bnx2.c 145 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004, 2005, 2006 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <asm/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #ifdef NETIF_F_HW_VLAN_TX
  36. #include <linux/if_vlan.h>
  37. #define BCM_VLAN 1
  38. #endif
  39. #ifdef NETIF_F_TSO
  40. #include <net/ip.h>
  41. #include <net/tcp.h>
  42. #include <net/checksum.h>
  43. #define BCM_TSO 1
  44. #endif
  45. #include <linux/workqueue.h>
  46. #include <linux/crc32.h>
  47. #include <linux/prefetch.h>
  48. #include <linux/cache.h>
  49. #include <linux/zlib.h>
  50. #include "bnx2.h"
  51. #include "bnx2_fw.h"
  52. #include "bnx2_fw2.h"
  53. #define DRV_MODULE_NAME "bnx2"
  54. #define PFX DRV_MODULE_NAME ": "
  55. #define DRV_MODULE_VERSION "1.4.45"
  56. #define DRV_MODULE_RELDATE "September 29, 2006"
  57. #define RUN_AT(x) (jiffies + (x))
  58. /* Time in jiffies before concluding the transmitter is hung. */
  59. #define TX_TIMEOUT (5*HZ)
  60. static const char version[] __devinitdata =
  61. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  62. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  63. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
  64. MODULE_LICENSE("GPL");
  65. MODULE_VERSION(DRV_MODULE_VERSION);
  66. static int disable_msi = 0;
  67. module_param(disable_msi, int, 0);
  68. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  69. typedef enum {
  70. BCM5706 = 0,
  71. NC370T,
  72. NC370I,
  73. BCM5706S,
  74. NC370F,
  75. BCM5708,
  76. BCM5708S,
  77. } board_t;
  78. /* indexed by board_t, above */
  79. static const struct {
  80. char *name;
  81. } board_info[] __devinitdata = {
  82. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  83. { "HP NC370T Multifunction Gigabit Server Adapter" },
  84. { "HP NC370i Multifunction Gigabit Server Adapter" },
  85. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  86. { "HP NC370F Multifunction Gigabit Server Adapter" },
  87. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  88. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  89. };
  90. static struct pci_device_id bnx2_pci_tbl[] = {
  91. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  92. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  93. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  94. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  95. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  96. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  97. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  98. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  99. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  100. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  101. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  102. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  103. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  104. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  105. { 0, }
  106. };
  107. static struct flash_spec flash_table[] =
  108. {
  109. /* Slow EEPROM */
  110. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  111. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  112. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  113. "EEPROM - slow"},
  114. /* Expansion entry 0001 */
  115. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  116. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  117. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  118. "Entry 0001"},
  119. /* Saifun SA25F010 (non-buffered flash) */
  120. /* strap, cfg1, & write1 need updates */
  121. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  122. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  123. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  124. "Non-buffered flash (128kB)"},
  125. /* Saifun SA25F020 (non-buffered flash) */
  126. /* strap, cfg1, & write1 need updates */
  127. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  128. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  129. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  130. "Non-buffered flash (256kB)"},
  131. /* Expansion entry 0100 */
  132. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  133. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  134. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  135. "Entry 0100"},
  136. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  137. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  138. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  139. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  140. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  141. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  142. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  143. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  144. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  145. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  146. /* Saifun SA25F005 (non-buffered flash) */
  147. /* strap, cfg1, & write1 need updates */
  148. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  149. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  150. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  151. "Non-buffered flash (64kB)"},
  152. /* Fast EEPROM */
  153. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  154. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  155. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  156. "EEPROM - fast"},
  157. /* Expansion entry 1001 */
  158. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  159. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  160. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  161. "Entry 1001"},
  162. /* Expansion entry 1010 */
  163. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  164. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  165. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  166. "Entry 1010"},
  167. /* ATMEL AT45DB011B (buffered flash) */
  168. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  169. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  170. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  171. "Buffered flash (128kB)"},
  172. /* Expansion entry 1100 */
  173. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  174. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  175. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  176. "Entry 1100"},
  177. /* Expansion entry 1101 */
  178. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  179. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  181. "Entry 1101"},
  182. /* Ateml Expansion entry 1110 */
  183. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  184. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  185. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  186. "Entry 1110 (Atmel)"},
  187. /* ATMEL AT45DB021B (buffered flash) */
  188. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  189. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  190. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  191. "Buffered flash (256kB)"},
  192. };
  193. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  194. static inline u32 bnx2_tx_avail(struct bnx2 *bp)
  195. {
  196. u32 diff;
  197. smp_mb();
  198. diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons);
  199. if (diff > MAX_TX_DESC_CNT)
  200. diff = (diff & MAX_TX_DESC_CNT) - 1;
  201. return (bp->tx_ring_size - diff);
  202. }
  203. static u32
  204. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  205. {
  206. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  207. return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
  208. }
  209. static void
  210. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  211. {
  212. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  213. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  214. }
  215. static void
  216. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  217. {
  218. offset += cid_addr;
  219. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  220. int i;
  221. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  222. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  223. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  224. for (i = 0; i < 5; i++) {
  225. u32 val;
  226. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  227. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  228. break;
  229. udelay(5);
  230. }
  231. } else {
  232. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  233. REG_WR(bp, BNX2_CTX_DATA, val);
  234. }
  235. }
  236. static int
  237. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  238. {
  239. u32 val1;
  240. int i, ret;
  241. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  242. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  243. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  244. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  245. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  246. udelay(40);
  247. }
  248. val1 = (bp->phy_addr << 21) | (reg << 16) |
  249. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  250. BNX2_EMAC_MDIO_COMM_START_BUSY;
  251. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  252. for (i = 0; i < 50; i++) {
  253. udelay(10);
  254. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  255. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  256. udelay(5);
  257. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  258. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  259. break;
  260. }
  261. }
  262. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  263. *val = 0x0;
  264. ret = -EBUSY;
  265. }
  266. else {
  267. *val = val1;
  268. ret = 0;
  269. }
  270. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  271. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  272. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  273. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  274. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  275. udelay(40);
  276. }
  277. return ret;
  278. }
  279. static int
  280. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  281. {
  282. u32 val1;
  283. int i, ret;
  284. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  285. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  286. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  287. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  288. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  289. udelay(40);
  290. }
  291. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  292. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  293. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  294. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  295. for (i = 0; i < 50; i++) {
  296. udelay(10);
  297. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  298. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  299. udelay(5);
  300. break;
  301. }
  302. }
  303. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  304. ret = -EBUSY;
  305. else
  306. ret = 0;
  307. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  308. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  309. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  310. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  311. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  312. udelay(40);
  313. }
  314. return ret;
  315. }
  316. static void
  317. bnx2_disable_int(struct bnx2 *bp)
  318. {
  319. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  320. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  321. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  322. }
  323. static void
  324. bnx2_enable_int(struct bnx2 *bp)
  325. {
  326. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  327. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  328. BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
  329. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  330. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
  331. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  332. }
  333. static void
  334. bnx2_disable_int_sync(struct bnx2 *bp)
  335. {
  336. atomic_inc(&bp->intr_sem);
  337. bnx2_disable_int(bp);
  338. synchronize_irq(bp->pdev->irq);
  339. }
  340. static void
  341. bnx2_netif_stop(struct bnx2 *bp)
  342. {
  343. bnx2_disable_int_sync(bp);
  344. if (netif_running(bp->dev)) {
  345. netif_poll_disable(bp->dev);
  346. netif_tx_disable(bp->dev);
  347. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  348. }
  349. }
  350. static void
  351. bnx2_netif_start(struct bnx2 *bp)
  352. {
  353. if (atomic_dec_and_test(&bp->intr_sem)) {
  354. if (netif_running(bp->dev)) {
  355. netif_wake_queue(bp->dev);
  356. netif_poll_enable(bp->dev);
  357. bnx2_enable_int(bp);
  358. }
  359. }
  360. }
  361. static void
  362. bnx2_free_mem(struct bnx2 *bp)
  363. {
  364. int i;
  365. for (i = 0; i < bp->ctx_pages; i++) {
  366. if (bp->ctx_blk[i]) {
  367. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  368. bp->ctx_blk[i],
  369. bp->ctx_blk_mapping[i]);
  370. bp->ctx_blk[i] = NULL;
  371. }
  372. }
  373. if (bp->status_blk) {
  374. pci_free_consistent(bp->pdev, bp->status_stats_size,
  375. bp->status_blk, bp->status_blk_mapping);
  376. bp->status_blk = NULL;
  377. bp->stats_blk = NULL;
  378. }
  379. if (bp->tx_desc_ring) {
  380. pci_free_consistent(bp->pdev,
  381. sizeof(struct tx_bd) * TX_DESC_CNT,
  382. bp->tx_desc_ring, bp->tx_desc_mapping);
  383. bp->tx_desc_ring = NULL;
  384. }
  385. kfree(bp->tx_buf_ring);
  386. bp->tx_buf_ring = NULL;
  387. for (i = 0; i < bp->rx_max_ring; i++) {
  388. if (bp->rx_desc_ring[i])
  389. pci_free_consistent(bp->pdev,
  390. sizeof(struct rx_bd) * RX_DESC_CNT,
  391. bp->rx_desc_ring[i],
  392. bp->rx_desc_mapping[i]);
  393. bp->rx_desc_ring[i] = NULL;
  394. }
  395. vfree(bp->rx_buf_ring);
  396. bp->rx_buf_ring = NULL;
  397. }
  398. static int
  399. bnx2_alloc_mem(struct bnx2 *bp)
  400. {
  401. int i, status_blk_size;
  402. bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
  403. GFP_KERNEL);
  404. if (bp->tx_buf_ring == NULL)
  405. return -ENOMEM;
  406. bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
  407. sizeof(struct tx_bd) *
  408. TX_DESC_CNT,
  409. &bp->tx_desc_mapping);
  410. if (bp->tx_desc_ring == NULL)
  411. goto alloc_mem_err;
  412. bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
  413. bp->rx_max_ring);
  414. if (bp->rx_buf_ring == NULL)
  415. goto alloc_mem_err;
  416. memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
  417. bp->rx_max_ring);
  418. for (i = 0; i < bp->rx_max_ring; i++) {
  419. bp->rx_desc_ring[i] =
  420. pci_alloc_consistent(bp->pdev,
  421. sizeof(struct rx_bd) * RX_DESC_CNT,
  422. &bp->rx_desc_mapping[i]);
  423. if (bp->rx_desc_ring[i] == NULL)
  424. goto alloc_mem_err;
  425. }
  426. /* Combine status and statistics blocks into one allocation. */
  427. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  428. bp->status_stats_size = status_blk_size +
  429. sizeof(struct statistics_block);
  430. bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  431. &bp->status_blk_mapping);
  432. if (bp->status_blk == NULL)
  433. goto alloc_mem_err;
  434. memset(bp->status_blk, 0, bp->status_stats_size);
  435. bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
  436. status_blk_size);
  437. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  438. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  439. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  440. if (bp->ctx_pages == 0)
  441. bp->ctx_pages = 1;
  442. for (i = 0; i < bp->ctx_pages; i++) {
  443. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  444. BCM_PAGE_SIZE,
  445. &bp->ctx_blk_mapping[i]);
  446. if (bp->ctx_blk[i] == NULL)
  447. goto alloc_mem_err;
  448. }
  449. }
  450. return 0;
  451. alloc_mem_err:
  452. bnx2_free_mem(bp);
  453. return -ENOMEM;
  454. }
  455. static void
  456. bnx2_report_fw_link(struct bnx2 *bp)
  457. {
  458. u32 fw_link_status = 0;
  459. if (bp->link_up) {
  460. u32 bmsr;
  461. switch (bp->line_speed) {
  462. case SPEED_10:
  463. if (bp->duplex == DUPLEX_HALF)
  464. fw_link_status = BNX2_LINK_STATUS_10HALF;
  465. else
  466. fw_link_status = BNX2_LINK_STATUS_10FULL;
  467. break;
  468. case SPEED_100:
  469. if (bp->duplex == DUPLEX_HALF)
  470. fw_link_status = BNX2_LINK_STATUS_100HALF;
  471. else
  472. fw_link_status = BNX2_LINK_STATUS_100FULL;
  473. break;
  474. case SPEED_1000:
  475. if (bp->duplex == DUPLEX_HALF)
  476. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  477. else
  478. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  479. break;
  480. case SPEED_2500:
  481. if (bp->duplex == DUPLEX_HALF)
  482. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  483. else
  484. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  485. break;
  486. }
  487. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  488. if (bp->autoneg) {
  489. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  490. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  491. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  492. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  493. bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
  494. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  495. else
  496. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  497. }
  498. }
  499. else
  500. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  501. REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
  502. }
  503. static void
  504. bnx2_report_link(struct bnx2 *bp)
  505. {
  506. if (bp->link_up) {
  507. netif_carrier_on(bp->dev);
  508. printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
  509. printk("%d Mbps ", bp->line_speed);
  510. if (bp->duplex == DUPLEX_FULL)
  511. printk("full duplex");
  512. else
  513. printk("half duplex");
  514. if (bp->flow_ctrl) {
  515. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  516. printk(", receive ");
  517. if (bp->flow_ctrl & FLOW_CTRL_TX)
  518. printk("& transmit ");
  519. }
  520. else {
  521. printk(", transmit ");
  522. }
  523. printk("flow control ON");
  524. }
  525. printk("\n");
  526. }
  527. else {
  528. netif_carrier_off(bp->dev);
  529. printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
  530. }
  531. bnx2_report_fw_link(bp);
  532. }
  533. static void
  534. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  535. {
  536. u32 local_adv, remote_adv;
  537. bp->flow_ctrl = 0;
  538. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  539. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  540. if (bp->duplex == DUPLEX_FULL) {
  541. bp->flow_ctrl = bp->req_flow_ctrl;
  542. }
  543. return;
  544. }
  545. if (bp->duplex != DUPLEX_FULL) {
  546. return;
  547. }
  548. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  549. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  550. u32 val;
  551. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  552. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  553. bp->flow_ctrl |= FLOW_CTRL_TX;
  554. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  555. bp->flow_ctrl |= FLOW_CTRL_RX;
  556. return;
  557. }
  558. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  559. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  560. if (bp->phy_flags & PHY_SERDES_FLAG) {
  561. u32 new_local_adv = 0;
  562. u32 new_remote_adv = 0;
  563. if (local_adv & ADVERTISE_1000XPAUSE)
  564. new_local_adv |= ADVERTISE_PAUSE_CAP;
  565. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  566. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  567. if (remote_adv & ADVERTISE_1000XPAUSE)
  568. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  569. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  570. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  571. local_adv = new_local_adv;
  572. remote_adv = new_remote_adv;
  573. }
  574. /* See Table 28B-3 of 802.3ab-1999 spec. */
  575. if (local_adv & ADVERTISE_PAUSE_CAP) {
  576. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  577. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  578. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  579. }
  580. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  581. bp->flow_ctrl = FLOW_CTRL_RX;
  582. }
  583. }
  584. else {
  585. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  586. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  587. }
  588. }
  589. }
  590. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  591. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  592. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  593. bp->flow_ctrl = FLOW_CTRL_TX;
  594. }
  595. }
  596. }
  597. static int
  598. bnx2_5708s_linkup(struct bnx2 *bp)
  599. {
  600. u32 val;
  601. bp->link_up = 1;
  602. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  603. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  604. case BCM5708S_1000X_STAT1_SPEED_10:
  605. bp->line_speed = SPEED_10;
  606. break;
  607. case BCM5708S_1000X_STAT1_SPEED_100:
  608. bp->line_speed = SPEED_100;
  609. break;
  610. case BCM5708S_1000X_STAT1_SPEED_1G:
  611. bp->line_speed = SPEED_1000;
  612. break;
  613. case BCM5708S_1000X_STAT1_SPEED_2G5:
  614. bp->line_speed = SPEED_2500;
  615. break;
  616. }
  617. if (val & BCM5708S_1000X_STAT1_FD)
  618. bp->duplex = DUPLEX_FULL;
  619. else
  620. bp->duplex = DUPLEX_HALF;
  621. return 0;
  622. }
  623. static int
  624. bnx2_5706s_linkup(struct bnx2 *bp)
  625. {
  626. u32 bmcr, local_adv, remote_adv, common;
  627. bp->link_up = 1;
  628. bp->line_speed = SPEED_1000;
  629. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  630. if (bmcr & BMCR_FULLDPLX) {
  631. bp->duplex = DUPLEX_FULL;
  632. }
  633. else {
  634. bp->duplex = DUPLEX_HALF;
  635. }
  636. if (!(bmcr & BMCR_ANENABLE)) {
  637. return 0;
  638. }
  639. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  640. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  641. common = local_adv & remote_adv;
  642. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  643. if (common & ADVERTISE_1000XFULL) {
  644. bp->duplex = DUPLEX_FULL;
  645. }
  646. else {
  647. bp->duplex = DUPLEX_HALF;
  648. }
  649. }
  650. return 0;
  651. }
  652. static int
  653. bnx2_copper_linkup(struct bnx2 *bp)
  654. {
  655. u32 bmcr;
  656. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  657. if (bmcr & BMCR_ANENABLE) {
  658. u32 local_adv, remote_adv, common;
  659. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  660. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  661. common = local_adv & (remote_adv >> 2);
  662. if (common & ADVERTISE_1000FULL) {
  663. bp->line_speed = SPEED_1000;
  664. bp->duplex = DUPLEX_FULL;
  665. }
  666. else if (common & ADVERTISE_1000HALF) {
  667. bp->line_speed = SPEED_1000;
  668. bp->duplex = DUPLEX_HALF;
  669. }
  670. else {
  671. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  672. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  673. common = local_adv & remote_adv;
  674. if (common & ADVERTISE_100FULL) {
  675. bp->line_speed = SPEED_100;
  676. bp->duplex = DUPLEX_FULL;
  677. }
  678. else if (common & ADVERTISE_100HALF) {
  679. bp->line_speed = SPEED_100;
  680. bp->duplex = DUPLEX_HALF;
  681. }
  682. else if (common & ADVERTISE_10FULL) {
  683. bp->line_speed = SPEED_10;
  684. bp->duplex = DUPLEX_FULL;
  685. }
  686. else if (common & ADVERTISE_10HALF) {
  687. bp->line_speed = SPEED_10;
  688. bp->duplex = DUPLEX_HALF;
  689. }
  690. else {
  691. bp->line_speed = 0;
  692. bp->link_up = 0;
  693. }
  694. }
  695. }
  696. else {
  697. if (bmcr & BMCR_SPEED100) {
  698. bp->line_speed = SPEED_100;
  699. }
  700. else {
  701. bp->line_speed = SPEED_10;
  702. }
  703. if (bmcr & BMCR_FULLDPLX) {
  704. bp->duplex = DUPLEX_FULL;
  705. }
  706. else {
  707. bp->duplex = DUPLEX_HALF;
  708. }
  709. }
  710. return 0;
  711. }
  712. static int
  713. bnx2_set_mac_link(struct bnx2 *bp)
  714. {
  715. u32 val;
  716. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  717. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  718. (bp->duplex == DUPLEX_HALF)) {
  719. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  720. }
  721. /* Configure the EMAC mode register. */
  722. val = REG_RD(bp, BNX2_EMAC_MODE);
  723. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  724. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  725. BNX2_EMAC_MODE_25G_MODE);
  726. if (bp->link_up) {
  727. switch (bp->line_speed) {
  728. case SPEED_10:
  729. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  730. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  731. break;
  732. }
  733. /* fall through */
  734. case SPEED_100:
  735. val |= BNX2_EMAC_MODE_PORT_MII;
  736. break;
  737. case SPEED_2500:
  738. val |= BNX2_EMAC_MODE_25G_MODE;
  739. /* fall through */
  740. case SPEED_1000:
  741. val |= BNX2_EMAC_MODE_PORT_GMII;
  742. break;
  743. }
  744. }
  745. else {
  746. val |= BNX2_EMAC_MODE_PORT_GMII;
  747. }
  748. /* Set the MAC to operate in the appropriate duplex mode. */
  749. if (bp->duplex == DUPLEX_HALF)
  750. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  751. REG_WR(bp, BNX2_EMAC_MODE, val);
  752. /* Enable/disable rx PAUSE. */
  753. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  754. if (bp->flow_ctrl & FLOW_CTRL_RX)
  755. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  756. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  757. /* Enable/disable tx PAUSE. */
  758. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  759. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  760. if (bp->flow_ctrl & FLOW_CTRL_TX)
  761. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  762. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  763. /* Acknowledge the interrupt. */
  764. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  765. return 0;
  766. }
  767. static int
  768. bnx2_set_link(struct bnx2 *bp)
  769. {
  770. u32 bmsr;
  771. u8 link_up;
  772. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  773. bp->link_up = 1;
  774. return 0;
  775. }
  776. link_up = bp->link_up;
  777. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  778. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  779. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  780. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  781. u32 val;
  782. val = REG_RD(bp, BNX2_EMAC_STATUS);
  783. if (val & BNX2_EMAC_STATUS_LINK)
  784. bmsr |= BMSR_LSTATUS;
  785. else
  786. bmsr &= ~BMSR_LSTATUS;
  787. }
  788. if (bmsr & BMSR_LSTATUS) {
  789. bp->link_up = 1;
  790. if (bp->phy_flags & PHY_SERDES_FLAG) {
  791. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  792. bnx2_5706s_linkup(bp);
  793. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  794. bnx2_5708s_linkup(bp);
  795. }
  796. else {
  797. bnx2_copper_linkup(bp);
  798. }
  799. bnx2_resolve_flow_ctrl(bp);
  800. }
  801. else {
  802. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  803. (bp->autoneg & AUTONEG_SPEED)) {
  804. u32 bmcr;
  805. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  806. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  807. if (!(bmcr & BMCR_ANENABLE)) {
  808. bnx2_write_phy(bp, MII_BMCR, bmcr |
  809. BMCR_ANENABLE);
  810. }
  811. }
  812. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  813. bp->link_up = 0;
  814. }
  815. if (bp->link_up != link_up) {
  816. bnx2_report_link(bp);
  817. }
  818. bnx2_set_mac_link(bp);
  819. return 0;
  820. }
  821. static int
  822. bnx2_reset_phy(struct bnx2 *bp)
  823. {
  824. int i;
  825. u32 reg;
  826. bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
  827. #define PHY_RESET_MAX_WAIT 100
  828. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  829. udelay(10);
  830. bnx2_read_phy(bp, MII_BMCR, &reg);
  831. if (!(reg & BMCR_RESET)) {
  832. udelay(20);
  833. break;
  834. }
  835. }
  836. if (i == PHY_RESET_MAX_WAIT) {
  837. return -EBUSY;
  838. }
  839. return 0;
  840. }
  841. static u32
  842. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  843. {
  844. u32 adv = 0;
  845. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  846. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  847. if (bp->phy_flags & PHY_SERDES_FLAG) {
  848. adv = ADVERTISE_1000XPAUSE;
  849. }
  850. else {
  851. adv = ADVERTISE_PAUSE_CAP;
  852. }
  853. }
  854. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  855. if (bp->phy_flags & PHY_SERDES_FLAG) {
  856. adv = ADVERTISE_1000XPSE_ASYM;
  857. }
  858. else {
  859. adv = ADVERTISE_PAUSE_ASYM;
  860. }
  861. }
  862. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  863. if (bp->phy_flags & PHY_SERDES_FLAG) {
  864. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  865. }
  866. else {
  867. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  868. }
  869. }
  870. return adv;
  871. }
  872. static int
  873. bnx2_setup_serdes_phy(struct bnx2 *bp)
  874. {
  875. u32 adv, bmcr, up1;
  876. u32 new_adv = 0;
  877. if (!(bp->autoneg & AUTONEG_SPEED)) {
  878. u32 new_bmcr;
  879. int force_link_down = 0;
  880. bnx2_read_phy(bp, MII_ADVERTISE, &adv);
  881. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  882. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  883. new_bmcr = bmcr & ~(BMCR_ANENABLE | BCM5708S_BMCR_FORCE_2500);
  884. new_bmcr |= BMCR_SPEED1000;
  885. if (bp->req_line_speed == SPEED_2500) {
  886. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  887. bnx2_read_phy(bp, BCM5708S_UP1, &up1);
  888. if (!(up1 & BCM5708S_UP1_2G5)) {
  889. up1 |= BCM5708S_UP1_2G5;
  890. bnx2_write_phy(bp, BCM5708S_UP1, up1);
  891. force_link_down = 1;
  892. }
  893. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  894. bnx2_read_phy(bp, BCM5708S_UP1, &up1);
  895. if (up1 & BCM5708S_UP1_2G5) {
  896. up1 &= ~BCM5708S_UP1_2G5;
  897. bnx2_write_phy(bp, BCM5708S_UP1, up1);
  898. force_link_down = 1;
  899. }
  900. }
  901. if (bp->req_duplex == DUPLEX_FULL) {
  902. adv |= ADVERTISE_1000XFULL;
  903. new_bmcr |= BMCR_FULLDPLX;
  904. }
  905. else {
  906. adv |= ADVERTISE_1000XHALF;
  907. new_bmcr &= ~BMCR_FULLDPLX;
  908. }
  909. if ((new_bmcr != bmcr) || (force_link_down)) {
  910. /* Force a link down visible on the other side */
  911. if (bp->link_up) {
  912. bnx2_write_phy(bp, MII_ADVERTISE, adv &
  913. ~(ADVERTISE_1000XFULL |
  914. ADVERTISE_1000XHALF));
  915. bnx2_write_phy(bp, MII_BMCR, bmcr |
  916. BMCR_ANRESTART | BMCR_ANENABLE);
  917. bp->link_up = 0;
  918. netif_carrier_off(bp->dev);
  919. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  920. bnx2_report_link(bp);
  921. }
  922. bnx2_write_phy(bp, MII_ADVERTISE, adv);
  923. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  924. }
  925. return 0;
  926. }
  927. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  928. bnx2_read_phy(bp, BCM5708S_UP1, &up1);
  929. up1 |= BCM5708S_UP1_2G5;
  930. bnx2_write_phy(bp, BCM5708S_UP1, up1);
  931. }
  932. if (bp->advertising & ADVERTISED_1000baseT_Full)
  933. new_adv |= ADVERTISE_1000XFULL;
  934. new_adv |= bnx2_phy_get_pause_adv(bp);
  935. bnx2_read_phy(bp, MII_ADVERTISE, &adv);
  936. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  937. bp->serdes_an_pending = 0;
  938. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  939. /* Force a link down visible on the other side */
  940. if (bp->link_up) {
  941. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  942. spin_unlock_bh(&bp->phy_lock);
  943. msleep(20);
  944. spin_lock_bh(&bp->phy_lock);
  945. }
  946. bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
  947. bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
  948. BMCR_ANENABLE);
  949. /* Speed up link-up time when the link partner
  950. * does not autonegotiate which is very common
  951. * in blade servers. Some blade servers use
  952. * IPMI for kerboard input and it's important
  953. * to minimize link disruptions. Autoneg. involves
  954. * exchanging base pages plus 3 next pages and
  955. * normally completes in about 120 msec.
