mmzone.h 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <linux/page-flags-layout.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coalesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. enum {
  34. MIGRATE_UNMOVABLE,
  35. MIGRATE_RECLAIMABLE,
  36. MIGRATE_MOVABLE,
  37. MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
  38. MIGRATE_RESERVE = MIGRATE_PCPTYPES,
  39. #ifdef CONFIG_CMA
  40. /*
  41. * MIGRATE_CMA migration type is designed to mimic the way
  42. * ZONE_MOVABLE works. Only movable pages can be allocated
  43. * from MIGRATE_CMA pageblocks and page allocator never
  44. * implicitly change migration type of MIGRATE_CMA pageblock.
  45. *
  46. * The way to use it is to change migratetype of a range of
  47. * pageblocks to MIGRATE_CMA which can be done by
  48. * __free_pageblock_cma() function. What is important though
  49. * is that a range of pageblocks must be aligned to
  50. * MAX_ORDER_NR_PAGES should biggest page be bigger then
  51. * a single pageblock.
  52. */
  53. MIGRATE_CMA,
  54. #endif
  55. #ifdef CONFIG_MEMORY_ISOLATION
  56. MIGRATE_ISOLATE, /* can't allocate from here */
  57. #endif
  58. MIGRATE_TYPES
  59. };
  60. #ifdef CONFIG_CMA
  61. # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  62. #else
  63. # define is_migrate_cma(migratetype) false
  64. #endif
  65. #define for_each_migratetype_order(order, type) \
  66. for (order = 0; order < MAX_ORDER; order++) \
  67. for (type = 0; type < MIGRATE_TYPES; type++)
  68. extern int page_group_by_mobility_disabled;
  69. static inline int get_pageblock_migratetype(struct page *page)
  70. {
  71. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  72. }
  73. struct free_area {
  74. struct list_head free_list[MIGRATE_TYPES];
  75. unsigned long nr_free;
  76. };
  77. struct pglist_data;
  78. /*
  79. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  80. * So add a wild amount of padding here to ensure that they fall into separate
  81. * cachelines. There are very few zone structures in the machine, so space
  82. * consumption is not a concern here.
  83. */
  84. #if defined(CONFIG_SMP)
  85. struct zone_padding {
  86. char x[0];
  87. } ____cacheline_internodealigned_in_smp;
  88. #define ZONE_PADDING(name) struct zone_padding name;
  89. #else
  90. #define ZONE_PADDING(name)
  91. #endif
  92. enum zone_stat_item {
  93. /* First 128 byte cacheline (assuming 64 bit words) */
  94. NR_FREE_PAGES,
  95. NR_LRU_BASE,
  96. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  97. NR_ACTIVE_ANON, /* " " " " " */
  98. NR_INACTIVE_FILE, /* " " " " " */
  99. NR_ACTIVE_FILE, /* " " " " " */
  100. NR_UNEVICTABLE, /* " " " " " */
  101. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  102. NR_ANON_PAGES, /* Mapped anonymous pages */
  103. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  104. only modified from process context */
  105. NR_FILE_PAGES,
  106. NR_FILE_DIRTY,
  107. NR_WRITEBACK,
  108. NR_SLAB_RECLAIMABLE,
  109. NR_SLAB_UNRECLAIMABLE,
  110. NR_PAGETABLE, /* used for pagetables */
  111. NR_KERNEL_STACK,
  112. /* Second 128 byte cacheline */
  113. NR_UNSTABLE_NFS, /* NFS unstable pages */
  114. NR_BOUNCE,
  115. NR_VMSCAN_WRITE,
  116. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  117. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  118. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  119. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  120. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  121. NR_DIRTIED, /* page dirtyings since bootup */
  122. NR_WRITTEN, /* page writings since bootup */
  123. #ifdef CONFIG_NUMA
  124. NUMA_HIT, /* allocated in intended node */
  125. NUMA_MISS, /* allocated in non intended node */
  126. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  127. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  128. NUMA_LOCAL, /* allocation from local node */
  129. NUMA_OTHER, /* allocation from other node */
  130. #endif
  131. NR_ANON_TRANSPARENT_HUGEPAGES,
  132. NR_FREE_CMA_PAGES,
  133. NR_VM_ZONE_STAT_ITEMS };
  134. /*
  135. * We do arithmetic on the LRU lists in various places in the code,
  136. * so it is important to keep the active lists LRU_ACTIVE higher in
  137. * the array than the corresponding inactive lists, and to keep
  138. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  139. *
  140. * This has to be kept in sync with the statistics in zone_stat_item
  141. * above and the descriptions in vmstat_text in mm/vmstat.c
  142. */
  143. #define LRU_BASE 0
  144. #define LRU_ACTIVE 1
  145. #define LRU_FILE 2
  146. enum lru_list {
  147. LRU_INACTIVE_ANON = LRU_BASE,
  148. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  149. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  150. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  151. LRU_UNEVICTABLE,
  152. NR_LRU_LISTS
  153. };
  154. #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
  155. #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
  156. static inline int is_file_lru(enum lru_list lru)
  157. {
  158. return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
  159. }
  160. static inline int is_active_lru(enum lru_list lru)
  161. {
  162. return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
  163. }
  164. static inline int is_unevictable_lru(enum lru_list lru)
  165. {
  166. return (lru == LRU_UNEVICTABLE);
  167. }
  168. struct zone_reclaim_stat {
  169. /*
  170. * The pageout code in vmscan.c keeps track of how many of the
  171. * mem/swap backed and file backed pages are referenced.
