sched.c 222 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include <asm/mutex.h>
  77. #include "sched_cpupri.h"
  78. #include "workqueue_sched.h"
  79. #include "sched_autogroup.h"
  80. #define CREATE_TRACE_POINTS
  81. #include <trace/events/sched.h>
  82. /*
  83. * Convert user-nice values [ -20 ... 0 ... 19 ]
  84. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  85. * and back.
  86. */
  87. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  88. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  89. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  90. /*
  91. * 'User priority' is the nice value converted to something we
  92. * can work with better when scaling various scheduler parameters,
  93. * it's a [ 0 ... 39 ] range.
  94. */
  95. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  96. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  97. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  98. /*
  99. * Helpers for converting nanosecond timing to jiffy resolution
  100. */
  101. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  102. #define NICE_0_LOAD SCHED_LOAD_SCALE
  103. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  104. /*
  105. * These are the 'tuning knobs' of the scheduler:
  106. *
  107. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  108. * Timeslices get refilled after they expire.
  109. */
  110. #define DEF_TIMESLICE (100 * HZ / 1000)
  111. /*
  112. * single value that denotes runtime == period, ie unlimited time.
  113. */
  114. #define RUNTIME_INF ((u64)~0ULL)
  115. static inline int rt_policy(int policy)
  116. {
  117. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  118. return 1;
  119. return 0;
  120. }
  121. static inline int task_has_rt_policy(struct task_struct *p)
  122. {
  123. return rt_policy(p->policy);
  124. }
  125. /*
  126. * This is the priority-queue data structure of the RT scheduling class:
  127. */
  128. struct rt_prio_array {
  129. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  130. struct list_head queue[MAX_RT_PRIO];
  131. };
  132. struct rt_bandwidth {
  133. /* nests inside the rq lock: */
  134. raw_spinlock_t rt_runtime_lock;
  135. ktime_t rt_period;
  136. u64 rt_runtime;
  137. struct hrtimer rt_period_timer;
  138. };
  139. static struct rt_bandwidth def_rt_bandwidth;
  140. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  141. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  142. {
  143. struct rt_bandwidth *rt_b =
  144. container_of(timer, struct rt_bandwidth, rt_period_timer);
  145. ktime_t now;
  146. int overrun;
  147. int idle = 0;
  148. for (;;) {
  149. now = hrtimer_cb_get_time(timer);
  150. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  151. if (!overrun)
  152. break;
  153. idle = do_sched_rt_period_timer(rt_b, overrun);
  154. }
  155. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  156. }
  157. static
  158. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  159. {
  160. rt_b->rt_period = ns_to_ktime(period);
  161. rt_b->rt_runtime = runtime;
  162. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  163. hrtimer_init(&rt_b->rt_period_timer,
  164. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  165. rt_b->rt_period_timer.function = sched_rt_period_timer;
  166. }
  167. static inline int rt_bandwidth_enabled(void)
  168. {
  169. return sysctl_sched_rt_runtime >= 0;
  170. }
  171. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  172. {
  173. ktime_t now;
  174. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  175. return;
  176. if (hrtimer_active(&rt_b->rt_period_timer))
  177. return;
  178. raw_spin_lock(&rt_b->rt_runtime_lock);
  179. for (;;) {
  180. unsigned long delta;
  181. ktime_t soft, hard;
  182. if (hrtimer_active(&rt_b->rt_period_timer))
  183. break;
  184. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  185. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  186. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  187. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  188. delta = ktime_to_ns(ktime_sub(hard, soft));
  189. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  190. HRTIMER_MODE_ABS_PINNED, 0);
  191. }
  192. raw_spin_unlock(&rt_b->rt_runtime_lock);
  193. }
  194. #ifdef CONFIG_RT_GROUP_SCHED
  195. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  196. {
  197. hrtimer_cancel(&rt_b->rt_period_timer);
  198. }
  199. #endif
  200. /*
  201. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  202. * detach_destroy_domains and partition_sched_domains.
  203. */
  204. static DEFINE_MUTEX(sched_domains_mutex);
  205. #ifdef CONFIG_CGROUP_SCHED
  206. #include <linux/cgroup.h>
  207. struct cfs_rq;
  208. static LIST_HEAD(task_groups);
  209. /* task group related information */
  210. struct task_group {
  211. struct cgroup_subsys_state css;
  212. #ifdef CONFIG_FAIR_GROUP_SCHED
  213. /* schedulable entities of this group on each cpu */
  214. struct sched_entity **se;
  215. /* runqueue "owned" by this group on each cpu */
  216. struct cfs_rq **cfs_rq;
  217. unsigned long shares;
  218. atomic_t load_weight;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. #ifdef CONFIG_SCHED_AUTOGROUP
  231. struct autogroup *autogroup;
  232. #endif
  233. };
  234. /* task_group_lock serializes the addition/removal of task groups */
  235. static DEFINE_SPINLOCK(task_group_lock);
  236. #ifdef CONFIG_FAIR_GROUP_SCHED
  237. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  238. /*
  239. * A weight of 0 or 1 can cause arithmetics problems.
  240. * A weight of a cfs_rq is the sum of weights of which entities
  241. * are queued on this cfs_rq, so a weight of a entity should not be
  242. * too large, so as the shares value of a task group.
  243. * (The default weight is 1024 - so there's no practical
  244. * limitation from this.)
  245. */
  246. #define MIN_SHARES 2
  247. #define MAX_SHARES (1UL << 18)
  248. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  249. #endif
  250. /* Default task group.
  251. * Every task in system belong to this group at bootup.
  252. */
  253. struct task_group root_task_group;
  254. #endif /* CONFIG_CGROUP_SCHED */
  255. /* CFS-related fields in a runqueue */
  256. struct cfs_rq {
  257. struct load_weight load;
  258. unsigned long nr_running;
  259. u64 exec_clock;
  260. u64 min_vruntime;
  261. struct rb_root tasks_timeline;
  262. struct rb_node *rb_leftmost;
  263. struct list_head tasks;
  264. struct list_head *balance_iterator;
  265. /*
  266. * 'curr' points to currently running entity on this cfs_rq.
  267. * It is set to NULL otherwise (i.e when none are currently running).
  268. */
  269. struct sched_entity *curr, *next, *last;
  270. unsigned int nr_spread_over;
  271. #ifdef CONFIG_FAIR_GROUP_SCHED
  272. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  273. /*
  274. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  275. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  276. * (like users, containers etc.)
  277. *
  278. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  279. * list is used during load balance.
  280. */
  281. int on_list;
  282. struct list_head leaf_cfs_rq_list;
  283. struct task_group *tg; /* group that "owns" this runqueue */
  284. #ifdef CONFIG_SMP
  285. /*
  286. * the part of load.weight contributed by tasks
  287. */
  288. unsigned long task_weight;
  289. /*
  290. * h_load = weight * f(tg)
  291. *
  292. * Where f(tg) is the recursive weight fraction assigned to
  293. * this group.
  294. */
  295. unsigned long h_load;
  296. /*
  297. * Maintaining per-cpu shares distribution for group scheduling
  298. *
  299. * load_stamp is the last time we updated the load average
  300. * load_last is the last time we updated the load average and saw load
  301. * load_unacc_exec_time is currently unaccounted execution time
  302. */
  303. u64 load_avg;
  304. u64 load_period;
  305. u64 load_stamp, load_last, load_unacc_exec_time;
  306. unsigned long load_contribution;
  307. #endif
  308. #endif
  309. };
  310. /* Real-Time classes' related field in a runqueue: */
  311. struct rt_rq {
  312. struct rt_prio_array active;
  313. unsigned long rt_nr_running;
  314. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  315. struct {
  316. int curr; /* highest queued rt task prio */
  317. #ifdef CONFIG_SMP
  318. int next; /* next highest */
  319. #endif
  320. } highest_prio;
  321. #endif
  322. #ifdef CONFIG_SMP
  323. unsigned long rt_nr_migratory;
  324. unsigned long rt_nr_total;
  325. int overloaded;
  326. struct plist_head pushable_tasks;
  327. #endif
  328. int rt_throttled;
  329. u64 rt_time;
  330. u64 rt_runtime;
  331. /* Nests inside the rq lock: */
  332. raw_spinlock_t rt_runtime_lock;
  333. #ifdef CONFIG_RT_GROUP_SCHED
  334. unsigned long rt_nr_boosted;
  335. struct rq *rq;
  336. struct list_head leaf_rt_rq_list;
  337. struct task_group *tg;
  338. #endif
  339. };
  340. #ifdef CONFIG_SMP
  341. /*
  342. * We add the notion of a root-domain which will be used to define per-domain
  343. * variables. Each exclusive cpuset essentially defines an island domain by
  344. * fully partitioning the member cpus from any other cpuset. Whenever a new
  345. * exclusive cpuset is created, we also create and attach a new root-domain
  346. * object.
  347. *
  348. */
  349. struct root_domain {
  350. atomic_t refcount;
  351. cpumask_var_t span;
  352. cpumask_var_t online;
  353. /*
  354. * The "RT overload" flag: it gets set if a CPU has more than
  355. * one runnable RT task.
  356. */
  357. cpumask_var_t rto_mask;
  358. atomic_t rto_count;
  359. struct cpupri cpupri;
  360. };
  361. /*
  362. * By default the system creates a single root-domain with all cpus as
  363. * members (mimicking the global state we have today).
  364. */
  365. static struct root_domain def_root_domain;
  366. #endif /* CONFIG_SMP */
  367. /*
  368. * This is the main, per-CPU runqueue data structure.
  369. *
  370. * Locking rule: those places that want to lock multiple runqueues
  371. * (such as the load balancing or the thread migration code), lock
  372. * acquire operations must be ordered by ascending &runqueue.
  373. */
  374. struct rq {
  375. /* runqueue lock: */
  376. raw_spinlock_t lock;
  377. /*
  378. * nr_running and cpu_load should be in the same cacheline because
  379. * remote CPUs use both these fields when doing load calculation.
  380. */
  381. unsigned long nr_running;
  382. #define CPU_LOAD_IDX_MAX 5
  383. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  384. unsigned long last_load_update_tick;
  385. #ifdef CONFIG_NO_HZ
  386. u64 nohz_stamp;
  387. unsigned char nohz_balance_kick;
  388. #endif
  389. unsigned int skip_clock_update;
  390. /* capture load from *all* tasks on this cpu: */
  391. struct load_weight load;
  392. unsigned long nr_load_updates;
  393. u64 nr_switches;
  394. struct cfs_rq cfs;
  395. struct rt_rq rt;
  396. #ifdef CONFIG_FAIR_GROUP_SCHED
  397. /* list of leaf cfs_rq on this cpu: */
  398. struct list_head leaf_cfs_rq_list;
  399. #endif
  400. #ifdef CONFIG_RT_GROUP_SCHED
  401. struct list_head leaf_rt_rq_list;
  402. #endif
  403. /*
  404. * This is part of a global counter where only the total sum
  405. * over all CPUs matters. A task can increase this counter on
  406. * one CPU and if it got migrated afterwards it may decrease
  407. * it on another CPU. Always updated under the runqueue lock:
  408. */
  409. unsigned long nr_uninterruptible;
  410. struct task_struct *curr, *idle, *stop;
  411. unsigned long next_balance;
  412. struct mm_struct *prev_mm;
  413. u64 clock;
  414. u64 clock_task;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  436. u64 prev_irq_time;
  437. #endif
  438. /* calc_load related fields */
  439. unsigned long calc_load_update;
  440. long calc_load_active;
  441. #ifdef CONFIG_SCHED_HRTICK
  442. #ifdef CONFIG_SMP
  443. int hrtick_csd_pending;
  444. struct call_single_data hrtick_csd;
  445. #endif
  446. struct hrtimer hrtick_timer;
  447. #endif
  448. #ifdef CONFIG_SCHEDSTATS
  449. /* latency stats */
  450. struct sched_info rq_sched_info;
  451. unsigned long long rq_cpu_time;
  452. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  453. /* sys_sched_yield() stats */
  454. unsigned int yld_count;
  455. /* schedule() stats */
  456. unsigned int sched_switch;
  457. unsigned int sched_count;
  458. unsigned int sched_goidle;
  459. /* try_to_wake_up() stats */
  460. unsigned int ttwu_count;
  461. unsigned int ttwu_local;
  462. #endif
  463. };
  464. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  465. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  466. static inline int cpu_of(struct rq *rq)
  467. {
  468. #ifdef CONFIG_SMP
  469. return rq->cpu;
  470. #else
  471. return 0;
  472. #endif
  473. }
  474. #define rcu_dereference_check_sched_domain(p) \
  475. rcu_dereference_check((p), \
  476. rcu_read_lock_sched_held() || \
  477. lockdep_is_held(&sched_domains_mutex))
  478. /*
  479. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  480. * See detach_destroy_domains: synchronize_sched for details.
  481. *
  482. * The domain tree of any CPU may only be accessed from within
  483. * preempt-disabled sections.
  484. */
  485. #define for_each_domain(cpu, __sd) \
  486. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  487. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  488. #define this_rq() (&__get_cpu_var(runqueues))
  489. #define task_rq(p) cpu_rq(task_cpu(p))
  490. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  491. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  492. #ifdef CONFIG_CGROUP_SCHED
  493. /*
  494. * Return the group to which this tasks belongs.
  495. *
  496. * We use task_subsys_state_check() and extend the RCU verification
  497. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  498. * holds that lock for each task it moves into the cgroup. Therefore
  499. * by holding that lock, we pin the task to the current cgroup.
  500. */
  501. static inline struct task_group *task_group(struct task_struct *p)
  502. {
  503. struct task_group *tg;
  504. struct cgroup_subsys_state *css;
  505. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  506. lockdep_is_held(&task_rq(p)->lock));
  507. tg = container_of(css, struct task_group, css);
  508. return autogroup_task_group(p, tg);
  509. }
  510. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  511. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  512. {
  513. #ifdef CONFIG_FAIR_GROUP_SCHED
  514. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  515. p->se.parent = task_group(p)->se[cpu];
  516. #endif
  517. #ifdef CONFIG_RT_GROUP_SCHED
  518. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  519. p->rt.parent = task_group(p)->rt_se[cpu];
  520. #endif
  521. }
  522. #else /* CONFIG_CGROUP_SCHED */
  523. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  524. static inline struct task_group *task_group(struct task_struct *p)
  525. {
  526. return NULL;
  527. }
  528. #endif /* CONFIG_CGROUP_SCHED */
  529. static void update_rq_clock_task(struct rq *rq, s64 delta);
  530. static void update_rq_clock(struct rq *rq)
  531. {
  532. s64 delta;
  533. if (rq->skip_clock_update)
  534. return;
  535. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  536. rq->clock += delta;
  537. update_rq_clock_task(rq, delta);
  538. }
  539. /*
  540. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  541. */
  542. #ifdef CONFIG_SCHED_DEBUG
  543. # define const_debug __read_mostly
  544. #else
  545. # define const_debug static const
  546. #endif
  547. /**
  548. * runqueue_is_locked
  549. * @cpu: the processor in question.
  550. *
  551. * Returns true if the current cpu runqueue is locked.
  552. * This interface allows printk to be called with the runqueue lock
  553. * held and know whether or not it is OK to wake up the klogd.
  554. */
  555. int runqueue_is_locked(int cpu)
  556. {
  557. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  558. }
  559. /*
  560. * Debugging: various feature bits
  561. */
  562. #define SCHED_FEAT(name, enabled) \
  563. __SCHED_FEAT_##name ,
  564. enum {
  565. #include "sched_features.h"
  566. };
  567. #undef SCHED_FEAT
  568. #define SCHED_FEAT(name, enabled) \
  569. (1UL << __SCHED_FEAT_##name) * enabled |
  570. const_debug unsigned int sysctl_sched_features =
  571. #include "sched_features.h"
  572. 0;
  573. #undef SCHED_FEAT
  574. #ifdef CONFIG_SCHED_DEBUG
  575. #define SCHED_FEAT(name, enabled) \
  576. #name ,
  577. static __read_mostly char *sched_feat_names[] = {
  578. #include "sched_features.h"
  579. NULL
  580. };
  581. #undef SCHED_FEAT
  582. static int sched_feat_show(struct seq_file *m, void *v)
  583. {
  584. int i;
  585. for (i = 0; sched_feat_names[i]; i++) {
  586. if (!(sysctl_sched_features & (1UL << i)))
  587. seq_puts(m, "NO_");
  588. seq_printf(m, "%s ", sched_feat_names[i]);
  589. }
  590. seq_puts(m, "\n");
  591. return 0;
  592. }
  593. static ssize_t
  594. sched_feat_write(struct file *filp, const char __user *ubuf,
  595. size_t cnt, loff_t *ppos)
  596. {
  597. char buf[64];
  598. char *cmp;
  599. int neg = 0;
  600. int i;
  601. if (cnt > 63)
  602. cnt = 63;
  603. if (copy_from_user(&buf, ubuf, cnt))
  604. return -EFAULT;
  605. buf[cnt] = 0;
  606. cmp = strstrip(buf);
  607. if (strncmp(cmp, "NO_", 3) == 0) {
  608. neg = 1;
  609. cmp += 3;
  610. }
  611. for (i = 0; sched_feat_names[i]; i++) {
  612. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  613. if (neg)
  614. sysctl_sched_features &= ~(1UL << i);
  615. else
  616. sysctl_sched_features |= (1UL << i);
  617. break;
  618. }
  619. }
  620. if (!sched_feat_names[i])
  621. return -EINVAL;
  622. *ppos += cnt;
  623. return cnt;
  624. }
  625. static int sched_feat_open(struct inode *inode, struct file *filp)
  626. {
  627. return single_open(filp, sched_feat_show, NULL);
  628. }
  629. static const struct file_operations sched_feat_fops = {
  630. .open = sched_feat_open,
  631. .write = sched_feat_write,
  632. .read = seq_read,
  633. .llseek = seq_lseek,
  634. .release = single_release,
  635. };
  636. static __init int sched_init_debug(void)
  637. {
  638. debugfs_create_file("sched_features", 0644, NULL, NULL,
  639. &sched_feat_fops);
  640. return 0;
  641. }
  642. late_initcall(sched_init_debug);
  643. #endif
  644. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  645. /*
  646. * Number of tasks to iterate in a single balance run.
  647. * Limited because this is done with IRQs disabled.
  648. */
  649. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  650. /*
  651. * period over which we average the RT time consumption, measured
  652. * in ms.
  653. *
  654. * default: 1s
  655. */
  656. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  657. /*
  658. * period over which we measure -rt task cpu usage in us.
  659. * default: 1s
  660. */
  661. unsigned int sysctl_sched_rt_period = 1000000;
  662. static __read_mostly int scheduler_running;
  663. /*
  664. * part of the period that we allow rt tasks to run in us.
  665. * default: 0.95s
  666. */
  667. int sysctl_sched_rt_runtime = 950000;
  668. static inline u64 global_rt_period(void)
  669. {
  670. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  671. }
  672. static inline u64 global_rt_runtime(void)
  673. {
  674. if (sysctl_sched_rt_runtime < 0)
  675. return RUNTIME_INF;
  676. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  677. }
  678. #ifndef prepare_arch_switch
  679. # define prepare_arch_switch(next) do { } while (0)
  680. #endif
  681. #ifndef finish_arch_switch
  682. # define finish_arch_switch(prev) do { } while (0)
  683. #endif
  684. static inline int task_current(struct rq *rq, struct task_struct *p)
  685. {
  686. return rq->curr == p;
  687. }
  688. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  689. static inline int task_running(struct rq *rq, struct task_struct *p)
  690. {
  691. return task_current(rq, p);
  692. }
  693. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  694. {
  695. }
  696. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  697. {
  698. #ifdef CONFIG_DEBUG_SPINLOCK
  699. /* this is a valid case when another task releases the spinlock */
  700. rq->lock.owner = current;
  701. #endif
  702. /*
  703. * If we are tracking spinlock dependencies then we have to
  704. * fix up the runqueue lock - which gets 'carried over' from
  705. * prev into current:
  706. */
  707. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  708. raw_spin_unlock_irq(&rq->lock);
  709. }
  710. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  711. static inline int task_running(struct rq *rq, struct task_struct *p)
  712. {
  713. #ifdef CONFIG_SMP
  714. return p->oncpu;
  715. #else
  716. return task_current(rq, p);
  717. #endif
  718. }
  719. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  720. {
  721. #ifdef CONFIG_SMP
  722. /*
  723. * We can optimise this out completely for !SMP, because the
  724. * SMP rebalancing from interrupt is the only thing that cares
  725. * here.
  726. */
  727. next->oncpu = 1;
  728. #endif
  729. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  730. raw_spin_unlock_irq(&rq->lock);
  731. #else
  732. raw_spin_unlock(&rq->lock);
  733. #endif
  734. }
  735. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * After ->oncpu is cleared, the task can be moved to a different CPU.
  740. * We must ensure this doesn't happen until the switch is completely
  741. * finished.
  742. */
  743. smp_wmb();
  744. prev->oncpu = 0;
  745. #endif
  746. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  747. local_irq_enable();
  748. #endif
  749. }
  750. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  751. /*
  752. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  753. * against ttwu().
  754. */
  755. static inline int task_is_waking(struct task_struct *p)
  756. {
  757. return unlikely(p->state == TASK_WAKING);
  758. }
  759. /*
  760. * __task_rq_lock - lock the runqueue a given task resides on.
  761. * Must be called interrupts disabled.
  762. */
  763. static inline struct rq *__task_rq_lock(struct task_struct *p)
  764. __acquires(rq->lock)
  765. {
  766. struct rq *rq;
  767. for (;;) {
  768. rq = task_rq(p);
  769. raw_spin_lock(&rq->lock);
  770. if (likely(rq == task_rq(p)))
  771. return rq;
  772. raw_spin_unlock(&rq->lock);
  773. }
  774. }
  775. /*
  776. * task_rq_lock - lock the runqueue a given task resides on and disable
  777. * interrupts. Note the ordering: we can safely lookup the task_rq without
  778. * explicitly disabling preemption.