  956. */
  957. bp->current_interval = SERDES_AN_TIMEOUT;
  958. bp->serdes_an_pending = 1;
  959. mod_timer(&bp->timer, jiffies + bp->current_interval);
  960. }
  961. return 0;
  962. }
  963. #define ETHTOOL_ALL_FIBRE_SPEED \
  964. (ADVERTISED_1000baseT_Full)
  965. #define ETHTOOL_ALL_COPPER_SPEED \
  966. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  967. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  968. ADVERTISED_1000baseT_Full)
  969. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  970. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  971. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  972. static int
  973. bnx2_setup_copper_phy(struct bnx2 *bp)
  974. {
  975. u32 bmcr;
  976. u32 new_bmcr;
  977. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  978. if (bp->autoneg & AUTONEG_SPEED) {
  979. u32 adv_reg, adv1000_reg;
  980. u32 new_adv_reg = 0;
  981. u32 new_adv1000_reg = 0;
  982. bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
  983. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  984. ADVERTISE_PAUSE_ASYM);
  985. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  986. adv1000_reg &= PHY_ALL_1000_SPEED;
  987. if (bp->advertising & ADVERTISED_10baseT_Half)
  988. new_adv_reg |= ADVERTISE_10HALF;
  989. if (bp->advertising & ADVERTISED_10baseT_Full)
  990. new_adv_reg |= ADVERTISE_10FULL;
  991. if (bp->advertising & ADVERTISED_100baseT_Half)
  992. new_adv_reg |= ADVERTISE_100HALF;
  993. if (bp->advertising & ADVERTISED_100baseT_Full)
  994. new_adv_reg |= ADVERTISE_100FULL;
  995. if (bp->advertising & ADVERTISED_1000baseT_Full)
  996. new_adv1000_reg |= ADVERTISE_1000FULL;
  997. new_adv_reg |= ADVERTISE_CSMA;
  998. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  999. if ((adv1000_reg != new_adv1000_reg) ||
  1000. (adv_reg != new_adv_reg) ||
  1001. ((bmcr & BMCR_ANENABLE) == 0)) {
  1002. bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
  1003. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1004. bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
  1005. BMCR_ANENABLE);
  1006. }
  1007. else if (bp->link_up) {
  1008. /* Flow ctrl may have changed from auto to forced */
  1009. /* or vice-versa. */
  1010. bnx2_resolve_flow_ctrl(bp);
  1011. bnx2_set_mac_link(bp);
  1012. }
  1013. return 0;
  1014. }
  1015. new_bmcr = 0;
  1016. if (bp->req_line_speed == SPEED_100) {
  1017. new_bmcr |= BMCR_SPEED100;
  1018. }
  1019. if (bp->req_duplex == DUPLEX_FULL) {
  1020. new_bmcr |= BMCR_FULLDPLX;
  1021. }
  1022. if (new_bmcr != bmcr) {
  1023. u32 bmsr;
  1024. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  1025. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  1026. if (bmsr & BMSR_LSTATUS) {
  1027. /* Force link down */
  1028. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  1029. spin_unlock_bh(&bp->phy_lock);
  1030. msleep(50);
  1031. spin_lock_bh(&bp->phy_lock);
  1032. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  1033. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  1034. }
  1035. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  1036. /* Normally, the new speed is setup after the link has
  1037. * gone down and up again. In some cases, link will not go
  1038. * down so we need to set up the new speed here.
  1039. */
  1040. if (bmsr & BMSR_LSTATUS) {
  1041. bp->line_speed = bp->req_line_speed;
  1042. bp->duplex = bp->req_duplex;
  1043. bnx2_resolve_flow_ctrl(bp);
  1044. bnx2_set_mac_link(bp);
  1045. }
  1046. }
  1047. return 0;
  1048. }
  1049. static int
  1050. bnx2_setup_phy(struct bnx2 *bp)
  1051. {
  1052. if (bp->loopback == MAC_LOOPBACK)
  1053. return 0;
  1054. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1055. return (bnx2_setup_serdes_phy(bp));
  1056. }
  1057. else {
  1058. return (bnx2_setup_copper_phy(bp));
  1059. }
  1060. }
  1061. static int
  1062. bnx2_init_5708s_phy(struct bnx2 *bp)
  1063. {
  1064. u32 val;
  1065. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1066. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1067. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1068. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1069. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1070. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1071. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1072. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1073. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1074. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  1075. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1076. val |= BCM5708S_UP1_2G5;
  1077. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1078. }
  1079. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1080. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1081. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1082. /* increase tx signal amplitude */
  1083. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1084. BCM5708S_BLK_ADDR_TX_MISC);
  1085. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1086. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1087. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1088. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1089. }
  1090. val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
  1091. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1092. if (val) {
  1093. u32 is_backplane;
  1094. is_backplane = REG_RD_IND(bp, bp->shmem_base +
  1095. BNX2_SHARED_HW_CFG_CONFIG);
  1096. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1097. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1098. BCM5708S_BLK_ADDR_TX_MISC);
  1099. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1100. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1101. BCM5708S_BLK_ADDR_DIG);
  1102. }
  1103. }
  1104. return 0;
  1105. }
  1106. static int
  1107. bnx2_init_5706s_phy(struct bnx2 *bp)
  1108. {
  1109. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  1110. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1111. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1112. if (bp->dev->mtu > 1500) {
  1113. u32 val;
  1114. /* Set extended packet length bit */
  1115. bnx2_write_phy(bp, 0x18, 0x7);
  1116. bnx2_read_phy(bp, 0x18, &val);
  1117. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1118. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1119. bnx2_read_phy(bp, 0x1c, &val);
  1120. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1121. }
  1122. else {
  1123. u32 val;
  1124. bnx2_write_phy(bp, 0x18, 0x7);
  1125. bnx2_read_phy(bp, 0x18, &val);
  1126. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1127. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1128. bnx2_read_phy(bp, 0x1c, &val);
  1129. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1130. }
  1131. return 0;
  1132. }
  1133. static int
  1134. bnx2_init_copper_phy(struct bnx2 *bp)
  1135. {
  1136. u32 val;
  1137. bp->phy_flags |= PHY_CRC_FIX_FLAG;
  1138. if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
  1139. bnx2_write_phy(bp, 0x18, 0x0c00);
  1140. bnx2_write_phy(bp, 0x17, 0x000a);
  1141. bnx2_write_phy(bp, 0x15, 0x310b);
  1142. bnx2_write_phy(bp, 0x17, 0x201f);
  1143. bnx2_write_phy(bp, 0x15, 0x9506);
  1144. bnx2_write_phy(bp, 0x17, 0x401f);
  1145. bnx2_write_phy(bp, 0x15, 0x14e2);
  1146. bnx2_write_phy(bp, 0x18, 0x0400);
  1147. }
  1148. if (bp->dev->mtu > 1500) {
  1149. /* Set extended packet length bit */
  1150. bnx2_write_phy(bp, 0x18, 0x7);
  1151. bnx2_read_phy(bp, 0x18, &val);
  1152. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1153. bnx2_read_phy(bp, 0x10, &val);
  1154. bnx2_write_phy(bp, 0x10, val | 0x1);
  1155. }
  1156. else {
  1157. bnx2_write_phy(bp, 0x18, 0x7);
  1158. bnx2_read_phy(bp, 0x18, &val);
  1159. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1160. bnx2_read_phy(bp, 0x10, &val);
  1161. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1162. }
  1163. /* ethernet@wirespeed */
  1164. bnx2_write_phy(bp, 0x18, 0x7007);
  1165. bnx2_read_phy(bp, 0x18, &val);
  1166. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1167. return 0;
  1168. }
  1169. static int
  1170. bnx2_init_phy(struct bnx2 *bp)
  1171. {
  1172. u32 val;
  1173. int rc = 0;
  1174. bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
  1175. bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
  1176. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1177. bnx2_reset_phy(bp);
  1178. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1179. bp->phy_id = val << 16;
  1180. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1181. bp->phy_id |= val & 0xffff;
  1182. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1183. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1184. rc = bnx2_init_5706s_phy(bp);
  1185. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1186. rc = bnx2_init_5708s_phy(bp);
  1187. }
  1188. else {
  1189. rc = bnx2_init_copper_phy(bp);
  1190. }
  1191. bnx2_setup_phy(bp);
  1192. return rc;
  1193. }
  1194. static int
  1195. bnx2_set_mac_loopback(struct bnx2 *bp)
  1196. {
  1197. u32 mac_mode;
  1198. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1199. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1200. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1201. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1202. bp->link_up = 1;
  1203. return 0;
  1204. }
  1205. static int bnx2_test_link(struct bnx2 *);
  1206. static int
  1207. bnx2_set_phy_loopback(struct bnx2 *bp)
  1208. {
  1209. u32 mac_mode;
  1210. int rc, i;
  1211. spin_lock_bh(&bp->phy_lock);
  1212. rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX |
  1213. BMCR_SPEED1000);
  1214. spin_unlock_bh(&bp->phy_lock);
  1215. if (rc)
  1216. return rc;
  1217. for (i = 0; i < 10; i++) {
  1218. if (bnx2_test_link(bp) == 0)
  1219. break;
  1220. msleep(100);
  1221. }
  1222. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1223. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1224. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1225. BNX2_EMAC_MODE_25G_MODE);
  1226. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  1227. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1228. bp->link_up = 1;
  1229. return 0;
  1230. }
  1231. static int
  1232. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
  1233. {
  1234. int i;
  1235. u32 val;
  1236. bp->fw_wr_seq++;
  1237. msg_data |= bp->fw_wr_seq;
  1238. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1239. /* wait for an acknowledgement. */
  1240. for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
  1241. msleep(10);
  1242. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
  1243. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1244. break;
  1245. }
  1246. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  1247. return 0;
  1248. /* If we timed out, inform the firmware that this is the case. */
  1249. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  1250. if (!silent)
  1251. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  1252. "%x\n", msg_data);
  1253. msg_data &= ~BNX2_DRV_MSG_CODE;
  1254. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1255. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1256. return -EBUSY;
  1257. }
  1258. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  1259. return -EIO;
  1260. return 0;
  1261. }
  1262. static int
  1263. bnx2_init_5709_context(struct bnx2 *bp)
  1264. {
  1265. int i, ret = 0;
  1266. u32 val;
  1267. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  1268. val |= (BCM_PAGE_BITS - 8) << 16;
  1269. REG_WR(bp, BNX2_CTX_COMMAND, val);
  1270. for (i = 0; i < bp->ctx_pages; i++) {
  1271. int j;
  1272. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  1273. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  1274. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  1275. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  1276. (u64) bp->ctx_blk_mapping[i] >> 32);
  1277. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  1278. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  1279. for (j = 0; j < 10; j++) {
  1280. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  1281. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  1282. break;
  1283. udelay(5);
  1284. }
  1285. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  1286. ret = -EBUSY;
  1287. break;
  1288. }
  1289. }
  1290. return ret;
  1291. }
  1292. static void
  1293. bnx2_init_context(struct bnx2 *bp)
  1294. {
  1295. u32 vcid;
  1296. vcid = 96;
  1297. while (vcid) {
  1298. u32 vcid_addr, pcid_addr, offset;
  1299. vcid--;
  1300. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  1301. u32 new_vcid;
  1302. vcid_addr = GET_PCID_ADDR(vcid);
  1303. if (vcid & 0x8) {
  1304. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  1305. }
  1306. else {
  1307. new_vcid = vcid;
  1308. }
  1309. pcid_addr = GET_PCID_ADDR(new_vcid);
  1310. }
  1311. else {
  1312. vcid_addr = GET_CID_ADDR(vcid);
  1313. pcid_addr = vcid_addr;
  1314. }
  1315. REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
  1316. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1317. /* Zero out the context. */
  1318. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
  1319. CTX_WR(bp, 0x00, offset, 0);
  1320. }
  1321. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  1322. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1323. }
  1324. }
  1325. static int
  1326. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  1327. {
  1328. u16 *good_mbuf;
  1329. u32 good_mbuf_cnt;
  1330. u32 val;
  1331. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  1332. if (good_mbuf == NULL) {
  1333. printk(KERN_ERR PFX "Failed to allocate memory in "
  1334. "bnx2_alloc_bad_rbuf\n");
  1335. return -ENOMEM;
  1336. }
  1337. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1338. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  1339. good_mbuf_cnt = 0;
  1340. /* Allocate a bunch of mbufs and save the good ones in an array. */
  1341. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1342. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  1343. REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
  1344. val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
  1345. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  1346. /* The addresses with Bit 9 set are bad memory blocks. */
  1347. if (!(val & (1 << 9))) {
  1348. good_mbuf[good_mbuf_cnt] = (u16) val;
  1349. good_mbuf_cnt++;
  1350. }
  1351. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1352. }
  1353. /* Free the good ones back to the mbuf pool thus discarding
  1354. * all the bad ones. */
  1355. while (good_mbuf_cnt) {
  1356. good_mbuf_cnt--;
  1357. val = good_mbuf[good_mbuf_cnt];
  1358. val = (val << 9) | val | 1;
  1359. REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
  1360. }
  1361. kfree(good_mbuf);
  1362. return 0;
  1363. }
  1364. static void
  1365. bnx2_set_mac_addr(struct bnx2 *bp)
  1366. {
  1367. u32 val;
  1368. u8 *mac_addr = bp->dev->dev_addr;
  1369. val = (mac_addr[0] << 8) | mac_addr[1];
  1370. REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
  1371. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  1372. (mac_addr[4] << 8) | mac_addr[5];
  1373. REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
  1374. }
  1375. static inline int
  1376. bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
  1377. {
  1378. struct sk_buff *skb;
  1379. struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
  1380. dma_addr_t mapping;
  1381. struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  1382. unsigned long align;
  1383. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  1384. if (skb == NULL) {
  1385. return -ENOMEM;
  1386. }
  1387. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  1388. skb_reserve(skb, BNX2_RX_ALIGN - align);
  1389. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  1390. PCI_DMA_FROMDEVICE);
  1391. rx_buf->skb = skb;
  1392. pci_unmap_addr_set(rx_buf, mapping, mapping);
  1393. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  1394. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  1395. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1396. return 0;
  1397. }
  1398. static void
  1399. bnx2_phy_int(struct bnx2 *bp)
  1400. {
  1401. u32 new_link_state, old_link_state;
  1402. new_link_state = bp->status_blk->status_attn_bits &
  1403. STATUS_ATTN_BITS_LINK_STATE;
  1404. old_link_state = bp->status_blk->status_attn_bits_ack &
  1405. STATUS_ATTN_BITS_LINK_STATE;
  1406. if (new_link_state != old_link_state) {
  1407. if (new_link_state) {
  1408. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
  1409. STATUS_ATTN_BITS_LINK_STATE);
  1410. }
  1411. else {
  1412. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
  1413. STATUS_ATTN_BITS_LINK_STATE);
  1414. }
  1415. bnx2_set_link(bp);
  1416. }
  1417. }
  1418. static void
  1419. bnx2_tx_int(struct bnx2 *bp)
  1420. {
  1421. struct status_block *sblk = bp->status_blk;
  1422. u16 hw_cons, sw_cons, sw_ring_cons;
  1423. int tx_free_bd = 0;
  1424. hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
  1425. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1426. hw_cons++;
  1427. }
  1428. sw_cons = bp->tx_cons;
  1429. while (sw_cons != hw_cons) {
  1430. struct sw_bd *tx_buf;
  1431. struct sk_buff *skb;
  1432. int i, last;
  1433. sw_ring_cons = TX_RING_IDX(sw_cons);
  1434. tx_buf = &bp->tx_buf_ring[sw_ring_cons];
  1435. skb = tx_buf->skb;
  1436. #ifdef BCM_TSO
  1437. /* partial BD completions possible with TSO packets */
  1438. if (skb_is_gso(skb)) {
  1439. u16 last_idx, last_ring_idx;
  1440. last_idx = sw_cons +
  1441. skb_shinfo(skb)->nr_frags + 1;
  1442. last_ring_idx = sw_ring_cons +
  1443. skb_shinfo(skb)->nr_frags + 1;
  1444. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  1445. last_idx++;
  1446. }
  1447. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  1448. break;
  1449. }
  1450. }
  1451. #endif
  1452. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  1453. skb_headlen(skb), PCI_DMA_TODEVICE);
  1454. tx_buf->skb = NULL;
  1455. last = skb_shinfo(skb)->nr_frags;
  1456. for (i = 0; i < last; i++) {
  1457. sw_cons = NEXT_TX_BD(sw_cons);
  1458. pci_unmap_page(bp->pdev,
  1459. pci_unmap_addr(
  1460. &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
  1461. mapping),
  1462. skb_shinfo(skb)->frags[i].size,
  1463. PCI_DMA_TODEVICE);
  1464. }
  1465. sw_cons = NEXT_TX_BD(sw_cons);
  1466. tx_free_bd += last + 1;
  1467. dev_kfree_skb(skb);
  1468. hw_cons = bp->hw_tx_cons =
  1469. sblk->status_tx_quick_consumer_index0;
  1470. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1471. hw_cons++;
  1472. }
  1473. }
  1474. bp->tx_cons = sw_cons;
  1475. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  1476. * before checking for netif_queue_stopped(). Without the
  1477. * memory barrier, there is a small possibility that bnx2_start_xmit()
  1478. * will miss it and cause the queue to be stopped forever.