  172. * The higher the rotated/scanned ratio, the more valuable
  173. * that cache is.
  174. *
  175. * The anon LRU stats live in [0], file LRU stats in [1]
  176. */
  177. unsigned long recent_rotated[2];
  178. unsigned long recent_scanned[2];
  179. };
  180. struct lruvec {
  181. struct list_head lists[NR_LRU_LISTS];
  182. struct zone_reclaim_stat reclaim_stat;
  183. #ifdef CONFIG_MEMCG
  184. struct zone *zone;
  185. #endif
  186. };
  187. /* Mask used at gathering information at once (see memcontrol.c) */
  188. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  189. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  190. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  191. /* Isolate clean file */
  192. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
  193. /* Isolate unmapped file */
  194. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
  195. /* Isolate for asynchronous migration */
  196. #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
  197. /* Isolate unevictable pages */
  198. #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
  199. /* LRU Isolation modes. */
  200. typedef unsigned __bitwise__ isolate_mode_t;
  201. enum zone_watermarks {
  202. WMARK_MIN,
  203. WMARK_LOW,
  204. WMARK_HIGH,
  205. NR_WMARK
  206. };
  207. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  208. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  209. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  210. struct per_cpu_pages {
  211. int count; /* number of pages in the list */
  212. int high; /* high watermark, emptying needed */
  213. int batch; /* chunk size for buddy add/remove */
  214. /* Lists of pages, one per migrate type stored on the pcp-lists */
  215. struct list_head lists[MIGRATE_PCPTYPES];
  216. };
  217. struct per_cpu_pageset {
  218. struct per_cpu_pages pcp;
  219. #ifdef CONFIG_NUMA
  220. s8 expire;
  221. #endif
  222. #ifdef CONFIG_SMP
  223. s8 stat_threshold;
  224. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  225. #endif
  226. };
  227. #endif /* !__GENERATING_BOUNDS.H */
  228. enum zone_type {
  229. #ifdef CONFIG_ZONE_DMA
  230. /*
  231. * ZONE_DMA is used when there are devices that are not able
  232. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  233. * carve out the portion of memory that is needed for these devices.
  234. * The range is arch specific.
  235. *
  236. * Some examples
  237. *
  238. * Architecture Limit
  239. * ---------------------------
  240. * parisc, ia64, sparc <4G
  241. * s390 <2G
  242. * arm Various
  243. * alpha Unlimited or 0-16MB.
  244. *
  245. * i386, x86_64 and multiple other arches
  246. * <16M.
  247. */
  248. ZONE_DMA,
  249. #endif
  250. #ifdef CONFIG_ZONE_DMA32
  251. /*
  252. * x86_64 needs two ZONE_DMAs because it supports devices that are
  253. * only able to do DMA to the lower 16M but also 32 bit devices that
  254. * can only do DMA areas below 4G.
  255. */
  256. ZONE_DMA32,
  257. #endif
  258. /*
  259. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  260. * performed on pages in ZONE_NORMAL if the DMA devices support
  261. * transfers to all addressable memory.
  262. */
  263. ZONE_NORMAL,
  264. #ifdef CONFIG_HIGHMEM
  265. /*
  266. * A memory area that is only addressable by the kernel through
  267. * mapping portions into its own address space. This is for example
  268. * used by i386 to allow the kernel to address the memory beyond
  269. * 900MB. The kernel will set up special mappings (page
  270. * table entries on i386) for each page that the kernel needs to
  271. * access.
  272. */
  273. ZONE_HIGHMEM,
  274. #endif
  275. ZONE_MOVABLE,
  276. __MAX_NR_ZONES
  277. };
  278. #ifndef __GENERATING_BOUNDS_H
  279. struct zone {
  280. /* Fields commonly accessed by the page allocator */
  281. /* zone watermarks, access with *_wmark_pages(zone) macros */
  282. unsigned long watermark[NR_WMARK];
  283. /*
  284. * When free pages are below this point, additional steps are taken
  285. * when reading the number of free pages to avoid per-cpu counter
  286. * drift allowing watermarks to be breached
  287. */
  288. unsigned long percpu_drift_mark;
  289. /*
  290. * We don't know if the memory that we're going to allocate will be freeable
  291. * or/and it will be released eventually, so to avoid totally wasting several
  292. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  293. * to run OOM on the lower zones despite there's tons of freeable ram
  294. * on the higher zones). This array is recalculated at runtime if the
  295. * sysctl_lowmem_reserve_ratio sysctl changes.