  779. */
  780. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  781. __acquires(rq->lock)
  782. {
  783. struct rq *rq;
  784. for (;;) {
  785. local_irq_save(*flags);
  786. rq = task_rq(p);
  787. raw_spin_lock(&rq->lock);
  788. if (likely(rq == task_rq(p)))
  789. return rq;
  790. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  791. }
  792. }
  793. static void __task_rq_unlock(struct rq *rq)
  794. __releases(rq->lock)
  795. {
  796. raw_spin_unlock(&rq->lock);
  797. }
  798. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  799. __releases(rq->lock)
  800. {
  801. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  802. }
  803. /*
  804. * this_rq_lock - lock this runqueue and disable interrupts.
  805. */
  806. static struct rq *this_rq_lock(void)
  807. __acquires(rq->lock)
  808. {
  809. struct rq *rq;
  810. local_irq_disable();
  811. rq = this_rq();
  812. raw_spin_lock(&rq->lock);
  813. return rq;
  814. }
  815. #ifdef CONFIG_SCHED_HRTICK
  816. /*
  817. * Use HR-timers to deliver accurate preemption points.
  818. *
  819. * Its all a bit involved since we cannot program an hrt while holding the
  820. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  821. * reschedule event.
  822. *
  823. * When we get rescheduled we reprogram the hrtick_timer outside of the
  824. * rq->lock.
  825. */
  826. /*
  827. * Use hrtick when:
  828. * - enabled by features
  829. * - hrtimer is actually high res
  830. */
  831. static inline int hrtick_enabled(struct rq *rq)
  832. {
  833. if (!sched_feat(HRTICK))
  834. return 0;
  835. if (!cpu_active(cpu_of(rq)))
  836. return 0;
  837. return hrtimer_is_hres_active(&rq->hrtick_timer);
  838. }
  839. static void hrtick_clear(struct rq *rq)
  840. {
  841. if (hrtimer_active(&rq->hrtick_timer))
  842. hrtimer_cancel(&rq->hrtick_timer);
  843. }
  844. /*
  845. * High-resolution timer tick.
  846. * Runs from hardirq context with interrupts disabled.
  847. */
  848. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  849. {
  850. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  851. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  852. raw_spin_lock(&rq->lock);
  853. update_rq_clock(rq);
  854. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  855. raw_spin_unlock(&rq->lock);
  856. return HRTIMER_NORESTART;
  857. }
  858. #ifdef CONFIG_SMP
  859. /*
  860. * called from hardirq (IPI) context
  861. */
  862. static void __hrtick_start(void *arg)
  863. {
  864. struct rq *rq = arg;
  865. raw_spin_lock(&rq->lock);
  866. hrtimer_restart(&rq->hrtick_timer);
  867. rq->hrtick_csd_pending = 0;
  868. raw_spin_unlock(&rq->lock);
  869. }
  870. /*
  871. * Called to set the hrtick timer state.
  872. *
  873. * called with rq->lock held and irqs disabled
  874. */
  875. static void hrtick_start(struct rq *rq, u64 delay)
  876. {
  877. struct hrtimer *timer = &rq->hrtick_timer;
  878. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  879. hrtimer_set_expires(timer, time);
  880. if (rq == this_rq()) {
  881. hrtimer_restart(timer);
  882. } else if (!rq->hrtick_csd_pending) {
  883. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  884. rq->hrtick_csd_pending = 1;
  885. }
  886. }
  887. static int
  888. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  889. {
  890. int cpu = (int)(long)hcpu;
  891. switch (action) {
  892. case CPU_UP_CANCELED:
  893. case CPU_UP_CANCELED_FROZEN:
  894. case CPU_DOWN_PREPARE:
  895. case CPU_DOWN_PREPARE_FROZEN:
  896. case CPU_DEAD:
  897. case CPU_DEAD_FROZEN:
  898. hrtick_clear(cpu_rq(cpu));
  899. return NOTIFY_OK;
  900. }
  901. return NOTIFY_DONE;
  902. }
  903. static __init void init_hrtick(void)
  904. {
  905. hotcpu_notifier(hotplug_hrtick, 0);
  906. }
  907. #else
  908. /*
  909. * Called to set the hrtick timer state.
  910. *
  911. * called with rq->lock held and irqs disabled
  912. */
  913. static void hrtick_start(struct rq *rq, u64 delay)
  914. {
  915. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  916. HRTIMER_MODE_REL_PINNED, 0);
  917. }
  918. static inline void init_hrtick(void)
  919. {
  920. }
  921. #endif /* CONFIG_SMP */
  922. static void init_rq_hrtick(struct rq *rq)
  923. {
  924. #ifdef CONFIG_SMP
  925. rq->hrtick_csd_pending = 0;
  926. rq->hrtick_csd.flags = 0;
  927. rq->hrtick_csd.func = __hrtick_start;
  928. rq->hrtick_csd.info = rq;
  929. #endif
  930. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  931. rq->hrtick_timer.function = hrtick;
  932. }
  933. #else /* CONFIG_SCHED_HRTICK */
  934. static inline void hrtick_clear(struct rq *rq)
  935. {
  936. }
  937. static inline void init_rq_hrtick(struct rq *rq)
  938. {
  939. }
  940. static inline void init_hrtick(void)
  941. {
  942. }
  943. #endif /* CONFIG_SCHED_HRTICK */
  944. /*
  945. * resched_task - mark a task 'to be rescheduled now'.
  946. *
  947. * On UP this means the setting of the need_resched flag, on SMP it
  948. * might also involve a cross-CPU call to trigger the scheduler on
  949. * the target CPU.
  950. */
  951. #ifdef CONFIG_SMP
  952. #ifndef tsk_is_polling
  953. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  954. #endif
  955. static void resched_task(struct task_struct *p)
  956. {
  957. int cpu;
  958. assert_raw_spin_locked(&task_rq(p)->lock);
  959. if (test_tsk_need_resched(p))
  960. return;
  961. set_tsk_need_resched(p);
  962. cpu = task_cpu(p);
  963. if (cpu == smp_processor_id())
  964. return;
  965. /* NEED_RESCHED must be visible before we test polling */
  966. smp_mb();
  967. if (!tsk_is_polling(p))
  968. smp_send_reschedule(cpu);
  969. }
  970. static void resched_cpu(int cpu)
  971. {
  972. struct rq *rq = cpu_rq(cpu);
  973. unsigned long flags;
  974. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  975. return;
  976. resched_task(cpu_curr(cpu));
  977. raw_spin_unlock_irqrestore(&rq->lock, flags);
  978. }
  979. #ifdef CONFIG_NO_HZ
  980. /*
  981. * In the semi idle case, use the nearest busy cpu for migrating timers
  982. * from an idle cpu. This is good for power-savings.
  983. *
  984. * We don't do similar optimization for completely idle system, as
  985. * selecting an idle cpu will add more delays to the timers than intended
  986. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  987. */
  988. int get_nohz_timer_target(void)
  989. {
  990. int cpu = smp_processor_id();
  991. int i;
  992. struct sched_domain *sd;
  993. for_each_domain(cpu, sd) {
  994. for_each_cpu(i, sched_domain_span(sd))
  995. if (!idle_cpu(i))
  996. return i;
  997. }
  998. return cpu;
  999. }
  1000. /*
  1001. * When add_timer_on() enqueues a timer into the timer wheel of an
  1002. * idle CPU then this timer might expire before the next timer event
  1003. * which is scheduled to wake up that CPU. In case of a completely
  1004. * idle system the next event might even be infinite time into the
  1005. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1006. * leaves the inner idle loop so the newly added timer is taken into
  1007. * account when the CPU goes back to idle and evaluates the timer
  1008. * wheel for the next timer event.
  1009. */
  1010. void wake_up_idle_cpu(int cpu)
  1011. {
  1012. struct rq *rq = cpu_rq(cpu);
  1013. if (cpu == smp_processor_id())
  1014. return;
  1015. /*
  1016. * This is safe, as this function is called with the timer
  1017. * wheel base lock of (cpu) held. When the CPU is on the way
  1018. * to idle and has not yet set rq->curr to idle then it will
  1019. * be serialized on the timer wheel base lock and take the new
  1020. * timer into account automatically.
  1021. */
  1022. if (rq->curr != rq->idle)
  1023. return;
  1024. /*
  1025. * We can set TIF_RESCHED on the idle task of the other CPU
  1026. * lockless. The worst case is that the other CPU runs the
  1027. * idle task through an additional NOOP schedule()
  1028. */
  1029. set_tsk_need_resched(rq->idle);
  1030. /* NEED_RESCHED must be visible before we test polling */
  1031. smp_mb();
  1032. if (!tsk_is_polling(rq->idle))
  1033. smp_send_reschedule(cpu);
  1034. }
  1035. #endif /* CONFIG_NO_HZ */
  1036. static u64 sched_avg_period(void)
  1037. {
  1038. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1039. }
  1040. static void sched_avg_update(struct rq *rq)
  1041. {
  1042. s64 period = sched_avg_period();
  1043. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1044. /*
  1045. * Inline assembly required to prevent the compiler
  1046. * optimising this loop into a divmod call.
  1047. * See __iter_div_u64_rem() for another example of this.
  1048. */
  1049. asm("" : "+rm" (rq->age_stamp));
  1050. rq->age_stamp += period;
  1051. rq->rt_avg /= 2;
  1052. }
  1053. }
  1054. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1055. {
  1056. rq->rt_avg += rt_delta;
  1057. sched_avg_update(rq);
  1058. }
  1059. #else /* !CONFIG_SMP */
  1060. static void resched_task(struct task_struct *p)
  1061. {
  1062. assert_raw_spin_locked(&task_rq(p)->lock);
  1063. set_tsk_need_resched(p);
  1064. }
  1065. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1066. {
  1067. }
  1068. static void sched_avg_update(struct rq *rq)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1119. {
  1120. lw->weight = w;
  1121. lw->inv_weight = 0;
  1122. }
  1123. /*
  1124. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1125. * of tasks with abnormal "nice" values across CPUs the contribution that
  1126. * each task makes to its run queue's load is weighted according to its
  1127. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1128. * scaled version of the new time slice allocation that they receive on time
  1129. * slice expiry etc.
  1130. */
  1131. #define WEIGHT_IDLEPRIO 3
  1132. #define WMULT_IDLEPRIO 1431655765
  1133. /*
  1134. * Nice levels are multiplicative, with a gentle 10% change for every
  1135. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1136. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1137. * that remained on nice 0.
  1138. *
  1139. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1140. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1141. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1142. * If a task goes up by ~10% and another task goes down by ~10% then
  1143. * the relative distance between them is ~25%.)
  1144. */
  1145. static const int prio_to_weight[40] = {
  1146. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1147. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1148. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1149. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1150. /* 0 */ 1024, 820, 655, 526, 423,
  1151. /* 5 */ 335, 272, 215, 172, 137,
  1152. /* 10 */ 110, 87, 70, 56, 45,
  1153. /* 15 */ 36, 29, 23, 18, 15,
  1154. };
  1155. /*
  1156. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1157. *
  1158. * In cases where the weight does not change often, we can use the
  1159. * precalculated inverse to speed up arithmetics by turning divisions
  1160. * into multiplications:
  1161. */
  1162. static const u32 prio_to_wmult[40] = {
  1163. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1164. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1165. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1166. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1167. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1168. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1169. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1170. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1171. };
  1172. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1173. enum cpuacct_stat_index {
  1174. CPUACCT_STAT_USER, /* ... user mode */
  1175. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1176. CPUACCT_STAT_NSTATS,
  1177. };
  1178. #ifdef CONFIG_CGROUP_CPUACCT
  1179. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1180. static void cpuacct_update_stats(struct task_struct *tsk,
  1181. enum cpuacct_stat_index idx, cputime_t val);
  1182. #else
  1183. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1184. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1185. enum cpuacct_stat_index idx, cputime_t val) {}
  1186. #endif
  1187. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1188. {
  1189. update_load_add(&rq->load, load);
  1190. }
  1191. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1192. {
  1193. update_load_sub(&rq->load, load);
  1194. }
  1195. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1196. typedef int (*tg_visitor)(struct task_group *, void *);
  1197. /*
  1198. * Iterate the full tree, calling @down when first entering a node and @up when
  1199. * leaving it for the final time.
  1200. */
  1201. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1202. {
  1203. struct task_group *parent, *child;
  1204. int ret;
  1205. rcu_read_lock();
  1206. parent = &root_task_group;
  1207. down:
  1208. ret = (*down)(parent, data);
  1209. if (ret)
  1210. goto out_unlock;
  1211. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1212. parent = child;
  1213. goto down;
  1214. up:
  1215. continue;
  1216. }
  1217. ret = (*up)(parent, data);
  1218. if (ret)
  1219. goto out_unlock;
  1220. child = parent;
  1221. parent = parent->parent;
  1222. if (parent)
  1223. goto up;
  1224. out_unlock:
  1225. rcu_read_unlock();
  1226. return ret;
  1227. }
  1228. static int tg_nop(struct task_group *tg, void *data)
  1229. {
  1230. return 0;
  1231. }
  1232. #endif
  1233. #ifdef CONFIG_SMP
  1234. /* Used instead of source_load when we know the type == 0 */
  1235. static unsigned long weighted_cpuload(const int cpu)
  1236. {
  1237. return cpu_rq(cpu)->load.weight;
  1238. }
  1239. /*
  1240. * Return a low guess at the load of a migration-source cpu weighted
  1241. * according to the scheduling class and "nice" value.
  1242. *
  1243. * We want to under-estimate the load of migration sources, to
  1244. * balance conservatively.
  1245. */
  1246. static unsigned long source_load(int cpu, int type)
  1247. {
  1248. struct rq *rq = cpu_rq(cpu);
  1249. unsigned long total = weighted_cpuload(cpu);
  1250. if (type == 0 || !sched_feat(LB_BIAS))
  1251. return total;
  1252. return min(rq->cpu_load[type-1], total);
  1253. }
  1254. /*
  1255. * Return a high guess at the load of a migration-target cpu weighted
  1256. * according to the scheduling class and "nice" value.
  1257. */
  1258. static unsigned long target_load(int cpu, int type)
  1259. {
  1260. struct rq *rq = cpu_rq(cpu);
  1261. unsigned long total = weighted_cpuload(cpu);
  1262. if (type == 0 || !sched_feat(LB_BIAS))
  1263. return total;
  1264. return max(rq->cpu_load[type-1], total);
  1265. }
  1266. static unsigned long power_of(int cpu)
  1267. {
  1268. return cpu_rq(cpu)->cpu_power;
  1269. }
  1270. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1271. static unsigned long cpu_avg_load_per_task(int cpu)
  1272. {
  1273. struct rq *rq = cpu_rq(cpu);
  1274. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1275. if (nr_running)
  1276. rq->avg_load_per_task = rq->load.weight / nr_running;
  1277. else
  1278. rq->avg_load_per_task = 0;
  1279. return rq->avg_load_per_task;
  1280. }
  1281. #ifdef CONFIG_FAIR_GROUP_SCHED
  1282. /*
  1283. * Compute the cpu's hierarchical load factor for each task group.
  1284. * This needs to be done in a top-down fashion because the load of a child
  1285. * group is a fraction of its parents load.
  1286. */
  1287. static int tg_load_down(struct task_group *tg, void *data)
  1288. {
  1289. unsigned long load;
  1290. long cpu = (long)data;
  1291. if (!tg->parent) {
  1292. load = cpu_rq(cpu)->load.weight;
  1293. } else {
  1294. load = tg->parent->cfs_rq[cpu]->h_load;
  1295. load *= tg->se[cpu]->load.weight;
  1296. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1297. }
  1298. tg->cfs_rq[cpu]->h_load = load;
  1299. return 0;
  1300. }
  1301. static void update_h_load(long cpu)
  1302. {
  1303. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1304. }
  1305. #endif
  1306. #ifdef CONFIG_PREEMPT
  1307. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1308. /*
  1309. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1310. * way at the expense of forcing extra atomic operations in all
  1311. * invocations. This assures that the double_lock is acquired using the
  1312. * same underlying policy as the spinlock_t on this architecture, which
  1313. * reduces latency compared to the unfair variant below. However, it
  1314. * also adds more overhead and therefore may reduce throughput.
  1315. */
  1316. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1317. __releases(this_rq->lock)
  1318. __acquires(busiest->lock)
  1319. __acquires(this_rq->lock)
  1320. {
  1321. raw_spin_unlock(&this_rq->lock);
  1322. double_rq_lock(this_rq, busiest);
  1323. return 1;
  1324. }
  1325. #else
  1326. /*
  1327. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1328. * latency by eliminating extra atomic operations when the locks are
  1329. * already in proper order on entry. This favors lower cpu-ids and will
  1330. * grant the double lock to lower cpus over higher ids under contention,
  1331. * regardless of entry order into the function.
  1332. */
  1333. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1334. __releases(this_rq->lock)
  1335. __acquires(busiest->lock)
  1336. __acquires(this_rq->lock)
  1337. {
  1338. int ret = 0;
  1339. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1340. if (busiest < this_rq) {
  1341. raw_spin_unlock(&this_rq->lock);
  1342. raw_spin_lock(&busiest->lock);
  1343. raw_spin_lock_nested(&this_rq->lock,
  1344. SINGLE_DEPTH_NESTING);
  1345. ret = 1;
  1346. } else
  1347. raw_spin_lock_nested(&busiest->lock,
  1348. SINGLE_DEPTH_NESTING);
  1349. }
  1350. return ret;
  1351. }
  1352. #endif /* CONFIG_PREEMPT */
  1353. /*
  1354. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1355. */
  1356. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1357. {
  1358. if (unlikely(!irqs_disabled())) {
  1359. /* printk() doesn't work good under rq->lock */
  1360. raw_spin_unlock(&this_rq->lock);
  1361. BUG_ON(1);
  1362. }
  1363. return _double_lock_balance(this_rq, busiest);
  1364. }
  1365. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1366. __releases(busiest->lock)
  1367. {
  1368. raw_spin_unlock(&busiest->lock);
  1369. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1370. }
  1371. /*
  1372. * double_rq_lock - safely lock two runqueues
  1373. *
  1374. * Note this does not disable interrupts like task_rq_lock,
  1375. * you need to do so manually before calling.
  1376. */
  1377. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1378. __acquires(rq1->lock)
  1379. __acquires(rq2->lock)
  1380. {
  1381. BUG_ON(!irqs_disabled());
  1382. if (rq1 == rq2) {
  1383. raw_spin_lock(&rq1->lock);
  1384. __acquire(rq2->lock); /* Fake it out ;) */
  1385. } else {
  1386. if (rq1 < rq2) {
  1387. raw_spin_lock(&rq1->lock);
  1388. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1389. } else {
  1390. raw_spin_lock(&rq2->lock);
  1391. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1392. }
  1393. }
  1394. }
  1395. /*
  1396. * double_rq_unlock - safely unlock two runqueues
  1397. *
  1398. * Note this does not restore interrupts like task_rq_unlock,
  1399. * you need to do so manually after calling.
  1400. */
  1401. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1402. __releases(rq1->lock)
  1403. __releases(rq2->lock)
  1404. {
  1405. raw_spin_unlock(&rq1->lock);
  1406. if (rq1 != rq2)
  1407. raw_spin_unlock(&rq2->lock);
  1408. else
  1409. __release(rq2->lock);
  1410. }
  1411. #endif
  1412. static void calc_load_account_idle(struct rq *this_rq);
  1413. static void update_sysctl(void);
  1414. static int get_update_sysctl_factor(void);
  1415. static void update_cpu_load(struct rq *this_rq);
  1416. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1417. {
  1418. set_task_rq(p, cpu);
  1419. #ifdef CONFIG_SMP
  1420. /*
  1421. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1422. * successfuly executed on another CPU. We must ensure that updates of
  1423. * per-task data have been completed by this moment.
  1424. */
  1425. smp_wmb();
  1426. task_thread_info(p)->cpu = cpu;
  1427. #endif
  1428. }
  1429. static const struct sched_class rt_sched_class;
  1430. #define sched_class_highest (&stop_sched_class)
  1431. #define for_each_class(class) \
  1432. for (class = sched_class_highest; class; class = class->next)
  1433. #include "sched_stats.h"
  1434. static void inc_nr_running(struct rq *rq)
  1435. {
  1436. rq->nr_running++;
  1437. }
  1438. static void dec_nr_running(struct rq *rq)
  1439. {
  1440. rq->nr_running--;
  1441. }
  1442. static void set_load_weight(struct task_struct *p)
  1443. {
  1444. /*
  1445. * SCHED_IDLE tasks get minimal weight:
  1446. */
  1447. if (p->policy == SCHED_IDLE) {
  1448. p->se.load.weight = WEIGHT_IDLEPRIO;
  1449. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1450. return;
  1451. }
  1452. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1453. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1454. }
  1455. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1456. {
  1457. update_rq_clock(rq);
  1458. sched_info_queued(p);
  1459. p->sched_class->enqueue_task(rq, p, flags);
  1460. p->se.on_rq = 1;
  1461. }
  1462. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1463. {
  1464. update_rq_clock(rq);
  1465. sched_info_dequeued(p);
  1466. p->sched_class->dequeue_task(rq, p, flags);
  1467. p->se.on_rq = 0;
  1468. }
  1469. /*
  1470. * activate_task - move a task to the runqueue.
  1471. */
  1472. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1473. {
  1474. if (task_contributes_to_load(p))
  1475. rq->nr_uninterruptible--;
  1476. enqueue_task(rq, p, flags);
  1477. inc_nr_running(rq);
  1478. }
  1479. /*
  1480. * deactivate_task - remove a task from the runqueue.
  1481. */
  1482. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1483. {
  1484. if (task_contributes_to_load(p))
  1485. rq->nr_uninterruptible++;
  1486. dequeue_task(rq, p, flags);
  1487. dec_nr_running(rq);
  1488. }
  1489. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1490. /*
  1491. * There are no locks covering percpu hardirq/softirq time.
  1492. * They are only modified in account_system_vtime, on corresponding CPU
  1493. * with interrupts disabled. So, writes are safe.
  1494. * They are read and saved off onto struct rq in update_rq_clock().