  1479. */
  1480. smp_mb();
  1481. if (unlikely(netif_queue_stopped(bp->dev)) &&
  1482. (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) {
  1483. netif_tx_lock(bp->dev);
  1484. if ((netif_queue_stopped(bp->dev)) &&
  1485. (bnx2_tx_avail(bp) > bp->tx_wake_thresh))
  1486. netif_wake_queue(bp->dev);
  1487. netif_tx_unlock(bp->dev);
  1488. }
  1489. }
  1490. static inline void
  1491. bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
  1492. u16 cons, u16 prod)
  1493. {
  1494. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  1495. struct rx_bd *cons_bd, *prod_bd;
  1496. cons_rx_buf = &bp->rx_buf_ring[cons];
  1497. prod_rx_buf = &bp->rx_buf_ring[prod];
  1498. pci_dma_sync_single_for_device(bp->pdev,
  1499. pci_unmap_addr(cons_rx_buf, mapping),
  1500. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1501. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1502. prod_rx_buf->skb = skb;
  1503. if (cons == prod)
  1504. return;
  1505. pci_unmap_addr_set(prod_rx_buf, mapping,
  1506. pci_unmap_addr(cons_rx_buf, mapping));
  1507. cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  1508. prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  1509. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  1510. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  1511. }
  1512. static int
  1513. bnx2_rx_int(struct bnx2 *bp, int budget)
  1514. {
  1515. struct status_block *sblk = bp->status_blk;
  1516. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  1517. struct l2_fhdr *rx_hdr;
  1518. int rx_pkt = 0;
  1519. hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
  1520. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
  1521. hw_cons++;
  1522. }
  1523. sw_cons = bp->rx_cons;
  1524. sw_prod = bp->rx_prod;
  1525. /* Memory barrier necessary as speculative reads of the rx
  1526. * buffer can be ahead of the index in the status block
  1527. */
  1528. rmb();
  1529. while (sw_cons != hw_cons) {
  1530. unsigned int len;
  1531. u32 status;
  1532. struct sw_bd *rx_buf;
  1533. struct sk_buff *skb;
  1534. dma_addr_t dma_addr;
  1535. sw_ring_cons = RX_RING_IDX(sw_cons);
  1536. sw_ring_prod = RX_RING_IDX(sw_prod);
  1537. rx_buf = &bp->rx_buf_ring[sw_ring_cons];
  1538. skb = rx_buf->skb;
  1539. rx_buf->skb = NULL;
  1540. dma_addr = pci_unmap_addr(rx_buf, mapping);
  1541. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  1542. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1543. rx_hdr = (struct l2_fhdr *) skb->data;
  1544. len = rx_hdr->l2_fhdr_pkt_len - 4;
  1545. if ((status = rx_hdr->l2_fhdr_status) &
  1546. (L2_FHDR_ERRORS_BAD_CRC |
  1547. L2_FHDR_ERRORS_PHY_DECODE |
  1548. L2_FHDR_ERRORS_ALIGNMENT |
  1549. L2_FHDR_ERRORS_TOO_SHORT |
  1550. L2_FHDR_ERRORS_GIANT_FRAME)) {
  1551. goto reuse_rx;
  1552. }
  1553. /* Since we don't have a jumbo ring, copy small packets
  1554. * if mtu > 1500
  1555. */
  1556. if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
  1557. struct sk_buff *new_skb;
  1558. new_skb = netdev_alloc_skb(bp->dev, len + 2);
  1559. if (new_skb == NULL)
  1560. goto reuse_rx;
  1561. /* aligned copy */
  1562. memcpy(new_skb->data,
  1563. skb->data + bp->rx_offset - 2,
  1564. len + 2);
  1565. skb_reserve(new_skb, 2);
  1566. skb_put(new_skb, len);
  1567. bnx2_reuse_rx_skb(bp, skb,
  1568. sw_ring_cons, sw_ring_prod);
  1569. skb = new_skb;
  1570. }
  1571. else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
  1572. pci_unmap_single(bp->pdev, dma_addr,
  1573. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  1574. skb_reserve(skb, bp->rx_offset);
  1575. skb_put(skb, len);
  1576. }
  1577. else {
  1578. reuse_rx:
  1579. bnx2_reuse_rx_skb(bp, skb,
  1580. sw_ring_cons, sw_ring_prod);
  1581. goto next_rx;
  1582. }
  1583. skb->protocol = eth_type_trans(skb, bp->dev);
  1584. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  1585. (ntohs(skb->protocol) != 0x8100)) {
  1586. dev_kfree_skb(skb);
  1587. goto next_rx;
  1588. }
  1589. skb->ip_summed = CHECKSUM_NONE;
  1590. if (bp->rx_csum &&
  1591. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  1592. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  1593. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  1594. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  1595. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1596. }
  1597. #ifdef BCM_VLAN
  1598. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
  1599. vlan_hwaccel_receive_skb(skb, bp->vlgrp,
  1600. rx_hdr->l2_fhdr_vlan_tag);
  1601. }
  1602. else
  1603. #endif
  1604. netif_receive_skb(skb);
  1605. bp->dev->last_rx = jiffies;
  1606. rx_pkt++;
  1607. next_rx:
  1608. sw_cons = NEXT_RX_BD(sw_cons);
  1609. sw_prod = NEXT_RX_BD(sw_prod);
  1610. if ((rx_pkt == budget))
  1611. break;
  1612. /* Refresh hw_cons to see if there is new work */
  1613. if (sw_cons == hw_cons) {
  1614. hw_cons = bp->hw_rx_cons =
  1615. sblk->status_rx_quick_consumer_index0;
  1616. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
  1617. hw_cons++;
  1618. rmb();
  1619. }
  1620. }
  1621. bp->rx_cons = sw_cons;
  1622. bp->rx_prod = sw_prod;
  1623. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
  1624. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  1625. mmiowb();
  1626. return rx_pkt;
  1627. }
  1628. /* MSI ISR - The only difference between this and the INTx ISR
  1629. * is that the MSI interrupt is always serviced.
  1630. */
  1631. static irqreturn_t
  1632. bnx2_msi(int irq, void *dev_instance)
  1633. {
  1634. struct net_device *dev = dev_instance;
  1635. struct bnx2 *bp = netdev_priv(dev);
  1636. prefetch(bp->status_blk);
  1637. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1638. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1639. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1640. /* Return here if interrupt is disabled. */
  1641. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1642. return IRQ_HANDLED;
  1643. netif_rx_schedule(dev);
  1644. return IRQ_HANDLED;
  1645. }
  1646. static irqreturn_t
  1647. bnx2_interrupt(int irq, void *dev_instance)
  1648. {
  1649. struct net_device *dev = dev_instance;
  1650. struct bnx2 *bp = netdev_priv(dev);
  1651. /* When using INTx, it is possible for the interrupt to arrive
  1652. * at the CPU before the status block posted prior to the
  1653. * interrupt. Reading a register will flush the status block.
  1654. * When using MSI, the MSI message will always complete after
  1655. * the status block write.
  1656. */
  1657. if ((bp->status_blk->status_idx == bp->last_status_idx) &&
  1658. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  1659. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  1660. return IRQ_NONE;
  1661. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1662. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1663. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1664. /* Return here if interrupt is shared and is disabled. */
  1665. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1666. return IRQ_HANDLED;
  1667. netif_rx_schedule(dev);
  1668. return IRQ_HANDLED;
  1669. }
  1670. static inline int
  1671. bnx2_has_work(struct bnx2 *bp)
  1672. {
  1673. struct status_block *sblk = bp->status_blk;
  1674. if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
  1675. (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
  1676. return 1;
  1677. if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
  1678. bp->link_up)
  1679. return 1;
  1680. return 0;
  1681. }
  1682. static int
  1683. bnx2_poll(struct net_device *dev, int *budget)
  1684. {
  1685. struct bnx2 *bp = netdev_priv(dev);
  1686. if ((bp->status_blk->status_attn_bits &
  1687. STATUS_ATTN_BITS_LINK_STATE) !=
  1688. (bp->status_blk->status_attn_bits_ack &
  1689. STATUS_ATTN_BITS_LINK_STATE)) {
  1690. spin_lock(&bp->phy_lock);
  1691. bnx2_phy_int(bp);
  1692. spin_unlock(&bp->phy_lock);
  1693. /* This is needed to take care of transient status
  1694. * during link changes.
  1695. */
  1696. REG_WR(bp, BNX2_HC_COMMAND,
  1697. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  1698. REG_RD(bp, BNX2_HC_COMMAND);
  1699. }
  1700. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
  1701. bnx2_tx_int(bp);
  1702. if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
  1703. int orig_budget = *budget;
  1704. int work_done;
  1705. if (orig_budget > dev->quota)
  1706. orig_budget = dev->quota;
  1707. work_done = bnx2_rx_int(bp, orig_budget);
  1708. *budget -= work_done;
  1709. dev->quota -= work_done;
  1710. }
  1711. bp->last_status_idx = bp->status_blk->status_idx;
  1712. rmb();
  1713. if (!bnx2_has_work(bp)) {
  1714. netif_rx_complete(dev);
  1715. if (likely(bp->flags & USING_MSI_FLAG)) {
  1716. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1717. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1718. bp->last_status_idx);
  1719. return 0;
  1720. }
  1721. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1722. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1723. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  1724. bp->last_status_idx);
  1725. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1726. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1727. bp->last_status_idx);
  1728. return 0;
  1729. }
  1730. return 1;
  1731. }
  1732. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  1733. * from set_multicast.
  1734. */
  1735. static void
  1736. bnx2_set_rx_mode(struct net_device *dev)
  1737. {
  1738. struct bnx2 *bp = netdev_priv(dev);
  1739. u32 rx_mode, sort_mode;
  1740. int i;
  1741. spin_lock_bh(&bp->phy_lock);
  1742. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  1743. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  1744. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  1745. #ifdef BCM_VLAN
  1746. if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
  1747. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  1748. #else
  1749. if (!(bp->flags & ASF_ENABLE_FLAG))
  1750. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  1751. #endif
  1752. if (dev->flags & IFF_PROMISC) {
  1753. /* Promiscuous mode. */
  1754. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  1755. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  1756. BNX2_RPM_SORT_USER0_PROM_VLAN;
  1757. }
  1758. else if (dev->flags & IFF_ALLMULTI) {
  1759. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1760. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1761. 0xffffffff);
  1762. }
  1763. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  1764. }
  1765. else {
  1766. /* Accept one or more multicast(s). */
  1767. struct dev_mc_list *mclist;
  1768. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  1769. u32 regidx;
  1770. u32 bit;
  1771. u32 crc;
  1772. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  1773. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  1774. i++, mclist = mclist->next) {
  1775. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  1776. bit = crc & 0xff;
  1777. regidx = (bit & 0xe0) >> 5;
  1778. bit &= 0x1f;
  1779. mc_filter[regidx] |= (1 << bit);
  1780. }
  1781. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1782. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1783. mc_filter[i]);
  1784. }
  1785. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  1786. }
  1787. if (rx_mode != bp->rx_mode) {
  1788. bp->rx_mode = rx_mode;
  1789. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  1790. }
  1791. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  1792. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  1793. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  1794. spin_unlock_bh(&bp->phy_lock);
  1795. }
  1796. #define FW_BUF_SIZE 0x8000
  1797. static int
  1798. bnx2_gunzip_init(struct bnx2 *bp)
  1799. {
  1800. if ((bp->gunzip_buf = vmalloc(FW_BUF_SIZE)) == NULL)
  1801. goto gunzip_nomem1;
  1802. if ((bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL)) == NULL)
  1803. goto gunzip_nomem2;
  1804. bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
  1805. if (bp->strm->workspace == NULL)
  1806. goto gunzip_nomem3;
  1807. return 0;
  1808. gunzip_nomem3:
  1809. kfree(bp->strm);
  1810. bp->strm = NULL;
  1811. gunzip_nomem2:
  1812. vfree(bp->gunzip_buf);
  1813. bp->gunzip_buf = NULL;
  1814. gunzip_nomem1:
  1815. printk(KERN_ERR PFX "%s: Cannot allocate firmware buffer for "
  1816. "uncompression.\n", bp->dev->name);
  1817. return -ENOMEM;
  1818. }
  1819. static void
  1820. bnx2_gunzip_end(struct bnx2 *bp)
  1821. {
  1822. kfree(bp->strm->workspace);
  1823. kfree(bp->strm);
  1824. bp->strm = NULL;
  1825. if (bp->gunzip_buf) {
  1826. vfree(bp->gunzip_buf);
  1827. bp->gunzip_buf = NULL;
  1828. }
  1829. }
  1830. static int
  1831. bnx2_gunzip(struct bnx2 *bp, u8 *zbuf, int len, void **outbuf, int *outlen)
  1832. {
  1833. int n, rc;
  1834. /* check gzip header */
  1835. if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED))
  1836. return -EINVAL;
  1837. n = 10;
  1838. #define FNAME 0x8
  1839. if (zbuf[3] & FNAME)
  1840. while ((zbuf[n++] != 0) && (n < len));
  1841. bp->strm->next_in = zbuf + n;
  1842. bp->strm->avail_in = len - n;
  1843. bp->strm->next_out = bp->gunzip_buf;
  1844. bp->strm->avail_out = FW_BUF_SIZE;
  1845. rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
  1846. if (rc != Z_OK)
  1847. return rc;
  1848. rc = zlib_inflate(bp->strm, Z_FINISH);
  1849. *outlen = FW_BUF_SIZE - bp->strm->avail_out;
  1850. *outbuf = bp->gunzip_buf;
  1851. if ((rc != Z_OK) && (rc != Z_STREAM_END))
  1852. printk(KERN_ERR PFX "%s: Firmware decompression error: %s\n",
  1853. bp->dev->name, bp->strm->msg);
  1854. zlib_inflateEnd(bp->strm);
  1855. if (rc == Z_STREAM_END)
  1856. return 0;
  1857. return rc;
  1858. }
  1859. static void
  1860. load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
  1861. u32 rv2p_proc)
  1862. {
  1863. int i;
  1864. u32 val;
  1865. for (i = 0; i < rv2p_code_len; i += 8) {
  1866. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
  1867. rv2p_code++;
  1868. REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
  1869. rv2p_code++;
  1870. if (rv2p_proc == RV2P_PROC1) {
  1871. val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  1872. REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
  1873. }
  1874. else {
  1875. val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  1876. REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
  1877. }
  1878. }
  1879. /* Reset the processor, un-stall is done later. */
  1880. if (rv2p_proc == RV2P_PROC1) {
  1881. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  1882. }
  1883. else {
  1884. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  1885. }
  1886. }
  1887. static int
  1888. load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
  1889. {
  1890. u32 offset;
  1891. u32 val;
  1892. int rc;
  1893. /* Halt the CPU. */
  1894. val = REG_RD_IND(bp, cpu_reg->mode);
  1895. val |= cpu_reg->mode_value_halt;
  1896. REG_WR_IND(bp, cpu_reg->mode, val);
  1897. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  1898. /* Load the Text area. */
  1899. offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
  1900. if (fw->gz_text) {
  1901. u32 text_len;
  1902. void *text;
  1903. rc = bnx2_gunzip(bp, fw->gz_text, fw->gz_text_len, &text,
  1904. &text_len);
  1905. if (rc)
  1906. return rc;
  1907. fw->text = text;
  1908. }
  1909. if (fw->gz_text) {
  1910. int j;
  1911. for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
  1912. REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
  1913. }
  1914. }
  1915. /* Load the Data area. */
  1916. offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
  1917. if (fw->data) {
  1918. int j;
  1919. for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
  1920. REG_WR_IND(bp, offset, fw->data[j]);
  1921. }
  1922. }
  1923. /* Load the SBSS area. */
  1924. offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
  1925. if (fw->sbss) {
  1926. int j;
  1927. for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
  1928. REG_WR_IND(bp, offset, fw->sbss[j]);
  1929. }
  1930. }
  1931. /* Load the BSS area. */
  1932. offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
  1933. if (fw->bss) {
  1934. int j;
  1935. for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
  1936. REG_WR_IND(bp, offset, fw->bss[j]);
  1937. }
  1938. }
  1939. /* Load the Read-Only area. */
  1940. offset = cpu_reg->spad_base +
  1941. (fw->rodata_addr - cpu_reg->mips_view_base);
  1942. if (fw->rodata) {
  1943. int j;
  1944. for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
  1945. REG_WR_IND(bp, offset, fw->rodata[j]);
  1946. }
  1947. }
  1948. /* Clear the pre-fetch instruction. */
  1949. REG_WR_IND(bp, cpu_reg->inst, 0);
  1950. REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
  1951. /* Start the CPU. */
  1952. val = REG_RD_IND(bp, cpu_reg->mode);
  1953. val &= ~cpu_reg->mode_value_halt;
  1954. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  1955. REG_WR_IND(bp, cpu_reg->mode, val);
  1956. return 0;
  1957. }
  1958. static int
  1959. bnx2_init_cpus(struct bnx2 *bp)
  1960. {
  1961. struct cpu_reg cpu_reg;
  1962. struct fw_info *fw;
  1963. int rc = 0;
  1964. void *text;
  1965. u32 text_len;
  1966. if ((rc = bnx2_gunzip_init(bp)) != 0)
  1967. return rc;
  1968. /* Initialize the RV2P processor. */
  1969. rc = bnx2_gunzip(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), &text,
  1970. &text_len);
  1971. if (rc)
  1972. goto init_cpu_err;
  1973. load_rv2p_fw(bp, text, text_len, RV2P_PROC1);
  1974. rc = bnx2_gunzip(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), &text,
  1975. &text_len);
  1976. if (rc)
  1977. goto init_cpu_err;
  1978. load_rv2p_fw(bp, text, text_len, RV2P_PROC2);
  1979. /* Initialize the RX Processor. */
  1980. cpu_reg.mode = BNX2_RXP_CPU_MODE;
  1981. cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
  1982. cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
  1983. cpu_reg.state = BNX2_RXP_CPU_STATE;
  1984. cpu_reg.state_value_clear = 0xffffff;
  1985. cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
  1986. cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
  1987. cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
  1988. cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
  1989. cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
  1990. cpu_reg.spad_base = BNX2_RXP_SCRATCH;
  1991. cpu_reg.mips_view_base = 0x8000000;
  1992. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1993. fw = &bnx2_rxp_fw_09;
  1994. else
  1995. fw = &bnx2_rxp_fw_06;
  1996. rc = load_cpu_fw(bp, &cpu_reg, fw);
  1997. if (rc)
  1998. goto init_cpu_err;
  1999. /* Initialize the TX Processor. */
  2000. cpu_reg.mode = BNX2_TXP_CPU_MODE;
  2001. cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
  2002. cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
  2003. cpu_reg.state = BNX2_TXP_CPU_STATE;
  2004. cpu_reg.state_value_clear = 0xffffff;
  2005. cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
  2006. cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
  2007. cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
  2008. cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
  2009. cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
  2010. cpu_reg.spad_base = BNX2_TXP_SCRATCH;
  2011. cpu_reg.mips_view_base = 0x8000000;
  2012. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2013. fw = &bnx2_txp_fw_09;
  2014. else
  2015. fw = &bnx2_txp_fw_06;
  2016. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2017. if (rc)
  2018. goto init_cpu_err;
  2019. /* Initialize the TX Patch-up Processor. */
  2020. cpu_reg.mode = BNX2_TPAT_CPU_MODE;
  2021. cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
  2022. cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
  2023. cpu_reg.state = BNX2_TPAT_CPU_STATE;
  2024. cpu_reg.state_value_clear = 0xffffff;
  2025. cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
  2026. cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
  2027. cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
  2028. cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
  2029. cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
  2030. cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
  2031. cpu_reg.mips_view_base = 0x8000000;
  2032. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2033. fw = &bnx2_tpat_fw_09;
  2034. else
  2035. fw = &bnx2_tpat_fw_06;
  2036. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2037. if (rc)
  2038. goto init_cpu_err;
  2039. /* Initialize the Completion Processor. */
  2040. cpu_reg.mode = BNX2_COM_CPU_MODE;
  2041. cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
  2042. cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
  2043. cpu_reg.state = BNX2_COM_CPU_STATE;
  2044. cpu_reg.state_value_clear = 0xffffff;
  2045. cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
  2046. cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
  2047. cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
  2048. cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
  2049. cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
  2050. cpu_reg.spad_base = BNX2_COM_SCRATCH;
  2051. cpu_reg.mips_view_base = 0x8000000;
  2052. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2053. fw = &bnx2_com_fw_09;
  2054. else
  2055. fw = &bnx2_com_fw_06;
  2056. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2057. if (rc)
  2058. goto init_cpu_err;
  2059. /* Initialize the Command Processor. */
  2060. cpu_reg.mode = BNX2_CP_CPU_MODE;
  2061. cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
  2062. cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
  2063. cpu_reg.state = BNX2_CP_CPU_STATE;
  2064. cpu_reg.state_value_clear = 0xffffff;
  2065. cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
  2066. cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
  2067. cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
  2068. cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
  2069. cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
  2070. cpu_reg.spad_base = BNX2_CP_SCRATCH;
  2071. cpu_reg.mips_view_base = 0x8000000;
  2072. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2073. fw = &bnx2_cp_fw_09;
  2074. load_cpu_fw(bp, &cpu_reg, fw);
  2075. if (rc)
  2076. goto init_cpu_err;
  2077. }
  2078. init_cpu_err:
  2079. bnx2_gunzip_end(bp);
  2080. return rc;
  2081. }
  2082. static int
  2083. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  2084. {
  2085. u16 pmcsr;
  2086. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  2087. switch (state) {
  2088. case PCI_D0: {
  2089. u32 val;
  2090. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2091. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  2092. PCI_PM_CTRL_PME_STATUS);
  2093. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  2094. /* delay required during transition out of D3hot */
  2095. msleep(20);
  2096. val = REG_RD(bp, BNX2_EMAC_MODE);
  2097. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  2098. val &= ~BNX2_EMAC_MODE_MPKT;
  2099. REG_WR(bp, BNX2_EMAC_MODE, val);
  2100. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2101. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2102. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2103. break;
  2104. }
  2105. case PCI_D3hot: {
  2106. int i;
  2107. u32 val, wol_msg;
  2108. if (bp->wol) {
  2109. u32 advertising;
  2110. u8 autoneg;
  2111. autoneg = bp->autoneg;
  2112. advertising = bp->advertising;
  2113. bp->autoneg = AUTONEG_SPEED;
  2114. bp->advertising = ADVERTISED_10baseT_Half |
  2115. ADVERTISED_10baseT_Full |
  2116. ADVERTISED_100baseT_Half |
  2117. ADVERTISED_100baseT_Full |
  2118. ADVERTISED_Autoneg;
  2119. bnx2_setup_copper_phy(bp);
  2120. bp->autoneg = autoneg;
  2121. bp->advertising = advertising;
  2122. bnx2_set_mac_addr(bp);
  2123. val = REG_RD(bp, BNX2_EMAC_MODE);
  2124. /* Enable port mode. */
  2125. val &= ~BNX2_EMAC_MODE_PORT;
  2126. val |= BNX2_EMAC_MODE_PORT_MII |
  2127. BNX2_EMAC_MODE_MPKT_RCVD |
  2128. BNX2_EMAC_MODE_ACPI_RCVD |
  2129. BNX2_EMAC_MODE_MPKT;
  2130. REG_WR(bp, BNX2_EMAC_MODE, val);
  2131. /* receive all multicast */
  2132. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2133. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2134. 0xffffffff);
  2135. }
  2136. REG_WR(bp, BNX2_EMAC_RX_MODE,
  2137. BNX2_EMAC_RX_MODE_SORT_MODE);
  2138. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  2139. BNX2_RPM_SORT_USER0_MC_EN;
  2140. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2141. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  2142. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  2143. BNX2_RPM_SORT_USER0_ENA);
  2144. /* Need to enable EMAC and RPM for WOL. */
  2145. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2146. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  2147. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  2148. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  2149. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2150. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2151. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2152. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  2153. }
  2154. else {
  2155. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  2156. }
  2157. if (!(bp->flags & NO_WOL_FLAG))
  2158. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
  2159. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  2160. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2161. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  2162. if (bp->wol)
  2163. pmcsr |= 3;
  2164. }
  2165. else {
  2166. pmcsr |= 3;
  2167. }
  2168. if (bp->wol) {
  2169. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  2170. }
  2171. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2172. pmcsr);
  2173. /* No more memory access after this point until
  2174. * device is brought back to D0.