  296. */
  297. unsigned long lowmem_reserve[MAX_NR_ZONES];
  298. /*
  299. * This is a per-zone reserve of pages that should not be
  300. * considered dirtyable memory.
  301. */
  302. unsigned long dirty_balance_reserve;
  303. #ifdef CONFIG_NUMA
  304. int node;
  305. /*
  306. * zone reclaim becomes active if more unmapped pages exist.
  307. */
  308. unsigned long min_unmapped_pages;
  309. unsigned long min_slab_pages;
  310. #endif
  311. struct per_cpu_pageset __percpu *pageset;
  312. /*
  313. * free areas of different sizes
  314. */
  315. spinlock_t lock;
  316. int all_unreclaimable; /* All pages pinned */
  317. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  318. /* Set to true when the PG_migrate_skip bits should be cleared */
  319. bool compact_blockskip_flush;
  320. /* pfns where compaction scanners should start */
  321. unsigned long compact_cached_free_pfn;
  322. unsigned long compact_cached_migrate_pfn;
  323. #endif
  324. #ifdef CONFIG_MEMORY_HOTPLUG
  325. /* see spanned/present_pages for more description */
  326. seqlock_t span_seqlock;
  327. #endif
  328. struct free_area free_area[MAX_ORDER];
  329. #ifndef CONFIG_SPARSEMEM
  330. /*
  331. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  332. * In SPARSEMEM, this map is stored in struct mem_section
  333. */
  334. unsigned long *pageblock_flags;
  335. #endif /* CONFIG_SPARSEMEM */
  336. #ifdef CONFIG_COMPACTION
  337. /*
  338. * On compaction failure, 1<<compact_defer_shift compactions
  339. * are skipped before trying again. The number attempted since
  340. * last failure is tracked with compact_considered.
  341. */
  342. unsigned int compact_considered;
  343. unsigned int compact_defer_shift;
  344. int compact_order_failed;
  345. #endif
  346. ZONE_PADDING(_pad1_)
  347. /* Fields commonly accessed by the page reclaim scanner */
  348. spinlock_t lru_lock;
  349. struct lruvec lruvec;
  350. unsigned long pages_scanned; /* since last reclaim */
  351. unsigned long flags; /* zone flags, see below */
  352. /* Zone statistics */
  353. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  354. /*
  355. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  356. * this zone's LRU. Maintained by the pageout code.
  357. */
  358. unsigned int inactive_ratio;
  359. ZONE_PADDING(_pad2_)
  360. /* Rarely used or read-mostly fields */
  361. /*
  362. * wait_table -- the array holding the hash table
  363. * wait_table_hash_nr_entries -- the size of the hash table array
  364. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  365. *
  366. * The purpose of all these is to keep track of the people
  367. * waiting for a page to become available and make them
  368. * runnable again when possible. The trouble is that this
  369. * consumes a lot of space, especially when so few things
  370. * wait on pages at a given time. So instead of using
  371. * per-page waitqueues, we use a waitqueue hash table.
  372. *
  373. * The bucket discipline is to sleep on the same queue when
  374. * colliding and wake all in that wait queue when removing.
  375. * When something wakes, it must check to be sure its page is
  376. * truly available, a la thundering herd. The cost of a
  377. * collision is great, but given the expected load of the
  378. * table, they should be so rare as to be outweighed by the
  379. * benefits from the saved space.
  380. *
  381. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  382. * primary users of these fields, and in mm/page_alloc.c
  383. * free_area_init_core() performs the initialization of them.
  384. */
  385. wait_queue_head_t * wait_table;
  386. unsigned long wait_table_hash_nr_entries;
  387. unsigned long wait_table_bits;
  388. /*
  389. * Discontig memory support fields.
  390. */
  391. struct pglist_data *zone_pgdat;
  392. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  393. unsigned long zone_start_pfn;
  394. /*
  395. * spanned_pages is the total pages spanned by the zone, including
  396. * holes, which is calculated as:
  397. * spanned_pages = zone_end_pfn - zone_start_pfn;
  398. *
  399. * present_pages is physical pages existing within the zone, which
  400. * is calculated as:
  401. * present_pages = spanned_pages - absent_pages(pages in holes);
  402. *
  403. * managed_pages is present pages managed by the buddy system, which
  404. * is calculated as (reserved_pages includes pages allocated by the
  405. * bootmem allocator):
  406. * managed_pages = present_pages - reserved_pages;
  407. *
  408. * So present_pages may be used by memory hotplug or memory power
  409. * management logic to figure out unmanaged pages by checking
  410. * (present_pages - managed_pages). And managed_pages should be used
  411. * by page allocator and vm scanner to calculate all kinds of watermarks
  412. * and thresholds.