  1495. * This may result in other CPU reading this CPU's irq time and can
  1496. * race with irq/account_system_vtime on this CPU. We would either get old
  1497. * or new value with a side effect of accounting a slice of irq time to wrong
  1498. * task when irq is in progress while we read rq->clock. That is a worthy
  1499. * compromise in place of having locks on each irq in account_system_time.
  1500. */
  1501. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1502. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1503. static DEFINE_PER_CPU(u64, irq_start_time);
  1504. static int sched_clock_irqtime;
  1505. void enable_sched_clock_irqtime(void)
  1506. {
  1507. sched_clock_irqtime = 1;
  1508. }
  1509. void disable_sched_clock_irqtime(void)
  1510. {
  1511. sched_clock_irqtime = 0;
  1512. }
  1513. #ifndef CONFIG_64BIT
  1514. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1515. static inline void irq_time_write_begin(void)
  1516. {
  1517. __this_cpu_inc(irq_time_seq.sequence);
  1518. smp_wmb();
  1519. }
  1520. static inline void irq_time_write_end(void)
  1521. {
  1522. smp_wmb();
  1523. __this_cpu_inc(irq_time_seq.sequence);
  1524. }
  1525. static inline u64 irq_time_read(int cpu)
  1526. {
  1527. u64 irq_time;
  1528. unsigned seq;
  1529. do {
  1530. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1531. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1532. per_cpu(cpu_hardirq_time, cpu);
  1533. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1534. return irq_time;
  1535. }
  1536. #else /* CONFIG_64BIT */
  1537. static inline void irq_time_write_begin(void)
  1538. {
  1539. }
  1540. static inline void irq_time_write_end(void)
  1541. {
  1542. }
  1543. static inline u64 irq_time_read(int cpu)
  1544. {
  1545. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1546. }
  1547. #endif /* CONFIG_64BIT */
  1548. /*
  1549. * Called before incrementing preempt_count on {soft,}irq_enter
  1550. * and before decrementing preempt_count on {soft,}irq_exit.
  1551. */
  1552. void account_system_vtime(struct task_struct *curr)
  1553. {
  1554. unsigned long flags;
  1555. s64 delta;
  1556. int cpu;
  1557. if (!sched_clock_irqtime)
  1558. return;
  1559. local_irq_save(flags);
  1560. cpu = smp_processor_id();
  1561. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1562. __this_cpu_add(irq_start_time, delta);
  1563. irq_time_write_begin();
  1564. /*
  1565. * We do not account for softirq time from ksoftirqd here.
  1566. * We want to continue accounting softirq time to ksoftirqd thread
  1567. * in that case, so as not to confuse scheduler with a special task
  1568. * that do not consume any time, but still wants to run.
  1569. */
  1570. if (hardirq_count())
  1571. __this_cpu_add(cpu_hardirq_time, delta);
  1572. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1573. __this_cpu_add(cpu_softirq_time, delta);
  1574. irq_time_write_end();
  1575. local_irq_restore(flags);
  1576. }
  1577. EXPORT_SYMBOL_GPL(account_system_vtime);
  1578. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1579. {
  1580. s64 irq_delta;
  1581. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1582. /*
  1583. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1584. * this case when a previous update_rq_clock() happened inside a
  1585. * {soft,}irq region.
  1586. *
  1587. * When this happens, we stop ->clock_task and only update the
  1588. * prev_irq_time stamp to account for the part that fit, so that a next
  1589. * update will consume the rest. This ensures ->clock_task is
  1590. * monotonic.
  1591. *
  1592. * It does however cause some slight miss-attribution of {soft,}irq
  1593. * time, a more accurate solution would be to update the irq_time using
  1594. * the current rq->clock timestamp, except that would require using
  1595. * atomic ops.
  1596. */
  1597. if (irq_delta > delta)
  1598. irq_delta = delta;
  1599. rq->prev_irq_time += irq_delta;
  1600. delta -= irq_delta;
  1601. rq->clock_task += delta;
  1602. if (irq_delta && sched_feat(NONIRQ_POWER))
  1603. sched_rt_avg_update(rq, irq_delta);
  1604. }
  1605. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1606. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1607. {
  1608. rq->clock_task += delta;
  1609. }
  1610. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1611. #include "sched_idletask.c"
  1612. #include "sched_fair.c"
  1613. #include "sched_rt.c"
  1614. #include "sched_autogroup.c"
  1615. #include "sched_stoptask.c"
  1616. #ifdef CONFIG_SCHED_DEBUG
  1617. # include "sched_debug.c"
  1618. #endif
  1619. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1620. {
  1621. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1622. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1623. if (stop) {
  1624. /*
  1625. * Make it appear like a SCHED_FIFO task, its something
  1626. * userspace knows about and won't get confused about.
  1627. *
  1628. * Also, it will make PI more or less work without too
  1629. * much confusion -- but then, stop work should not
  1630. * rely on PI working anyway.
  1631. */
  1632. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1633. stop->sched_class = &stop_sched_class;
  1634. }
  1635. cpu_rq(cpu)->stop = stop;
  1636. if (old_stop) {
  1637. /*
  1638. * Reset it back to a normal scheduling class so that
  1639. * it can die in pieces.
  1640. */
  1641. old_stop->sched_class = &rt_sched_class;
  1642. }
  1643. }
  1644. /*
  1645. * __normal_prio - return the priority that is based on the static prio
  1646. */
  1647. static inline int __normal_prio(struct task_struct *p)
  1648. {
  1649. return p->static_prio;
  1650. }
  1651. /*
  1652. * Calculate the expected normal priority: i.e. priority
  1653. * without taking RT-inheritance into account. Might be
  1654. * boosted by interactivity modifiers. Changes upon fork,
  1655. * setprio syscalls, and whenever the interactivity
  1656. * estimator recalculates.
  1657. */
  1658. static inline int normal_prio(struct task_struct *p)
  1659. {
  1660. int prio;
  1661. if (task_has_rt_policy(p))
  1662. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1663. else
  1664. prio = __normal_prio(p);
  1665. return prio;
  1666. }
  1667. /*
  1668. * Calculate the current priority, i.e. the priority
  1669. * taken into account by the scheduler. This value might
  1670. * be boosted by RT tasks, or might be boosted by
  1671. * interactivity modifiers. Will be RT if the task got
  1672. * RT-boosted. If not then it returns p->normal_prio.
  1673. */
  1674. static int effective_prio(struct task_struct *p)
  1675. {
  1676. p->normal_prio = normal_prio(p);
  1677. /*
  1678. * If we are RT tasks or we were boosted to RT priority,
  1679. * keep the priority unchanged. Otherwise, update priority
  1680. * to the normal priority:
  1681. */
  1682. if (!rt_prio(p->prio))
  1683. return p->normal_prio;
  1684. return p->prio;
  1685. }
  1686. /**
  1687. * task_curr - is this task currently executing on a CPU?
  1688. * @p: the task in question.
  1689. */
  1690. inline int task_curr(const struct task_struct *p)
  1691. {
  1692. return cpu_curr(task_cpu(p)) == p;
  1693. }
  1694. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1695. const struct sched_class *prev_class,
  1696. int oldprio, int running)
  1697. {
  1698. if (prev_class != p->sched_class) {
  1699. if (prev_class->switched_from)
  1700. prev_class->switched_from(rq, p, running);
  1701. p->sched_class->switched_to(rq, p, running);
  1702. } else
  1703. p->sched_class->prio_changed(rq, p, oldprio, running);
  1704. }
  1705. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1706. {
  1707. const struct sched_class *class;
  1708. if (p->sched_class == rq->curr->sched_class) {
  1709. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1710. } else {
  1711. for_each_class(class) {
  1712. if (class == rq->curr->sched_class)
  1713. break;
  1714. if (class == p->sched_class) {
  1715. resched_task(rq->curr);
  1716. break;
  1717. }
  1718. }
  1719. }
  1720. /*
  1721. * A queue event has occurred, and we're going to schedule. In
  1722. * this case, we can save a useless back to back clock update.
  1723. */
  1724. if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
  1725. rq->skip_clock_update = 1;
  1726. }
  1727. #ifdef CONFIG_SMP
  1728. /*
  1729. * Is this task likely cache-hot:
  1730. */
  1731. static int
  1732. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1733. {
  1734. s64 delta;
  1735. if (p->sched_class != &fair_sched_class)
  1736. return 0;
  1737. if (unlikely(p->policy == SCHED_IDLE))
  1738. return 0;
  1739. /*
  1740. * Buddy candidates are cache hot:
  1741. */
  1742. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1743. (&p->se == cfs_rq_of(&p->se)->next ||
  1744. &p->se == cfs_rq_of(&p->se)->last))
  1745. return 1;
  1746. if (sysctl_sched_migration_cost == -1)
  1747. return 1;
  1748. if (sysctl_sched_migration_cost == 0)
  1749. return 0;
  1750. delta = now - p->se.exec_start;
  1751. return delta < (s64)sysctl_sched_migration_cost;
  1752. }
  1753. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1754. {
  1755. #ifdef CONFIG_SCHED_DEBUG
  1756. /*
  1757. * We should never call set_task_cpu() on a blocked task,
  1758. * ttwu() will sort out the placement.
  1759. */
  1760. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1761. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1762. #endif
  1763. trace_sched_migrate_task(p, new_cpu);
  1764. if (task_cpu(p) != new_cpu) {
  1765. p->se.nr_migrations++;
  1766. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1767. }
  1768. __set_task_cpu(p, new_cpu);
  1769. }
  1770. struct migration_arg {
  1771. struct task_struct *task;
  1772. int dest_cpu;
  1773. };
  1774. static int migration_cpu_stop(void *data);
  1775. /*
  1776. * The task's runqueue lock must be held.
  1777. * Returns true if you have to wait for migration thread.
  1778. */
  1779. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1780. {
  1781. /*
  1782. * If the task is not on a runqueue (and not running), then
  1783. * the next wake-up will properly place the task.
  1784. */
  1785. return p->se.on_rq || task_running(rq, p);
  1786. }
  1787. /*
  1788. * wait_task_inactive - wait for a thread to unschedule.
  1789. *
  1790. * If @match_state is nonzero, it's the @p->state value just checked and
  1791. * not expected to change. If it changes, i.e. @p might have woken up,
  1792. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1793. * we return a positive number (its total switch count). If a second call
  1794. * a short while later returns the same number, the caller can be sure that
  1795. * @p has remained unscheduled the whole time.
  1796. *
  1797. * The caller must ensure that the task *will* unschedule sometime soon,
  1798. * else this function might spin for a *long* time. This function can't
  1799. * be called with interrupts off, or it may introduce deadlock with
  1800. * smp_call_function() if an IPI is sent by the same process we are
  1801. * waiting to become inactive.
  1802. */
  1803. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1804. {
  1805. unsigned long flags;
  1806. int running, on_rq;
  1807. unsigned long ncsw;
  1808. struct rq *rq;
  1809. for (;;) {
  1810. /*
  1811. * We do the initial early heuristics without holding
  1812. * any task-queue locks at all. We'll only try to get
  1813. * the runqueue lock when things look like they will
  1814. * work out!
  1815. */
  1816. rq = task_rq(p);
  1817. /*
  1818. * If the task is actively running on another CPU
  1819. * still, just relax and busy-wait without holding
  1820. * any locks.
  1821. *
  1822. * NOTE! Since we don't hold any locks, it's not
  1823. * even sure that "rq" stays as the right runqueue!
  1824. * But we don't care, since "task_running()" will
  1825. * return false if the runqueue has changed and p
  1826. * is actually now running somewhere else!
  1827. */
  1828. while (task_running(rq, p)) {
  1829. if (match_state && unlikely(p->state != match_state))
  1830. return 0;
  1831. cpu_relax();
  1832. }
  1833. /*
  1834. * Ok, time to look more closely! We need the rq
  1835. * lock now, to be *sure*. If we're wrong, we'll
  1836. * just go back and repeat.
  1837. */
  1838. rq = task_rq_lock(p, &flags);
  1839. trace_sched_wait_task(p);
  1840. running = task_running(rq, p);
  1841. on_rq = p->se.on_rq;
  1842. ncsw = 0;
  1843. if (!match_state || p->state == match_state)
  1844. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1845. task_rq_unlock(rq, &flags);
  1846. /*
  1847. * If it changed from the expected state, bail out now.
  1848. */
  1849. if (unlikely(!ncsw))
  1850. break;
  1851. /*
  1852. * Was it really running after all now that we
  1853. * checked with the proper locks actually held?
  1854. *
  1855. * Oops. Go back and try again..
  1856. */
  1857. if (unlikely(running)) {
  1858. cpu_relax();
  1859. continue;
  1860. }
  1861. /*
  1862. * It's not enough that it's not actively running,
  1863. * it must be off the runqueue _entirely_, and not
  1864. * preempted!
  1865. *
  1866. * So if it was still runnable (but just not actively
  1867. * running right now), it's preempted, and we should
  1868. * yield - it could be a while.
  1869. */
  1870. if (unlikely(on_rq)) {
  1871. schedule_timeout_uninterruptible(1);
  1872. continue;
  1873. }
  1874. /*
  1875. * Ahh, all good. It wasn't running, and it wasn't
  1876. * runnable, which means that it will never become
  1877. * running in the future either. We're all done!
  1878. */
  1879. break;
  1880. }
  1881. return ncsw;
  1882. }
  1883. /***
  1884. * kick_process - kick a running thread to enter/exit the kernel
  1885. * @p: the to-be-kicked thread
  1886. *
  1887. * Cause a process which is running on another CPU to enter
  1888. * kernel-mode, without any delay. (to get signals handled.)
  1889. *
  1890. * NOTE: this function doesnt have to take the runqueue lock,
  1891. * because all it wants to ensure is that the remote task enters
  1892. * the kernel. If the IPI races and the task has been migrated
  1893. * to another CPU then no harm is done and the purpose has been
  1894. * achieved as well.
  1895. */
  1896. void kick_process(struct task_struct *p)
  1897. {
  1898. int cpu;
  1899. preempt_disable();
  1900. cpu = task_cpu(p);
  1901. if ((cpu != smp_processor_id()) && task_curr(p))
  1902. smp_send_reschedule(cpu);
  1903. preempt_enable();
  1904. }
  1905. EXPORT_SYMBOL_GPL(kick_process);
  1906. #endif /* CONFIG_SMP */
  1907. #ifdef CONFIG_SMP
  1908. /*
  1909. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1910. */
  1911. static int select_fallback_rq(int cpu, struct task_struct *p)
  1912. {
  1913. int dest_cpu;
  1914. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1915. /* Look for allowed, online CPU in same node. */
  1916. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1917. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1918. return dest_cpu;
  1919. /* Any allowed, online CPU? */
  1920. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1921. if (dest_cpu < nr_cpu_ids)
  1922. return dest_cpu;
  1923. /* No more Mr. Nice Guy. */
  1924. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1925. /*
  1926. * Don't tell them about moving exiting tasks or
  1927. * kernel threads (both mm NULL), since they never
  1928. * leave kernel.
  1929. */
  1930. if (p->mm && printk_ratelimit()) {
  1931. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1932. task_pid_nr(p), p->comm, cpu);
  1933. }
  1934. return dest_cpu;
  1935. }
  1936. /*
  1937. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1938. */
  1939. static inline
  1940. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1941. {
  1942. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1943. /*
  1944. * In order not to call set_task_cpu() on a blocking task we need
  1945. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1946. * cpu.
  1947. *
  1948. * Since this is common to all placement strategies, this lives here.
  1949. *
  1950. * [ this allows ->select_task() to simply return task_cpu(p) and
  1951. * not worry about this generic constraint ]
  1952. */
  1953. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1954. !cpu_online(cpu)))
  1955. cpu = select_fallback_rq(task_cpu(p), p);
  1956. return cpu;
  1957. }
  1958. static void update_avg(u64 *avg, u64 sample)
  1959. {
  1960. s64 diff = sample - *avg;
  1961. *avg += diff >> 3;
  1962. }
  1963. #endif
  1964. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1965. bool is_sync, bool is_migrate, bool is_local,
  1966. unsigned long en_flags)
  1967. {
  1968. schedstat_inc(p, se.statistics.nr_wakeups);
  1969. if (is_sync)
  1970. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1971. if (is_migrate)
  1972. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1973. if (is_local)
  1974. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1975. else
  1976. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1977. activate_task(rq, p, en_flags);
  1978. }
  1979. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1980. int wake_flags, bool success)
  1981. {
  1982. trace_sched_wakeup(p, success);
  1983. check_preempt_curr(rq, p, wake_flags);
  1984. p->state = TASK_RUNNING;
  1985. #ifdef CONFIG_SMP
  1986. if (p->sched_class->task_woken)
  1987. p->sched_class->task_woken(rq, p);
  1988. if (unlikely(rq->idle_stamp)) {
  1989. u64 delta = rq->clock - rq->idle_stamp;
  1990. u64 max = 2*sysctl_sched_migration_cost;
  1991. if (delta > max)
  1992. rq->avg_idle = max;
  1993. else
  1994. update_avg(&rq->avg_idle, delta);
  1995. rq->idle_stamp = 0;
  1996. }
  1997. #endif
  1998. /* if a worker is waking up, notify workqueue */
  1999. if ((p->flags & PF_WQ_WORKER) && success)
  2000. wq_worker_waking_up(p, cpu_of(rq));
  2001. }
  2002. /**
  2003. * try_to_wake_up - wake up a thread
  2004. * @p: the thread to be awakened
  2005. * @state: the mask of task states that can be woken
  2006. * @wake_flags: wake modifier flags (WF_*)
  2007. *
  2008. * Put it on the run-queue if it's not already there. The "current"
  2009. * thread is always on the run-queue (except when the actual
  2010. * re-schedule is in progress), and as such you're allowed to do
  2011. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2012. * runnable without the overhead of this.
  2013. *
  2014. * Returns %true if @p was woken up, %false if it was already running
  2015. * or @state didn't match @p's state.
  2016. */
  2017. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2018. int wake_flags)
  2019. {
  2020. int cpu, orig_cpu, this_cpu, success = 0;
  2021. unsigned long flags;
  2022. unsigned long en_flags = ENQUEUE_WAKEUP;
  2023. struct rq *rq;
  2024. this_cpu = get_cpu();
  2025. smp_wmb();
  2026. rq = task_rq_lock(p, &flags);
  2027. if (!(p->state & state))
  2028. goto out;
  2029. if (p->se.on_rq)
  2030. goto out_running;
  2031. cpu = task_cpu(p);
  2032. orig_cpu = cpu;
  2033. #ifdef CONFIG_SMP
  2034. if (unlikely(task_running(rq, p)))
  2035. goto out_activate;
  2036. /*
  2037. * In order to handle concurrent wakeups and release the rq->lock
  2038. * we put the task in TASK_WAKING state.
  2039. *
  2040. * First fix up the nr_uninterruptible count:
  2041. */
  2042. if (task_contributes_to_load(p)) {
  2043. if (likely(cpu_online(orig_cpu)))
  2044. rq->nr_uninterruptible--;
  2045. else
  2046. this_rq()->nr_uninterruptible--;
  2047. }
  2048. p->state = TASK_WAKING;
  2049. if (p->sched_class->task_waking) {
  2050. p->sched_class->task_waking(rq, p);
  2051. en_flags |= ENQUEUE_WAKING;
  2052. }
  2053. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2054. if (cpu != orig_cpu)
  2055. set_task_cpu(p, cpu);
  2056. __task_rq_unlock(rq);
  2057. rq = cpu_rq(cpu);
  2058. raw_spin_lock(&rq->lock);
  2059. /*
  2060. * We migrated the task without holding either rq->lock, however
  2061. * since the task is not on the task list itself, nobody else
  2062. * will try and migrate the task, hence the rq should match the
  2063. * cpu we just moved it to.
  2064. */
  2065. WARN_ON(task_cpu(p) != cpu);
  2066. WARN_ON(p->state != TASK_WAKING);
  2067. #ifdef CONFIG_SCHEDSTATS
  2068. schedstat_inc(rq, ttwu_count);
  2069. if (cpu == this_cpu)
  2070. schedstat_inc(rq, ttwu_local);
  2071. else {
  2072. struct sched_domain *sd;
  2073. for_each_domain(this_cpu, sd) {
  2074. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2075. schedstat_inc(sd, ttwu_wake_remote);
  2076. break;
  2077. }
  2078. }
  2079. }
  2080. #endif /* CONFIG_SCHEDSTATS */
  2081. out_activate:
  2082. #endif /* CONFIG_SMP */
  2083. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2084. cpu == this_cpu, en_flags);
  2085. success = 1;
  2086. out_running:
  2087. ttwu_post_activation(p, rq, wake_flags, success);
  2088. out:
  2089. task_rq_unlock(rq, &flags);
  2090. put_cpu();
  2091. return success;
  2092. }
  2093. /**
  2094. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2095. * @p: the thread to be awakened
  2096. *
  2097. * Put @p on the run-queue if it's not already there. The caller must
  2098. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2099. * the current task. this_rq() stays locked over invocation.
  2100. */
  2101. static void try_to_wake_up_local(struct task_struct *p)
  2102. {
  2103. struct rq *rq = task_rq(p);
  2104. bool success = false;
  2105. BUG_ON(rq != this_rq());
  2106. BUG_ON(p == current);
  2107. lockdep_assert_held(&rq->lock);
  2108. if (!(p->state & TASK_NORMAL))
  2109. return;
  2110. if (!p->se.on_rq) {
  2111. if (likely(!task_running(rq, p))) {
  2112. schedstat_inc(rq, ttwu_count);
  2113. schedstat_inc(rq, ttwu_local);
  2114. }
  2115. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2116. success = true;
  2117. }
  2118. ttwu_post_activation(p, rq, 0, success);
  2119. }
  2120. /**
  2121. * wake_up_process - Wake up a specific process
  2122. * @p: The process to be woken up.
  2123. *
  2124. * Attempt to wake up the nominated process and move it to the set of runnable
  2125. * processes. Returns 1 if the process was woken up, 0 if it was already
  2126. * running.