  2175. */
  2176. udelay(50);
  2177. break;
  2178. }
  2179. default:
  2180. return -EINVAL;
  2181. }
  2182. return 0;
  2183. }
  2184. static int
  2185. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  2186. {
  2187. u32 val;
  2188. int j;
  2189. /* Request access to the flash interface. */
  2190. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  2191. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2192. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2193. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  2194. break;
  2195. udelay(5);
  2196. }
  2197. if (j >= NVRAM_TIMEOUT_COUNT)
  2198. return -EBUSY;
  2199. return 0;
  2200. }
  2201. static int
  2202. bnx2_release_nvram_lock(struct bnx2 *bp)
  2203. {
  2204. int j;
  2205. u32 val;
  2206. /* Relinquish nvram interface. */
  2207. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  2208. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2209. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2210. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  2211. break;
  2212. udelay(5);
  2213. }
  2214. if (j >= NVRAM_TIMEOUT_COUNT)
  2215. return -EBUSY;
  2216. return 0;
  2217. }
  2218. static int
  2219. bnx2_enable_nvram_write(struct bnx2 *bp)
  2220. {
  2221. u32 val;
  2222. val = REG_RD(bp, BNX2_MISC_CFG);
  2223. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  2224. if (!bp->flash_info->buffered) {
  2225. int j;
  2226. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2227. REG_WR(bp, BNX2_NVM_COMMAND,
  2228. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  2229. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2230. udelay(5);
  2231. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2232. if (val & BNX2_NVM_COMMAND_DONE)
  2233. break;
  2234. }
  2235. if (j >= NVRAM_TIMEOUT_COUNT)
  2236. return -EBUSY;
  2237. }
  2238. return 0;
  2239. }
  2240. static void
  2241. bnx2_disable_nvram_write(struct bnx2 *bp)
  2242. {
  2243. u32 val;
  2244. val = REG_RD(bp, BNX2_MISC_CFG);
  2245. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  2246. }
  2247. static void
  2248. bnx2_enable_nvram_access(struct bnx2 *bp)
  2249. {
  2250. u32 val;
  2251. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2252. /* Enable both bits, even on read. */
  2253. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2254. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  2255. }
  2256. static void
  2257. bnx2_disable_nvram_access(struct bnx2 *bp)
  2258. {
  2259. u32 val;
  2260. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2261. /* Disable both bits, even after read. */
  2262. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2263. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  2264. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  2265. }
  2266. static int
  2267. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  2268. {
  2269. u32 cmd;
  2270. int j;
  2271. if (bp->flash_info->buffered)
  2272. /* Buffered flash, no erase needed */
  2273. return 0;
  2274. /* Build an erase command */
  2275. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  2276. BNX2_NVM_COMMAND_DOIT;
  2277. /* Need to clear DONE bit separately. */
  2278. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2279. /* Address of the NVRAM to read from. */
  2280. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2281. /* Issue an erase command. */
  2282. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2283. /* Wait for completion. */
  2284. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2285. u32 val;
  2286. udelay(5);
  2287. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2288. if (val & BNX2_NVM_COMMAND_DONE)
  2289. break;
  2290. }
  2291. if (j >= NVRAM_TIMEOUT_COUNT)
  2292. return -EBUSY;
  2293. return 0;
  2294. }
  2295. static int
  2296. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  2297. {
  2298. u32 cmd;
  2299. int j;
  2300. /* Build the command word. */
  2301. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  2302. /* Calculate an offset of a buffered flash. */
  2303. if (bp->flash_info->buffered) {
  2304. offset = ((offset / bp->flash_info->page_size) <<
  2305. bp->flash_info->page_bits) +
  2306. (offset % bp->flash_info->page_size);
  2307. }
  2308. /* Need to clear DONE bit separately. */
  2309. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2310. /* Address of the NVRAM to read from. */
  2311. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2312. /* Issue a read command. */
  2313. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2314. /* Wait for completion. */
  2315. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2316. u32 val;
  2317. udelay(5);
  2318. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2319. if (val & BNX2_NVM_COMMAND_DONE) {
  2320. val = REG_RD(bp, BNX2_NVM_READ);
  2321. val = be32_to_cpu(val);
  2322. memcpy(ret_val, &val, 4);
  2323. break;
  2324. }
  2325. }
  2326. if (j >= NVRAM_TIMEOUT_COUNT)
  2327. return -EBUSY;
  2328. return 0;
  2329. }
  2330. static int
  2331. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  2332. {
  2333. u32 cmd, val32;
  2334. int j;
  2335. /* Build the command word. */
  2336. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  2337. /* Calculate an offset of a buffered flash. */
  2338. if (bp->flash_info->buffered) {
  2339. offset = ((offset / bp->flash_info->page_size) <<
  2340. bp->flash_info->page_bits) +
  2341. (offset % bp->flash_info->page_size);
  2342. }
  2343. /* Need to clear DONE bit separately. */
  2344. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2345. memcpy(&val32, val, 4);
  2346. val32 = cpu_to_be32(val32);
  2347. /* Write the data. */
  2348. REG_WR(bp, BNX2_NVM_WRITE, val32);
  2349. /* Address of the NVRAM to write to. */
  2350. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2351. /* Issue the write command. */
  2352. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2353. /* Wait for completion. */
  2354. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2355. udelay(5);
  2356. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  2357. break;
  2358. }
  2359. if (j >= NVRAM_TIMEOUT_COUNT)
  2360. return -EBUSY;
  2361. return 0;
  2362. }
  2363. static int
  2364. bnx2_init_nvram(struct bnx2 *bp)
  2365. {
  2366. u32 val;
  2367. int j, entry_count, rc;
  2368. struct flash_spec *flash;
  2369. /* Determine the selected interface. */
  2370. val = REG_RD(bp, BNX2_NVM_CFG1);
  2371. entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
  2372. rc = 0;
  2373. if (val & 0x40000000) {
  2374. /* Flash interface has been reconfigured */
  2375. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2376. j++, flash++) {
  2377. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  2378. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  2379. bp->flash_info = flash;
  2380. break;
  2381. }
  2382. }
  2383. }
  2384. else {
  2385. u32 mask;
  2386. /* Not yet been reconfigured */
  2387. if (val & (1 << 23))
  2388. mask = FLASH_BACKUP_STRAP_MASK;
  2389. else
  2390. mask = FLASH_STRAP_MASK;
  2391. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2392. j++, flash++) {
  2393. if ((val & mask) == (flash->strapping & mask)) {
  2394. bp->flash_info = flash;
  2395. /* Request access to the flash interface. */
  2396. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2397. return rc;
  2398. /* Enable access to flash interface */
  2399. bnx2_enable_nvram_access(bp);
  2400. /* Reconfigure the flash interface */
  2401. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  2402. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  2403. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  2404. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  2405. /* Disable access to flash interface */
  2406. bnx2_disable_nvram_access(bp);
  2407. bnx2_release_nvram_lock(bp);
  2408. break;
  2409. }
  2410. }
  2411. } /* if (val & 0x40000000) */
  2412. if (j == entry_count) {
  2413. bp->flash_info = NULL;
  2414. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  2415. return -ENODEV;
  2416. }
  2417. val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
  2418. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  2419. if (val)
  2420. bp->flash_size = val;
  2421. else
  2422. bp->flash_size = bp->flash_info->total_size;
  2423. return rc;
  2424. }
  2425. static int
  2426. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  2427. int buf_size)
  2428. {
  2429. int rc = 0;
  2430. u32 cmd_flags, offset32, len32, extra;
  2431. if (buf_size == 0)
  2432. return 0;
  2433. /* Request access to the flash interface. */
  2434. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2435. return rc;
  2436. /* Enable access to flash interface */
  2437. bnx2_enable_nvram_access(bp);
  2438. len32 = buf_size;
  2439. offset32 = offset;
  2440. extra = 0;
  2441. cmd_flags = 0;
  2442. if (offset32 & 3) {
  2443. u8 buf[4];
  2444. u32 pre_len;
  2445. offset32 &= ~3;
  2446. pre_len = 4 - (offset & 3);
  2447. if (pre_len >= len32) {
  2448. pre_len = len32;
  2449. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2450. BNX2_NVM_COMMAND_LAST;
  2451. }
  2452. else {
  2453. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2454. }
  2455. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2456. if (rc)
  2457. return rc;
  2458. memcpy(ret_buf, buf + (offset & 3), pre_len);
  2459. offset32 += 4;
  2460. ret_buf += pre_len;
  2461. len32 -= pre_len;
  2462. }
  2463. if (len32 & 3) {
  2464. extra = 4 - (len32 & 3);
  2465. len32 = (len32 + 4) & ~3;
  2466. }
  2467. if (len32 == 4) {
  2468. u8 buf[4];
  2469. if (cmd_flags)
  2470. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2471. else
  2472. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2473. BNX2_NVM_COMMAND_LAST;
  2474. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2475. memcpy(ret_buf, buf, 4 - extra);
  2476. }
  2477. else if (len32 > 0) {
  2478. u8 buf[4];
  2479. /* Read the first word. */
  2480. if (cmd_flags)
  2481. cmd_flags = 0;
  2482. else
  2483. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2484. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  2485. /* Advance to the next dword. */
  2486. offset32 += 4;
  2487. ret_buf += 4;
  2488. len32 -= 4;
  2489. while (len32 > 4 && rc == 0) {
  2490. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  2491. /* Advance to the next dword. */
  2492. offset32 += 4;
  2493. ret_buf += 4;
  2494. len32 -= 4;
  2495. }
  2496. if (rc)
  2497. return rc;
  2498. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2499. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2500. memcpy(ret_buf, buf, 4 - extra);
  2501. }
  2502. /* Disable access to flash interface */
  2503. bnx2_disable_nvram_access(bp);
  2504. bnx2_release_nvram_lock(bp);
  2505. return rc;
  2506. }
  2507. static int
  2508. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  2509. int buf_size)
  2510. {
  2511. u32 written, offset32, len32;
  2512. u8 *buf, start[4], end[4], *flash_buffer = NULL;
  2513. int rc = 0;
  2514. int align_start, align_end;
  2515. buf = data_buf;
  2516. offset32 = offset;
  2517. len32 = buf_size;
  2518. align_start = align_end = 0;
  2519. if ((align_start = (offset32 & 3))) {
  2520. offset32 &= ~3;
  2521. len32 += align_start;
  2522. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  2523. return rc;
  2524. }
  2525. if (len32 & 3) {
  2526. if ((len32 > 4) || !align_start) {
  2527. align_end = 4 - (len32 & 3);
  2528. len32 += align_end;
  2529. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4,
  2530. end, 4))) {
  2531. return rc;
  2532. }
  2533. }
  2534. }
  2535. if (align_start || align_end) {
  2536. buf = kmalloc(len32, GFP_KERNEL);
  2537. if (buf == 0)
  2538. return -ENOMEM;
  2539. if (align_start) {
  2540. memcpy(buf, start, 4);
  2541. }
  2542. if (align_end) {
  2543. memcpy(buf + len32 - 4, end, 4);
  2544. }
  2545. memcpy(buf + align_start, data_buf, buf_size);
  2546. }
  2547. if (bp->flash_info->buffered == 0) {
  2548. flash_buffer = kmalloc(264, GFP_KERNEL);
  2549. if (flash_buffer == NULL) {
  2550. rc = -ENOMEM;
  2551. goto nvram_write_end;
  2552. }
  2553. }
  2554. written = 0;
  2555. while ((written < len32) && (rc == 0)) {
  2556. u32 page_start, page_end, data_start, data_end;
  2557. u32 addr, cmd_flags;
  2558. int i;
  2559. /* Find the page_start addr */
  2560. page_start = offset32 + written;
  2561. page_start -= (page_start % bp->flash_info->page_size);
  2562. /* Find the page_end addr */
  2563. page_end = page_start + bp->flash_info->page_size;
  2564. /* Find the data_start addr */
  2565. data_start = (written == 0) ? offset32 : page_start;
  2566. /* Find the data_end addr */
  2567. data_end = (page_end > offset32 + len32) ?