  413. *
  414. * Locking rules:
  415. *
  416. * zone_start_pfn and spanned_pages are protected by span_seqlock.
  417. * It is a seqlock because it has to be read outside of zone->lock,
  418. * and it is done in the main allocator path. But, it is written
  419. * quite infrequently.
  420. *
  421. * The span_seq lock is declared along with zone->lock because it is
  422. * frequently read in proximity to zone->lock. It's good to
  423. * give them a chance of being in the same cacheline.
  424. *
  425. * Write access to present_pages and managed_pages at runtime should
  426. * be protected by lock_memory_hotplug()/unlock_memory_hotplug().
  427. * Any reader who can't tolerant drift of present_pages and
  428. * managed_pages should hold memory hotplug lock to get a stable value.
  429. */
  430. unsigned long spanned_pages;
  431. unsigned long present_pages;
  432. unsigned long managed_pages;
  433. /*
  434. * rarely used fields:
  435. */
  436. const char *name;
  437. } ____cacheline_internodealigned_in_smp;
  438. typedef enum {
  439. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  440. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  441. ZONE_CONGESTED, /* zone has many dirty pages backed by
  442. * a congested BDI
  443. */
  444. ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found
  445. * many dirty file pages at the tail
  446. * of the LRU.
  447. */
  448. } zone_flags_t;
  449. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  450. {
  451. set_bit(flag, &zone->flags);
  452. }
  453. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  454. {
  455. return test_and_set_bit(flag, &zone->flags);
  456. }
  457. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  458. {
  459. clear_bit(flag, &zone->flags);
  460. }
  461. static inline int zone_is_reclaim_congested(const struct zone *zone)
  462. {
  463. return test_bit(ZONE_CONGESTED, &zone->flags);
  464. }
  465. static inline int zone_is_reclaim_dirty(const struct zone *zone)
  466. {
  467. return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
  468. }
  469. static inline int zone_is_reclaim_locked(const struct zone *zone)
  470. {
  471. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  472. }
  473. static inline int zone_is_oom_locked(const struct zone *zone)
  474. {
  475. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  476. }
  477. static inline unsigned long zone_end_pfn(const struct zone *zone)
  478. {
  479. return zone->zone_start_pfn + zone->spanned_pages;
  480. }
  481. static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
  482. {
  483. return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
  484. }
  485. static inline bool zone_is_initialized(struct zone *zone)
  486. {
  487. return !!zone->wait_table;
  488. }
  489. static inline bool zone_is_empty(struct zone *zone)
  490. {
  491. return zone->spanned_pages == 0;
  492. }
  493. /*
  494. * The "priority" of VM scanning is how much of the queues we will scan in one
  495. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  496. * queues ("queue_length >> 12") during an aging round.
  497. */
  498. #define DEF_PRIORITY 12
  499. /* Maximum number of zones on a zonelist */
  500. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  501. #ifdef CONFIG_NUMA
  502. /*
  503. * The NUMA zonelists are doubled because we need zonelists that restrict the
  504. * allocations to a single node for GFP_THISNODE.
  505. *
  506. * [0] : Zonelist with fallback
  507. * [1] : No fallback (GFP_THISNODE)
  508. */
  509. #define MAX_ZONELISTS 2
  510. /*
  511. * We cache key information from each zonelist for smaller cache
  512. * footprint when scanning for free pages in get_page_from_freelist().
  513. *
  514. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  515. * up short of free memory since the last time (last_fullzone_zap)
  516. * we zero'd fullzones.
  517. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  518. * id, so that we can efficiently evaluate whether that node is
  519. * set in the current tasks mems_allowed.
  520. *
  521. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  522. * indexed by a zones offset in the zonelist zones[] array.
  523. *
  524. * The get_page_from_freelist() routine does two scans. During the
  525. * first scan, we skip zones whose corresponding bit in 'fullzones'
  526. * is set or whose corresponding node in current->mems_allowed (which
  527. * comes from cpusets) is not set. During the second scan, we bypass
  528. * this zonelist_cache, to ensure we look methodically at each zone.
  529. *
  530. * Once per second, we zero out (zap) fullzones, forcing us to
  531. * reconsider nodes that might have regained more free memory.
  532. * The field last_full_zap is the time we last zapped fullzones.
  533. *
  534. * This mechanism reduces the amount of time we waste repeatedly
  535. * reexaming zones for free memory when they just came up low on
  536. * memory momentarilly ago.
  537. *
  538. * The zonelist_cache struct members logically belong in struct
  539. * zonelist. However, the mempolicy zonelists constructed for
  540. * MPOL_BIND are intentionally variable length (and usually much
  541. * shorter). A general purpose mechanism for handling structs with
  542. * multiple variable length members is more mechanism than we want
  543. * here. We resort to some special case hackery instead.