  2127. *
  2128. * It may be assumed that this function implies a write memory barrier before
  2129. * changing the task state if and only if any tasks are woken up.
  2130. */
  2131. int wake_up_process(struct task_struct *p)
  2132. {
  2133. return try_to_wake_up(p, TASK_ALL, 0);
  2134. }
  2135. EXPORT_SYMBOL(wake_up_process);
  2136. int wake_up_state(struct task_struct *p, unsigned int state)
  2137. {
  2138. return try_to_wake_up(p, state, 0);
  2139. }
  2140. /*
  2141. * Perform scheduler related setup for a newly forked process p.
  2142. * p is forked by current.
  2143. *
  2144. * __sched_fork() is basic setup used by init_idle() too:
  2145. */
  2146. static void __sched_fork(struct task_struct *p)
  2147. {
  2148. p->se.exec_start = 0;
  2149. p->se.sum_exec_runtime = 0;
  2150. p->se.prev_sum_exec_runtime = 0;
  2151. p->se.nr_migrations = 0;
  2152. #ifdef CONFIG_SCHEDSTATS
  2153. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2154. #endif
  2155. INIT_LIST_HEAD(&p->rt.run_list);
  2156. p->se.on_rq = 0;
  2157. INIT_LIST_HEAD(&p->se.group_node);
  2158. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2159. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2160. #endif
  2161. }
  2162. /*
  2163. * fork()/clone()-time setup:
  2164. */
  2165. void sched_fork(struct task_struct *p, int clone_flags)
  2166. {
  2167. int cpu = get_cpu();
  2168. __sched_fork(p);
  2169. /*
  2170. * We mark the process as running here. This guarantees that
  2171. * nobody will actually run it, and a signal or other external
  2172. * event cannot wake it up and insert it on the runqueue either.
  2173. */
  2174. p->state = TASK_RUNNING;
  2175. /*
  2176. * Revert to default priority/policy on fork if requested.
  2177. */
  2178. if (unlikely(p->sched_reset_on_fork)) {
  2179. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2180. p->policy = SCHED_NORMAL;
  2181. p->normal_prio = p->static_prio;
  2182. }
  2183. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2184. p->static_prio = NICE_TO_PRIO(0);
  2185. p->normal_prio = p->static_prio;
  2186. set_load_weight(p);
  2187. }
  2188. /*
  2189. * We don't need the reset flag anymore after the fork. It has
  2190. * fulfilled its duty:
  2191. */
  2192. p->sched_reset_on_fork = 0;
  2193. }
  2194. /*
  2195. * Make sure we do not leak PI boosting priority to the child.
  2196. */
  2197. p->prio = current->normal_prio;
  2198. if (!rt_prio(p->prio))
  2199. p->sched_class = &fair_sched_class;
  2200. if (p->sched_class->task_fork)
  2201. p->sched_class->task_fork(p);
  2202. /*
  2203. * The child is not yet in the pid-hash so no cgroup attach races,
  2204. * and the cgroup is pinned to this child due to cgroup_fork()
  2205. * is ran before sched_fork().
  2206. *
  2207. * Silence PROVE_RCU.
  2208. */
  2209. rcu_read_lock();
  2210. set_task_cpu(p, cpu);
  2211. rcu_read_unlock();
  2212. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2213. if (likely(sched_info_on()))
  2214. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2215. #endif
  2216. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2217. p->oncpu = 0;
  2218. #endif
  2219. #ifdef CONFIG_PREEMPT
  2220. /* Want to start with kernel preemption disabled. */
  2221. task_thread_info(p)->preempt_count = 1;
  2222. #endif
  2223. #ifdef CONFIG_SMP
  2224. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2225. #endif
  2226. put_cpu();
  2227. }
  2228. /*
  2229. * wake_up_new_task - wake up a newly created task for the first time.
  2230. *
  2231. * This function will do some initial scheduler statistics housekeeping
  2232. * that must be done for every newly created context, then puts the task
  2233. * on the runqueue and wakes it.
  2234. */
  2235. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2236. {
  2237. unsigned long flags;
  2238. struct rq *rq;
  2239. int cpu __maybe_unused = get_cpu();
  2240. #ifdef CONFIG_SMP
  2241. rq = task_rq_lock(p, &flags);
  2242. p->state = TASK_WAKING;
  2243. /*
  2244. * Fork balancing, do it here and not earlier because:
  2245. * - cpus_allowed can change in the fork path
  2246. * - any previously selected cpu might disappear through hotplug
  2247. *
  2248. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2249. * without people poking at ->cpus_allowed.
  2250. */
  2251. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2252. set_task_cpu(p, cpu);
  2253. p->state = TASK_RUNNING;
  2254. task_rq_unlock(rq, &flags);
  2255. #endif
  2256. rq = task_rq_lock(p, &flags);
  2257. activate_task(rq, p, 0);
  2258. trace_sched_wakeup_new(p, 1);
  2259. check_preempt_curr(rq, p, WF_FORK);
  2260. #ifdef CONFIG_SMP
  2261. if (p->sched_class->task_woken)
  2262. p->sched_class->task_woken(rq, p);
  2263. #endif
  2264. task_rq_unlock(rq, &flags);
  2265. put_cpu();
  2266. }
  2267. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2268. /**
  2269. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2270. * @notifier: notifier struct to register
  2271. */
  2272. void preempt_notifier_register(struct preempt_notifier *notifier)
  2273. {
  2274. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2275. }
  2276. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2277. /**
  2278. * preempt_notifier_unregister - no longer interested in preemption notifications
  2279. * @notifier: notifier struct to unregister
  2280. *
  2281. * This is safe to call from within a preemption notifier.
  2282. */
  2283. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2284. {
  2285. hlist_del(&notifier->link);
  2286. }
  2287. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2288. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2289. {
  2290. struct preempt_notifier *notifier;
  2291. struct hlist_node *node;
  2292. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2293. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2294. }
  2295. static void
  2296. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2297. struct task_struct *next)
  2298. {
  2299. struct preempt_notifier *notifier;
  2300. struct hlist_node *node;
  2301. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2302. notifier->ops->sched_out(notifier, next);
  2303. }
  2304. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2305. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2306. {
  2307. }
  2308. static void
  2309. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2310. struct task_struct *next)
  2311. {
  2312. }
  2313. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2314. /**
  2315. * prepare_task_switch - prepare to switch tasks
  2316. * @rq: the runqueue preparing to switch
  2317. * @prev: the current task that is being switched out
  2318. * @next: the task we are going to switch to.
  2319. *
  2320. * This is called with the rq lock held and interrupts off. It must
  2321. * be paired with a subsequent finish_task_switch after the context
  2322. * switch.
  2323. *
  2324. * prepare_task_switch sets up locking and calls architecture specific
  2325. * hooks.
  2326. */
  2327. static inline void
  2328. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2329. struct task_struct *next)
  2330. {
  2331. sched_info_switch(prev, next);
  2332. perf_event_task_sched_out(prev, next);
  2333. fire_sched_out_preempt_notifiers(prev, next);
  2334. prepare_lock_switch(rq, next);
  2335. prepare_arch_switch(next);
  2336. trace_sched_switch(prev, next);
  2337. }
  2338. /**
  2339. * finish_task_switch - clean up after a task-switch
  2340. * @rq: runqueue associated with task-switch
  2341. * @prev: the thread we just switched away from.
  2342. *
  2343. * finish_task_switch must be called after the context switch, paired
  2344. * with a prepare_task_switch call before the context switch.
  2345. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2346. * and do any other architecture-specific cleanup actions.
  2347. *
  2348. * Note that we may have delayed dropping an mm in context_switch(). If
  2349. * so, we finish that here outside of the runqueue lock. (Doing it
  2350. * with the lock held can cause deadlocks; see schedule() for
  2351. * details.)
  2352. */
  2353. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2354. __releases(rq->lock)
  2355. {
  2356. struct mm_struct *mm = rq->prev_mm;
  2357. long prev_state;
  2358. rq->prev_mm = NULL;
  2359. /*
  2360. * A task struct has one reference for the use as "current".
  2361. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2362. * schedule one last time. The schedule call will never return, and
  2363. * the scheduled task must drop that reference.
  2364. * The test for TASK_DEAD must occur while the runqueue locks are
  2365. * still held, otherwise prev could be scheduled on another cpu, die
  2366. * there before we look at prev->state, and then the reference would
  2367. * be dropped twice.
  2368. * Manfred Spraul <manfred@colorfullife.com>
  2369. */
  2370. prev_state = prev->state;
  2371. finish_arch_switch(prev);
  2372. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2373. local_irq_disable();
  2374. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2375. perf_event_task_sched_in(current);
  2376. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2377. local_irq_enable();
  2378. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2379. finish_lock_switch(rq, prev);
  2380. fire_sched_in_preempt_notifiers(current);
  2381. if (mm)
  2382. mmdrop(mm);
  2383. if (unlikely(prev_state == TASK_DEAD)) {
  2384. /*
  2385. * Remove function-return probe instances associated with this
  2386. * task and put them back on the free list.
  2387. */
  2388. kprobe_flush_task(prev);
  2389. put_task_struct(prev);
  2390. }
  2391. }
  2392. #ifdef CONFIG_SMP
  2393. /* assumes rq->lock is held */
  2394. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2395. {
  2396. if (prev->sched_class->pre_schedule)
  2397. prev->sched_class->pre_schedule(rq, prev);
  2398. }
  2399. /* rq->lock is NOT held, but preemption is disabled */
  2400. static inline void post_schedule(struct rq *rq)
  2401. {
  2402. if (rq->post_schedule) {
  2403. unsigned long flags;
  2404. raw_spin_lock_irqsave(&rq->lock, flags);
  2405. if (rq->curr->sched_class->post_schedule)
  2406. rq->curr->sched_class->post_schedule(rq);
  2407. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2408. rq->post_schedule = 0;
  2409. }
  2410. }
  2411. #else
  2412. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2413. {
  2414. }
  2415. static inline void post_schedule(struct rq *rq)
  2416. {
  2417. }
  2418. #endif
  2419. /**
  2420. * schedule_tail - first thing a freshly forked thread must call.
  2421. * @prev: the thread we just switched away from.
  2422. */
  2423. asmlinkage void schedule_tail(struct task_struct *prev)
  2424. __releases(rq->lock)
  2425. {
  2426. struct rq *rq = this_rq();
  2427. finish_task_switch(rq, prev);
  2428. /*
  2429. * FIXME: do we need to worry about rq being invalidated by the
  2430. * task_switch?
  2431. */
  2432. post_schedule(rq);
  2433. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2434. /* In this case, finish_task_switch does not reenable preemption */
  2435. preempt_enable();
  2436. #endif
  2437. if (current->set_child_tid)
  2438. put_user(task_pid_vnr(current), current->set_child_tid);
  2439. }
  2440. /*
  2441. * context_switch - switch to the new MM and the new
  2442. * thread's register state.
  2443. */
  2444. static inline void
  2445. context_switch(struct rq *rq, struct task_struct *prev,
  2446. struct task_struct *next)
  2447. {
  2448. struct mm_struct *mm, *oldmm;
  2449. prepare_task_switch(rq, prev, next);
  2450. mm = next->mm;
  2451. oldmm = prev->active_mm;
  2452. /*
  2453. * For paravirt, this is coupled with an exit in switch_to to
  2454. * combine the page table reload and the switch backend into
  2455. * one hypercall.
  2456. */
  2457. arch_start_context_switch(prev);
  2458. if (!mm) {
  2459. next->active_mm = oldmm;
  2460. atomic_inc(&oldmm->mm_count);
  2461. enter_lazy_tlb(oldmm, next);
  2462. } else
  2463. switch_mm(oldmm, mm, next);
  2464. if (!prev->mm) {
  2465. prev->active_mm = NULL;
  2466. rq->prev_mm = oldmm;
  2467. }
  2468. /*
  2469. * Since the runqueue lock will be released by the next
  2470. * task (which is an invalid locking op but in the case
  2471. * of the scheduler it's an obvious special-case), so we
  2472. * do an early lockdep release here:
  2473. */
  2474. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2475. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2476. #endif
  2477. /* Here we just switch the register state and the stack. */
  2478. switch_to(prev, next, prev);
  2479. barrier();
  2480. /*
  2481. * this_rq must be evaluated again because prev may have moved
  2482. * CPUs since it called schedule(), thus the 'rq' on its stack
  2483. * frame will be invalid.
  2484. */
  2485. finish_task_switch(this_rq(), prev);
  2486. }
  2487. /*
  2488. * nr_running, nr_uninterruptible and nr_context_switches:
  2489. *
  2490. * externally visible scheduler statistics: current number of runnable
  2491. * threads, current number of uninterruptible-sleeping threads, total
  2492. * number of context switches performed since bootup.
  2493. */
  2494. unsigned long nr_running(void)
  2495. {
  2496. unsigned long i, sum = 0;
  2497. for_each_online_cpu(i)
  2498. sum += cpu_rq(i)->nr_running;
  2499. return sum;
  2500. }
  2501. unsigned long nr_uninterruptible(void)
  2502. {
  2503. unsigned long i, sum = 0;
  2504. for_each_possible_cpu(i)
  2505. sum += cpu_rq(i)->nr_uninterruptible;
  2506. /*
  2507. * Since we read the counters lockless, it might be slightly
  2508. * inaccurate. Do not allow it to go below zero though:
  2509. */
  2510. if (unlikely((long)sum < 0))
  2511. sum = 0;
  2512. return sum;
  2513. }
  2514. unsigned long long nr_context_switches(void)
  2515. {
  2516. int i;
  2517. unsigned long long sum = 0;
  2518. for_each_possible_cpu(i)
  2519. sum += cpu_rq(i)->nr_switches;
  2520. return sum;
  2521. }
  2522. unsigned long nr_iowait(void)
  2523. {
  2524. unsigned long i, sum = 0;
  2525. for_each_possible_cpu(i)
  2526. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2527. return sum;
  2528. }
  2529. unsigned long nr_iowait_cpu(int cpu)
  2530. {
  2531. struct rq *this = cpu_rq(cpu);
  2532. return atomic_read(&this->nr_iowait);
  2533. }
  2534. unsigned long this_cpu_load(void)
  2535. {
  2536. struct rq *this = this_rq();
  2537. return this->cpu_load[0];
  2538. }
  2539. /* Variables and functions for calc_load */
  2540. static atomic_long_t calc_load_tasks;
  2541. static unsigned long calc_load_update;
  2542. unsigned long avenrun[3];
  2543. EXPORT_SYMBOL(avenrun);
  2544. static long calc_load_fold_active(struct rq *this_rq)
  2545. {
  2546. long nr_active, delta = 0;
  2547. nr_active = this_rq->nr_running;
  2548. nr_active += (long) this_rq->nr_uninterruptible;
  2549. if (nr_active != this_rq->calc_load_active) {
  2550. delta = nr_active - this_rq->calc_load_active;
  2551. this_rq->calc_load_active = nr_active;
  2552. }
  2553. return delta;
  2554. }
  2555. static unsigned long
  2556. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2557. {
  2558. load *= exp;
  2559. load += active * (FIXED_1 - exp);
  2560. load += 1UL << (FSHIFT - 1);
  2561. return load >> FSHIFT;
  2562. }
  2563. #ifdef CONFIG_NO_HZ
  2564. /*
  2565. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2566. *
  2567. * When making the ILB scale, we should try to pull this in as well.
  2568. */
  2569. static atomic_long_t calc_load_tasks_idle;
  2570. static void calc_load_account_idle(struct rq *this_rq)
  2571. {
  2572. long delta;
  2573. delta = calc_load_fold_active(this_rq);
  2574. if (delta)
  2575. atomic_long_add(delta, &calc_load_tasks_idle);
  2576. }
  2577. static long calc_load_fold_idle(void)
  2578. {
  2579. long delta = 0;
  2580. /*
  2581. * Its got a race, we don't care...
  2582. */
  2583. if (atomic_long_read(&calc_load_tasks_idle))
  2584. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2585. return delta;
  2586. }
  2587. /**
  2588. * fixed_power_int - compute: x^n, in O(log n) time
  2589. *
  2590. * @x: base of the power
  2591. * @frac_bits: fractional bits of @x
  2592. * @n: power to raise @x to.
  2593. *
  2594. * By exploiting the relation between the definition of the natural power
  2595. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2596. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2597. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2598. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2599. * of course trivially computable in O(log_2 n), the length of our binary
  2600. * vector.
  2601. */
  2602. static unsigned long
  2603. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2604. {
  2605. unsigned long result = 1UL << frac_bits;
  2606. if (n) for (;;) {
  2607. if (n & 1) {
  2608. result *= x;
  2609. result += 1UL << (frac_bits - 1);
  2610. result >>= frac_bits;
  2611. }
  2612. n >>= 1;
  2613. if (!n)
  2614. break;
  2615. x *= x;
  2616. x += 1UL << (frac_bits - 1);
  2617. x >>= frac_bits;
  2618. }
  2619. return result;
  2620. }
  2621. /*
  2622. * a1 = a0 * e + a * (1 - e)
  2623. *
  2624. * a2 = a1 * e + a * (1 - e)
  2625. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2626. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2627. *
  2628. * a3 = a2 * e + a * (1 - e)
  2629. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2630. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2631. *
  2632. * ...
  2633. *
  2634. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2635. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2636. * = a0 * e^n + a * (1 - e^n)
  2637. *
  2638. * [1] application of the geometric series:
  2639. *
  2640. * n 1 - x^(n+1)
  2641. * S_n := \Sum x^i = -------------
  2642. * i=0 1 - x
  2643. */
  2644. static unsigned long
  2645. calc_load_n(unsigned long load, unsigned long exp,
  2646. unsigned long active, unsigned int n)
  2647. {
  2648. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2649. }
  2650. /*
  2651. * NO_HZ can leave us missing all per-cpu ticks calling
  2652. * calc_load_account_active(), but since an idle CPU folds its delta into
  2653. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2654. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2655. *
  2656. * Once we've updated the global active value, we need to apply the exponential
  2657. * weights adjusted to the number of cycles missed.
  2658. */
  2659. static void calc_global_nohz(unsigned long ticks)
  2660. {
  2661. long delta, active, n;
  2662. if (time_before(jiffies, calc_load_update))
  2663. return;
  2664. /*
  2665. * If we crossed a calc_load_update boundary, make sure to fold
  2666. * any pending idle changes, the respective CPUs might have
  2667. * missed the tick driven calc_load_account_active() update
  2668. * due to NO_HZ.
  2669. */
  2670. delta = calc_load_fold_idle();
  2671. if (delta)
  2672. atomic_long_add(delta, &calc_load_tasks);
  2673. /*
  2674. * If we were idle for multiple load cycles, apply them.
  2675. */
  2676. if (ticks >= LOAD_FREQ) {
  2677. n = ticks / LOAD_FREQ;
  2678. active = atomic_long_read(&calc_load_tasks);
  2679. active = active > 0 ? active * FIXED_1 : 0;
  2680. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2681. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2682. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2683. calc_load_update += n * LOAD_FREQ;
  2684. }
  2685. /*
  2686. * Its possible the remainder of the above division also crosses
  2687. * a LOAD_FREQ period, the regular check in calc_global_load()
  2688. * which comes after this will take care of that.
  2689. *
  2690. * Consider us being 11 ticks before a cycle completion, and us
  2691. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2692. * age us 4 cycles, and the test in calc_global_load() will
  2693. * pick up the final one.
  2694. */
  2695. }
  2696. #else
  2697. static void calc_load_account_idle(struct rq *this_rq)
  2698. {
  2699. }
  2700. static inline long calc_load_fold_idle(void)
  2701. {
  2702. return 0;
  2703. }
  2704. static void calc_global_nohz(unsigned long ticks)
  2705. {
  2706. }
  2707. #endif
  2708. /**
  2709. * get_avenrun - get the load average array
  2710. * @loads: pointer to dest load array
  2711. * @offset: offset to add
  2712. * @shift: shift count to shift the result left
  2713. *
  2714. * These values are estimates at best, so no need for locking.
  2715. */
  2716. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2717. {
  2718. loads[0] = (avenrun[0] + offset) << shift;
  2719. loads[1] = (avenrun[1] + offset) << shift;
  2720. loads[2] = (avenrun[2] + offset) << shift;
  2721. }
  2722. /*
  2723. * calc_load - update the avenrun load estimates 10 ticks after the
  2724. * CPUs have updated calc_load_tasks.
  2725. */
  2726. void calc_global_load(unsigned long ticks)
  2727. {
  2728. long active;
  2729. calc_global_nohz(ticks);
  2730. if (time_before(jiffies, calc_load_update + 10))
  2731. return;
  2732. active = atomic_long_read(&calc_load_tasks);
  2733. active = active > 0 ? active * FIXED_1 : 0;
  2734. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2735. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2736. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2737. calc_load_update += LOAD_FREQ;
  2738. }
  2739. /*
  2740. * Called from update_cpu_load() to periodically update this CPU's
  2741. * active count.
  2742. */
  2743. static void calc_load_account_active(struct rq *this_rq)
  2744. {
  2745. long delta;
  2746. if (time_before(jiffies, this_rq->calc_load_update))
  2747. return;
  2748. delta = calc_load_fold_active(this_rq);
  2749. delta += calc_load_fold_idle();
  2750. if (delta)
  2751. atomic_long_add(delta, &calc_load_tasks);
  2752. this_rq->calc_load_update += LOAD_FREQ;
  2753. }
  2754. /*
  2755. * The exact cpuload at various idx values, calculated at every tick would be
  2756. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2757. *
  2758. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2759. * on nth tick when cpu may be busy, then we have:
  2760. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2761. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2762. *
  2763. * decay_load_missed() below does efficient calculation of
  2764. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2765. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2766. *
  2767. * The calculation is approximated on a 128 point scale.
  2768. * degrade_zero_ticks is the number of ticks after which load at any
  2769. * particular idx is approximated to be zero.
  2770. * degrade_factor is a precomputed table, a row for each load idx.
  2771. * Each column corresponds to degradation factor for a power of two ticks,
  2772. * based on 128 point scale.