  2568. (offset32 + len32) : page_end;
  2569. /* Request access to the flash interface. */
  2570. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2571. goto nvram_write_end;
  2572. /* Enable access to flash interface */
  2573. bnx2_enable_nvram_access(bp);
  2574. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2575. if (bp->flash_info->buffered == 0) {
  2576. int j;
  2577. /* Read the whole page into the buffer
  2578. * (non-buffer flash only) */
  2579. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  2580. if (j == (bp->flash_info->page_size - 4)) {
  2581. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2582. }
  2583. rc = bnx2_nvram_read_dword(bp,
  2584. page_start + j,
  2585. &flash_buffer[j],
  2586. cmd_flags);
  2587. if (rc)
  2588. goto nvram_write_end;
  2589. cmd_flags = 0;
  2590. }
  2591. }
  2592. /* Enable writes to flash interface (unlock write-protect) */
  2593. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  2594. goto nvram_write_end;
  2595. /* Erase the page */
  2596. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  2597. goto nvram_write_end;
  2598. /* Re-enable the write again for the actual write */
  2599. bnx2_enable_nvram_write(bp);
  2600. /* Loop to write back the buffer data from page_start to
  2601. * data_start */
  2602. i = 0;
  2603. if (bp->flash_info->buffered == 0) {
  2604. for (addr = page_start; addr < data_start;
  2605. addr += 4, i += 4) {
  2606. rc = bnx2_nvram_write_dword(bp, addr,
  2607. &flash_buffer[i], cmd_flags);
  2608. if (rc != 0)
  2609. goto nvram_write_end;
  2610. cmd_flags = 0;
  2611. }
  2612. }
  2613. /* Loop to write the new data from data_start to data_end */
  2614. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  2615. if ((addr == page_end - 4) ||
  2616. ((bp->flash_info->buffered) &&
  2617. (addr == data_end - 4))) {
  2618. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2619. }
  2620. rc = bnx2_nvram_write_dword(bp, addr, buf,
  2621. cmd_flags);
  2622. if (rc != 0)
  2623. goto nvram_write_end;
  2624. cmd_flags = 0;
  2625. buf += 4;
  2626. }
  2627. /* Loop to write back the buffer data from data_end
  2628. * to page_end */
  2629. if (bp->flash_info->buffered == 0) {
  2630. for (addr = data_end; addr < page_end;
  2631. addr += 4, i += 4) {
  2632. if (addr == page_end-4) {
  2633. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2634. }
  2635. rc = bnx2_nvram_write_dword(bp, addr,
  2636. &flash_buffer[i], cmd_flags);
  2637. if (rc != 0)
  2638. goto nvram_write_end;
  2639. cmd_flags = 0;
  2640. }
  2641. }
  2642. /* Disable writes to flash interface (lock write-protect) */
  2643. bnx2_disable_nvram_write(bp);
  2644. /* Disable access to flash interface */
  2645. bnx2_disable_nvram_access(bp);
  2646. bnx2_release_nvram_lock(bp);
  2647. /* Increment written */
  2648. written += data_end - data_start;
  2649. }
  2650. nvram_write_end:
  2651. if (bp->flash_info->buffered == 0)
  2652. kfree(flash_buffer);
  2653. if (align_start || align_end)
  2654. kfree(buf);
  2655. return rc;
  2656. }
  2657. static int
  2658. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  2659. {
  2660. u32 val;
  2661. int i, rc = 0;
  2662. /* Wait for the current PCI transaction to complete before
  2663. * issuing a reset. */
  2664. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  2665. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  2666. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  2667. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  2668. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  2669. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  2670. udelay(5);
  2671. /* Wait for the firmware to tell us it is ok to issue a reset. */
  2672. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
  2673. /* Deposit a driver reset signature so the firmware knows that
  2674. * this is a soft reset. */
  2675. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
  2676. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  2677. /* Do a dummy read to force the chip to complete all current transaction
  2678. * before we issue a reset. */
  2679. val = REG_RD(bp, BNX2_MISC_ID);
  2680. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2681. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  2682. REG_RD(bp, BNX2_MISC_COMMAND);
  2683. udelay(5);
  2684. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  2685. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  2686. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  2687. } else {
  2688. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2689. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  2690. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  2691. /* Chip reset. */
  2692. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  2693. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2694. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  2695. current->state = TASK_UNINTERRUPTIBLE;
  2696. schedule_timeout(HZ / 50);
  2697. }
  2698. /* Reset takes approximate 30 usec */
  2699. for (i = 0; i < 10; i++) {
  2700. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  2701. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2702. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  2703. break;
  2704. udelay(10);
  2705. }
  2706. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2707. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  2708. printk(KERN_ERR PFX "Chip reset did not complete\n");
  2709. return -EBUSY;
  2710. }
  2711. }
  2712. /* Make sure byte swapping is properly configured. */
  2713. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  2714. if (val != 0x01020304) {
  2715. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  2716. return -ENODEV;
  2717. }
  2718. /* Wait for the firmware to finish its initialization. */
  2719. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
  2720. if (rc)
  2721. return rc;
  2722. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2723. /* Adjust the voltage regular to two steps lower. The default
  2724. * of this register is 0x0000000e. */
  2725. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  2726. /* Remove bad rbuf memory from the free pool. */
  2727. rc = bnx2_alloc_bad_rbuf(bp);
  2728. }
  2729. return rc;
  2730. }
  2731. static int
  2732. bnx2_init_chip(struct bnx2 *bp)
  2733. {
  2734. u32 val;
  2735. int rc;
  2736. /* Make sure the interrupt is not active. */
  2737. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2738. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  2739. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  2740. #ifdef __BIG_ENDIAN
  2741. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  2742. #endif
  2743. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  2744. DMA_READ_CHANS << 12 |
  2745. DMA_WRITE_CHANS << 16;
  2746. val |= (0x2 << 20) | (1 << 11);
  2747. if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
  2748. val |= (1 << 23);
  2749. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  2750. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
  2751. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  2752. REG_WR(bp, BNX2_DMA_CONFIG, val);
  2753. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2754. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  2755. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  2756. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  2757. }
  2758. if (bp->flags & PCIX_FLAG) {
  2759. u16 val16;
  2760. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  2761. &val16);
  2762. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  2763. val16 & ~PCI_X_CMD_ERO);
  2764. }
  2765. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2766. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  2767. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  2768. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  2769. /* Initialize context mapping and zero out the quick contexts. The
  2770. * context block must have already been enabled. */
  2771. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2772. bnx2_init_5709_context(bp);
  2773. else
  2774. bnx2_init_context(bp);
  2775. if ((rc = bnx2_init_cpus(bp)) != 0)
  2776. return rc;
  2777. bnx2_init_nvram(bp);
  2778. bnx2_set_mac_addr(bp);
  2779. val = REG_RD(bp, BNX2_MQ_CONFIG);
  2780. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  2781. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  2782. REG_WR(bp, BNX2_MQ_CONFIG, val);
  2783. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  2784. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  2785. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  2786. val = (BCM_PAGE_BITS - 8) << 24;
  2787. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  2788. /* Configure page size. */
  2789. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  2790. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  2791. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  2792. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  2793. val = bp->mac_addr[0] +
  2794. (bp->mac_addr[1] << 8) +
  2795. (bp->mac_addr[2] << 16) +
  2796. bp->mac_addr[3] +
  2797. (bp->mac_addr[4] << 8) +
  2798. (bp->mac_addr[5] << 16);
  2799. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  2800. /* Program the MTU. Also include 4 bytes for CRC32. */
  2801. val = bp->dev->mtu + ETH_HLEN + 4;
  2802. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  2803. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  2804. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  2805. bp->last_status_idx = 0;
  2806. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  2807. /* Set up how to generate a link change interrupt. */
  2808. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2809. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  2810. (u64) bp->status_blk_mapping & 0xffffffff);
  2811. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  2812. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  2813. (u64) bp->stats_blk_mapping & 0xffffffff);
  2814. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  2815. (u64) bp->stats_blk_mapping >> 32);
  2816. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  2817. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  2818. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  2819. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  2820. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  2821. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  2822. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  2823. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  2824. REG_WR(bp, BNX2_HC_COM_TICKS,
  2825. (bp->com_ticks_int << 16) | bp->com_ticks);
  2826. REG_WR(bp, BNX2_HC_CMD_TICKS,
  2827. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  2828. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
  2829. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  2830. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  2831. REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
  2832. else {
  2833. REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
  2834. BNX2_HC_CONFIG_TX_TMR_MODE |
  2835. BNX2_HC_CONFIG_COLLECT_STATS);
  2836. }
  2837. /* Clear internal stats counters. */
  2838. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  2839. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
  2840. if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
  2841. BNX2_PORT_FEATURE_ASF_ENABLED)
  2842. bp->flags |= ASF_ENABLE_FLAG;
  2843. /* Initialize the receive filter. */
  2844. bnx2_set_rx_mode(bp->dev);
  2845. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  2846. 0);
  2847. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
  2848. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  2849. udelay(20);
  2850. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  2851. return rc;
  2852. }
  2853. static void
  2854. bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
  2855. {
  2856. u32 val, offset0, offset1, offset2, offset3;
  2857. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2858. offset0 = BNX2_L2CTX_TYPE_XI;
  2859. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  2860. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  2861. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  2862. } else {
  2863. offset0 = BNX2_L2CTX_TYPE;
  2864. offset1 = BNX2_L2CTX_CMD_TYPE;
  2865. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  2866. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  2867. }
  2868. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  2869. CTX_WR(bp, GET_CID_ADDR(cid), offset0, val);
  2870. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  2871. CTX_WR(bp, GET_CID_ADDR(cid), offset1, val);
  2872. val = (u64) bp->tx_desc_mapping >> 32;
  2873. CTX_WR(bp, GET_CID_ADDR(cid), offset2, val);
  2874. val = (u64) bp->tx_desc_mapping & 0xffffffff;
  2875. CTX_WR(bp, GET_CID_ADDR(cid), offset3, val);
  2876. }
  2877. static void
  2878. bnx2_init_tx_ring(struct bnx2 *bp)
  2879. {
  2880. struct tx_bd *txbd;
  2881. u32 cid;
  2882. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  2883. txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
  2884. txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
  2885. txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
  2886. bp->tx_prod = 0;
  2887. bp->tx_cons = 0;
  2888. bp->hw_tx_cons = 0;
  2889. bp->tx_prod_bseq = 0;
  2890. cid = TX_CID;
  2891. bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  2892. bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  2893. bnx2_init_tx_context(bp, cid);
  2894. }
  2895. static void
  2896. bnx2_init_rx_ring(struct bnx2 *bp)
  2897. {
  2898. struct rx_bd *rxbd;
  2899. int i;
  2900. u16 prod, ring_prod;
  2901. u32 val;
  2902. /* 8 for CRC and VLAN */
  2903. bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
  2904. /* hw alignment */
  2905. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  2906. ring_prod = prod = bp->rx_prod = 0;
  2907. bp->rx_cons = 0;
  2908. bp->hw_rx_cons = 0;
  2909. bp->rx_prod_bseq = 0;
  2910. for (i = 0; i < bp->rx_max_ring; i++) {
  2911. int j;
  2912. rxbd = &bp->rx_desc_ring[i][0];
  2913. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  2914. rxbd->rx_bd_len = bp->rx_buf_use_size;
  2915. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  2916. }
  2917. if (i == (bp->rx_max_ring - 1))
  2918. j = 0;
  2919. else
  2920. j = i + 1;
  2921. rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
  2922. rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
  2923. 0xffffffff;
  2924. }
  2925. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  2926. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  2927. val |= 0x02 << 8;
  2928. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
  2929. val = (u64) bp->rx_desc_mapping[0] >> 32;
  2930. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
  2931. val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
  2932. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
  2933. for (i = 0; i < bp->rx_ring_size; i++) {
  2934. if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
  2935. break;
  2936. }
  2937. prod = NEXT_RX_BD(prod);
  2938. ring_prod = RX_RING_IDX(prod);
  2939. }
  2940. bp->rx_prod = prod;
  2941. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
  2942. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  2943. }
  2944. static void
  2945. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  2946. {
  2947. u32 num_rings, max;
  2948. bp->rx_ring_size = size;
  2949. num_rings = 1;
  2950. while (size > MAX_RX_DESC_CNT) {
  2951. size -= MAX_RX_DESC_CNT;
  2952. num_rings++;
  2953. }
  2954. /* round to next power of 2 */
  2955. max = MAX_RX_RINGS;
  2956. while ((max & num_rings) == 0)
  2957. max >>= 1;
  2958. if (num_rings != max)
  2959. max <<= 1;
  2960. bp->rx_max_ring = max;
  2961. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  2962. }
  2963. static void
  2964. bnx2_free_tx_skbs(struct bnx2 *bp)
  2965. {
  2966. int i;
  2967. if (bp->tx_buf_ring == NULL)
  2968. return;
  2969. for (i = 0; i < TX_DESC_CNT; ) {
  2970. struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
  2971. struct sk_buff *skb = tx_buf->skb;
  2972. int j, last;
  2973. if (skb == NULL) {
  2974. i++;
  2975. continue;
  2976. }
  2977. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2978. skb_headlen(skb), PCI_DMA_TODEVICE);
  2979. tx_buf->skb = NULL;
  2980. last = skb_shinfo(skb)->nr_frags;
  2981. for (j = 0; j < last; j++) {
  2982. tx_buf = &bp->tx_buf_ring[i + j + 1];
  2983. pci_unmap_page(bp->pdev,
  2984. pci_unmap_addr(tx_buf, mapping),
  2985. skb_shinfo(skb)->frags[j].size,
  2986. PCI_DMA_TODEVICE);
  2987. }
  2988. dev_kfree_skb(skb);
  2989. i += j + 1;
  2990. }
  2991. }
  2992. static void
  2993. bnx2_free_rx_skbs(struct bnx2 *bp)
  2994. {
  2995. int i;
  2996. if (bp->rx_buf_ring == NULL)
  2997. return;
  2998. for (i = 0; i < bp->rx_max_ring_idx; i++) {
  2999. struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
  3000. struct sk_buff *skb = rx_buf->skb;
  3001. if (skb == NULL)
  3002. continue;
  3003. pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
  3004. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  3005. rx_buf->skb = NULL;
  3006. dev_kfree_skb(skb);
  3007. }
  3008. }
  3009. static void
  3010. bnx2_free_skbs(struct bnx2 *bp)
  3011. {
  3012. bnx2_free_tx_skbs(bp);
  3013. bnx2_free_rx_skbs(bp);
  3014. }
  3015. static int
  3016. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  3017. {
  3018. int rc;
  3019. rc = bnx2_reset_chip(bp, reset_code);
  3020. bnx2_free_skbs(bp);
  3021. if (rc)
  3022. return rc;
  3023. if ((rc = bnx2_init_chip(bp)) != 0)
  3024. return rc;
  3025. bnx2_init_tx_ring(bp);
  3026. bnx2_init_rx_ring(bp);
  3027. return 0;
  3028. }
  3029. static int
  3030. bnx2_init_nic(struct bnx2 *bp)
  3031. {
  3032. int rc;
  3033. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  3034. return rc;
  3035. spin_lock_bh(&bp->phy_lock);
  3036. bnx2_init_phy(bp);
  3037. spin_unlock_bh(&bp->phy_lock);
  3038. bnx2_set_link(bp);
  3039. return 0;
  3040. }
  3041. static int
  3042. bnx2_test_registers(struct bnx2 *bp)
  3043. {
  3044. int ret;
  3045. int i;
  3046. static const struct {
  3047. u16 offset;
  3048. u16 flags;
  3049. u32 rw_mask;
  3050. u32 ro_mask;
  3051. } reg_tbl[] = {
  3052. { 0x006c, 0, 0x00000000, 0x0000003f },
  3053. { 0x0090, 0, 0xffffffff, 0x00000000 },
  3054. { 0x0094, 0, 0x00000000, 0x00000000 },
  3055. { 0x0404, 0, 0x00003f00, 0x00000000 },
  3056. { 0x0418, 0, 0x00000000, 0xffffffff },
  3057. { 0x041c, 0, 0x00000000, 0xffffffff },
  3058. { 0x0420, 0, 0x00000000, 0x80ffffff },
  3059. { 0x0424, 0, 0x00000000, 0x00000000 },
  3060. { 0x0428, 0, 0x00000000, 0x00000001 },
  3061. { 0x0450, 0, 0x00000000, 0x0000ffff },
  3062. { 0x0454, 0, 0x00000000, 0xffffffff },
  3063. { 0x0458, 0, 0x00000000, 0xffffffff },
  3064. { 0x0808, 0, 0x00000000, 0xffffffff },
  3065. { 0x0854, 0, 0x00000000, 0xffffffff },
  3066. { 0x0868, 0, 0x00000000, 0x77777777 },
  3067. { 0x086c, 0, 0x00000000, 0x77777777 },
  3068. { 0x0870, 0, 0x00000000, 0x77777777 },
  3069. { 0x0874, 0, 0x00000000, 0x77777777 },
  3070. { 0x0c00, 0, 0x00000000, 0x00000001 },
  3071. { 0x0c04, 0, 0x00000000, 0x03ff0001 },
  3072. { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
  3073. { 0x1000, 0, 0x00000000, 0x00000001 },
  3074. { 0x1004, 0, 0x00000000, 0x000f0001 },
  3075. { 0x1408, 0, 0x01c00800, 0x00000000 },
  3076. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  3077. { 0x14a8, 0, 0x00000000, 0x000001ff },
  3078. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  3079. { 0x14b0, 0, 0x00000002, 0x00000001 },
  3080. { 0x14b8, 0, 0x00000000, 0x00000000 },
  3081. { 0x14c0, 0, 0x00000000, 0x00000009 },
  3082. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  3083. { 0x14cc, 0, 0x00000000, 0x00000001 },
  3084. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  3085. { 0x1800, 0, 0x00000000, 0x00000001 },
  3086. { 0x1804, 0, 0x00000000, 0x00000003 },
  3087. { 0x2800, 0, 0x00000000, 0x00000001 },
  3088. { 0x2804, 0, 0x00000000, 0x00003f01 },
  3089. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  3090. { 0x2810, 0, 0xffff0000, 0x00000000 },
  3091. { 0x2814, 0, 0xffff0000, 0x00000000 },
  3092. { 0x2818, 0, 0xffff0000, 0x00000000 },
  3093. { 0x281c, 0, 0xffff0000, 0x00000000 },
  3094. { 0x2834, 0, 0xffffffff, 0x00000000 },
  3095. { 0x2840, 0, 0x00000000, 0xffffffff },
  3096. { 0x2844, 0, 0x00000000, 0xffffffff },
  3097. { 0x2848, 0, 0xffffffff, 0x00000000 },
  3098. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  3099. { 0x2c00, 0, 0x00000000, 0x00000011 },
  3100. { 0x2c04, 0, 0x00000000, 0x00030007 },
  3101. { 0x3c00, 0, 0x00000000, 0x00000001 },
  3102. { 0x3c04, 0, 0x00000000, 0x00070000 },
  3103. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  3104. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  3105. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  3106. { 0x3c14, 0, 0x00000000, 0xffffffff },
  3107. { 0x3c18, 0, 0x00000000, 0xffffffff },
  3108. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  3109. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  3110. { 0x5004, 0, 0x00000000, 0x0000007f },