  544. *
  545. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  546. * part because they are shorter), so we put the fixed length stuff
  547. * at the front of the zonelist struct, ending in a variable length
  548. * zones[], as is needed by MPOL_BIND.
  549. *
  550. * Then we put the optional zonelist cache on the end of the zonelist
  551. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  552. * the fixed length portion at the front of the struct. This pointer
  553. * both enables us to find the zonelist cache, and in the case of
  554. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  555. * to know that the zonelist cache is not there.
  556. *
  557. * The end result is that struct zonelists come in two flavors:
  558. * 1) The full, fixed length version, shown below, and
  559. * 2) The custom zonelists for MPOL_BIND.
  560. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  561. *
  562. * Even though there may be multiple CPU cores on a node modifying
  563. * fullzones or last_full_zap in the same zonelist_cache at the same
  564. * time, we don't lock it. This is just hint data - if it is wrong now
  565. * and then, the allocator will still function, perhaps a bit slower.
  566. */
  567. struct zonelist_cache {
  568. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  569. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  570. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  571. };
  572. #else
  573. #define MAX_ZONELISTS 1
  574. struct zonelist_cache;
  575. #endif
  576. /*
  577. * This struct contains information about a zone in a zonelist. It is stored
  578. * here to avoid dereferences into large structures and lookups of tables
  579. */
  580. struct zoneref {
  581. struct zone *zone; /* Pointer to actual zone */
  582. int zone_idx; /* zone_idx(zoneref->zone) */
  583. };
  584. /*
  585. * One allocation request operates on a zonelist. A zonelist
  586. * is a list of zones, the first one is the 'goal' of the
  587. * allocation, the other zones are fallback zones, in decreasing
  588. * priority.
  589. *
  590. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  591. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  592. * *
  593. * To speed the reading of the zonelist, the zonerefs contain the zone index
  594. * of the entry being read. Helper functions to access information given
  595. * a struct zoneref are
  596. *
  597. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  598. * zonelist_zone_idx() - Return the index of the zone for an entry
  599. * zonelist_node_idx() - Return the index of the node for an entry
  600. */
  601. struct zonelist {
  602. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  603. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  604. #ifdef CONFIG_NUMA
  605. struct zonelist_cache zlcache; // optional ...
  606. #endif
  607. };
  608. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  609. struct node_active_region {
  610. unsigned long start_pfn;
  611. unsigned long end_pfn;
  612. int nid;
  613. };
  614. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  615. #ifndef CONFIG_DISCONTIGMEM
  616. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  617. extern struct page *mem_map;
  618. #endif
  619. /*
  620. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  621. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  622. * zone denotes.
  623. *
  624. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  625. * it's memory layout.
  626. *
  627. * Memory statistics and page replacement data structures are maintained on a
  628. * per-zone basis.
  629. */
  630. struct bootmem_data;
  631. typedef struct pglist_data {
  632. struct zone node_zones[MAX_NR_ZONES];
  633. struct zonelist node_zonelists[MAX_ZONELISTS];
  634. int nr_zones;
  635. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  636. struct page *node_mem_map;
  637. #ifdef CONFIG_MEMCG
  638. struct page_cgroup *node_page_cgroup;
  639. #endif
  640. #endif
  641. #ifndef CONFIG_NO_BOOTMEM
  642. struct bootmem_data *bdata;
  643. #endif
  644. #ifdef CONFIG_MEMORY_HOTPLUG
  645. /*
  646. * Must be held any time you expect node_start_pfn, node_present_pages
  647. * or node_spanned_pages stay constant. Holding this will also
  648. * guarantee that any pfn_valid() stays that way.
  649. *
  650. * Nests above zone->lock and zone->size_seqlock.
  651. */
  652. spinlock_t node_size_lock;
  653. #endif
  654. unsigned long node_start_pfn;
  655. unsigned long node_present_pages; /* total number of physical pages */
  656. unsigned long node_spanned_pages; /* total size of physical page
  657. range, including holes */
  658. int node_id;
  659. nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
  660. wait_queue_head_t kswapd_wait;
  661. wait_queue_head_t pfmemalloc_wait;
  662. struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
  663. int kswapd_max_order;
  664. enum zone_type classzone_idx;
  665. #ifdef CONFIG_NUMA_BALANCING
  666. /*
  667. * Lock serializing the per destination node AutoNUMA memory
  668. * migration rate limiting data.