  2773. * Example:
  2774. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2775. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2776. *
  2777. * With this power of 2 load factors, we can degrade the load n times
  2778. * by looking at 1 bits in n and doing as many mult/shift instead of
  2779. * n mult/shifts needed by the exact degradation.
  2780. */
  2781. #define DEGRADE_SHIFT 7
  2782. static const unsigned char
  2783. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2784. static const unsigned char
  2785. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2786. {0, 0, 0, 0, 0, 0, 0, 0},
  2787. {64, 32, 8, 0, 0, 0, 0, 0},
  2788. {96, 72, 40, 12, 1, 0, 0},
  2789. {112, 98, 75, 43, 15, 1, 0},
  2790. {120, 112, 98, 76, 45, 16, 2} };
  2791. /*
  2792. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2793. * would be when CPU is idle and so we just decay the old load without
  2794. * adding any new load.
  2795. */
  2796. static unsigned long
  2797. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2798. {
  2799. int j = 0;
  2800. if (!missed_updates)
  2801. return load;
  2802. if (missed_updates >= degrade_zero_ticks[idx])
  2803. return 0;
  2804. if (idx == 1)
  2805. return load >> missed_updates;
  2806. while (missed_updates) {
  2807. if (missed_updates % 2)
  2808. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2809. missed_updates >>= 1;
  2810. j++;
  2811. }
  2812. return load;
  2813. }
  2814. /*
  2815. * Update rq->cpu_load[] statistics. This function is usually called every
  2816. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2817. * every tick. We fix it up based on jiffies.
  2818. */
  2819. static void update_cpu_load(struct rq *this_rq)
  2820. {
  2821. unsigned long this_load = this_rq->load.weight;
  2822. unsigned long curr_jiffies = jiffies;
  2823. unsigned long pending_updates;
  2824. int i, scale;
  2825. this_rq->nr_load_updates++;
  2826. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2827. if (curr_jiffies == this_rq->last_load_update_tick)
  2828. return;
  2829. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2830. this_rq->last_load_update_tick = curr_jiffies;
  2831. /* Update our load: */
  2832. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2833. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2834. unsigned long old_load, new_load;
  2835. /* scale is effectively 1 << i now, and >> i divides by scale */
  2836. old_load = this_rq->cpu_load[i];
  2837. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2838. new_load = this_load;
  2839. /*
  2840. * Round up the averaging division if load is increasing. This
  2841. * prevents us from getting stuck on 9 if the load is 10, for
  2842. * example.
  2843. */
  2844. if (new_load > old_load)
  2845. new_load += scale - 1;
  2846. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2847. }
  2848. sched_avg_update(this_rq);
  2849. }
  2850. static void update_cpu_load_active(struct rq *this_rq)
  2851. {
  2852. update_cpu_load(this_rq);
  2853. calc_load_account_active(this_rq);
  2854. }
  2855. #ifdef CONFIG_SMP
  2856. /*
  2857. * sched_exec - execve() is a valuable balancing opportunity, because at
  2858. * this point the task has the smallest effective memory and cache footprint.
  2859. */
  2860. void sched_exec(void)
  2861. {
  2862. struct task_struct *p = current;
  2863. unsigned long flags;
  2864. struct rq *rq;
  2865. int dest_cpu;
  2866. rq = task_rq_lock(p, &flags);
  2867. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2868. if (dest_cpu == smp_processor_id())
  2869. goto unlock;
  2870. /*
  2871. * select_task_rq() can race against ->cpus_allowed
  2872. */
  2873. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2874. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2875. struct migration_arg arg = { p, dest_cpu };
  2876. task_rq_unlock(rq, &flags);
  2877. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2878. return;
  2879. }
  2880. unlock:
  2881. task_rq_unlock(rq, &flags);
  2882. }
  2883. #endif
  2884. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2885. EXPORT_PER_CPU_SYMBOL(kstat);
  2886. /*
  2887. * Return any ns on the sched_clock that have not yet been accounted in
  2888. * @p in case that task is currently running.
  2889. *
  2890. * Called with task_rq_lock() held on @rq.
  2891. */
  2892. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2893. {
  2894. u64 ns = 0;
  2895. if (task_current(rq, p)) {
  2896. update_rq_clock(rq);
  2897. ns = rq->clock_task - p->se.exec_start;
  2898. if ((s64)ns < 0)
  2899. ns = 0;
  2900. }
  2901. return ns;
  2902. }
  2903. unsigned long long task_delta_exec(struct task_struct *p)
  2904. {
  2905. unsigned long flags;
  2906. struct rq *rq;
  2907. u64 ns = 0;
  2908. rq = task_rq_lock(p, &flags);
  2909. ns = do_task_delta_exec(p, rq);
  2910. task_rq_unlock(rq, &flags);
  2911. return ns;
  2912. }
  2913. /*
  2914. * Return accounted runtime for the task.
  2915. * In case the task is currently running, return the runtime plus current's
  2916. * pending runtime that have not been accounted yet.
  2917. */
  2918. unsigned long long task_sched_runtime(struct task_struct *p)
  2919. {
  2920. unsigned long flags;
  2921. struct rq *rq;
  2922. u64 ns = 0;
  2923. rq = task_rq_lock(p, &flags);
  2924. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2925. task_rq_unlock(rq, &flags);
  2926. return ns;
  2927. }
  2928. /*
  2929. * Return sum_exec_runtime for the thread group.
  2930. * In case the task is currently running, return the sum plus current's
  2931. * pending runtime that have not been accounted yet.
  2932. *
  2933. * Note that the thread group might have other running tasks as well,
  2934. * so the return value not includes other pending runtime that other
  2935. * running tasks might have.
  2936. */
  2937. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2938. {
  2939. struct task_cputime totals;
  2940. unsigned long flags;
  2941. struct rq *rq;
  2942. u64 ns;
  2943. rq = task_rq_lock(p, &flags);
  2944. thread_group_cputime(p, &totals);
  2945. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2946. task_rq_unlock(rq, &flags);
  2947. return ns;
  2948. }
  2949. /*
  2950. * Account user cpu time to a process.
  2951. * @p: the process that the cpu time gets accounted to
  2952. * @cputime: the cpu time spent in user space since the last update
  2953. * @cputime_scaled: cputime scaled by cpu frequency
  2954. */
  2955. void account_user_time(struct task_struct *p, cputime_t cputime,
  2956. cputime_t cputime_scaled)
  2957. {
  2958. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2959. cputime64_t tmp;
  2960. /* Add user time to process. */
  2961. p->utime = cputime_add(p->utime, cputime);
  2962. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2963. account_group_user_time(p, cputime);
  2964. /* Add user time to cpustat. */
  2965. tmp = cputime_to_cputime64(cputime);
  2966. if (TASK_NICE(p) > 0)
  2967. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2968. else
  2969. cpustat->user = cputime64_add(cpustat->user, tmp);
  2970. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2971. /* Account for user time used */
  2972. acct_update_integrals(p);
  2973. }
  2974. /*
  2975. * Account guest cpu time to a process.
  2976. * @p: the process that the cpu time gets accounted to
  2977. * @cputime: the cpu time spent in virtual machine since the last update
  2978. * @cputime_scaled: cputime scaled by cpu frequency
  2979. */
  2980. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2981. cputime_t cputime_scaled)
  2982. {
  2983. cputime64_t tmp;
  2984. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2985. tmp = cputime_to_cputime64(cputime);
  2986. /* Add guest time to process. */
  2987. p->utime = cputime_add(p->utime, cputime);
  2988. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2989. account_group_user_time(p, cputime);
  2990. p->gtime = cputime_add(p->gtime, cputime);
  2991. /* Add guest time to cpustat. */
  2992. if (TASK_NICE(p) > 0) {
  2993. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2994. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2995. } else {
  2996. cpustat->user = cputime64_add(cpustat->user, tmp);
  2997. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2998. }
  2999. }
  3000. /*
  3001. * Account system cpu time to a process.
  3002. * @p: the process that the cpu time gets accounted to
  3003. * @hardirq_offset: the offset to subtract from hardirq_count()
  3004. * @cputime: the cpu time spent in kernel space since the last update
  3005. * @cputime_scaled: cputime scaled by cpu frequency
  3006. */
  3007. void account_system_time(struct task_struct *p, int hardirq_offset,
  3008. cputime_t cputime, cputime_t cputime_scaled)
  3009. {
  3010. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3011. cputime64_t tmp;
  3012. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3013. account_guest_time(p, cputime, cputime_scaled);
  3014. return;
  3015. }
  3016. /* Add system time to process. */
  3017. p->stime = cputime_add(p->stime, cputime);
  3018. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3019. account_group_system_time(p, cputime);
  3020. /* Add system time to cpustat. */
  3021. tmp = cputime_to_cputime64(cputime);
  3022. if (hardirq_count() - hardirq_offset)
  3023. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3024. else if (in_serving_softirq())
  3025. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3026. else
  3027. cpustat->system = cputime64_add(cpustat->system, tmp);
  3028. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3029. /* Account for system time used */
  3030. acct_update_integrals(p);
  3031. }
  3032. /*
  3033. * Account for involuntary wait time.
  3034. * @steal: the cpu time spent in involuntary wait
  3035. */
  3036. void account_steal_time(cputime_t cputime)
  3037. {
  3038. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3039. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3040. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3041. }
  3042. /*
  3043. * Account for idle time.
  3044. * @cputime: the cpu time spent in idle wait
  3045. */
  3046. void account_idle_time(cputime_t cputime)
  3047. {
  3048. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3049. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3050. struct rq *rq = this_rq();
  3051. if (atomic_read(&rq->nr_iowait) > 0)
  3052. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3053. else
  3054. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3055. }
  3056. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3057. /*
  3058. * Account a single tick of cpu time.
  3059. * @p: the process that the cpu time gets accounted to
  3060. * @user_tick: indicates if the tick is a user or a system tick
  3061. */
  3062. void account_process_tick(struct task_struct *p, int user_tick)
  3063. {
  3064. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3065. struct rq *rq = this_rq();
  3066. if (user_tick)
  3067. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3068. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3069. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3070. one_jiffy_scaled);
  3071. else
  3072. account_idle_time(cputime_one_jiffy);
  3073. }
  3074. /*
  3075. * Account multiple ticks of steal time.
  3076. * @p: the process from which the cpu time has been stolen
  3077. * @ticks: number of stolen ticks
  3078. */
  3079. void account_steal_ticks(unsigned long ticks)
  3080. {
  3081. account_steal_time(jiffies_to_cputime(ticks));
  3082. }
  3083. /*
  3084. * Account multiple ticks of idle time.
  3085. * @ticks: number of stolen ticks
  3086. */
  3087. void account_idle_ticks(unsigned long ticks)
  3088. {
  3089. account_idle_time(jiffies_to_cputime(ticks));
  3090. }
  3091. #endif
  3092. /*
  3093. * Use precise platform statistics if available:
  3094. */
  3095. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3096. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3097. {
  3098. *ut = p->utime;
  3099. *st = p->stime;
  3100. }
  3101. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3102. {
  3103. struct task_cputime cputime;
  3104. thread_group_cputime(p, &cputime);
  3105. *ut = cputime.utime;
  3106. *st = cputime.stime;
  3107. }
  3108. #else
  3109. #ifndef nsecs_to_cputime
  3110. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3111. #endif
  3112. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3113. {
  3114. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3115. /*
  3116. * Use CFS's precise accounting:
  3117. */
  3118. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3119. if (total) {
  3120. u64 temp = rtime;
  3121. temp *= utime;
  3122. do_div(temp, total);
  3123. utime = (cputime_t)temp;
  3124. } else
  3125. utime = rtime;
  3126. /*
  3127. * Compare with previous values, to keep monotonicity:
  3128. */
  3129. p->prev_utime = max(p->prev_utime, utime);
  3130. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3131. *ut = p->prev_utime;
  3132. *st = p->prev_stime;
  3133. }
  3134. /*
  3135. * Must be called with siglock held.
  3136. */
  3137. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3138. {
  3139. struct signal_struct *sig = p->signal;
  3140. struct task_cputime cputime;
  3141. cputime_t rtime, utime, total;
  3142. thread_group_cputime(p, &cputime);
  3143. total = cputime_add(cputime.utime, cputime.stime);
  3144. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3145. if (total) {
  3146. u64 temp = rtime;
  3147. temp *= cputime.utime;
  3148. do_div(temp, total);
  3149. utime = (cputime_t)temp;
  3150. } else
  3151. utime = rtime;
  3152. sig->prev_utime = max(sig->prev_utime, utime);
  3153. sig->prev_stime = max(sig->prev_stime,
  3154. cputime_sub(rtime, sig->prev_utime));
  3155. *ut = sig->prev_utime;
  3156. *st = sig->prev_stime;
  3157. }
  3158. #endif
  3159. /*
  3160. * This function gets called by the timer code, with HZ frequency.
  3161. * We call it with interrupts disabled.
  3162. *
  3163. * It also gets called by the fork code, when changing the parent's
  3164. * timeslices.
  3165. */
  3166. void scheduler_tick(void)
  3167. {
  3168. int cpu = smp_processor_id();
  3169. struct rq *rq = cpu_rq(cpu);
  3170. struct task_struct *curr = rq->curr;
  3171. sched_clock_tick();
  3172. raw_spin_lock(&rq->lock);
  3173. update_rq_clock(rq);
  3174. update_cpu_load_active(rq);
  3175. curr->sched_class->task_tick(rq, curr, 0);
  3176. raw_spin_unlock(&rq->lock);
  3177. perf_event_task_tick();
  3178. #ifdef CONFIG_SMP
  3179. rq->idle_at_tick = idle_cpu(cpu);
  3180. trigger_load_balance(rq, cpu);
  3181. #endif
  3182. }
  3183. notrace unsigned long get_parent_ip(unsigned long addr)
  3184. {
  3185. if (in_lock_functions(addr)) {
  3186. addr = CALLER_ADDR2;
  3187. if (in_lock_functions(addr))
  3188. addr = CALLER_ADDR3;
  3189. }
  3190. return addr;
  3191. }
  3192. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3193. defined(CONFIG_PREEMPT_TRACER))
  3194. void __kprobes add_preempt_count(int val)
  3195. {
  3196. #ifdef CONFIG_DEBUG_PREEMPT
  3197. /*
  3198. * Underflow?
  3199. */
  3200. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3201. return;
  3202. #endif
  3203. preempt_count() += val;
  3204. #ifdef CONFIG_DEBUG_PREEMPT
  3205. /*
  3206. * Spinlock count overflowing soon?
  3207. */
  3208. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3209. PREEMPT_MASK - 10);
  3210. #endif
  3211. if (preempt_count() == val)
  3212. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3213. }
  3214. EXPORT_SYMBOL(add_preempt_count);
  3215. void __kprobes sub_preempt_count(int val)
  3216. {
  3217. #ifdef CONFIG_DEBUG_PREEMPT
  3218. /*
  3219. * Underflow?
  3220. */
  3221. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3222. return;
  3223. /*
  3224. * Is the spinlock portion underflowing?
  3225. */
  3226. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3227. !(preempt_count() & PREEMPT_MASK)))
  3228. return;
  3229. #endif
  3230. if (preempt_count() == val)
  3231. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3232. preempt_count() -= val;
  3233. }
  3234. EXPORT_SYMBOL(sub_preempt_count);
  3235. #endif
  3236. /*
  3237. * Print scheduling while atomic bug:
  3238. */
  3239. static noinline void __schedule_bug(struct task_struct *prev)
  3240. {
  3241. struct pt_regs *regs = get_irq_regs();
  3242. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3243. prev->comm, prev->pid, preempt_count());
  3244. debug_show_held_locks(prev);
  3245. print_modules();
  3246. if (irqs_disabled())
  3247. print_irqtrace_events(prev);
  3248. if (regs)
  3249. show_regs(regs);
  3250. else
  3251. dump_stack();
  3252. }
  3253. /*
  3254. * Various schedule()-time debugging checks and statistics:
  3255. */
  3256. static inline void schedule_debug(struct task_struct *prev)
  3257. {
  3258. /*
  3259. * Test if we are atomic. Since do_exit() needs to call into
  3260. * schedule() atomically, we ignore that path for now.
  3261. * Otherwise, whine if we are scheduling when we should not be.
  3262. */
  3263. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3264. __schedule_bug(prev);
  3265. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3266. schedstat_inc(this_rq(), sched_count);
  3267. #ifdef CONFIG_SCHEDSTATS
  3268. if (unlikely(prev->lock_depth >= 0)) {
  3269. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3270. schedstat_inc(prev, sched_info.bkl_count);
  3271. }
  3272. #endif
  3273. }
  3274. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3275. {
  3276. if (prev->se.on_rq)
  3277. update_rq_clock(rq);
  3278. prev->sched_class->put_prev_task(rq, prev);
  3279. }
  3280. /*
  3281. * Pick up the highest-prio task:
  3282. */
  3283. static inline struct task_struct *
  3284. pick_next_task(struct rq *rq)
  3285. {
  3286. const struct sched_class *class;
  3287. struct task_struct *p;
  3288. /*
  3289. * Optimization: we know that if all tasks are in
  3290. * the fair class we can call that function directly:
  3291. */
  3292. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3293. p = fair_sched_class.pick_next_task(rq);
  3294. if (likely(p))
  3295. return p;
  3296. }
  3297. for_each_class(class) {
  3298. p = class->pick_next_task(rq);
  3299. if (p)
  3300. return p;
  3301. }
  3302. BUG(); /* the idle class will always have a runnable task */
  3303. }
  3304. /*
  3305. * schedule() is the main scheduler function.
  3306. */
  3307. asmlinkage void __sched schedule(void)
  3308. {
  3309. struct task_struct *prev, *next;
  3310. unsigned long *switch_count;
  3311. struct rq *rq;
  3312. int cpu;
  3313. need_resched:
  3314. preempt_disable();
  3315. cpu = smp_processor_id();
  3316. rq = cpu_rq(cpu);
  3317. rcu_note_context_switch(cpu);
  3318. prev = rq->curr;
  3319. release_kernel_lock(prev);
  3320. need_resched_nonpreemptible:
  3321. schedule_debug(prev);
  3322. if (sched_feat(HRTICK))
  3323. hrtick_clear(rq);
  3324. raw_spin_lock_irq(&rq->lock);
  3325. switch_count = &prev->nivcsw;
  3326. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3327. if (unlikely(signal_pending_state(prev->state, prev))) {
  3328. prev->state = TASK_RUNNING;
  3329. } else {
  3330. /*
  3331. * If a worker is going to sleep, notify and
  3332. * ask workqueue whether it wants to wake up a
  3333. * task to maintain concurrency. If so, wake
  3334. * up the task.
  3335. */
  3336. if (prev->flags & PF_WQ_WORKER) {
  3337. struct task_struct *to_wakeup;
  3338. to_wakeup = wq_worker_sleeping(prev, cpu);
  3339. if (to_wakeup)
  3340. try_to_wake_up_local(to_wakeup);
  3341. }
  3342. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3343. }
  3344. switch_count = &prev->nvcsw;
  3345. }
  3346. pre_schedule(rq, prev);
  3347. if (unlikely(!rq->nr_running))
  3348. idle_balance(cpu, rq);
  3349. put_prev_task(rq, prev);
  3350. next = pick_next_task(rq);
  3351. clear_tsk_need_resched(prev);
  3352. rq->skip_clock_update = 0;
  3353. if (likely(prev != next)) {
  3354. rq->nr_switches++;
  3355. rq->curr = next;
  3356. ++*switch_count;
  3357. context_switch(rq, prev, next); /* unlocks the rq */
  3358. /*
  3359. * The context switch have flipped the stack from under us
  3360. * and restored the local variables which were saved when
  3361. * this task called schedule() in the past. prev == current
  3362. * is still correct, but it can be moved to another cpu/rq.
  3363. */
  3364. cpu = smp_processor_id();
  3365. rq = cpu_rq(cpu);
  3366. } else
  3367. raw_spin_unlock_irq(&rq->lock);
  3368. post_schedule(rq);
  3369. if (unlikely(reacquire_kernel_lock(prev)))
  3370. goto need_resched_nonpreemptible;
  3371. preempt_enable_no_resched();
  3372. if (need_resched())
  3373. goto need_resched;
  3374. }
  3375. EXPORT_SYMBOL(schedule);
  3376. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3377. /*
  3378. * Look out! "owner" is an entirely speculative pointer
  3379. * access and not reliable.
  3380. */
  3381. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3382. {
  3383. unsigned int cpu;
  3384. struct rq *rq;
  3385. if (!sched_feat(OWNER_SPIN))
  3386. return 0;
  3387. #ifdef CONFIG_DEBUG_PAGEALLOC
  3388. /*
  3389. * Need to access the cpu field knowing that
  3390. * DEBUG_PAGEALLOC could have unmapped it if
  3391. * the mutex owner just released it and exited.
  3392. */
  3393. if (probe_kernel_address(&owner->cpu, cpu))
  3394. return 0;
  3395. #else
  3396. cpu = owner->cpu;
  3397. #endif
  3398. /*
  3399. * Even if the access succeeded (likely case),
  3400. * the cpu field may no longer be valid.
  3401. */
  3402. if (cpu >= nr_cpumask_bits)
  3403. return 0;
  3404. /*
  3405. * We need to validate that we can do a
  3406. * get_cpu() and that we have the percpu area.
  3407. */
  3408. if (!cpu_online(cpu))
  3409. return 0;
  3410. rq = cpu_rq(cpu);
  3411. for (;;) {
  3412. /*
  3413. * Owner changed, break to re-assess state.
  3414. */
  3415. if (lock->owner != owner) {
  3416. /*
  3417. * If the lock has switched to a different owner,
  3418. * we likely have heavy contention. Return 0 to quit
  3419. * optimistic spinning and not contend further:
  3420. */
  3421. if (lock->owner)
  3422. return 0;
  3423. break;
  3424. }
  3425. /*
  3426. * Is that owner really running on that cpu?
  3427. */
  3428. if (task_thread_info(rq->curr) != owner || need_resched())
  3429. return 0;
  3430. arch_mutex_cpu_relax();
  3431. }
  3432. return 1;
  3433. }
  3434. #endif
  3435. #ifdef CONFIG_PREEMPT
  3436. /*
  3437. * this is the entry point to schedule() from in-kernel preemption
  3438. * off of preempt_enable. Kernel preemptions off return from interrupt
  3439. * occur there and call schedule directly.