  3111. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  3112. { 0x500c, 0, 0xf800f800, 0x07ff07ff },
  3113. { 0x5c00, 0, 0x00000000, 0x00000001 },
  3114. { 0x5c04, 0, 0x00000000, 0x0003000f },
  3115. { 0x5c08, 0, 0x00000003, 0x00000000 },
  3116. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  3117. { 0x5c10, 0, 0x00000000, 0xffffffff },
  3118. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  3119. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  3120. { 0x5c88, 0, 0x00000000, 0x00077373 },
  3121. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  3122. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  3123. { 0x680c, 0, 0xffffffff, 0x00000000 },
  3124. { 0x6810, 0, 0xffffffff, 0x00000000 },
  3125. { 0x6814, 0, 0xffffffff, 0x00000000 },
  3126. { 0x6818, 0, 0xffffffff, 0x00000000 },
  3127. { 0x681c, 0, 0xffffffff, 0x00000000 },
  3128. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  3129. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  3130. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  3131. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  3132. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  3133. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  3134. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  3135. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  3136. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  3137. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  3138. { 0x684c, 0, 0xffffffff, 0x00000000 },
  3139. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  3140. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  3141. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  3142. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  3143. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  3144. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  3145. { 0xffff, 0, 0x00000000, 0x00000000 },
  3146. };
  3147. ret = 0;
  3148. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  3149. u32 offset, rw_mask, ro_mask, save_val, val;
  3150. offset = (u32) reg_tbl[i].offset;
  3151. rw_mask = reg_tbl[i].rw_mask;
  3152. ro_mask = reg_tbl[i].ro_mask;
  3153. save_val = readl(bp->regview + offset);
  3154. writel(0, bp->regview + offset);
  3155. val = readl(bp->regview + offset);
  3156. if ((val & rw_mask) != 0) {
  3157. goto reg_test_err;
  3158. }
  3159. if ((val & ro_mask) != (save_val & ro_mask)) {
  3160. goto reg_test_err;
  3161. }
  3162. writel(0xffffffff, bp->regview + offset);
  3163. val = readl(bp->regview + offset);
  3164. if ((val & rw_mask) != rw_mask) {
  3165. goto reg_test_err;
  3166. }
  3167. if ((val & ro_mask) != (save_val & ro_mask)) {
  3168. goto reg_test_err;
  3169. }
  3170. writel(save_val, bp->regview + offset);
  3171. continue;
  3172. reg_test_err:
  3173. writel(save_val, bp->regview + offset);
  3174. ret = -ENODEV;
  3175. break;
  3176. }
  3177. return ret;
  3178. }
  3179. static int
  3180. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  3181. {
  3182. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  3183. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  3184. int i;
  3185. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  3186. u32 offset;
  3187. for (offset = 0; offset < size; offset += 4) {
  3188. REG_WR_IND(bp, start + offset, test_pattern[i]);
  3189. if (REG_RD_IND(bp, start + offset) !=
  3190. test_pattern[i]) {
  3191. return -ENODEV;
  3192. }
  3193. }
  3194. }
  3195. return 0;
  3196. }
  3197. static int
  3198. bnx2_test_memory(struct bnx2 *bp)
  3199. {
  3200. int ret = 0;
  3201. int i;
  3202. static const struct {
  3203. u32 offset;
  3204. u32 len;
  3205. } mem_tbl[] = {
  3206. { 0x60000, 0x4000 },
  3207. { 0xa0000, 0x3000 },
  3208. { 0xe0000, 0x4000 },
  3209. { 0x120000, 0x4000 },
  3210. { 0x1a0000, 0x4000 },
  3211. { 0x160000, 0x4000 },
  3212. { 0xffffffff, 0 },
  3213. };
  3214. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  3215. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  3216. mem_tbl[i].len)) != 0) {
  3217. return ret;
  3218. }
  3219. }
  3220. return ret;
  3221. }
  3222. #define BNX2_MAC_LOOPBACK 0
  3223. #define BNX2_PHY_LOOPBACK 1
  3224. static int
  3225. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  3226. {
  3227. unsigned int pkt_size, num_pkts, i;
  3228. struct sk_buff *skb, *rx_skb;
  3229. unsigned char *packet;
  3230. u16 rx_start_idx, rx_idx;
  3231. dma_addr_t map;
  3232. struct tx_bd *txbd;
  3233. struct sw_bd *rx_buf;
  3234. struct l2_fhdr *rx_hdr;
  3235. int ret = -ENODEV;
  3236. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  3237. bp->loopback = MAC_LOOPBACK;
  3238. bnx2_set_mac_loopback(bp);
  3239. }
  3240. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  3241. bp->loopback = PHY_LOOPBACK;
  3242. bnx2_set_phy_loopback(bp);
  3243. }
  3244. else
  3245. return -EINVAL;
  3246. pkt_size = 1514;
  3247. skb = netdev_alloc_skb(bp->dev, pkt_size);
  3248. if (!skb)
  3249. return -ENOMEM;
  3250. packet = skb_put(skb, pkt_size);
  3251. memcpy(packet, bp->mac_addr, 6);
  3252. memset(packet + 6, 0x0, 8);
  3253. for (i = 14; i < pkt_size; i++)
  3254. packet[i] = (unsigned char) (i & 0xff);
  3255. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  3256. PCI_DMA_TODEVICE);
  3257. REG_WR(bp, BNX2_HC_COMMAND,
  3258. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3259. REG_RD(bp, BNX2_HC_COMMAND);
  3260. udelay(5);
  3261. rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3262. num_pkts = 0;
  3263. txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
  3264. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  3265. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  3266. txbd->tx_bd_mss_nbytes = pkt_size;
  3267. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  3268. num_pkts++;
  3269. bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
  3270. bp->tx_prod_bseq += pkt_size;
  3271. REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
  3272. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  3273. udelay(100);
  3274. REG_WR(bp, BNX2_HC_COMMAND,
  3275. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3276. REG_RD(bp, BNX2_HC_COMMAND);
  3277. udelay(5);
  3278. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  3279. dev_kfree_skb(skb);
  3280. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
  3281. goto loopback_test_done;
  3282. }
  3283. rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3284. if (rx_idx != rx_start_idx + num_pkts) {
  3285. goto loopback_test_done;
  3286. }
  3287. rx_buf = &bp->rx_buf_ring[rx_start_idx];
  3288. rx_skb = rx_buf->skb;
  3289. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  3290. skb_reserve(rx_skb, bp->rx_offset);
  3291. pci_dma_sync_single_for_cpu(bp->pdev,
  3292. pci_unmap_addr(rx_buf, mapping),
  3293. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  3294. if (rx_hdr->l2_fhdr_status &
  3295. (L2_FHDR_ERRORS_BAD_CRC |
  3296. L2_FHDR_ERRORS_PHY_DECODE |
  3297. L2_FHDR_ERRORS_ALIGNMENT |
  3298. L2_FHDR_ERRORS_TOO_SHORT |
  3299. L2_FHDR_ERRORS_GIANT_FRAME)) {
  3300. goto loopback_test_done;
  3301. }
  3302. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  3303. goto loopback_test_done;
  3304. }
  3305. for (i = 14; i < pkt_size; i++) {
  3306. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  3307. goto loopback_test_done;
  3308. }
  3309. }
  3310. ret = 0;
  3311. loopback_test_done:
  3312. bp->loopback = 0;
  3313. return ret;
  3314. }
  3315. #define BNX2_MAC_LOOPBACK_FAILED 1
  3316. #define BNX2_PHY_LOOPBACK_FAILED 2
  3317. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  3318. BNX2_PHY_LOOPBACK_FAILED)
  3319. static int
  3320. bnx2_test_loopback(struct bnx2 *bp)
  3321. {
  3322. int rc = 0;
  3323. if (!netif_running(bp->dev))
  3324. return BNX2_LOOPBACK_FAILED;
  3325. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  3326. spin_lock_bh(&bp->phy_lock);
  3327. bnx2_init_phy(bp);
  3328. spin_unlock_bh(&bp->phy_lock);
  3329. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  3330. rc |= BNX2_MAC_LOOPBACK_FAILED;
  3331. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  3332. rc |= BNX2_PHY_LOOPBACK_FAILED;
  3333. return rc;
  3334. }
  3335. #define NVRAM_SIZE 0x200
  3336. #define CRC32_RESIDUAL 0xdebb20e3
  3337. static int
  3338. bnx2_test_nvram(struct bnx2 *bp)
  3339. {
  3340. u32 buf[NVRAM_SIZE / 4];
  3341. u8 *data = (u8 *) buf;
  3342. int rc = 0;
  3343. u32 magic, csum;
  3344. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  3345. goto test_nvram_done;
  3346. magic = be32_to_cpu(buf[0]);
  3347. if (magic != 0x669955aa) {
  3348. rc = -ENODEV;
  3349. goto test_nvram_done;
  3350. }
  3351. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  3352. goto test_nvram_done;
  3353. csum = ether_crc_le(0x100, data);
  3354. if (csum != CRC32_RESIDUAL) {
  3355. rc = -ENODEV;
  3356. goto test_nvram_done;
  3357. }
  3358. csum = ether_crc_le(0x100, data + 0x100);
  3359. if (csum != CRC32_RESIDUAL) {
  3360. rc = -ENODEV;
  3361. }
  3362. test_nvram_done:
  3363. return rc;
  3364. }
  3365. static int
  3366. bnx2_test_link(struct bnx2 *bp)
  3367. {
  3368. u32 bmsr;
  3369. spin_lock_bh(&bp->phy_lock);
  3370. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  3371. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  3372. spin_unlock_bh(&bp->phy_lock);
  3373. if (bmsr & BMSR_LSTATUS) {
  3374. return 0;
  3375. }
  3376. return -ENODEV;
  3377. }
  3378. static int
  3379. bnx2_test_intr(struct bnx2 *bp)
  3380. {
  3381. int i;
  3382. u16 status_idx;
  3383. if (!netif_running(bp->dev))
  3384. return -ENODEV;
  3385. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  3386. /* This register is not touched during run-time. */
  3387. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  3388. REG_RD(bp, BNX2_HC_COMMAND);
  3389. for (i = 0; i < 10; i++) {
  3390. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  3391. status_idx) {
  3392. break;
  3393. }
  3394. msleep_interruptible(10);
  3395. }
  3396. if (i < 10)
  3397. return 0;
  3398. return -ENODEV;
  3399. }
  3400. static void
  3401. bnx2_5706_serdes_timer(struct bnx2 *bp)
  3402. {
  3403. spin_lock(&bp->phy_lock);
  3404. if (bp->serdes_an_pending)
  3405. bp->serdes_an_pending--;
  3406. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3407. u32 bmcr;
  3408. bp->current_interval = bp->timer_interval;
  3409. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3410. if (bmcr & BMCR_ANENABLE) {
  3411. u32 phy1, phy2;
  3412. bnx2_write_phy(bp, 0x1c, 0x7c00);
  3413. bnx2_read_phy(bp, 0x1c, &phy1);
  3414. bnx2_write_phy(bp, 0x17, 0x0f01);
  3415. bnx2_read_phy(bp, 0x15, &phy2);
  3416. bnx2_write_phy(bp, 0x17, 0x0f01);
  3417. bnx2_read_phy(bp, 0x15, &phy2);
  3418. if ((phy1 & 0x10) && /* SIGNAL DETECT */
  3419. !(phy2 & 0x20)) { /* no CONFIG */
  3420. bmcr &= ~BMCR_ANENABLE;
  3421. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  3422. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3423. bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG;
  3424. }
  3425. }
  3426. }
  3427. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  3428. (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
  3429. u32 phy2;
  3430. bnx2_write_phy(bp, 0x17, 0x0f01);
  3431. bnx2_read_phy(bp, 0x15, &phy2);
  3432. if (phy2 & 0x20) {
  3433. u32 bmcr;
  3434. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3435. bmcr |= BMCR_ANENABLE;
  3436. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3437. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  3438. }
  3439. } else
  3440. bp->current_interval = bp->timer_interval;
  3441. spin_unlock(&bp->phy_lock);
  3442. }
  3443. static void
  3444. bnx2_5708_serdes_timer(struct bnx2 *bp)
  3445. {
  3446. if ((bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) == 0) {
  3447. bp->serdes_an_pending = 0;
  3448. return;
  3449. }
  3450. spin_lock(&bp->phy_lock);
  3451. if (bp->serdes_an_pending)
  3452. bp->serdes_an_pending--;
  3453. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3454. u32 bmcr;
  3455. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3456. if (bmcr & BMCR_ANENABLE) {
  3457. bmcr &= ~BMCR_ANENABLE;
  3458. bmcr |= BMCR_FULLDPLX | BCM5708S_BMCR_FORCE_2500;
  3459. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3460. bp->current_interval = SERDES_FORCED_TIMEOUT;
  3461. } else {
  3462. bmcr &= ~(BMCR_FULLDPLX | BCM5708S_BMCR_FORCE_2500);
  3463. bmcr |= BMCR_ANENABLE;
  3464. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3465. bp->serdes_an_pending = 2;
  3466. bp->current_interval = bp->timer_interval;
  3467. }
  3468. } else
  3469. bp->current_interval = bp->timer_interval;
  3470. spin_unlock(&bp->phy_lock);
  3471. }
  3472. static void
  3473. bnx2_timer(unsigned long data)
  3474. {
  3475. struct bnx2 *bp = (struct bnx2 *) data;
  3476. u32 msg;
  3477. if (!netif_running(bp->dev))
  3478. return;
  3479. if (atomic_read(&bp->intr_sem) != 0)
  3480. goto bnx2_restart_timer;
  3481. msg = (u32) ++bp->fw_drv_pulse_wr_seq;
  3482. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
  3483. bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
  3484. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3485. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  3486. bnx2_5706_serdes_timer(bp);
  3487. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  3488. bnx2_5708_serdes_timer(bp);
  3489. }
  3490. bnx2_restart_timer:
  3491. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3492. }
  3493. /* Called with rtnl_lock */
  3494. static int
  3495. bnx2_open(struct net_device *dev)
  3496. {
  3497. struct bnx2 *bp = netdev_priv(dev);
  3498. int rc;
  3499. bnx2_set_power_state(bp, PCI_D0);
  3500. bnx2_disable_int(bp);
  3501. rc = bnx2_alloc_mem(bp);
  3502. if (rc)
  3503. return rc;
  3504. if ((CHIP_ID(bp) != CHIP_ID_5706_A0) &&
  3505. (CHIP_ID(bp) != CHIP_ID_5706_A1) &&
  3506. !disable_msi) {
  3507. if (pci_enable_msi(bp->pdev) == 0) {
  3508. bp->flags |= USING_MSI_FLAG;
  3509. rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name,
  3510. dev);
  3511. }
  3512. else {
  3513. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  3514. IRQF_SHARED, dev->name, dev);
  3515. }
  3516. }
  3517. else {
  3518. rc = request_irq(bp->pdev->irq, bnx2_interrupt, IRQF_SHARED,
  3519. dev->name, dev);
  3520. }
  3521. if (rc) {
  3522. bnx2_free_mem(bp);
  3523. return rc;
  3524. }
  3525. rc = bnx2_init_nic(bp);
  3526. if (rc) {
  3527. free_irq(bp->pdev->irq, dev);
  3528. if (bp->flags & USING_MSI_FLAG) {
  3529. pci_disable_msi(bp->pdev);
  3530. bp->flags &= ~USING_MSI_FLAG;
  3531. }
  3532. bnx2_free_skbs(bp);
  3533. bnx2_free_mem(bp);
  3534. return rc;
  3535. }
  3536. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3537. atomic_set(&bp->intr_sem, 0);
  3538. bnx2_enable_int(bp);
  3539. if (bp->flags & USING_MSI_FLAG) {
  3540. /* Test MSI to make sure it is working
  3541. * If MSI test fails, go back to INTx mode
  3542. */
  3543. if (bnx2_test_intr(bp) != 0) {
  3544. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  3545. " using MSI, switching to INTx mode. Please"
  3546. " report this failure to the PCI maintainer"
  3547. " and include system chipset information.\n",
  3548. bp->dev->name);
  3549. bnx2_disable_int(bp);
  3550. free_irq(bp->pdev->irq, dev);
  3551. pci_disable_msi(bp->pdev);
  3552. bp->flags &= ~USING_MSI_FLAG;
  3553. rc = bnx2_init_nic(bp);
  3554. if (!rc) {
  3555. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  3556. IRQF_SHARED, dev->name, dev);
  3557. }
  3558. if (rc) {
  3559. bnx2_free_skbs(bp);
  3560. bnx2_free_mem(bp);
  3561. del_timer_sync(&bp->timer);
  3562. return rc;
  3563. }
  3564. bnx2_enable_int(bp);
  3565. }
  3566. }
  3567. if (bp->flags & USING_MSI_FLAG) {
  3568. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  3569. }
  3570. netif_start_queue(dev);
  3571. return 0;
  3572. }
  3573. static void
  3574. bnx2_reset_task(void *data)
  3575. {
  3576. struct bnx2 *bp = data;
  3577. if (!netif_running(bp->dev))
  3578. return;
  3579. bp->in_reset_task = 1;
  3580. bnx2_netif_stop(bp);
  3581. bnx2_init_nic(bp);
  3582. atomic_set(&bp->intr_sem, 1);
  3583. bnx2_netif_start(bp);
  3584. bp->in_reset_task = 0;
  3585. }
  3586. static void
  3587. bnx2_tx_timeout(struct net_device *dev)
  3588. {
  3589. struct bnx2 *bp = netdev_priv(dev);
  3590. /* This allows the netif to be shutdown gracefully before resetting */
  3591. schedule_work(&bp->reset_task);
  3592. }
  3593. #ifdef BCM_VLAN
  3594. /* Called with rtnl_lock */
  3595. static void
  3596. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  3597. {
  3598. struct bnx2 *bp = netdev_priv(dev);
  3599. bnx2_netif_stop(bp);
  3600. bp->vlgrp = vlgrp;
  3601. bnx2_set_rx_mode(dev);
  3602. bnx2_netif_start(bp);
  3603. }
  3604. /* Called with rtnl_lock */
  3605. static void
  3606. bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
  3607. {
  3608. struct bnx2 *bp = netdev_priv(dev);
  3609. bnx2_netif_stop(bp);
  3610. if (bp->vlgrp)
  3611. bp->vlgrp->vlan_devices[vid] = NULL;
  3612. bnx2_set_rx_mode(dev);
  3613. bnx2_netif_start(bp);
  3614. }
  3615. #endif
  3616. /* Called with netif_tx_lock.
  3617. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  3618. * netif_wake_queue().
  3619. */
  3620. static int
  3621. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  3622. {
  3623. struct bnx2 *bp = netdev_priv(dev);
  3624. dma_addr_t mapping;
  3625. struct tx_bd *txbd;
  3626. struct sw_bd *tx_buf;
  3627. u32 len, vlan_tag_flags, last_frag, mss;
  3628. u16 prod, ring_prod;
  3629. int i;
  3630. if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
  3631. netif_stop_queue(dev);
  3632. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  3633. dev->name);
  3634. return NETDEV_TX_BUSY;
  3635. }
  3636. len = skb_headlen(skb);
  3637. prod = bp->tx_prod;
  3638. ring_prod = TX_RING_IDX(prod);
  3639. vlan_tag_flags = 0;
  3640. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3641. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  3642. }
  3643. if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
  3644. vlan_tag_flags |=
  3645. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  3646. }
  3647. #ifdef BCM_TSO
  3648. if ((mss = skb_shinfo(skb)->gso_size) &&
  3649. (skb->len > (bp->dev->mtu + ETH_HLEN))) {
  3650. u32 tcp_opt_len, ip_tcp_len;
  3651. if (skb_header_cloned(skb) &&
  3652. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  3653. dev_kfree_skb(skb);
  3654. return NETDEV_TX_OK;
  3655. }
  3656. tcp_opt_len = ((skb->h.th->doff - 5) * 4);
  3657. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  3658. tcp_opt_len = 0;
  3659. if (skb->h.th->doff > 5) {
  3660. tcp_opt_len = (skb->h.th->doff - 5) << 2;
  3661. }
  3662. ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr);
  3663. skb->nh.iph->check = 0;
  3664. skb->nh.iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
  3665. skb->h.th->check =
  3666. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  3667. skb->nh.iph->daddr,
  3668. 0, IPPROTO_TCP, 0);
  3669. if (tcp_opt_len || (skb->nh.iph->ihl > 5)) {
  3670. vlan_tag_flags |= ((skb->nh.iph->ihl - 5) +
  3671. (tcp_opt_len >> 2)) << 8;
  3672. }
  3673. }
  3674. else
  3675. #endif
  3676. {
  3677. mss = 0;
  3678. }
  3679. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  3680. tx_buf = &bp->tx_buf_ring[ring_prod];
  3681. tx_buf->skb = skb;
  3682. pci_unmap_addr_set(tx_buf, mapping, mapping);
  3683. txbd = &bp->tx_desc_ring[ring_prod];
  3684. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3685. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3686. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3687. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  3688. last_frag = skb_shinfo(skb)->nr_frags;
  3689. for (i = 0; i < last_frag; i++) {
  3690. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3691. prod = NEXT_TX_BD(prod);
  3692. ring_prod = TX_RING_IDX(prod);
  3693. txbd = &bp->tx_desc_ring[ring_prod];
  3694. len = frag->size;
  3695. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  3696. len, PCI_DMA_TODEVICE);
  3697. pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
  3698. mapping, mapping);
  3699. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3700. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3701. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3702. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  3703. }
  3704. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  3705. prod = NEXT_TX_BD(prod);
  3706. bp->tx_prod_bseq += skb->len;
  3707. REG_WR16(bp, bp->tx_bidx_addr, prod);
  3708. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  3709. mmiowb();
  3710. bp->tx_prod = prod;
  3711. dev->trans_start = jiffies;
  3712. if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
  3713. netif_stop_queue(dev);
  3714. if (bnx2_tx_avail(bp) > bp->tx_wake_thresh)
  3715. netif_wake_queue(dev);
  3716. }
  3717. return NETDEV_TX_OK;
  3718. }
  3719. /* Called with rtnl_lock */
  3720. static int
  3721. bnx2_close(struct net_device *dev)
  3722. {
  3723. struct bnx2 *bp = netdev_priv(dev);
  3724. u32 reset_code;
  3725. /* Calling flush_scheduled_work() may deadlock because
  3726. * linkwatch_event() may be on the workqueue and it will try to get
  3727. * the rtnl_lock which we are holding.