  669. */
  670. spinlock_t numabalancing_migrate_lock;
  671. /* Rate limiting time interval */
  672. unsigned long numabalancing_migrate_next_window;
  673. /* Number of pages migrated during the rate limiting time interval */
  674. unsigned long numabalancing_migrate_nr_pages;
  675. #endif
  676. } pg_data_t;
  677. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  678. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  679. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  680. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  681. #else
  682. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  683. #endif
  684. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  685. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  686. #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
  687. static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
  688. {
  689. return pgdat->node_start_pfn + pgdat->node_spanned_pages;
  690. }
  691. static inline bool pgdat_is_empty(pg_data_t *pgdat)
  692. {
  693. return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
  694. }
  695. #include <linux/memory_hotplug.h>
  696. extern struct mutex zonelists_mutex;
  697. void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
  698. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  699. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  700. int classzone_idx, int alloc_flags);
  701. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  702. int classzone_idx, int alloc_flags);
  703. enum memmap_context {
  704. MEMMAP_EARLY,
  705. MEMMAP_HOTPLUG,
  706. };
  707. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  708. unsigned long size,
  709. enum memmap_context context);
  710. extern void lruvec_init(struct lruvec *lruvec);
  711. static inline struct zone *lruvec_zone(struct lruvec *lruvec)
  712. {
  713. #ifdef CONFIG_MEMCG
  714. return lruvec->zone;
  715. #else
  716. return container_of(lruvec, struct zone, lruvec);
  717. #endif
  718. }
  719. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  720. void memory_present(int nid, unsigned long start, unsigned long end);
  721. #else
  722. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  723. #endif
  724. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  725. int local_memory_node(int node_id);
  726. #else
  727. static inline int local_memory_node(int node_id) { return node_id; };
  728. #endif
  729. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  730. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  731. #endif
  732. /*
  733. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  734. */
  735. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  736. static inline int populated_zone(struct zone *zone)
  737. {
  738. return (!!zone->present_pages);
  739. }
  740. extern int movable_zone;
  741. static inline int zone_movable_is_highmem(void)
  742. {
  743. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  744. return movable_zone == ZONE_HIGHMEM;
  745. #else
  746. return 0;
  747. #endif
  748. }
  749. static inline int is_highmem_idx(enum zone_type idx)
  750. {
  751. #ifdef CONFIG_HIGHMEM
  752. return (idx == ZONE_HIGHMEM ||
  753. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  754. #else
  755. return 0;
  756. #endif
  757. }
  758. static inline int is_normal_idx(enum zone_type idx)
  759. {
  760. return (idx == ZONE_NORMAL);
  761. }
  762. /**
  763. * is_highmem - helper function to quickly check if a struct zone is a
  764. * highmem zone or not. This is an attempt to keep references
  765. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  766. * @zone - pointer to struct zone variable
  767. */
  768. static inline int is_highmem(struct zone *zone)
  769. {
  770. #ifdef CONFIG_HIGHMEM
  771. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  772. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  773. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  774. zone_movable_is_highmem());
  775. #else
  776. return 0;
  777. #endif
  778. }
  779. static inline int is_normal(struct zone *zone)
  780. {
  781. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  782. }
  783. static inline int is_dma32(struct zone *zone)
  784. {
  785. #ifdef CONFIG_ZONE_DMA32
  786. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  787. #else
  788. return 0;
  789. #endif
  790. }
  791. static inline int is_dma(struct zone *zone)
  792. {
  793. #ifdef CONFIG_ZONE_DMA
  794. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  795. #else
  796. return 0;
  797. #endif
  798. }
  799. /* These two functions are used to setup the per zone pages min values */
  800. struct ctl_table;
  801. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  802. void __user *, size_t *, loff_t *);
  803. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  804. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  805. void __user *, size_t *, loff_t *);
  806. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  807. void __user *, size_t *, loff_t *);
  808. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  809. void __user *, size_t *, loff_t *);
  810. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  811. void __user *, size_t *, loff_t *);
  812. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  813. void __user *, size_t *, loff_t *);
  814. extern char numa_zonelist_order[];
  815. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  816. #ifndef CONFIG_NEED_MULTIPLE_NODES
  817. extern struct pglist_data contig_page_data;
  818. #define NODE_DATA(nid) (&contig_page_data)
  819. #define NODE_MEM_MAP(nid) mem_map
  820. #else /* CONFIG_NEED_MULTIPLE_NODES */
  821. #include <asm/mmzone.h>
  822. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  823. extern struct pglist_data *first_online_pgdat(void);
  824. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  825. extern struct zone *next_zone(struct zone *zone);
  826. /**
  827. * for_each_online_pgdat - helper macro to iterate over all online nodes
  828. * @pgdat - pointer to a pg_data_t variable
  829. */
  830. #define for_each_online_pgdat(pgdat) \
  831. for (pgdat = first_online_pgdat(); \
  832. pgdat; \
  833. pgdat = next_online_pgdat(pgdat))
  834. /**
  835. * for_each_zone - helper macro to iterate over all memory zones
  836. * @zone - pointer to struct zone variable
  837. *
  838. * The user only needs to declare the zone variable, for_each_zone
  839. * fills it in.