  3440. */
  3441. asmlinkage void __sched notrace preempt_schedule(void)
  3442. {
  3443. struct thread_info *ti = current_thread_info();
  3444. /*
  3445. * If there is a non-zero preempt_count or interrupts are disabled,
  3446. * we do not want to preempt the current task. Just return..
  3447. */
  3448. if (likely(ti->preempt_count || irqs_disabled()))
  3449. return;
  3450. do {
  3451. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3452. schedule();
  3453. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3454. /*
  3455. * Check again in case we missed a preemption opportunity
  3456. * between schedule and now.
  3457. */
  3458. barrier();
  3459. } while (need_resched());
  3460. }
  3461. EXPORT_SYMBOL(preempt_schedule);
  3462. /*
  3463. * this is the entry point to schedule() from kernel preemption
  3464. * off of irq context.
  3465. * Note, that this is called and return with irqs disabled. This will
  3466. * protect us against recursive calling from irq.
  3467. */
  3468. asmlinkage void __sched preempt_schedule_irq(void)
  3469. {
  3470. struct thread_info *ti = current_thread_info();
  3471. /* Catch callers which need to be fixed */
  3472. BUG_ON(ti->preempt_count || !irqs_disabled());
  3473. do {
  3474. add_preempt_count(PREEMPT_ACTIVE);
  3475. local_irq_enable();
  3476. schedule();
  3477. local_irq_disable();
  3478. sub_preempt_count(PREEMPT_ACTIVE);
  3479. /*
  3480. * Check again in case we missed a preemption opportunity
  3481. * between schedule and now.
  3482. */
  3483. barrier();
  3484. } while (need_resched());
  3485. }
  3486. #endif /* CONFIG_PREEMPT */
  3487. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3488. void *key)
  3489. {
  3490. return try_to_wake_up(curr->private, mode, wake_flags);
  3491. }
  3492. EXPORT_SYMBOL(default_wake_function);
  3493. /*
  3494. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3495. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3496. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3497. *
  3498. * There are circumstances in which we can try to wake a task which has already
  3499. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3500. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3501. */
  3502. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3503. int nr_exclusive, int wake_flags, void *key)
  3504. {
  3505. wait_queue_t *curr, *next;
  3506. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3507. unsigned flags = curr->flags;
  3508. if (curr->func(curr, mode, wake_flags, key) &&
  3509. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3510. break;
  3511. }
  3512. }
  3513. /**
  3514. * __wake_up - wake up threads blocked on a waitqueue.
  3515. * @q: the waitqueue
  3516. * @mode: which threads
  3517. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3518. * @key: is directly passed to the wakeup function
  3519. *
  3520. * It may be assumed that this function implies a write memory barrier before
  3521. * changing the task state if and only if any tasks are woken up.
  3522. */
  3523. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3524. int nr_exclusive, void *key)
  3525. {
  3526. unsigned long flags;
  3527. spin_lock_irqsave(&q->lock, flags);
  3528. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3529. spin_unlock_irqrestore(&q->lock, flags);
  3530. }
  3531. EXPORT_SYMBOL(__wake_up);
  3532. /*
  3533. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3534. */
  3535. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3536. {
  3537. __wake_up_common(q, mode, 1, 0, NULL);
  3538. }
  3539. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3540. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3541. {
  3542. __wake_up_common(q, mode, 1, 0, key);
  3543. }
  3544. /**
  3545. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3546. * @q: the waitqueue
  3547. * @mode: which threads
  3548. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3549. * @key: opaque value to be passed to wakeup targets
  3550. *
  3551. * The sync wakeup differs that the waker knows that it will schedule
  3552. * away soon, so while the target thread will be woken up, it will not
  3553. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3554. * with each other. This can prevent needless bouncing between CPUs.
  3555. *
  3556. * On UP it can prevent extra preemption.
  3557. *
  3558. * It may be assumed that this function implies a write memory barrier before
  3559. * changing the task state if and only if any tasks are woken up.
  3560. */
  3561. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3562. int nr_exclusive, void *key)
  3563. {
  3564. unsigned long flags;
  3565. int wake_flags = WF_SYNC;
  3566. if (unlikely(!q))
  3567. return;
  3568. if (unlikely(!nr_exclusive))
  3569. wake_flags = 0;
  3570. spin_lock_irqsave(&q->lock, flags);
  3571. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3572. spin_unlock_irqrestore(&q->lock, flags);
  3573. }
  3574. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3575. /*
  3576. * __wake_up_sync - see __wake_up_sync_key()
  3577. */
  3578. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3579. {
  3580. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3581. }
  3582. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3583. /**
  3584. * complete: - signals a single thread waiting on this completion
  3585. * @x: holds the state of this particular completion
  3586. *
  3587. * This will wake up a single thread waiting on this completion. Threads will be
  3588. * awakened in the same order in which they were queued.
  3589. *
  3590. * See also complete_all(), wait_for_completion() and related routines.
  3591. *
  3592. * It may be assumed that this function implies a write memory barrier before
  3593. * changing the task state if and only if any tasks are woken up.
  3594. */
  3595. void complete(struct completion *x)
  3596. {
  3597. unsigned long flags;
  3598. spin_lock_irqsave(&x->wait.lock, flags);
  3599. x->done++;
  3600. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3601. spin_unlock_irqrestore(&x->wait.lock, flags);
  3602. }
  3603. EXPORT_SYMBOL(complete);
  3604. /**
  3605. * complete_all: - signals all threads waiting on this completion
  3606. * @x: holds the state of this particular completion
  3607. *
  3608. * This will wake up all threads waiting on this particular completion event.
  3609. *
  3610. * It may be assumed that this function implies a write memory barrier before
  3611. * changing the task state if and only if any tasks are woken up.
  3612. */
  3613. void complete_all(struct completion *x)
  3614. {
  3615. unsigned long flags;
  3616. spin_lock_irqsave(&x->wait.lock, flags);
  3617. x->done += UINT_MAX/2;
  3618. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3619. spin_unlock_irqrestore(&x->wait.lock, flags);
  3620. }
  3621. EXPORT_SYMBOL(complete_all);
  3622. static inline long __sched
  3623. do_wait_for_common(struct completion *x, long timeout, int state)
  3624. {
  3625. if (!x->done) {
  3626. DECLARE_WAITQUEUE(wait, current);
  3627. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3628. do {
  3629. if (signal_pending_state(state, current)) {
  3630. timeout = -ERESTARTSYS;
  3631. break;
  3632. }
  3633. __set_current_state(state);
  3634. spin_unlock_irq(&x->wait.lock);
  3635. timeout = schedule_timeout(timeout);
  3636. spin_lock_irq(&x->wait.lock);
  3637. } while (!x->done && timeout);
  3638. __remove_wait_queue(&x->wait, &wait);
  3639. if (!x->done)
  3640. return timeout;
  3641. }
  3642. x->done--;
  3643. return timeout ?: 1;
  3644. }
  3645. static long __sched
  3646. wait_for_common(struct completion *x, long timeout, int state)
  3647. {
  3648. might_sleep();
  3649. spin_lock_irq(&x->wait.lock);
  3650. timeout = do_wait_for_common(x, timeout, state);
  3651. spin_unlock_irq(&x->wait.lock);
  3652. return timeout;
  3653. }
  3654. /**
  3655. * wait_for_completion: - waits for completion of a task
  3656. * @x: holds the state of this particular completion
  3657. *
  3658. * This waits to be signaled for completion of a specific task. It is NOT
  3659. * interruptible and there is no timeout.
  3660. *
  3661. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3662. * and interrupt capability. Also see complete().
  3663. */
  3664. void __sched wait_for_completion(struct completion *x)
  3665. {
  3666. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3667. }
  3668. EXPORT_SYMBOL(wait_for_completion);
  3669. /**
  3670. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3671. * @x: holds the state of this particular completion
  3672. * @timeout: timeout value in jiffies
  3673. *
  3674. * This waits for either a completion of a specific task to be signaled or for a
  3675. * specified timeout to expire. The timeout is in jiffies. It is not
  3676. * interruptible.
  3677. */
  3678. unsigned long __sched
  3679. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3680. {
  3681. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3682. }
  3683. EXPORT_SYMBOL(wait_for_completion_timeout);
  3684. /**
  3685. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3686. * @x: holds the state of this particular completion
  3687. *
  3688. * This waits for completion of a specific task to be signaled. It is
  3689. * interruptible.
  3690. */
  3691. int __sched wait_for_completion_interruptible(struct completion *x)
  3692. {
  3693. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3694. if (t == -ERESTARTSYS)
  3695. return t;
  3696. return 0;
  3697. }
  3698. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3699. /**
  3700. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3701. * @x: holds the state of this particular completion
  3702. * @timeout: timeout value in jiffies
  3703. *
  3704. * This waits for either a completion of a specific task to be signaled or for a
  3705. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3706. */
  3707. long __sched
  3708. wait_for_completion_interruptible_timeout(struct completion *x,
  3709. unsigned long timeout)
  3710. {
  3711. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3712. }
  3713. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3714. /**
  3715. * wait_for_completion_killable: - waits for completion of a task (killable)
  3716. * @x: holds the state of this particular completion
  3717. *
  3718. * This waits to be signaled for completion of a specific task. It can be
  3719. * interrupted by a kill signal.
  3720. */
  3721. int __sched wait_for_completion_killable(struct completion *x)
  3722. {
  3723. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3724. if (t == -ERESTARTSYS)
  3725. return t;
  3726. return 0;
  3727. }
  3728. EXPORT_SYMBOL(wait_for_completion_killable);
  3729. /**
  3730. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3731. * @x: holds the state of this particular completion
  3732. * @timeout: timeout value in jiffies
  3733. *
  3734. * This waits for either a completion of a specific task to be
  3735. * signaled or for a specified timeout to expire. It can be
  3736. * interrupted by a kill signal. The timeout is in jiffies.
  3737. */
  3738. long __sched
  3739. wait_for_completion_killable_timeout(struct completion *x,
  3740. unsigned long timeout)
  3741. {
  3742. return wait_for_common(x, timeout, TASK_KILLABLE);
  3743. }
  3744. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3745. /**
  3746. * try_wait_for_completion - try to decrement a completion without blocking
  3747. * @x: completion structure
  3748. *
  3749. * Returns: 0 if a decrement cannot be done without blocking
  3750. * 1 if a decrement succeeded.
  3751. *
  3752. * If a completion is being used as a counting completion,
  3753. * attempt to decrement the counter without blocking. This
  3754. * enables us to avoid waiting if the resource the completion
  3755. * is protecting is not available.
  3756. */
  3757. bool try_wait_for_completion(struct completion *x)
  3758. {
  3759. unsigned long flags;
  3760. int ret = 1;
  3761. spin_lock_irqsave(&x->wait.lock, flags);
  3762. if (!x->done)
  3763. ret = 0;
  3764. else
  3765. x->done--;
  3766. spin_unlock_irqrestore(&x->wait.lock, flags);
  3767. return ret;
  3768. }
  3769. EXPORT_SYMBOL(try_wait_for_completion);
  3770. /**
  3771. * completion_done - Test to see if a completion has any waiters
  3772. * @x: completion structure
  3773. *
  3774. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3775. * 1 if there are no waiters.
  3776. *
  3777. */
  3778. bool completion_done(struct completion *x)
  3779. {
  3780. unsigned long flags;
  3781. int ret = 1;
  3782. spin_lock_irqsave(&x->wait.lock, flags);
  3783. if (!x->done)
  3784. ret = 0;
  3785. spin_unlock_irqrestore(&x->wait.lock, flags);
  3786. return ret;
  3787. }
  3788. EXPORT_SYMBOL(completion_done);
  3789. static long __sched
  3790. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3791. {
  3792. unsigned long flags;
  3793. wait_queue_t wait;
  3794. init_waitqueue_entry(&wait, current);
  3795. __set_current_state(state);
  3796. spin_lock_irqsave(&q->lock, flags);
  3797. __add_wait_queue(q, &wait);
  3798. spin_unlock(&q->lock);
  3799. timeout = schedule_timeout(timeout);
  3800. spin_lock_irq(&q->lock);
  3801. __remove_wait_queue(q, &wait);
  3802. spin_unlock_irqrestore(&q->lock, flags);
  3803. return timeout;
  3804. }
  3805. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3806. {
  3807. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3808. }
  3809. EXPORT_SYMBOL(interruptible_sleep_on);
  3810. long __sched
  3811. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3812. {
  3813. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3814. }
  3815. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3816. void __sched sleep_on(wait_queue_head_t *q)
  3817. {
  3818. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3819. }
  3820. EXPORT_SYMBOL(sleep_on);
  3821. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3822. {
  3823. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3824. }
  3825. EXPORT_SYMBOL(sleep_on_timeout);
  3826. #ifdef CONFIG_RT_MUTEXES
  3827. /*
  3828. * rt_mutex_setprio - set the current priority of a task
  3829. * @p: task
  3830. * @prio: prio value (kernel-internal form)
  3831. *
  3832. * This function changes the 'effective' priority of a task. It does
  3833. * not touch ->normal_prio like __setscheduler().
  3834. *
  3835. * Used by the rt_mutex code to implement priority inheritance logic.
  3836. */
  3837. void rt_mutex_setprio(struct task_struct *p, int prio)
  3838. {
  3839. unsigned long flags;
  3840. int oldprio, on_rq, running;
  3841. struct rq *rq;
  3842. const struct sched_class *prev_class;
  3843. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3844. rq = task_rq_lock(p, &flags);
  3845. trace_sched_pi_setprio(p, prio);
  3846. oldprio = p->prio;
  3847. prev_class = p->sched_class;
  3848. on_rq = p->se.on_rq;
  3849. running = task_current(rq, p);
  3850. if (on_rq)
  3851. dequeue_task(rq, p, 0);
  3852. if (running)
  3853. p->sched_class->put_prev_task(rq, p);
  3854. if (rt_prio(prio))
  3855. p->sched_class = &rt_sched_class;
  3856. else
  3857. p->sched_class = &fair_sched_class;
  3858. p->prio = prio;
  3859. if (running)
  3860. p->sched_class->set_curr_task(rq);
  3861. if (on_rq) {
  3862. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3863. check_class_changed(rq, p, prev_class, oldprio, running);
  3864. }
  3865. task_rq_unlock(rq, &flags);
  3866. }
  3867. #endif
  3868. void set_user_nice(struct task_struct *p, long nice)
  3869. {
  3870. int old_prio, delta, on_rq;
  3871. unsigned long flags;
  3872. struct rq *rq;
  3873. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3874. return;
  3875. /*
  3876. * We have to be careful, if called from sys_setpriority(),
  3877. * the task might be in the middle of scheduling on another CPU.
  3878. */
  3879. rq = task_rq_lock(p, &flags);
  3880. /*
  3881. * The RT priorities are set via sched_setscheduler(), but we still
  3882. * allow the 'normal' nice value to be set - but as expected
  3883. * it wont have any effect on scheduling until the task is
  3884. * SCHED_FIFO/SCHED_RR:
  3885. */
  3886. if (task_has_rt_policy(p)) {
  3887. p->static_prio = NICE_TO_PRIO(nice);
  3888. goto out_unlock;
  3889. }
  3890. on_rq = p->se.on_rq;
  3891. if (on_rq)
  3892. dequeue_task(rq, p, 0);
  3893. p->static_prio = NICE_TO_PRIO(nice);
  3894. set_load_weight(p);
  3895. old_prio = p->prio;
  3896. p->prio = effective_prio(p);
  3897. delta = p->prio - old_prio;
  3898. if (on_rq) {
  3899. enqueue_task(rq, p, 0);
  3900. /*
  3901. * If the task increased its priority or is running and
  3902. * lowered its priority, then reschedule its CPU:
  3903. */
  3904. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3905. resched_task(rq->curr);
  3906. }
  3907. out_unlock:
  3908. task_rq_unlock(rq, &flags);
  3909. }
  3910. EXPORT_SYMBOL(set_user_nice);
  3911. /*
  3912. * can_nice - check if a task can reduce its nice value
  3913. * @p: task
  3914. * @nice: nice value
  3915. */
  3916. int can_nice(const struct task_struct *p, const int nice)
  3917. {
  3918. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3919. int nice_rlim = 20 - nice;
  3920. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3921. capable(CAP_SYS_NICE));
  3922. }
  3923. #ifdef __ARCH_WANT_SYS_NICE
  3924. /*
  3925. * sys_nice - change the priority of the current process.
  3926. * @increment: priority increment
  3927. *
  3928. * sys_setpriority is a more generic, but much slower function that
  3929. * does similar things.
  3930. */
  3931. SYSCALL_DEFINE1(nice, int, increment)
  3932. {
  3933. long nice, retval;
  3934. /*
  3935. * Setpriority might change our priority at the same moment.
  3936. * We don't have to worry. Conceptually one call occurs first
  3937. * and we have a single winner.
  3938. */
  3939. if (increment < -40)
  3940. increment = -40;
  3941. if (increment > 40)
  3942. increment = 40;
  3943. nice = TASK_NICE(current) + increment;
  3944. if (nice < -20)
  3945. nice = -20;
  3946. if (nice > 19)
  3947. nice = 19;
  3948. if (increment < 0 && !can_nice(current, nice))
  3949. return -EPERM;
  3950. retval = security_task_setnice(current, nice);
  3951. if (retval)
  3952. return retval;
  3953. set_user_nice(current, nice);
  3954. return 0;
  3955. }
  3956. #endif
  3957. /**
  3958. * task_prio - return the priority value of a given task.
  3959. * @p: the task in question.
  3960. *
  3961. * This is the priority value as seen by users in /proc.
  3962. * RT tasks are offset by -200. Normal tasks are centered
  3963. * around 0, value goes from -16 to +15.
  3964. */
  3965. int task_prio(const struct task_struct *p)
  3966. {
  3967. return p->prio - MAX_RT_PRIO;
  3968. }
  3969. /**
  3970. * task_nice - return the nice value of a given task.
  3971. * @p: the task in question.
  3972. */
  3973. int task_nice(const struct task_struct *p)
  3974. {
  3975. return TASK_NICE(p);
  3976. }
  3977. EXPORT_SYMBOL(task_nice);
  3978. /**
  3979. * idle_cpu - is a given cpu idle currently?
  3980. * @cpu: the processor in question.
  3981. */
  3982. int idle_cpu(int cpu)
  3983. {
  3984. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3985. }
  3986. /**
  3987. * idle_task - return the idle task for a given cpu.
  3988. * @cpu: the processor in question.
  3989. */
  3990. struct task_struct *idle_task(int cpu)
  3991. {
  3992. return cpu_rq(cpu)->idle;
  3993. }
  3994. /**
  3995. * find_process_by_pid - find a process with a matching PID value.
  3996. * @pid: the pid in question.
  3997. */
  3998. static struct task_struct *find_process_by_pid(pid_t pid)
  3999. {
  4000. return pid ? find_task_by_vpid(pid) : current;
  4001. }
  4002. /* Actually do priority change: must hold rq lock. */
  4003. static void
  4004. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4005. {
  4006. BUG_ON(p->se.on_rq);
  4007. p->policy = policy;
  4008. p->rt_priority = prio;
  4009. p->normal_prio = normal_prio(p);
  4010. /* we are holding p->pi_lock already */
  4011. p->prio = rt_mutex_getprio(p);
  4012. if (rt_prio(p->prio))
  4013. p->sched_class = &rt_sched_class;
  4014. else
  4015. p->sched_class = &fair_sched_class;
  4016. set_load_weight(p);
  4017. }
  4018. /*
  4019. * check the target process has a UID that matches the current process's
  4020. */
  4021. static bool check_same_owner(struct task_struct *p)
  4022. {
  4023. const struct cred *cred = current_cred(), *pcred;
  4024. bool match;
  4025. rcu_read_lock();
  4026. pcred = __task_cred(p);
  4027. match = (cred->euid == pcred->euid ||
  4028. cred->euid == pcred->uid);
  4029. rcu_read_unlock();
  4030. return match;
  4031. }
  4032. static int __sched_setscheduler(struct task_struct *p, int policy,
  4033. const struct sched_param *param, bool user)
  4034. {
  4035. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4036. unsigned long flags;
  4037. const struct sched_class *prev_class;
  4038. struct rq *rq;
  4039. int reset_on_fork;
  4040. /* may grab non-irq protected spin_locks */
  4041. BUG_ON(in_interrupt());
  4042. recheck:
  4043. /* double check policy once rq lock held */
  4044. if (policy < 0) {
  4045. reset_on_fork = p->sched_reset_on_fork;
  4046. policy = oldpolicy = p->policy;
  4047. } else {
  4048. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4049. policy &= ~SCHED_RESET_ON_FORK;
  4050. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4051. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4052. policy != SCHED_IDLE)
  4053. return -EINVAL;
  4054. }
  4055. /*
  4056. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4057. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4058. * SCHED_BATCH and SCHED_IDLE is 0.
  4059. */
  4060. if (param->sched_priority < 0 ||
  4061. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4062. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4063. return -EINVAL;
  4064. if (rt_policy(policy) != (param->sched_priority != 0))
  4065. return -EINVAL;
  4066. /*
  4067. * Allow unprivileged RT tasks to decrease priority:
  4068. */
  4069. if (user && !capable(CAP_SYS_NICE)) {
  4070. if (rt_policy(policy)) {
  4071. unsigned long rlim_rtprio =
  4072. task_rlimit(p, RLIMIT_RTPRIO);
  4073. /* can't set/change the rt policy */
  4074. if (policy != p->policy && !rlim_rtprio)
  4075. return -EPERM;
  4076. /* can't increase priority */
  4077. if (param->sched_priority > p->rt_priority &&
  4078. param->sched_priority > rlim_rtprio)
  4079. return -EPERM;
  4080. }
  4081. /*
  4082. * Like positive nice levels, dont allow tasks to
  4083. * move out of SCHED_IDLE either:
  4084. */
  4085. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4086. return -EPERM;
  4087. /* can't change other user's priorities */
  4088. if (!check_same_owner(p))
  4089. return -EPERM;
  4090. /* Normal users shall not reset the sched_reset_on_fork flag */
  4091. if (p->sched_reset_on_fork && !reset_on_fork)
  4092. return -EPERM;
  4093. }
  4094. if (user) {
  4095. retval = security_task_setscheduler(p);
  4096. if (retval)
  4097. return retval;
  4098. }
  4099. /*
  4100. * make sure no PI-waiters arrive (or leave) while we are
  4101. * changing the priority of the task:
  4102. */
  4103. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4104. /*
  4105. * To be able to change p->policy safely, the apropriate
  4106. * runqueue lock must be held.