  3728. */
  3729. while (bp->in_reset_task)
  3730. msleep(1);
  3731. bnx2_netif_stop(bp);
  3732. del_timer_sync(&bp->timer);
  3733. if (bp->flags & NO_WOL_FLAG)
  3734. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  3735. else if (bp->wol)
  3736. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3737. else
  3738. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3739. bnx2_reset_chip(bp, reset_code);
  3740. free_irq(bp->pdev->irq, dev);
  3741. if (bp->flags & USING_MSI_FLAG) {
  3742. pci_disable_msi(bp->pdev);
  3743. bp->flags &= ~USING_MSI_FLAG;
  3744. }
  3745. bnx2_free_skbs(bp);
  3746. bnx2_free_mem(bp);
  3747. bp->link_up = 0;
  3748. netif_carrier_off(bp->dev);
  3749. bnx2_set_power_state(bp, PCI_D3hot);
  3750. return 0;
  3751. }
  3752. #define GET_NET_STATS64(ctr) \
  3753. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  3754. (unsigned long) (ctr##_lo)
  3755. #define GET_NET_STATS32(ctr) \
  3756. (ctr##_lo)
  3757. #if (BITS_PER_LONG == 64)
  3758. #define GET_NET_STATS GET_NET_STATS64
  3759. #else
  3760. #define GET_NET_STATS GET_NET_STATS32
  3761. #endif
  3762. static struct net_device_stats *
  3763. bnx2_get_stats(struct net_device *dev)
  3764. {
  3765. struct bnx2 *bp = netdev_priv(dev);
  3766. struct statistics_block *stats_blk = bp->stats_blk;
  3767. struct net_device_stats *net_stats = &bp->net_stats;
  3768. if (bp->stats_blk == NULL) {
  3769. return net_stats;
  3770. }
  3771. net_stats->rx_packets =
  3772. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  3773. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  3774. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  3775. net_stats->tx_packets =
  3776. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  3777. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  3778. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  3779. net_stats->rx_bytes =
  3780. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  3781. net_stats->tx_bytes =
  3782. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  3783. net_stats->multicast =
  3784. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  3785. net_stats->collisions =
  3786. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  3787. net_stats->rx_length_errors =
  3788. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  3789. stats_blk->stat_EtherStatsOverrsizePkts);
  3790. net_stats->rx_over_errors =
  3791. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  3792. net_stats->rx_frame_errors =
  3793. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  3794. net_stats->rx_crc_errors =
  3795. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  3796. net_stats->rx_errors = net_stats->rx_length_errors +
  3797. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  3798. net_stats->rx_crc_errors;
  3799. net_stats->tx_aborted_errors =
  3800. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  3801. stats_blk->stat_Dot3StatsLateCollisions);
  3802. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  3803. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  3804. net_stats->tx_carrier_errors = 0;
  3805. else {
  3806. net_stats->tx_carrier_errors =
  3807. (unsigned long)
  3808. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  3809. }
  3810. net_stats->tx_errors =
  3811. (unsigned long)
  3812. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  3813. +
  3814. net_stats->tx_aborted_errors +
  3815. net_stats->tx_carrier_errors;
  3816. net_stats->rx_missed_errors =
  3817. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  3818. stats_blk->stat_FwRxDrop);
  3819. return net_stats;
  3820. }
  3821. /* All ethtool functions called with rtnl_lock */
  3822. static int
  3823. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  3824. {
  3825. struct bnx2 *bp = netdev_priv(dev);
  3826. cmd->supported = SUPPORTED_Autoneg;
  3827. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3828. cmd->supported |= SUPPORTED_1000baseT_Full |
  3829. SUPPORTED_FIBRE;
  3830. cmd->port = PORT_FIBRE;
  3831. }
  3832. else {
  3833. cmd->supported |= SUPPORTED_10baseT_Half |
  3834. SUPPORTED_10baseT_Full |
  3835. SUPPORTED_100baseT_Half |
  3836. SUPPORTED_100baseT_Full |
  3837. SUPPORTED_1000baseT_Full |
  3838. SUPPORTED_TP;
  3839. cmd->port = PORT_TP;
  3840. }
  3841. cmd->advertising = bp->advertising;
  3842. if (bp->autoneg & AUTONEG_SPEED) {
  3843. cmd->autoneg = AUTONEG_ENABLE;
  3844. }
  3845. else {
  3846. cmd->autoneg = AUTONEG_DISABLE;
  3847. }
  3848. if (netif_carrier_ok(dev)) {
  3849. cmd->speed = bp->line_speed;
  3850. cmd->duplex = bp->duplex;
  3851. }
  3852. else {
  3853. cmd->speed = -1;
  3854. cmd->duplex = -1;
  3855. }
  3856. cmd->transceiver = XCVR_INTERNAL;
  3857. cmd->phy_address = bp->phy_addr;
  3858. return 0;
  3859. }
  3860. static int
  3861. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  3862. {
  3863. struct bnx2 *bp = netdev_priv(dev);
  3864. u8 autoneg = bp->autoneg;
  3865. u8 req_duplex = bp->req_duplex;
  3866. u16 req_line_speed = bp->req_line_speed;
  3867. u32 advertising = bp->advertising;
  3868. if (cmd->autoneg == AUTONEG_ENABLE) {
  3869. autoneg |= AUTONEG_SPEED;
  3870. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  3871. /* allow advertising 1 speed */
  3872. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  3873. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  3874. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  3875. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  3876. if (bp->phy_flags & PHY_SERDES_FLAG)
  3877. return -EINVAL;
  3878. advertising = cmd->advertising;
  3879. }
  3880. else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
  3881. advertising = cmd->advertising;
  3882. }
  3883. else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
  3884. return -EINVAL;
  3885. }
  3886. else {
  3887. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3888. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  3889. }
  3890. else {
  3891. advertising = ETHTOOL_ALL_COPPER_SPEED;
  3892. }
  3893. }
  3894. advertising |= ADVERTISED_Autoneg;
  3895. }
  3896. else {
  3897. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3898. if ((cmd->speed != SPEED_1000 &&
  3899. cmd->speed != SPEED_2500) ||
  3900. (cmd->duplex != DUPLEX_FULL))
  3901. return -EINVAL;
  3902. if (cmd->speed == SPEED_2500 &&
  3903. !(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  3904. return -EINVAL;
  3905. }
  3906. else if (cmd->speed == SPEED_1000) {
  3907. return -EINVAL;
  3908. }
  3909. autoneg &= ~AUTONEG_SPEED;
  3910. req_line_speed = cmd->speed;
  3911. req_duplex = cmd->duplex;
  3912. advertising = 0;
  3913. }
  3914. bp->autoneg = autoneg;
  3915. bp->advertising = advertising;
  3916. bp->req_line_speed = req_line_speed;
  3917. bp->req_duplex = req_duplex;
  3918. spin_lock_bh(&bp->phy_lock);
  3919. bnx2_setup_phy(bp);
  3920. spin_unlock_bh(&bp->phy_lock);
  3921. return 0;
  3922. }
  3923. static void
  3924. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3925. {
  3926. struct bnx2 *bp = netdev_priv(dev);
  3927. strcpy(info->driver, DRV_MODULE_NAME);
  3928. strcpy(info->version, DRV_MODULE_VERSION);
  3929. strcpy(info->bus_info, pci_name(bp->pdev));
  3930. info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
  3931. info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
  3932. info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
  3933. info->fw_version[1] = info->fw_version[3] = '.';
  3934. info->fw_version[5] = 0;
  3935. }
  3936. #define BNX2_REGDUMP_LEN (32 * 1024)
  3937. static int
  3938. bnx2_get_regs_len(struct net_device *dev)
  3939. {
  3940. return BNX2_REGDUMP_LEN;
  3941. }
  3942. static void
  3943. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  3944. {
  3945. u32 *p = _p, i, offset;
  3946. u8 *orig_p = _p;
  3947. struct bnx2 *bp = netdev_priv(dev);
  3948. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  3949. 0x0800, 0x0880, 0x0c00, 0x0c10,
  3950. 0x0c30, 0x0d08, 0x1000, 0x101c,
  3951. 0x1040, 0x1048, 0x1080, 0x10a4,
  3952. 0x1400, 0x1490, 0x1498, 0x14f0,
  3953. 0x1500, 0x155c, 0x1580, 0x15dc,
  3954. 0x1600, 0x1658, 0x1680, 0x16d8,
  3955. 0x1800, 0x1820, 0x1840, 0x1854,
  3956. 0x1880, 0x1894, 0x1900, 0x1984,
  3957. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  3958. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  3959. 0x2000, 0x2030, 0x23c0, 0x2400,
  3960. 0x2800, 0x2820, 0x2830, 0x2850,
  3961. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  3962. 0x3c00, 0x3c94, 0x4000, 0x4010,
  3963. 0x4080, 0x4090, 0x43c0, 0x4458,
  3964. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  3965. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  3966. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  3967. 0x5fc0, 0x6000, 0x6400, 0x6428,
  3968. 0x6800, 0x6848, 0x684c, 0x6860,
  3969. 0x6888, 0x6910, 0x8000 };
  3970. regs->version = 0;
  3971. memset(p, 0, BNX2_REGDUMP_LEN);
  3972. if (!netif_running(bp->dev))
  3973. return;
  3974. i = 0;
  3975. offset = reg_boundaries[0];
  3976. p += offset;
  3977. while (offset < BNX2_REGDUMP_LEN) {
  3978. *p++ = REG_RD(bp, offset);
  3979. offset += 4;
  3980. if (offset == reg_boundaries[i + 1]) {
  3981. offset = reg_boundaries[i + 2];
  3982. p = (u32 *) (orig_p + offset);
  3983. i += 2;
  3984. }
  3985. }
  3986. }
  3987. static void
  3988. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  3989. {
  3990. struct bnx2 *bp = netdev_priv(dev);
  3991. if (bp->flags & NO_WOL_FLAG) {
  3992. wol->supported = 0;
  3993. wol->wolopts = 0;
  3994. }
  3995. else {
  3996. wol->supported = WAKE_MAGIC;
  3997. if (bp->wol)
  3998. wol->wolopts = WAKE_MAGIC;
  3999. else
  4000. wol->wolopts = 0;
  4001. }
  4002. memset(&wol->sopass, 0, sizeof(wol->sopass));
  4003. }
  4004. static int
  4005. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  4006. {
  4007. struct bnx2 *bp = netdev_priv(dev);
  4008. if (wol->wolopts & ~WAKE_MAGIC)
  4009. return -EINVAL;
  4010. if (wol->wolopts & WAKE_MAGIC) {
  4011. if (bp->flags & NO_WOL_FLAG)
  4012. return -EINVAL;
  4013. bp->wol = 1;
  4014. }
  4015. else {
  4016. bp->wol = 0;
  4017. }
  4018. return 0;
  4019. }
  4020. static int
  4021. bnx2_nway_reset(struct net_device *dev)
  4022. {
  4023. struct bnx2 *bp = netdev_priv(dev);
  4024. u32 bmcr;
  4025. if (!(bp->autoneg & AUTONEG_SPEED)) {
  4026. return -EINVAL;
  4027. }
  4028. spin_lock_bh(&bp->phy_lock);
  4029. /* Force a link down visible on the other side */
  4030. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4031. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  4032. spin_unlock_bh(&bp->phy_lock);
  4033. msleep(20);
  4034. spin_lock_bh(&bp->phy_lock);
  4035. bp->current_interval = SERDES_AN_TIMEOUT;
  4036. bp->serdes_an_pending = 1;
  4037. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4038. }
  4039. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  4040. bmcr &= ~BMCR_LOOPBACK;
  4041. bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  4042. spin_unlock_bh(&bp->phy_lock);
  4043. return 0;
  4044. }
  4045. static int
  4046. bnx2_get_eeprom_len(struct net_device *dev)
  4047. {
  4048. struct bnx2 *bp = netdev_priv(dev);
  4049. if (bp->flash_info == NULL)
  4050. return 0;
  4051. return (int) bp->flash_size;
  4052. }
  4053. static int
  4054. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4055. u8 *eebuf)
  4056. {
  4057. struct bnx2 *bp = netdev_priv(dev);
  4058. int rc;
  4059. /* parameters already validated in ethtool_get_eeprom */
  4060. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  4061. return rc;
  4062. }
  4063. static int
  4064. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4065. u8 *eebuf)
  4066. {
  4067. struct bnx2 *bp = netdev_priv(dev);
  4068. int rc;
  4069. /* parameters already validated in ethtool_set_eeprom */
  4070. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  4071. return rc;
  4072. }
  4073. static int
  4074. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4075. {
  4076. struct bnx2 *bp = netdev_priv(dev);
  4077. memset(coal, 0, sizeof(struct ethtool_coalesce));
  4078. coal->rx_coalesce_usecs = bp->rx_ticks;
  4079. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  4080. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  4081. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  4082. coal->tx_coalesce_usecs = bp->tx_ticks;
  4083. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  4084. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  4085. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  4086. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  4087. return 0;
  4088. }
  4089. static int
  4090. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4091. {
  4092. struct bnx2 *bp = netdev_priv(dev);
  4093. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  4094. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  4095. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  4096. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  4097. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  4098. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  4099. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  4100. if (bp->rx_quick_cons_trip_int > 0xff)
  4101. bp->rx_quick_cons_trip_int = 0xff;
  4102. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  4103. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  4104. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  4105. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  4106. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  4107. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  4108. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  4109. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  4110. 0xff;
  4111. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  4112. if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
  4113. bp->stats_ticks &= 0xffff00;
  4114. if (netif_running(bp->dev)) {
  4115. bnx2_netif_stop(bp);
  4116. bnx2_init_nic(bp);
  4117. bnx2_netif_start(bp);
  4118. }
  4119. return 0;
  4120. }
  4121. static void
  4122. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4123. {
  4124. struct bnx2 *bp = netdev_priv(dev);
  4125. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  4126. ering->rx_mini_max_pending = 0;
  4127. ering->rx_jumbo_max_pending = 0;
  4128. ering->rx_pending = bp->rx_ring_size;
  4129. ering->rx_mini_pending = 0;
  4130. ering->rx_jumbo_pending = 0;
  4131. ering->tx_max_pending = MAX_TX_DESC_CNT;
  4132. ering->tx_pending = bp->tx_ring_size;
  4133. }
  4134. static int
  4135. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4136. {
  4137. struct bnx2 *bp = netdev_priv(dev);
  4138. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  4139. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  4140. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  4141. return -EINVAL;
  4142. }
  4143. if (netif_running(bp->dev)) {
  4144. bnx2_netif_stop(bp);
  4145. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4146. bnx2_free_skbs(bp);
  4147. bnx2_free_mem(bp);
  4148. }
  4149. bnx2_set_rx_ring_size(bp, ering->rx_pending);
  4150. bp->tx_ring_size = ering->tx_pending;
  4151. if (netif_running(bp->dev)) {
  4152. int rc;
  4153. rc = bnx2_alloc_mem(bp);
  4154. if (rc)
  4155. return rc;
  4156. bnx2_init_nic(bp);
  4157. bnx2_netif_start(bp);
  4158. }
  4159. return 0;
  4160. }
  4161. static void
  4162. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4163. {
  4164. struct bnx2 *bp = netdev_priv(dev);
  4165. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  4166. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  4167. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  4168. }
  4169. static int
  4170. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4171. {
  4172. struct bnx2 *bp = netdev_priv(dev);
  4173. bp->req_flow_ctrl = 0;
  4174. if (epause->rx_pause)
  4175. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  4176. if (epause->tx_pause)
  4177. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  4178. if (epause->autoneg) {
  4179. bp->autoneg |= AUTONEG_FLOW_CTRL;
  4180. }
  4181. else {
  4182. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  4183. }
  4184. spin_lock_bh(&bp->phy_lock);
  4185. bnx2_setup_phy(bp);
  4186. spin_unlock_bh(&bp->phy_lock);
  4187. return 0;
  4188. }
  4189. static u32
  4190. bnx2_get_rx_csum(struct net_device *dev)
  4191. {
  4192. struct bnx2 *bp = netdev_priv(dev);
  4193. return bp->rx_csum;
  4194. }
  4195. static int
  4196. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  4197. {
  4198. struct bnx2 *bp = netdev_priv(dev);
  4199. bp->rx_csum = data;
  4200. return 0;
  4201. }
  4202. static int
  4203. bnx2_set_tso(struct net_device *dev, u32 data)
  4204. {
  4205. if (data)
  4206. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  4207. else
  4208. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO_ECN);
  4209. return 0;
  4210. }
  4211. #define BNX2_NUM_STATS 46
  4212. static struct {
  4213. char string[ETH_GSTRING_LEN];
  4214. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  4215. { "rx_bytes" },
  4216. { "rx_error_bytes" },
  4217. { "tx_bytes" },
  4218. { "tx_error_bytes" },
  4219. { "rx_ucast_packets" },
  4220. { "rx_mcast_packets" },
  4221. { "rx_bcast_packets" },
  4222. { "tx_ucast_packets" },
  4223. { "tx_mcast_packets" },
  4224. { "tx_bcast_packets" },
  4225. { "tx_mac_errors" },
  4226. { "tx_carrier_errors" },
  4227. { "rx_crc_errors" },
  4228. { "rx_align_errors" },
  4229. { "tx_single_collisions" },
  4230. { "tx_multi_collisions" },
  4231. { "tx_deferred" },
  4232. { "tx_excess_collisions" },
  4233. { "tx_late_collisions" },
  4234. { "tx_total_collisions" },
  4235. { "rx_fragments" },
  4236. { "rx_jabbers" },
  4237. { "rx_undersize_packets" },
  4238. { "rx_oversize_packets" },
  4239. { "rx_64_byte_packets" },
  4240. { "rx_65_to_127_byte_packets" },
  4241. { "rx_128_to_255_byte_packets" },
  4242. { "rx_256_to_511_byte_packets" },
  4243. { "rx_512_to_1023_byte_packets" },
  4244. { "rx_1024_to_1522_byte_packets" },
  4245. { "rx_1523_to_9022_byte_packets" },
  4246. { "tx_64_byte_packets" },
  4247. { "tx_65_to_127_byte_packets" },
  4248. { "tx_128_to_255_byte_packets" },
  4249. { "tx_256_to_511_byte_packets" },
  4250. { "tx_512_to_1023_byte_packets" },
  4251. { "tx_1024_to_1522_byte_packets" },
  4252. { "tx_1523_to_9022_byte_packets" },
  4253. { "rx_xon_frames" },
  4254. { "rx_xoff_frames" },
  4255. { "tx_xon_frames" },
  4256. { "tx_xoff_frames" },
  4257. { "rx_mac_ctrl_frames" },
  4258. { "rx_filtered_packets" },
  4259. { "rx_discards" },
  4260. { "rx_fw_discards" },
  4261. };
  4262. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  4263. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  4264. STATS_OFFSET32(stat_IfHCInOctets_hi),
  4265. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  4266. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  4267. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  4268. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  4269. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  4270. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  4271. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  4272. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  4273. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  4274. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  4275. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  4276. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  4277. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  4278. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  4279. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  4280. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  4281. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  4282. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  4283. STATS_OFFSET32(stat_EtherStatsCollisions),
  4284. STATS_OFFSET32(stat_EtherStatsFragments),
  4285. STATS_OFFSET32(stat_EtherStatsJabbers),
  4286. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  4287. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  4288. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  4289. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  4290. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  4291. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  4292. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  4293. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  4294. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  4295. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  4296. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  4297. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  4298. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  4299. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  4300. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  4301. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  4302. STATS_OFFSET32(stat_XonPauseFramesReceived),
  4303. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  4304. STATS_OFFSET32(stat_OutXonSent),
  4305. STATS_OFFSET32(stat_OutXoffSent),
  4306. STATS_OFFSET32(stat_MacControlFramesReceived),
  4307. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  4308. STATS_OFFSET32(stat_IfInMBUFDiscards),
  4309. STATS_OFFSET32(stat_FwRxDrop),
  4310. };
  4311. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  4312. * skipped because of errata.