  840. */
  841. #define for_each_zone(zone) \
  842. for (zone = (first_online_pgdat())->node_zones; \
  843. zone; \
  844. zone = next_zone(zone))
  845. #define for_each_populated_zone(zone) \
  846. for (zone = (first_online_pgdat())->node_zones; \
  847. zone; \
  848. zone = next_zone(zone)) \
  849. if (!populated_zone(zone)) \
  850. ; /* do nothing */ \
  851. else
  852. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  853. {
  854. return zoneref->zone;
  855. }
  856. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  857. {
  858. return zoneref->zone_idx;
  859. }
  860. static inline int zonelist_node_idx(struct zoneref *zoneref)
  861. {
  862. #ifdef CONFIG_NUMA
  863. /* zone_to_nid not available in this context */
  864. return zoneref->zone->node;
  865. #else
  866. return 0;
  867. #endif /* CONFIG_NUMA */
  868. }
  869. /**
  870. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  871. * @z - The cursor used as a starting point for the search
  872. * @highest_zoneidx - The zone index of the highest zone to return
  873. * @nodes - An optional nodemask to filter the zonelist with
  874. * @zone - The first suitable zone found is returned via this parameter
  875. *
  876. * This function returns the next zone at or below a given zone index that is
  877. * within the allowed nodemask using a cursor as the starting point for the
  878. * search. The zoneref returned is a cursor that represents the current zone
  879. * being examined. It should be advanced by one before calling
  880. * next_zones_zonelist again.
  881. */
  882. struct zoneref *next_zones_zonelist(struct zoneref *z,
  883. enum zone_type highest_zoneidx,
  884. nodemask_t *nodes,
  885. struct zone **zone);
  886. /**
  887. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  888. * @zonelist - The zonelist to search for a suitable zone
  889. * @highest_zoneidx - The zone index of the highest zone to return
  890. * @nodes - An optional nodemask to filter the zonelist with
  891. * @zone - The first suitable zone found is returned via this parameter
  892. *
  893. * This function returns the first zone at or below a given zone index that is
  894. * within the allowed nodemask. The zoneref returned is a cursor that can be
  895. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  896. * one before calling.
  897. */
  898. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  899. enum zone_type highest_zoneidx,
  900. nodemask_t *nodes,
  901. struct zone **zone)
  902. {
  903. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  904. zone);
  905. }
  906. /**
  907. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  908. * @zone - The current zone in the iterator
  909. * @z - The current pointer within zonelist->zones being iterated
  910. * @zlist - The zonelist being iterated
  911. * @highidx - The zone index of the highest zone to return
  912. * @nodemask - Nodemask allowed by the allocator
  913. *
  914. * This iterator iterates though all zones at or below a given zone index and
  915. * within a given nodemask
  916. */
  917. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  918. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  919. zone; \
  920. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  921. /**
  922. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  923. * @zone - The current zone in the iterator
  924. * @z - The current pointer within zonelist->zones being iterated
  925. * @zlist - The zonelist being iterated
  926. * @highidx - The zone index of the highest zone to return
  927. *
  928. * This iterator iterates though all zones at or below a given zone index.
  929. */
  930. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  931. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  932. #ifdef CONFIG_SPARSEMEM
  933. #include <asm/sparsemem.h>
  934. #endif
  935. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  936. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  937. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  938. {
  939. return 0;
  940. }
  941. #endif
  942. #ifdef CONFIG_FLATMEM
  943. #define pfn_to_nid(pfn) (0)
  944. #endif
  945. #ifdef CONFIG_SPARSEMEM
  946. /*
  947. * SECTION_SHIFT #bits space required to store a section #
  948. *
  949. * PA_SECTION_SHIFT physical address to/from section number
  950. * PFN_SECTION_SHIFT pfn to/from section number
  951. */
  952. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  953. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  954. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  955. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  956. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  957. #define SECTION_BLOCKFLAGS_BITS \
  958. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  959. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  960. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  961. #endif
  962. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  963. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  964. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  965. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  966. struct page;
  967. struct page_cgroup;
  968. struct mem_section {
  969. /*
  970. * This is, logically, a pointer to an array of struct
  971. * pages. However, it is stored with some other magic.
  972. * (see sparse.c::sparse_init_one_section())
  973. *
  974. * Additionally during early boot we encode node id of
  975. * the location of the section here to guide allocation.
  976. * (see sparse.c::memory_present())
  977. *
  978. * Making it a UL at least makes someone do a cast
  979. * before using it wrong.
  980. */
  981. unsigned long section_mem_map;
  982. /* See declaration of similar field in struct zone */
  983. unsigned long *pageblock_flags;
  984. #ifdef CONFIG_MEMCG
  985. /*
  986. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  987. * section. (see memcontrol.h/page_cgroup.h about this.)