  4107. */
  4108. rq = __task_rq_lock(p);
  4109. /*
  4110. * Changing the policy of the stop threads its a very bad idea
  4111. */
  4112. if (p == rq->stop) {
  4113. __task_rq_unlock(rq);
  4114. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4115. return -EINVAL;
  4116. }
  4117. #ifdef CONFIG_RT_GROUP_SCHED
  4118. if (user) {
  4119. /*
  4120. * Do not allow realtime tasks into groups that have no runtime
  4121. * assigned.
  4122. */
  4123. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4124. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4125. !task_group_is_autogroup(task_group(p))) {
  4126. __task_rq_unlock(rq);
  4127. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4128. return -EPERM;
  4129. }
  4130. }
  4131. #endif
  4132. /* recheck policy now with rq lock held */
  4133. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4134. policy = oldpolicy = -1;
  4135. __task_rq_unlock(rq);
  4136. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4137. goto recheck;
  4138. }
  4139. on_rq = p->se.on_rq;
  4140. running = task_current(rq, p);
  4141. if (on_rq)
  4142. deactivate_task(rq, p, 0);
  4143. if (running)
  4144. p->sched_class->put_prev_task(rq, p);
  4145. p->sched_reset_on_fork = reset_on_fork;
  4146. oldprio = p->prio;
  4147. prev_class = p->sched_class;
  4148. __setscheduler(rq, p, policy, param->sched_priority);
  4149. if (running)
  4150. p->sched_class->set_curr_task(rq);
  4151. if (on_rq) {
  4152. activate_task(rq, p, 0);
  4153. check_class_changed(rq, p, prev_class, oldprio, running);
  4154. }
  4155. __task_rq_unlock(rq);
  4156. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4157. rt_mutex_adjust_pi(p);
  4158. return 0;
  4159. }
  4160. /**
  4161. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4162. * @p: the task in question.
  4163. * @policy: new policy.
  4164. * @param: structure containing the new RT priority.
  4165. *
  4166. * NOTE that the task may be already dead.
  4167. */
  4168. int sched_setscheduler(struct task_struct *p, int policy,
  4169. const struct sched_param *param)
  4170. {
  4171. return __sched_setscheduler(p, policy, param, true);
  4172. }
  4173. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4174. /**
  4175. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4176. * @p: the task in question.
  4177. * @policy: new policy.
  4178. * @param: structure containing the new RT priority.
  4179. *
  4180. * Just like sched_setscheduler, only don't bother checking if the
  4181. * current context has permission. For example, this is needed in
  4182. * stop_machine(): we create temporary high priority worker threads,
  4183. * but our caller might not have that capability.
  4184. */
  4185. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4186. const struct sched_param *param)
  4187. {
  4188. return __sched_setscheduler(p, policy, param, false);
  4189. }
  4190. static int
  4191. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4192. {
  4193. struct sched_param lparam;
  4194. struct task_struct *p;
  4195. int retval;
  4196. if (!param || pid < 0)
  4197. return -EINVAL;
  4198. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4199. return -EFAULT;
  4200. rcu_read_lock();
  4201. retval = -ESRCH;
  4202. p = find_process_by_pid(pid);
  4203. if (p != NULL)
  4204. retval = sched_setscheduler(p, policy, &lparam);
  4205. rcu_read_unlock();
  4206. return retval;
  4207. }
  4208. /**
  4209. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4210. * @pid: the pid in question.
  4211. * @policy: new policy.
  4212. * @param: structure containing the new RT priority.
  4213. */
  4214. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4215. struct sched_param __user *, param)
  4216. {
  4217. /* negative values for policy are not valid */
  4218. if (policy < 0)
  4219. return -EINVAL;
  4220. return do_sched_setscheduler(pid, policy, param);
  4221. }
  4222. /**
  4223. * sys_sched_setparam - set/change the RT priority of a thread
  4224. * @pid: the pid in question.
  4225. * @param: structure containing the new RT priority.
  4226. */
  4227. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4228. {
  4229. return do_sched_setscheduler(pid, -1, param);
  4230. }
  4231. /**
  4232. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4233. * @pid: the pid in question.
  4234. */
  4235. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4236. {
  4237. struct task_struct *p;
  4238. int retval;
  4239. if (pid < 0)
  4240. return -EINVAL;
  4241. retval = -ESRCH;
  4242. rcu_read_lock();
  4243. p = find_process_by_pid(pid);
  4244. if (p) {
  4245. retval = security_task_getscheduler(p);
  4246. if (!retval)
  4247. retval = p->policy
  4248. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4249. }
  4250. rcu_read_unlock();
  4251. return retval;
  4252. }
  4253. /**
  4254. * sys_sched_getparam - get the RT priority of a thread
  4255. * @pid: the pid in question.
  4256. * @param: structure containing the RT priority.
  4257. */
  4258. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4259. {
  4260. struct sched_param lp;
  4261. struct task_struct *p;
  4262. int retval;
  4263. if (!param || pid < 0)
  4264. return -EINVAL;
  4265. rcu_read_lock();
  4266. p = find_process_by_pid(pid);
  4267. retval = -ESRCH;
  4268. if (!p)
  4269. goto out_unlock;
  4270. retval = security_task_getscheduler(p);
  4271. if (retval)
  4272. goto out_unlock;
  4273. lp.sched_priority = p->rt_priority;
  4274. rcu_read_unlock();
  4275. /*
  4276. * This one might sleep, we cannot do it with a spinlock held ...
  4277. */
  4278. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4279. return retval;
  4280. out_unlock:
  4281. rcu_read_unlock();
  4282. return retval;
  4283. }
  4284. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4285. {
  4286. cpumask_var_t cpus_allowed, new_mask;
  4287. struct task_struct *p;
  4288. int retval;
  4289. get_online_cpus();
  4290. rcu_read_lock();
  4291. p = find_process_by_pid(pid);
  4292. if (!p) {
  4293. rcu_read_unlock();
  4294. put_online_cpus();
  4295. return -ESRCH;
  4296. }
  4297. /* Prevent p going away */
  4298. get_task_struct(p);
  4299. rcu_read_unlock();
  4300. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4301. retval = -ENOMEM;
  4302. goto out_put_task;
  4303. }
  4304. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4305. retval = -ENOMEM;
  4306. goto out_free_cpus_allowed;
  4307. }
  4308. retval = -EPERM;
  4309. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4310. goto out_unlock;
  4311. retval = security_task_setscheduler(p);
  4312. if (retval)
  4313. goto out_unlock;
  4314. cpuset_cpus_allowed(p, cpus_allowed);
  4315. cpumask_and(new_mask, in_mask, cpus_allowed);
  4316. again:
  4317. retval = set_cpus_allowed_ptr(p, new_mask);
  4318. if (!retval) {
  4319. cpuset_cpus_allowed(p, cpus_allowed);
  4320. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4321. /*
  4322. * We must have raced with a concurrent cpuset
  4323. * update. Just reset the cpus_allowed to the
  4324. * cpuset's cpus_allowed
  4325. */
  4326. cpumask_copy(new_mask, cpus_allowed);
  4327. goto again;
  4328. }
  4329. }
  4330. out_unlock:
  4331. free_cpumask_var(new_mask);
  4332. out_free_cpus_allowed:
  4333. free_cpumask_var(cpus_allowed);
  4334. out_put_task:
  4335. put_task_struct(p);
  4336. put_online_cpus();
  4337. return retval;
  4338. }
  4339. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4340. struct cpumask *new_mask)
  4341. {
  4342. if (len < cpumask_size())
  4343. cpumask_clear(new_mask);
  4344. else if (len > cpumask_size())
  4345. len = cpumask_size();
  4346. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4347. }
  4348. /**
  4349. * sys_sched_setaffinity - set the cpu affinity of a process
  4350. * @pid: pid of the process
  4351. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4352. * @user_mask_ptr: user-space pointer to the new cpu mask
  4353. */
  4354. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4355. unsigned long __user *, user_mask_ptr)
  4356. {
  4357. cpumask_var_t new_mask;
  4358. int retval;
  4359. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4360. return -ENOMEM;
  4361. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4362. if (retval == 0)
  4363. retval = sched_setaffinity(pid, new_mask);
  4364. free_cpumask_var(new_mask);
  4365. return retval;
  4366. }
  4367. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4368. {
  4369. struct task_struct *p;
  4370. unsigned long flags;
  4371. struct rq *rq;
  4372. int retval;
  4373. get_online_cpus();
  4374. rcu_read_lock();
  4375. retval = -ESRCH;
  4376. p = find_process_by_pid(pid);
  4377. if (!p)
  4378. goto out_unlock;
  4379. retval = security_task_getscheduler(p);
  4380. if (retval)
  4381. goto out_unlock;
  4382. rq = task_rq_lock(p, &flags);
  4383. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4384. task_rq_unlock(rq, &flags);
  4385. out_unlock:
  4386. rcu_read_unlock();
  4387. put_online_cpus();
  4388. return retval;
  4389. }
  4390. /**
  4391. * sys_sched_getaffinity - get the cpu affinity of a process
  4392. * @pid: pid of the process
  4393. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4394. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4395. */
  4396. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4397. unsigned long __user *, user_mask_ptr)
  4398. {
  4399. int ret;
  4400. cpumask_var_t mask;
  4401. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4402. return -EINVAL;
  4403. if (len & (sizeof(unsigned long)-1))
  4404. return -EINVAL;
  4405. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4406. return -ENOMEM;
  4407. ret = sched_getaffinity(pid, mask);
  4408. if (ret == 0) {
  4409. size_t retlen = min_t(size_t, len, cpumask_size());
  4410. if (copy_to_user(user_mask_ptr, mask, retlen))
  4411. ret = -EFAULT;
  4412. else
  4413. ret = retlen;
  4414. }
  4415. free_cpumask_var(mask);
  4416. return ret;
  4417. }
  4418. /**
  4419. * sys_sched_yield - yield the current processor to other threads.
  4420. *
  4421. * This function yields the current CPU to other tasks. If there are no
  4422. * other threads running on this CPU then this function will return.
  4423. */
  4424. SYSCALL_DEFINE0(sched_yield)
  4425. {
  4426. struct rq *rq = this_rq_lock();
  4427. schedstat_inc(rq, yld_count);
  4428. current->sched_class->yield_task(rq);
  4429. /*
  4430. * Since we are going to call schedule() anyway, there's
  4431. * no need to preempt or enable interrupts:
  4432. */
  4433. __release(rq->lock);
  4434. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4435. do_raw_spin_unlock(&rq->lock);
  4436. preempt_enable_no_resched();
  4437. schedule();
  4438. return 0;
  4439. }
  4440. static inline int should_resched(void)
  4441. {
  4442. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4443. }
  4444. static void __cond_resched(void)
  4445. {
  4446. add_preempt_count(PREEMPT_ACTIVE);
  4447. schedule();
  4448. sub_preempt_count(PREEMPT_ACTIVE);
  4449. }
  4450. int __sched _cond_resched(void)
  4451. {
  4452. if (should_resched()) {
  4453. __cond_resched();
  4454. return 1;
  4455. }
  4456. return 0;
  4457. }
  4458. EXPORT_SYMBOL(_cond_resched);
  4459. /*
  4460. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4461. * call schedule, and on return reacquire the lock.
  4462. *
  4463. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4464. * operations here to prevent schedule() from being called twice (once via
  4465. * spin_unlock(), once by hand).
  4466. */
  4467. int __cond_resched_lock(spinlock_t *lock)
  4468. {
  4469. int resched = should_resched();
  4470. int ret = 0;
  4471. lockdep_assert_held(lock);
  4472. if (spin_needbreak(lock) || resched) {
  4473. spin_unlock(lock);
  4474. if (resched)
  4475. __cond_resched();
  4476. else
  4477. cpu_relax();
  4478. ret = 1;
  4479. spin_lock(lock);
  4480. }
  4481. return ret;
  4482. }
  4483. EXPORT_SYMBOL(__cond_resched_lock);
  4484. int __sched __cond_resched_softirq(void)
  4485. {
  4486. BUG_ON(!in_softirq());
  4487. if (should_resched()) {
  4488. local_bh_enable();
  4489. __cond_resched();
  4490. local_bh_disable();
  4491. return 1;
  4492. }
  4493. return 0;
  4494. }
  4495. EXPORT_SYMBOL(__cond_resched_softirq);
  4496. /**
  4497. * yield - yield the current processor to other threads.
  4498. *
  4499. * This is a shortcut for kernel-space yielding - it marks the
  4500. * thread runnable and calls sys_sched_yield().
  4501. */
  4502. void __sched yield(void)
  4503. {
  4504. set_current_state(TASK_RUNNING);
  4505. sys_sched_yield();
  4506. }
  4507. EXPORT_SYMBOL(yield);
  4508. /*
  4509. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4510. * that process accounting knows that this is a task in IO wait state.
  4511. */
  4512. void __sched io_schedule(void)
  4513. {
  4514. struct rq *rq = raw_rq();
  4515. delayacct_blkio_start();
  4516. atomic_inc(&rq->nr_iowait);
  4517. current->in_iowait = 1;
  4518. schedule();
  4519. current->in_iowait = 0;
  4520. atomic_dec(&rq->nr_iowait);
  4521. delayacct_blkio_end();
  4522. }
  4523. EXPORT_SYMBOL(io_schedule);
  4524. long __sched io_schedule_timeout(long timeout)
  4525. {
  4526. struct rq *rq = raw_rq();
  4527. long ret;
  4528. delayacct_blkio_start();
  4529. atomic_inc(&rq->nr_iowait);
  4530. current->in_iowait = 1;
  4531. ret = schedule_timeout(timeout);
  4532. current->in_iowait = 0;
  4533. atomic_dec(&rq->nr_iowait);
  4534. delayacct_blkio_end();
  4535. return ret;
  4536. }
  4537. /**
  4538. * sys_sched_get_priority_max - return maximum RT priority.
  4539. * @policy: scheduling class.
  4540. *
  4541. * this syscall returns the maximum rt_priority that can be used
  4542. * by a given scheduling class.
  4543. */
  4544. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4545. {
  4546. int ret = -EINVAL;
  4547. switch (policy) {
  4548. case SCHED_FIFO:
  4549. case SCHED_RR:
  4550. ret = MAX_USER_RT_PRIO-1;
  4551. break;
  4552. case SCHED_NORMAL:
  4553. case SCHED_BATCH:
  4554. case SCHED_IDLE:
  4555. ret = 0;
  4556. break;
  4557. }
  4558. return ret;
  4559. }
  4560. /**
  4561. * sys_sched_get_priority_min - return minimum RT priority.
  4562. * @policy: scheduling class.
  4563. *
  4564. * this syscall returns the minimum rt_priority that can be used
  4565. * by a given scheduling class.
  4566. */
  4567. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4568. {
  4569. int ret = -EINVAL;
  4570. switch (policy) {
  4571. case SCHED_FIFO:
  4572. case SCHED_RR:
  4573. ret = 1;
  4574. break;
  4575. case SCHED_NORMAL:
  4576. case SCHED_BATCH:
  4577. case SCHED_IDLE:
  4578. ret = 0;
  4579. }
  4580. return ret;
  4581. }
  4582. /**
  4583. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4584. * @pid: pid of the process.
  4585. * @interval: userspace pointer to the timeslice value.
  4586. *
  4587. * this syscall writes the default timeslice value of a given process
  4588. * into the user-space timespec buffer. A value of '0' means infinity.
  4589. */
  4590. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4591. struct timespec __user *, interval)
  4592. {
  4593. struct task_struct *p;
  4594. unsigned int time_slice;
  4595. unsigned long flags;
  4596. struct rq *rq;
  4597. int retval;
  4598. struct timespec t;
  4599. if (pid < 0)
  4600. return -EINVAL;
  4601. retval = -ESRCH;
  4602. rcu_read_lock();
  4603. p = find_process_by_pid(pid);
  4604. if (!p)
  4605. goto out_unlock;
  4606. retval = security_task_getscheduler(p);
  4607. if (retval)
  4608. goto out_unlock;
  4609. rq = task_rq_lock(p, &flags);
  4610. time_slice = p->sched_class->get_rr_interval(rq, p);
  4611. task_rq_unlock(rq, &flags);
  4612. rcu_read_unlock();
  4613. jiffies_to_timespec(time_slice, &t);
  4614. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4615. return retval;
  4616. out_unlock:
  4617. rcu_read_unlock();
  4618. return retval;
  4619. }
  4620. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4621. void sched_show_task(struct task_struct *p)
  4622. {
  4623. unsigned long free = 0;
  4624. unsigned state;
  4625. state = p->state ? __ffs(p->state) + 1 : 0;
  4626. printk(KERN_INFO "%-15.15s %c", p->comm,
  4627. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4628. #if BITS_PER_LONG == 32
  4629. if (state == TASK_RUNNING)
  4630. printk(KERN_CONT " running ");
  4631. else
  4632. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4633. #else
  4634. if (state == TASK_RUNNING)
  4635. printk(KERN_CONT " running task ");
  4636. else
  4637. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4638. #endif
  4639. #ifdef CONFIG_DEBUG_STACK_USAGE
  4640. free = stack_not_used(p);
  4641. #endif
  4642. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4643. task_pid_nr(p), task_pid_nr(p->real_parent),
  4644. (unsigned long)task_thread_info(p)->flags);
  4645. show_stack(p, NULL);
  4646. }
  4647. void show_state_filter(unsigned long state_filter)
  4648. {
  4649. struct task_struct *g, *p;
  4650. #if BITS_PER_LONG == 32
  4651. printk(KERN_INFO
  4652. " task PC stack pid father\n");
  4653. #else
  4654. printk(KERN_INFO
  4655. " task PC stack pid father\n");
  4656. #endif
  4657. read_lock(&tasklist_lock);
  4658. do_each_thread(g, p) {
  4659. /*
  4660. * reset the NMI-timeout, listing all files on a slow
  4661. * console might take alot of time:
  4662. */
  4663. touch_nmi_watchdog();
  4664. if (!state_filter || (p->state & state_filter))
  4665. sched_show_task(p);
  4666. } while_each_thread(g, p);
  4667. touch_all_softlockup_watchdogs();
  4668. #ifdef CONFIG_SCHED_DEBUG
  4669. sysrq_sched_debug_show();
  4670. #endif
  4671. read_unlock(&tasklist_lock);
  4672. /*
  4673. * Only show locks if all tasks are dumped:
  4674. */
  4675. if (!state_filter)
  4676. debug_show_all_locks();
  4677. }
  4678. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4679. {
  4680. idle->sched_class = &idle_sched_class;
  4681. }
  4682. /**
  4683. * init_idle - set up an idle thread for a given CPU
  4684. * @idle: task in question
  4685. * @cpu: cpu the idle task belongs to
  4686. *
  4687. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4688. * flag, to make booting more robust.
  4689. */
  4690. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4691. {
  4692. struct rq *rq = cpu_rq(cpu);
  4693. unsigned long flags;
  4694. raw_spin_lock_irqsave(&rq->lock, flags);
  4695. __sched_fork(idle);
  4696. idle->state = TASK_RUNNING;
  4697. idle->se.exec_start = sched_clock();
  4698. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4699. /*
  4700. * We're having a chicken and egg problem, even though we are
  4701. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4702. * lockdep check in task_group() will fail.
  4703. *
  4704. * Similar case to sched_fork(). / Alternatively we could
  4705. * use task_rq_lock() here and obtain the other rq->lock.
  4706. *
  4707. * Silence PROVE_RCU
  4708. */
  4709. rcu_read_lock();
  4710. __set_task_cpu(idle, cpu);
  4711. rcu_read_unlock();
  4712. rq->curr = rq->idle = idle;
  4713. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4714. idle->oncpu = 1;
  4715. #endif
  4716. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4717. /* Set the preempt count _outside_ the spinlocks! */
  4718. #if defined(CONFIG_PREEMPT)
  4719. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4720. #else
  4721. task_thread_info(idle)->preempt_count = 0;
  4722. #endif
  4723. /*
  4724. * The idle tasks have their own, simple scheduling class:
  4725. */
  4726. idle->sched_class = &idle_sched_class;
  4727. ftrace_graph_init_idle_task(idle, cpu);
  4728. }
  4729. /*
  4730. * In a system that switches off the HZ timer nohz_cpu_mask
  4731. * indicates which cpus entered this state. This is used
  4732. * in the rcu update to wait only for active cpus. For system
  4733. * which do not switch off the HZ timer nohz_cpu_mask should
  4734. * always be CPU_BITS_NONE.
  4735. */
  4736. cpumask_var_t nohz_cpu_mask;
  4737. /*
  4738. * Increase the granularity value when there are more CPUs,
  4739. * because with more CPUs the 'effective latency' as visible
  4740. * to users decreases. But the relationship is not linear,
  4741. * so pick a second-best guess by going with the log2 of the
  4742. * number of CPUs.