  4313. */
  4314. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  4315. 8,0,8,8,8,8,8,8,8,8,
  4316. 4,0,4,4,4,4,4,4,4,4,
  4317. 4,4,4,4,4,4,4,4,4,4,
  4318. 4,4,4,4,4,4,4,4,4,4,
  4319. 4,4,4,4,4,4,
  4320. };
  4321. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  4322. 8,0,8,8,8,8,8,8,8,8,
  4323. 4,4,4,4,4,4,4,4,4,4,
  4324. 4,4,4,4,4,4,4,4,4,4,
  4325. 4,4,4,4,4,4,4,4,4,4,
  4326. 4,4,4,4,4,4,
  4327. };
  4328. #define BNX2_NUM_TESTS 6
  4329. static struct {
  4330. char string[ETH_GSTRING_LEN];
  4331. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  4332. { "register_test (offline)" },
  4333. { "memory_test (offline)" },
  4334. { "loopback_test (offline)" },
  4335. { "nvram_test (online)" },
  4336. { "interrupt_test (online)" },
  4337. { "link_test (online)" },
  4338. };
  4339. static int
  4340. bnx2_self_test_count(struct net_device *dev)
  4341. {
  4342. return BNX2_NUM_TESTS;
  4343. }
  4344. static void
  4345. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  4346. {
  4347. struct bnx2 *bp = netdev_priv(dev);
  4348. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  4349. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  4350. int i;
  4351. bnx2_netif_stop(bp);
  4352. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  4353. bnx2_free_skbs(bp);
  4354. if (bnx2_test_registers(bp) != 0) {
  4355. buf[0] = 1;
  4356. etest->flags |= ETH_TEST_FL_FAILED;
  4357. }
  4358. if (bnx2_test_memory(bp) != 0) {
  4359. buf[1] = 1;
  4360. etest->flags |= ETH_TEST_FL_FAILED;
  4361. }
  4362. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  4363. etest->flags |= ETH_TEST_FL_FAILED;
  4364. if (!netif_running(bp->dev)) {
  4365. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4366. }
  4367. else {
  4368. bnx2_init_nic(bp);
  4369. bnx2_netif_start(bp);
  4370. }
  4371. /* wait for link up */
  4372. for (i = 0; i < 7; i++) {
  4373. if (bp->link_up)
  4374. break;
  4375. msleep_interruptible(1000);
  4376. }
  4377. }
  4378. if (bnx2_test_nvram(bp) != 0) {
  4379. buf[3] = 1;
  4380. etest->flags |= ETH_TEST_FL_FAILED;
  4381. }
  4382. if (bnx2_test_intr(bp) != 0) {
  4383. buf[4] = 1;
  4384. etest->flags |= ETH_TEST_FL_FAILED;
  4385. }
  4386. if (bnx2_test_link(bp) != 0) {
  4387. buf[5] = 1;
  4388. etest->flags |= ETH_TEST_FL_FAILED;
  4389. }
  4390. }
  4391. static void
  4392. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  4393. {
  4394. switch (stringset) {
  4395. case ETH_SS_STATS:
  4396. memcpy(buf, bnx2_stats_str_arr,
  4397. sizeof(bnx2_stats_str_arr));
  4398. break;
  4399. case ETH_SS_TEST:
  4400. memcpy(buf, bnx2_tests_str_arr,
  4401. sizeof(bnx2_tests_str_arr));
  4402. break;
  4403. }
  4404. }
  4405. static int
  4406. bnx2_get_stats_count(struct net_device *dev)
  4407. {
  4408. return BNX2_NUM_STATS;
  4409. }
  4410. static void
  4411. bnx2_get_ethtool_stats(struct net_device *dev,
  4412. struct ethtool_stats *stats, u64 *buf)
  4413. {
  4414. struct bnx2 *bp = netdev_priv(dev);
  4415. int i;
  4416. u32 *hw_stats = (u32 *) bp->stats_blk;
  4417. u8 *stats_len_arr = NULL;
  4418. if (hw_stats == NULL) {
  4419. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  4420. return;
  4421. }
  4422. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  4423. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  4424. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  4425. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4426. stats_len_arr = bnx2_5706_stats_len_arr;
  4427. else
  4428. stats_len_arr = bnx2_5708_stats_len_arr;
  4429. for (i = 0; i < BNX2_NUM_STATS; i++) {
  4430. if (stats_len_arr[i] == 0) {
  4431. /* skip this counter */
  4432. buf[i] = 0;
  4433. continue;
  4434. }
  4435. if (stats_len_arr[i] == 4) {
  4436. /* 4-byte counter */
  4437. buf[i] = (u64)
  4438. *(hw_stats + bnx2_stats_offset_arr[i]);
  4439. continue;
  4440. }
  4441. /* 8-byte counter */
  4442. buf[i] = (((u64) *(hw_stats +
  4443. bnx2_stats_offset_arr[i])) << 32) +
  4444. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  4445. }
  4446. }
  4447. static int
  4448. bnx2_phys_id(struct net_device *dev, u32 data)
  4449. {
  4450. struct bnx2 *bp = netdev_priv(dev);
  4451. int i;
  4452. u32 save;
  4453. if (data == 0)
  4454. data = 2;
  4455. save = REG_RD(bp, BNX2_MISC_CFG);
  4456. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  4457. for (i = 0; i < (data * 2); i++) {
  4458. if ((i % 2) == 0) {
  4459. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  4460. }
  4461. else {
  4462. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  4463. BNX2_EMAC_LED_1000MB_OVERRIDE |
  4464. BNX2_EMAC_LED_100MB_OVERRIDE |
  4465. BNX2_EMAC_LED_10MB_OVERRIDE |
  4466. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  4467. BNX2_EMAC_LED_TRAFFIC);
  4468. }
  4469. msleep_interruptible(500);
  4470. if (signal_pending(current))
  4471. break;
  4472. }
  4473. REG_WR(bp, BNX2_EMAC_LED, 0);
  4474. REG_WR(bp, BNX2_MISC_CFG, save);
  4475. return 0;
  4476. }
  4477. static const struct ethtool_ops bnx2_ethtool_ops = {
  4478. .get_settings = bnx2_get_settings,
  4479. .set_settings = bnx2_set_settings,
  4480. .get_drvinfo = bnx2_get_drvinfo,
  4481. .get_regs_len = bnx2_get_regs_len,
  4482. .get_regs = bnx2_get_regs,
  4483. .get_wol = bnx2_get_wol,
  4484. .set_wol = bnx2_set_wol,
  4485. .nway_reset = bnx2_nway_reset,
  4486. .get_link = ethtool_op_get_link,
  4487. .get_eeprom_len = bnx2_get_eeprom_len,
  4488. .get_eeprom = bnx2_get_eeprom,
  4489. .set_eeprom = bnx2_set_eeprom,
  4490. .get_coalesce = bnx2_get_coalesce,
  4491. .set_coalesce = bnx2_set_coalesce,
  4492. .get_ringparam = bnx2_get_ringparam,
  4493. .set_ringparam = bnx2_set_ringparam,
  4494. .get_pauseparam = bnx2_get_pauseparam,
  4495. .set_pauseparam = bnx2_set_pauseparam,
  4496. .get_rx_csum = bnx2_get_rx_csum,
  4497. .set_rx_csum = bnx2_set_rx_csum,
  4498. .get_tx_csum = ethtool_op_get_tx_csum,
  4499. .set_tx_csum = ethtool_op_set_tx_csum,
  4500. .get_sg = ethtool_op_get_sg,
  4501. .set_sg = ethtool_op_set_sg,
  4502. #ifdef BCM_TSO
  4503. .get_tso = ethtool_op_get_tso,
  4504. .set_tso = bnx2_set_tso,
  4505. #endif
  4506. .self_test_count = bnx2_self_test_count,
  4507. .self_test = bnx2_self_test,
  4508. .get_strings = bnx2_get_strings,
  4509. .phys_id = bnx2_phys_id,
  4510. .get_stats_count = bnx2_get_stats_count,
  4511. .get_ethtool_stats = bnx2_get_ethtool_stats,
  4512. .get_perm_addr = ethtool_op_get_perm_addr,
  4513. };
  4514. /* Called with rtnl_lock */
  4515. static int
  4516. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4517. {
  4518. struct mii_ioctl_data *data = if_mii(ifr);
  4519. struct bnx2 *bp = netdev_priv(dev);
  4520. int err;
  4521. switch(cmd) {
  4522. case SIOCGMIIPHY:
  4523. data->phy_id = bp->phy_addr;
  4524. /* fallthru */
  4525. case SIOCGMIIREG: {
  4526. u32 mii_regval;
  4527. spin_lock_bh(&bp->phy_lock);
  4528. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  4529. spin_unlock_bh(&bp->phy_lock);
  4530. data->val_out = mii_regval;
  4531. return err;
  4532. }
  4533. case SIOCSMIIREG:
  4534. if (!capable(CAP_NET_ADMIN))
  4535. return -EPERM;
  4536. spin_lock_bh(&bp->phy_lock);
  4537. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  4538. spin_unlock_bh(&bp->phy_lock);
  4539. return err;
  4540. default:
  4541. /* do nothing */
  4542. break;
  4543. }
  4544. return -EOPNOTSUPP;
  4545. }
  4546. /* Called with rtnl_lock */
  4547. static int
  4548. bnx2_change_mac_addr(struct net_device *dev, void *p)
  4549. {
  4550. struct sockaddr *addr = p;
  4551. struct bnx2 *bp = netdev_priv(dev);
  4552. if (!is_valid_ether_addr(addr->sa_data))
  4553. return -EINVAL;
  4554. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4555. if (netif_running(dev))
  4556. bnx2_set_mac_addr(bp);
  4557. return 0;
  4558. }
  4559. /* Called with rtnl_lock */
  4560. static int
  4561. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  4562. {
  4563. struct bnx2 *bp = netdev_priv(dev);
  4564. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  4565. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  4566. return -EINVAL;
  4567. dev->mtu = new_mtu;
  4568. if (netif_running(dev)) {
  4569. bnx2_netif_stop(bp);
  4570. bnx2_init_nic(bp);
  4571. bnx2_netif_start(bp);
  4572. }
  4573. return 0;
  4574. }
  4575. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  4576. static void
  4577. poll_bnx2(struct net_device *dev)
  4578. {
  4579. struct bnx2 *bp = netdev_priv(dev);
  4580. disable_irq(bp->pdev->irq);
  4581. bnx2_interrupt(bp->pdev->irq, dev);
  4582. enable_irq(bp->pdev->irq);
  4583. }
  4584. #endif
  4585. static int __devinit
  4586. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  4587. {
  4588. struct bnx2 *bp;
  4589. unsigned long mem_len;
  4590. int rc;
  4591. u32 reg;
  4592. SET_MODULE_OWNER(dev);
  4593. SET_NETDEV_DEV(dev, &pdev->dev);
  4594. bp = netdev_priv(dev);
  4595. bp->flags = 0;
  4596. bp->phy_flags = 0;
  4597. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  4598. rc = pci_enable_device(pdev);
  4599. if (rc) {
  4600. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.");
  4601. goto err_out;
  4602. }
  4603. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  4604. dev_err(&pdev->dev,
  4605. "Cannot find PCI device base address, aborting.\n");
  4606. rc = -ENODEV;
  4607. goto err_out_disable;
  4608. }
  4609. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  4610. if (rc) {
  4611. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  4612. goto err_out_disable;
  4613. }
  4614. pci_set_master(pdev);
  4615. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  4616. if (bp->pm_cap == 0) {
  4617. dev_err(&pdev->dev,
  4618. "Cannot find power management capability, aborting.\n");
  4619. rc = -EIO;
  4620. goto err_out_release;
  4621. }
  4622. if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) {
  4623. bp->flags |= USING_DAC_FLAG;
  4624. if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
  4625. dev_err(&pdev->dev,
  4626. "pci_set_consistent_dma_mask failed, aborting.\n");
  4627. rc = -EIO;
  4628. goto err_out_release;
  4629. }
  4630. }
  4631. else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) {
  4632. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  4633. rc = -EIO;
  4634. goto err_out_release;
  4635. }
  4636. bp->dev = dev;
  4637. bp->pdev = pdev;
  4638. spin_lock_init(&bp->phy_lock);
  4639. INIT_WORK(&bp->reset_task, bnx2_reset_task, bp);
  4640. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  4641. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
  4642. dev->mem_end = dev->mem_start + mem_len;
  4643. dev->irq = pdev->irq;
  4644. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  4645. if (!bp->regview) {
  4646. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  4647. rc = -ENOMEM;
  4648. goto err_out_release;
  4649. }
  4650. /* Configure byte swap and enable write to the reg_window registers.
  4651. * Rely on CPU to do target byte swapping on big endian systems
  4652. * The chip's target access swapping will not swap all accesses
  4653. */
  4654. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  4655. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  4656. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  4657. bnx2_set_power_state(bp, PCI_D0);
  4658. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  4659. if (CHIP_NUM(bp) != CHIP_NUM_5709) {
  4660. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  4661. if (bp->pcix_cap == 0) {
  4662. dev_err(&pdev->dev,
  4663. "Cannot find PCIX capability, aborting.\n");
  4664. rc = -EIO;
  4665. goto err_out_unmap;
  4666. }
  4667. }
  4668. /* Get bus information. */
  4669. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  4670. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  4671. u32 clkreg;
  4672. bp->flags |= PCIX_FLAG;
  4673. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  4674. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  4675. switch (clkreg) {
  4676. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  4677. bp->bus_speed_mhz = 133;
  4678. break;
  4679. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  4680. bp->bus_speed_mhz = 100;
  4681. break;
  4682. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  4683. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  4684. bp->bus_speed_mhz = 66;
  4685. break;
  4686. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  4687. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  4688. bp->bus_speed_mhz = 50;
  4689. break;
  4690. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  4691. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  4692. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  4693. bp->bus_speed_mhz = 33;
  4694. break;
  4695. }
  4696. }
  4697. else {
  4698. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  4699. bp->bus_speed_mhz = 66;
  4700. else
  4701. bp->bus_speed_mhz = 33;
  4702. }
  4703. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  4704. bp->flags |= PCI_32BIT_FLAG;
  4705. /* 5706A0 may falsely detect SERR and PERR. */
  4706. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4707. reg = REG_RD(bp, PCI_COMMAND);
  4708. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  4709. REG_WR(bp, PCI_COMMAND, reg);
  4710. }
  4711. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  4712. !(bp->flags & PCIX_FLAG)) {
  4713. dev_err(&pdev->dev,
  4714. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  4715. goto err_out_unmap;
  4716. }
  4717. bnx2_init_nvram(bp);
  4718. reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
  4719. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  4720. BNX2_SHM_HDR_SIGNATURE_SIG)
  4721. bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0);
  4722. else
  4723. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  4724. /* Get the permanent MAC address. First we need to make sure the
  4725. * firmware is actually running.
  4726. */
  4727. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
  4728. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  4729. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  4730. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  4731. rc = -ENODEV;
  4732. goto err_out_unmap;
  4733. }
  4734. bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
  4735. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
  4736. bp->mac_addr[0] = (u8) (reg >> 8);
  4737. bp->mac_addr[1] = (u8) reg;
  4738. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
  4739. bp->mac_addr[2] = (u8) (reg >> 24);
  4740. bp->mac_addr[3] = (u8) (reg >> 16);
  4741. bp->mac_addr[4] = (u8) (reg >> 8);
  4742. bp->mac_addr[5] = (u8) reg;
  4743. bp->tx_ring_size = MAX_TX_DESC_CNT;
  4744. bnx2_set_rx_ring_size(bp, 255);
  4745. bp->rx_csum = 1;
  4746. bp->rx_offset = sizeof(struct l2_fhdr) + 2;
  4747. bp->tx_quick_cons_trip_int = 20;
  4748. bp->tx_quick_cons_trip = 20;
  4749. bp->tx_ticks_int = 80;
  4750. bp->tx_ticks = 80;
  4751. bp->rx_quick_cons_trip_int = 6;
  4752. bp->rx_quick_cons_trip = 6;
  4753. bp->rx_ticks_int = 18;
  4754. bp->rx_ticks = 18;
  4755. bp->stats_ticks = 1000000 & 0xffff00;
  4756. bp->timer_interval = HZ;
  4757. bp->current_interval = HZ;
  4758. bp->phy_addr = 1;
  4759. /* Disable WOL support if we are running on a SERDES chip. */
  4760. if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) {
  4761. bp->phy_flags |= PHY_SERDES_FLAG;
  4762. bp->flags |= NO_WOL_FLAG;
  4763. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  4764. bp->phy_addr = 2;
  4765. reg = REG_RD_IND(bp, bp->shmem_base +
  4766. BNX2_SHARED_HW_CFG_CONFIG);
  4767. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  4768. bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
  4769. }
  4770. }
  4771. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  4772. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  4773. (CHIP_ID(bp) == CHIP_ID_5708_B1))
  4774. bp->flags |= NO_WOL_FLAG;
  4775. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4776. bp->tx_quick_cons_trip_int =
  4777. bp->tx_quick_cons_trip;
  4778. bp->tx_ticks_int = bp->tx_ticks;
  4779. bp->rx_quick_cons_trip_int =
  4780. bp->rx_quick_cons_trip;
  4781. bp->rx_ticks_int = bp->rx_ticks;
  4782. bp->comp_prod_trip_int = bp->comp_prod_trip;
  4783. bp->com_ticks_int = bp->com_ticks;
  4784. bp->cmd_ticks_int = bp->cmd_ticks;
  4785. }
  4786. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  4787. *
  4788. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  4789. * with byte enables disabled on the unused 32-bit word. This is legal
  4790. * but causes problems on the AMD 8132 which will eventually stop
  4791. * responding after a while.
  4792. *
  4793. * AMD believes this incompatibility is unique to the 5706, and
  4794. * prefers to locally disable MSI rather than globally disabling it
  4795. * using pci_msi_quirk.
  4796. */
  4797. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  4798. struct pci_dev *amd_8132 = NULL;
  4799. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  4800. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  4801. amd_8132))) {
  4802. u8 rev;
  4803. pci_read_config_byte(amd_8132, PCI_REVISION_ID, &rev);
  4804. if (rev >= 0x10 && rev <= 0x13) {
  4805. disable_msi = 1;
  4806. pci_dev_put(amd_8132);
  4807. break;
  4808. }
  4809. }
  4810. }
  4811. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  4812. bp->req_line_speed = 0;
  4813. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4814. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  4815. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
  4816. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  4817. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  4818. bp->autoneg = 0;
  4819. bp->req_line_speed = bp->line_speed = SPEED_1000;
  4820. bp->req_duplex = DUPLEX_FULL;
  4821. }
  4822. }
  4823. else {
  4824. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  4825. }
  4826. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  4827. init_timer(&bp->timer);
  4828. bp->timer.expires = RUN_AT(bp->timer_interval);
  4829. bp->timer.data = (unsigned long) bp;
  4830. bp->timer.function = bnx2_timer;
  4831. return 0;
  4832. err_out_unmap:
  4833. if (bp->regview) {
  4834. iounmap(bp->regview);
  4835. bp->regview = NULL;
  4836. }
  4837. err_out_release:
  4838. pci_release_regions(pdev);
  4839. err_out_disable:
  4840. pci_disable_device(pdev);
  4841. pci_set_drvdata(pdev, NULL);
  4842. err_out:
  4843. return rc;
  4844. }
  4845. static int __devinit
  4846. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  4847. {
  4848. static int version_printed = 0;
  4849. struct net_device *dev = NULL;
  4850. struct bnx2 *bp;
  4851. int rc, i;
  4852. if (version_printed++ == 0)
  4853. printk(KERN_INFO "%s", version);
  4854. /* dev zeroed in init_etherdev */
  4855. dev = alloc_etherdev(sizeof(*bp));
  4856. if (!dev)
  4857. return -ENOMEM;
  4858. rc = bnx2_init_board(pdev, dev);
  4859. if (rc < 0) {
  4860. free_netdev(dev);
  4861. return rc;
  4862. }
  4863. dev->open = bnx2_open;
  4864. dev->hard_start_xmit = bnx2_start_xmit;
  4865. dev->stop = bnx2_close;
  4866. dev->get_stats = bnx2_get_stats;
  4867. dev->set_multicast_list = bnx2_set_rx_mode;
  4868. dev->do_ioctl = bnx2_ioctl;
  4869. dev->set_mac_address = bnx2_change_mac_addr;
  4870. dev->change_mtu = bnx2_change_mtu;
  4871. dev->tx_timeout = bnx2_tx_timeout;
  4872. dev->watchdog_timeo = TX_TIMEOUT;
  4873. #ifdef BCM_VLAN
  4874. dev->vlan_rx_register = bnx2_vlan_rx_register;
  4875. dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid;
  4876. #endif
  4877. dev->poll = bnx2_poll;
  4878. dev->ethtool_ops = &bnx2_ethtool_ops;
  4879. dev->weight = 64;
  4880. bp = netdev_priv(dev);
  4881. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  4882. dev->poll_controller = poll_bnx2;
  4883. #endif
  4884. if ((rc = register_netdev(dev))) {
  4885. dev_err(&pdev->dev, "Cannot register net device\n");
  4886. if (bp->regview)
  4887. iounmap(bp->regview);
  4888. pci_release_regions(pdev);
  4889. pci_disable_device(pdev);
  4890. pci_set_drvdata(pdev, NULL);
  4891. free_netdev(dev);
  4892. return rc;
  4893. }
  4894. pci_set_drvdata(pdev, dev);
  4895. memcpy(dev->dev_addr, bp->mac_addr, 6);
  4896. memcpy(dev->perm_addr, bp->mac_addr, 6);
  4897. bp->name = board_info[ent->driver_data].name,
  4898. printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
  4899. "IRQ %d, ",
  4900. dev->name,
  4901. bp->name,
  4902. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  4903. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  4904. ((bp->flags & PCIX_FLAG) ? "-X" : ""),
  4905. ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
  4906. bp->bus_speed_mhz,
  4907. dev->base_addr,
  4908. bp->pdev->irq);
  4909. printk("node addr ");
  4910. for (i = 0; i < 6; i++)
  4911. printk("%2.2x", dev->dev_addr[i]);
  4912. printk("\n");
  4913. dev->features |= NETIF_F_SG;
  4914. if (bp->flags & USING_DAC_FLAG)
  4915. dev->features |= NETIF_F_HIGHDMA;
  4916. dev->features |= NETIF_F_IP_CSUM;
  4917. #ifdef BCM_VLAN
  4918. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  4919. #endif
  4920. #ifdef BCM_TSO
  4921. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  4922. #endif
  4923. netif_carrier_off(bp->dev);
  4924. return 0;
  4925. }
  4926. static void __devexit
  4927. bnx2_remove_one(struct pci_dev *pdev)
  4928. {
  4929. struct net_device *dev = pci_get_drvdata(pdev);
  4930. struct bnx2 *bp = netdev_priv(dev);
  4931. flush_scheduled_work();
  4932. unregister_netdev(dev);
  4933. if (bp->regview)
  4934. iounmap(bp->regview);
  4935. free_netdev(dev);
  4936. pci_release_regions(pdev);
  4937. pci_disable_device(pdev);
  4938. pci_set_drvdata(pdev, NULL);
  4939. }
  4940. static int
  4941. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  4942. {
  4943. struct net_device *dev = pci_get_drvdata(pdev);
  4944. struct bnx2 *bp = netdev_priv(dev);
  4945. u32 reset_code;
  4946. if (!netif_running(dev))
  4947. return 0;
  4948. flush_scheduled_work();
  4949. bnx2_netif_stop(bp);
  4950. netif_device_detach(dev);
  4951. del_timer_sync(&bp->timer);
  4952. if (bp->flags & NO_WOL_FLAG)
  4953. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4954. else if (bp->wol)
  4955. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4956. else
  4957. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4958. bnx2_reset_chip(bp, reset_code);
  4959. bnx2_free_skbs(bp);
  4960. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  4961. return 0;
  4962. }
  4963. static int
  4964. bnx2_resume(struct pci_dev *pdev)
  4965. {
  4966. struct net_device *dev = pci_get_drvdata(pdev);
  4967. struct bnx2 *bp = netdev_priv(dev);
  4968. if (!netif_running(dev))
  4969. return 0;
  4970. bnx2_set_power_state(bp, PCI_D0);
  4971. netif_device_attach(dev);
  4972. bnx2_init_nic(bp);
  4973. bnx2_netif_start(bp);
  4974. return 0;
  4975. }
  4976. static struct pci_driver bnx2_pci_driver = {
  4977. .name = DRV_MODULE_NAME,
  4978. .id_table = bnx2_pci_tbl,
  4979. .probe = bnx2_init_one,
  4980. .remove = __devexit_p(bnx2_remove_one),
  4981. .suspend = bnx2_suspend,
  4982. .resume = bnx2_resume,
  4983. };
  4984. static int __init bnx2_init(void)
  4985. {
  4986. return pci_register_driver(&bnx2_pci_driver);
  4987. }
  4988. static void __exit bnx2_cleanup(void)
  4989. {
  4990. pci_unregister_driver(&bnx2_pci_driver);
  4991. }
  4992. module_init(bnx2_init);
  4993. module_exit(bnx2_cleanup);