  988. */
  989. struct page_cgroup *page_cgroup;
  990. unsigned long pad;
  991. #endif
  992. };
  993. #ifdef CONFIG_SPARSEMEM_EXTREME
  994. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  995. #else
  996. #define SECTIONS_PER_ROOT 1
  997. #endif
  998. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  999. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  1000. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  1001. #ifdef CONFIG_SPARSEMEM_EXTREME
  1002. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  1003. #else
  1004. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  1005. #endif
  1006. static inline struct mem_section *__nr_to_section(unsigned long nr)
  1007. {
  1008. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  1009. return NULL;
  1010. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  1011. }
  1012. extern int __section_nr(struct mem_section* ms);
  1013. extern unsigned long usemap_size(void);
  1014. /*
  1015. * We use the lower bits of the mem_map pointer to store
  1016. * a little bit of information. There should be at least
  1017. * 3 bits here due to 32-bit alignment.
  1018. */
  1019. #define SECTION_MARKED_PRESENT (1UL<<0)
  1020. #define SECTION_HAS_MEM_MAP (1UL<<1)
  1021. #define SECTION_MAP_LAST_BIT (1UL<<2)
  1022. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  1023. #define SECTION_NID_SHIFT 2
  1024. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  1025. {
  1026. unsigned long map = section->section_mem_map;
  1027. map &= SECTION_MAP_MASK;
  1028. return (struct page *)map;
  1029. }
  1030. static inline int present_section(struct mem_section *section)
  1031. {
  1032. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  1033. }
  1034. static inline int present_section_nr(unsigned long nr)
  1035. {
  1036. return present_section(__nr_to_section(nr));
  1037. }
  1038. static inline int valid_section(struct mem_section *section)
  1039. {
  1040. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  1041. }
  1042. static inline int valid_section_nr(unsigned long nr)
  1043. {
  1044. return valid_section(__nr_to_section(nr));
  1045. }
  1046. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  1047. {
  1048. return __nr_to_section(pfn_to_section_nr(pfn));
  1049. }
  1050. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  1051. static inline int pfn_valid(unsigned long pfn)
  1052. {
  1053. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1054. return 0;
  1055. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1056. }
  1057. #endif
  1058. static inline int pfn_present(unsigned long pfn)
  1059. {
  1060. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1061. return 0;
  1062. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1063. }
  1064. /*
  1065. * These are _only_ used during initialisation, therefore they
  1066. * can use __initdata ... They could have names to indicate
  1067. * this restriction.
  1068. */
  1069. #ifdef CONFIG_NUMA
  1070. #define pfn_to_nid(pfn) \
  1071. ({ \
  1072. unsigned long __pfn_to_nid_pfn = (pfn); \
  1073. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  1074. })
  1075. #else
  1076. #define pfn_to_nid(pfn) (0)
  1077. #endif
  1078. #define early_pfn_valid(pfn) pfn_valid(pfn)
  1079. void sparse_init(void);
  1080. #else
  1081. #define sparse_init() do {} while (0)
  1082. #define sparse_index_init(_sec, _nid) do {} while (0)
  1083. #endif /* CONFIG_SPARSEMEM */
  1084. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1085. bool early_pfn_in_nid(unsigned long pfn, int nid);
  1086. #else
  1087. #define early_pfn_in_nid(pfn, nid) (1)
  1088. #endif
  1089. #ifndef early_pfn_valid
  1090. #define early_pfn_valid(pfn) (1)
  1091. #endif
  1092. void memory_present(int nid, unsigned long start, unsigned long end);
  1093. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  1094. /*
  1095. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  1096. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  1097. * pfn_valid_within() should be used in this case; we optimise this away
  1098. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1099. */
  1100. #ifdef CONFIG_HOLES_IN_ZONE
  1101. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1102. #else
  1103. #define pfn_valid_within(pfn) (1)
  1104. #endif
  1105. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1106. /*
  1107. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1108. * associated with it or not. In FLATMEM, it is expected that holes always
  1109. * have valid memmap as long as there is valid PFNs either side of the hole.
  1110. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1111. * entire section.
  1112. *
  1113. * However, an ARM, and maybe other embedded architectures in the future
  1114. * free memmap backing holes to save memory on the assumption the memmap is
  1115. * never used. The page_zone linkages are then broken even though pfn_valid()
  1116. * returns true. A walker of the full memmap must then do this additional
  1117. * check to ensure the memmap they are looking at is sane by making sure
  1118. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1119. * of the full memmap are extremely rare.
  1120. */
  1121. int memmap_valid_within(unsigned long pfn,
  1122. struct page *page, struct zone *zone);
  1123. #else
  1124. static inline int memmap_valid_within(unsigned long pfn,
  1125. struct page *page, struct zone *zone)
  1126. {
  1127. return 1;
  1128. }
  1129. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1130. #endif /* !__GENERATING_BOUNDS.H */
  1131. #endif /* !__ASSEMBLY__ */
  1132. #endif /* _LINUX_MMZONE_H */