369. if (next_event.tv64 != KTIME_MAX) {
  370. /*
  371. * Rearm the broadcast device. If event expired,
  372. * repeat the above
  373. */
  374. if (tick_broadcast_set_event(next_event, 0))
  375. goto again;
  376. }
  377. spin_unlock(&tick_broadcast_lock);
  378. }
  379. /*
  380. * Powerstate information: The system enters/leaves a state, where
  381. * affected devices might stop
  382. */
  383. void tick_broadcast_oneshot_control(unsigned long reason)
  384. {
  385. struct clock_event_device *bc, *dev;
  386. struct tick_device *td;
  387. unsigned long flags;
  388. int cpu;
  389. spin_lock_irqsave(&tick_broadcast_lock, flags);
  390. /*
  391. * Periodic mode does not care about the enter/exit of power
  392. * states
  393. */
  394. if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
  395. goto out;
  396. bc = tick_broadcast_device.evtdev;
  397. cpu = smp_processor_id();
  398. td = &per_cpu(tick_cpu_device, cpu);
  399. dev = td->evtdev;
  400. if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
  401. goto out;
  402. if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
  403. if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
  404. cpu_set(cpu, tick_broadcast_oneshot_mask);
  405. clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
  406. if (dev->next_event.tv64 < bc->next_event.tv64)
  407. tick_broadcast_set_event(dev->next_event, 1);
  408. }
  409. } else {
  410. if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
  411. cpu_clear(cpu, tick_broadcast_oneshot_mask);
  412. clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
  413. if (dev->next_event.tv64 != KTIME_MAX)
  414. tick_program_event(dev->next_event, 1);
  415. }
  416. }
  417. out:
  418. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  419. }
  420. /*
  421. * Reset the one shot broadcast for a cpu
  422. *
  423. * Called with tick_broadcast_lock held
  424. */
  425. static void tick_broadcast_clear_oneshot(int cpu)
  426. {
  427. cpu_clear(cpu, tick_broadcast_oneshot_mask);
  428. }
  429. /**
  430. * tick_broadcast_setup_oneshot - setup the broadcast device
  431. */
  432. void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
  433. {
  434. bc->event_handler = tick_handle_oneshot_broadcast;
  435. clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
  436. bc->next_event.tv64 = KTIME_MAX;
  437. }
  438. /*
  439. * Select oneshot operating mode for the broadcast device
  440. */
  441. void tick_broadcast_switch_to_oneshot(void)
  442. {
  443. struct clock_event_device *bc;
  444. unsigned long flags;
  445. spin_lock_irqsave(&tick_broadcast_lock, flags);
  446. tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
  447. bc = tick_broadcast_device.evtdev;
  448. if (bc)
  449. tick_broadcast_setup_oneshot(bc);
  450. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  451. }
  452. /*
  453. * Remove a dead CPU from broadcasting
  454. */
  455. void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
  456. {
  457. unsigned long flags;
  458. unsigned int cpu = *cpup;
  459. spin_lock_irqsave(&tick_broadcast_lock, flags);
  460. /*
  461. * Clear the broadcast mask flag for the dead cpu, but do not
  462. * stop the broadcast device!
  463. */
  464. cpu_clear(cpu, tick_broadcast_oneshot_mask);
  465. spin_unlock_irqrestore(&tick_broadcast_lock, flags);
  466. }
  467. #endif