  4743. *
  4744. * This idea comes from the SD scheduler of Con Kolivas:
  4745. */
  4746. static int get_update_sysctl_factor(void)
  4747. {
  4748. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4749. unsigned int factor;
  4750. switch (sysctl_sched_tunable_scaling) {
  4751. case SCHED_TUNABLESCALING_NONE:
  4752. factor = 1;
  4753. break;
  4754. case SCHED_TUNABLESCALING_LINEAR:
  4755. factor = cpus;
  4756. break;
  4757. case SCHED_TUNABLESCALING_LOG:
  4758. default:
  4759. factor = 1 + ilog2(cpus);
  4760. break;
  4761. }
  4762. return factor;
  4763. }
  4764. static void update_sysctl(void)
  4765. {
  4766. unsigned int factor = get_update_sysctl_factor();
  4767. #define SET_SYSCTL(name) \
  4768. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4769. SET_SYSCTL(sched_min_granularity);
  4770. SET_SYSCTL(sched_latency);
  4771. SET_SYSCTL(sched_wakeup_granularity);
  4772. #undef SET_SYSCTL
  4773. }
  4774. static inline void sched_init_granularity(void)
  4775. {
  4776. update_sysctl();
  4777. }
  4778. #ifdef CONFIG_SMP
  4779. /*
  4780. * This is how migration works:
  4781. *
  4782. * 1) we invoke migration_cpu_stop() on the target CPU using
  4783. * stop_one_cpu().
  4784. * 2) stopper starts to run (implicitly forcing the migrated thread
  4785. * off the CPU)
  4786. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4787. * 4) if it's in the wrong runqueue then the migration thread removes
  4788. * it and puts it into the right queue.
  4789. * 5) stopper completes and stop_one_cpu() returns and the migration
  4790. * is done.
  4791. */
  4792. /*
  4793. * Change a given task's CPU affinity. Migrate the thread to a
  4794. * proper CPU and schedule it away if the CPU it's executing on
  4795. * is removed from the allowed bitmask.
  4796. *
  4797. * NOTE: the caller must have a valid reference to the task, the
  4798. * task must not exit() & deallocate itself prematurely. The
  4799. * call is not atomic; no spinlocks may be held.
  4800. */
  4801. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4802. {
  4803. unsigned long flags;
  4804. struct rq *rq;
  4805. unsigned int dest_cpu;
  4806. int ret = 0;
  4807. /*
  4808. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4809. * drop the rq->lock and still rely on ->cpus_allowed.
  4810. */
  4811. again:
  4812. while (task_is_waking(p))
  4813. cpu_relax();
  4814. rq = task_rq_lock(p, &flags);
  4815. if (task_is_waking(p)) {
  4816. task_rq_unlock(rq, &flags);
  4817. goto again;
  4818. }
  4819. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4820. ret = -EINVAL;
  4821. goto out;
  4822. }
  4823. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4824. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4825. ret = -EINVAL;
  4826. goto out;
  4827. }
  4828. if (p->sched_class->set_cpus_allowed)
  4829. p->sched_class->set_cpus_allowed(p, new_mask);
  4830. else {
  4831. cpumask_copy(&p->cpus_allowed, new_mask);
  4832. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4833. }
  4834. /* Can the task run on the task's current CPU? If so, we're done */
  4835. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4836. goto out;
  4837. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4838. if (migrate_task(p, rq)) {
  4839. struct migration_arg arg = { p, dest_cpu };
  4840. /* Need help from migration thread: drop lock and wait. */
  4841. task_rq_unlock(rq, &flags);
  4842. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4843. tlb_migrate_finish(p->mm);
  4844. return 0;
  4845. }
  4846. out:
  4847. task_rq_unlock(rq, &flags);
  4848. return ret;
  4849. }
  4850. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4851. /*
  4852. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4853. * this because either it can't run here any more (set_cpus_allowed()
  4854. * away from this CPU, or CPU going down), or because we're
  4855. * attempting to rebalance this task on exec (sched_exec).
  4856. *
  4857. * So we race with normal scheduler movements, but that's OK, as long
  4858. * as the task is no longer on this CPU.
  4859. *
  4860. * Returns non-zero if task was successfully migrated.
  4861. */
  4862. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4863. {
  4864. struct rq *rq_dest, *rq_src;
  4865. int ret = 0;
  4866. if (unlikely(!cpu_active(dest_cpu)))
  4867. return ret;
  4868. rq_src = cpu_rq(src_cpu);
  4869. rq_dest = cpu_rq(dest_cpu);
  4870. double_rq_lock(rq_src, rq_dest);
  4871. /* Already moved. */
  4872. if (task_cpu(p) != src_cpu)
  4873. goto done;
  4874. /* Affinity changed (again). */
  4875. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4876. goto fail;
  4877. /*
  4878. * If we're not on a rq, the next wake-up will ensure we're
  4879. * placed properly.
  4880. */
  4881. if (p->se.on_rq) {
  4882. deactivate_task(rq_src, p, 0);
  4883. set_task_cpu(p, dest_cpu);
  4884. activate_task(rq_dest, p, 0);
  4885. check_preempt_curr(rq_dest, p, 0);
  4886. }
  4887. done:
  4888. ret = 1;
  4889. fail:
  4890. double_rq_unlock(rq_src, rq_dest);
  4891. return ret;
  4892. }
  4893. /*
  4894. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4895. * and performs thread migration by bumping thread off CPU then
  4896. * 'pushing' onto another runqueue.
  4897. */
  4898. static int migration_cpu_stop(void *data)
  4899. {
  4900. struct migration_arg *arg = data;
  4901. /*
  4902. * The original target cpu might have gone down and we might
  4903. * be on another cpu but it doesn't matter.
  4904. */
  4905. local_irq_disable();
  4906. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4907. local_irq_enable();
  4908. return 0;
  4909. }
  4910. #ifdef CONFIG_HOTPLUG_CPU
  4911. /*
  4912. * Ensures that the idle task is using init_mm right before its cpu goes
  4913. * offline.
  4914. */
  4915. void idle_task_exit(void)
  4916. {
  4917. struct mm_struct *mm = current->active_mm;
  4918. BUG_ON(cpu_online(smp_processor_id()));
  4919. if (mm != &init_mm)
  4920. switch_mm(mm, &init_mm, current);
  4921. mmdrop(mm);
  4922. }
  4923. /*
  4924. * While a dead CPU has no uninterruptible tasks queued at this point,
  4925. * it might still have a nonzero ->nr_uninterruptible counter, because
  4926. * for performance reasons the counter is not stricly tracking tasks to
  4927. * their home CPUs. So we just add the counter to another CPU's counter,
  4928. * to keep the global sum constant after CPU-down:
  4929. */
  4930. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4931. {
  4932. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4933. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4934. rq_src->nr_uninterruptible = 0;
  4935. }
  4936. /*
  4937. * remove the tasks which were accounted by rq from calc_load_tasks.
  4938. */
  4939. static void calc_global_load_remove(struct rq *rq)
  4940. {
  4941. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4942. rq->calc_load_active = 0;
  4943. }
  4944. /*
  4945. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4946. * try_to_wake_up()->select_task_rq().
  4947. *
  4948. * Called with rq->lock held even though we'er in stop_machine() and
  4949. * there's no concurrency possible, we hold the required locks anyway
  4950. * because of lock validation efforts.
  4951. */
  4952. static void migrate_tasks(unsigned int dead_cpu)
  4953. {
  4954. struct rq *rq = cpu_rq(dead_cpu);
  4955. struct task_struct *next, *stop = rq->stop;
  4956. int dest_cpu;
  4957. /*
  4958. * Fudge the rq selection such that the below task selection loop
  4959. * doesn't get stuck on the currently eligible stop task.
  4960. *
  4961. * We're currently inside stop_machine() and the rq is either stuck
  4962. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4963. * either way we should never end up calling schedule() until we're
  4964. * done here.
  4965. */
  4966. rq->stop = NULL;
  4967. for ( ; ; ) {
  4968. /*
  4969. * There's this thread running, bail when that's the only
  4970. * remaining thread.
  4971. */
  4972. if (rq->nr_running == 1)
  4973. break;
  4974. next = pick_next_task(rq);
  4975. BUG_ON(!next);
  4976. next->sched_class->put_prev_task(rq, next);
  4977. /* Find suitable destination for @next, with force if needed. */
  4978. dest_cpu = select_fallback_rq(dead_cpu, next);
  4979. raw_spin_unlock(&rq->lock);
  4980. __migrate_task(next, dead_cpu, dest_cpu);
  4981. raw_spin_lock(&rq->lock);
  4982. }
  4983. rq->stop = stop;
  4984. }
  4985. #endif /* CONFIG_HOTPLUG_CPU */
  4986. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4987. static struct ctl_table sd_ctl_dir[] = {
  4988. {
  4989. .procname = "sched_domain",
  4990. .mode = 0555,
  4991. },
  4992. {}
  4993. };
  4994. static struct ctl_table sd_ctl_root[] = {
  4995. {
  4996. .procname = "kernel",
  4997. .mode = 0555,
  4998. .child = sd_ctl_dir,
  4999. },
  5000. {}
  5001. };
  5002. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5003. {
  5004. struct ctl_table *entry =
  5005. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5006. return entry;
  5007. }
  5008. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5009. {
  5010. struct ctl_table *entry;
  5011. /*
  5012. * In the intermediate directories, both the child directory and
  5013. * procname are dynamically allocated and could fail but the mode
  5014. * will always be set. In the lowest directory the names are
  5015. * static strings and all have proc handlers.
  5016. */
  5017. for (entry = *tablep; entry->mode; entry++) {
  5018. if (entry->child)
  5019. sd_free_ctl_entry(&entry->child);
  5020. if (entry->proc_handler == NULL)
  5021. kfree(entry->procname);
  5022. }
  5023. kfree(*tablep);
  5024. *tablep = NULL;
  5025. }
  5026. static void
  5027. set_table_entry(struct ctl_table *entry,
  5028. const char *procname, void *data, int maxlen,
  5029. mode_t mode, proc_handler *proc_handler)
  5030. {
  5031. entry->procname = procname;
  5032. entry->data = data;
  5033. entry->maxlen = maxlen;
  5034. entry->mode = mode;
  5035. entry->proc_handler = proc_handler;
  5036. }
  5037. static struct ctl_table *
  5038. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5039. {
  5040. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5041. if (table == NULL)
  5042. return NULL;
  5043. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5044. sizeof(long), 0644, proc_doulongvec_minmax);
  5045. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5046. sizeof(long), 0644, proc_doulongvec_minmax);
  5047. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5048. sizeof(int), 0644, proc_dointvec_minmax);
  5049. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5050. sizeof(int), 0644, proc_dointvec_minmax);
  5051. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5052. sizeof(int), 0644, proc_dointvec_minmax);
  5053. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5054. sizeof(int), 0644, proc_dointvec_minmax);
  5055. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5056. sizeof(int), 0644, proc_dointvec_minmax);
  5057. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5058. sizeof(int), 0644, proc_dointvec_minmax);
  5059. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5060. sizeof(int), 0644, proc_dointvec_minmax);
  5061. set_table_entry(&table[9], "cache_nice_tries",
  5062. &sd->cache_nice_tries,
  5063. sizeof(int), 0644, proc_dointvec_minmax);
  5064. set_table_entry(&table[10], "flags", &sd->flags,
  5065. sizeof(int), 0644, proc_dointvec_minmax);
  5066. set_table_entry(&table[11], "name", sd->name,
  5067. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5068. /* &table[12] is terminator */
  5069. return table;
  5070. }
  5071. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5072. {
  5073. struct ctl_table *entry, *table;
  5074. struct sched_domain *sd;
  5075. int domain_num = 0, i;
  5076. char buf[32];
  5077. for_each_domain(cpu, sd)
  5078. domain_num++;
  5079. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5080. if (table == NULL)
  5081. return NULL;
  5082. i = 0;
  5083. for_each_domain(cpu, sd) {
  5084. snprintf(buf, 32, "domain%d", i);
  5085. entry->procname = kstrdup(buf, GFP_KERNEL);
  5086. entry->mode = 0555;
  5087. entry->child = sd_alloc_ctl_domain_table(sd);
  5088. entry++;
  5089. i++;
  5090. }
  5091. return table;
  5092. }
  5093. static struct ctl_table_header *sd_sysctl_header;
  5094. static void register_sched_domain_sysctl(void)
  5095. {
  5096. int i, cpu_num = num_possible_cpus();
  5097. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5098. char buf[32];
  5099. WARN_ON(sd_ctl_dir[0].child);
  5100. sd_ctl_dir[0].child = entry;
  5101. if (entry == NULL)
  5102. return;
  5103. for_each_possible_cpu(i) {
  5104. snprintf(buf, 32, "cpu%d", i);
  5105. entry->procname = kstrdup(buf, GFP_KERNEL);
  5106. entry->mode = 0555;
  5107. entry->child = sd_alloc_ctl_cpu_table(i);
  5108. entry++;
  5109. }
  5110. WARN_ON(sd_sysctl_header);
  5111. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5112. }
  5113. /* may be called multiple times per register */
  5114. static void unregister_sched_domain_sysctl(void)
  5115. {
  5116. if (sd_sysctl_header)
  5117. unregister_sysctl_table(sd_sysctl_header);
  5118. sd_sysctl_header = NULL;
  5119. if (sd_ctl_dir[0].child)
  5120. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5121. }
  5122. #else
  5123. static void register_sched_domain_sysctl(void)
  5124. {
  5125. }
  5126. static void unregister_sched_domain_sysctl(void)
  5127. {
  5128. }
  5129. #endif
  5130. static void set_rq_online(struct rq *rq)
  5131. {
  5132. if (!rq->online) {
  5133. const struct sched_class *class;
  5134. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5135. rq->online = 1;
  5136. for_each_class(class) {
  5137. if (class->rq_online)
  5138. class->rq_online(rq);
  5139. }
  5140. }
  5141. }
  5142. static void set_rq_offline(struct rq *rq)
  5143. {
  5144. if (rq->online) {
  5145. const struct sched_class *class;
  5146. for_each_class(class) {
  5147. if (class->rq_offline)
  5148. class->rq_offline(rq);
  5149. }
  5150. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5151. rq->online = 0;
  5152. }
  5153. }
  5154. /*
  5155. * migration_call - callback that gets triggered when a CPU is added.
  5156. * Here we can start up the necessary migration thread for the new CPU.
  5157. */
  5158. static int __cpuinit
  5159. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5160. {
  5161. int cpu = (long)hcpu;
  5162. unsigned long flags;
  5163. struct rq *rq = cpu_rq(cpu);
  5164. switch (action & ~CPU_TASKS_FROZEN) {
  5165. case CPU_UP_PREPARE:
  5166. rq->calc_load_update = calc_load_update;
  5167. break;
  5168. case CPU_ONLINE:
  5169. /* Update our root-domain */
  5170. raw_spin_lock_irqsave(&rq->lock, flags);
  5171. if (rq->rd) {
  5172. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5173. set_rq_online(rq);
  5174. }
  5175. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5176. break;
  5177. #ifdef CONFIG_HOTPLUG_CPU
  5178. case CPU_DYING:
  5179. /* Update our root-domain */
  5180. raw_spin_lock_irqsave(&rq->lock, flags);
  5181. if (rq->rd) {
  5182. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5183. set_rq_offline(rq);
  5184. }
  5185. migrate_tasks(cpu);
  5186. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5187. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5188. migrate_nr_uninterruptible(rq);
  5189. calc_global_load_remove(rq);
  5190. break;
  5191. #endif
  5192. }
  5193. return NOTIFY_OK;
  5194. }
  5195. /*
  5196. * Register at high priority so that task migration (migrate_all_tasks)
  5197. * happens before everything else. This has to be lower priority than
  5198. * the notifier in the perf_event subsystem, though.
  5199. */
  5200. static struct notifier_block __cpuinitdata migration_notifier = {
  5201. .notifier_call = migration_call,
  5202. .priority = CPU_PRI_MIGRATION,
  5203. };
  5204. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5205. unsigned long action, void *hcpu)
  5206. {
  5207. switch (action & ~CPU_TASKS_FROZEN) {
  5208. case CPU_ONLINE:
  5209. case CPU_DOWN_FAILED:
  5210. set_cpu_active((long)hcpu, true);
  5211. return NOTIFY_OK;
  5212. default:
  5213. return NOTIFY_DONE;
  5214. }
  5215. }
  5216. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5217. unsigned long action, void *hcpu)
  5218. {
  5219. switch (action & ~CPU_TASKS_FROZEN) {
  5220. case CPU_DOWN_PREPARE:
  5221. set_cpu_active((long)hcpu, false);
  5222. return NOTIFY_OK;
  5223. default:
  5224. return NOTIFY_DONE;
  5225. }
  5226. }
  5227. static int __init migration_init(void)
  5228. {
  5229. void *cpu = (void *)(long)smp_processor_id();
  5230. int err;
  5231. /* Initialize migration for the boot CPU */
  5232. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5233. BUG_ON(err == NOTIFY_BAD);
  5234. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5235. register_cpu_notifier(&migration_notifier);
  5236. /* Register cpu active notifiers */
  5237. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5238. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5239. return 0;
  5240. }
  5241. early_initcall(migration_init);
  5242. #endif
  5243. #ifdef CONFIG_SMP
  5244. #ifdef CONFIG_SCHED_DEBUG
  5245. static __read_mostly int sched_domain_debug_enabled;
  5246. static int __init sched_domain_debug_setup(char *str)
  5247. {
  5248. sched_domain_debug_enabled = 1;
  5249. return 0;
  5250. }
  5251. early_param("sched_debug", sched_domain_debug_setup);
  5252. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5253. struct cpumask *groupmask)
  5254. {
  5255. struct sched_group *group = sd->groups;
  5256. char str[256];
  5257. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5258. cpumask_clear(groupmask);
  5259. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5260. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5261. printk("does not load-balance\n");
  5262. if (sd->parent)
  5263. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5264. " has parent");
  5265. return -1;
  5266. }
  5267. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5268. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5269. printk(KERN_ERR "ERROR: domain->span does not contain "
  5270. "CPU%d\n", cpu);
  5271. }
  5272. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5273. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5274. " CPU%d\n", cpu);
  5275. }
  5276. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5277. do {
  5278. if (!group) {
  5279. printk("\n");
  5280. printk(KERN_ERR "ERROR: group is NULL\n");
  5281. break;
  5282. }
  5283. if (!group->cpu_power) {
  5284. printk(KERN_CONT "\n");
  5285. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5286. "set\n");
  5287. break;
  5288. }
  5289. if (!cpumask_weight(sched_group_cpus(group))) {
  5290. printk(KERN_CONT "\n");
  5291. printk(KERN_ERR "ERROR: empty group\n");
  5292. break;
  5293. }
  5294. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5295. printk(KERN_CONT "\n");
  5296. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5297. break;
  5298. }
  5299. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5300. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5301. printk(KERN_CONT " %s", str);
  5302. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5303. printk(KERN_CONT " (cpu_power = %d)",
  5304. group->cpu_power);
  5305. }
  5306. group = group->next;
  5307. } while (group != sd->groups);
  5308. printk(KERN_CONT "\n");
  5309. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5310. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5311. if (sd->parent &&
  5312. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5313. printk(KERN_ERR "ERROR: parent span is not a superset "
  5314. "of domain->span\n");
  5315. return 0;
  5316. }
  5317. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5318. {
  5319. cpumask_var_t groupmask;
  5320. int level = 0;
  5321. if (!sched_domain_debug_enabled)
  5322. return;
  5323. if (!sd) {
  5324. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5325. return;
  5326. }
  5327. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5328. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5329. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5330. return;
  5331. }
  5332. for (;;) {
  5333. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5334. break;
  5335. level++;
  5336. sd = sd->parent;
  5337. if (!sd)
  5338. break;
  5339. }
  5340. free_cpumask_var(groupmask);
  5341. }
  5342. #else /* !CONFIG_SCHED_DEBUG */
  5343. # define sched_domain_debug(sd, cpu) do { } while (0)
  5344. #endif /* CONFIG_SCHED_DEBUG */
  5345. static int sd_degenerate(struct sched_domain *sd)
  5346. {
  5347. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5348. return 1;
  5349. /* Following flags need at least 2 groups */
  5350. if (sd->flags & (SD_LOAD_BALANCE |
  5351. SD_BALANCE_NEWIDLE |
  5352. SD_BALANCE_FORK |
  5353. SD_BALANCE_EXEC |
  5354. SD_SHARE_CPUPOWER |
  5355. SD_SHARE_PKG_RESOURCES)) {
  5356. if (sd->groups != sd->groups->next)
  5357. return 0;
  5358. }
  5359. /* Following flags don't use groups */
  5360. if (sd->flags & (SD_WAKE_AFFINE))
  5361. return 0;
  5362. return 1;
  5363. }
  5364. static int
  5365. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5366. {
  5367. unsigned long cflags = sd->flags, pflags = parent->flags;
  5368. if (sd_degenerate(parent))
  5369. return 1;
  5370. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5371. return 0;
  5372. /* Flags needing groups don't count if only 1 group in parent */
  5373. if (parent->groups == parent->groups->next) {
  5374. pflags &= ~(SD_LOAD_BALANCE |
  5375. SD_BALANCE_NEWIDLE |
  5376. SD_BALANCE_FORK |
  5377. SD_BALANCE_EXEC |
  5378. SD_SHARE_CPUPOWER |
  5379. SD_SHARE_PKG_RESOURCES);
  5380. if (nr_node_ids == 1)
  5381. pflags &= ~SD_SERIALIZE;
  5382. }
  5383. if (~cflags & pflags)
  5384. return 0;
  5385. return 1;
  5386. }
  5387. static void free_rootdomain(struct root_domain *rd)
  5388. {
  5389. synchronize_sched();
  5390. cpupri_cleanup(&rd->cpupri);
  5391. free_cpumask_var(rd->rto_mask);
  5392. free_cpumask_var(rd->online);
  5393. free_cpumask_var(rd->span);
  5394. kfree(rd);
  5395. }
  5396. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5397. {
  5398. struct root_domain *old_rd = NULL;
  5399. unsigned long flags;
  5400. raw_spin_lock_irqsave(&rq->lock, flags);
  5401. if (rq->rd) {
  5402. old_rd = rq->rd;
  5403. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5404. set_rq_offline(rq);
  5405. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5406. /*
  5407. * If we dont want to free the old_rt yet then
  5408. * set old_rd to NULL to skip the freeing later
  5409. * in this function:
  5410. */
  5411. if (!atomic_dec_and_test(&old_rd->refcount))
  5412. old_rd = NULL;
  5413. }
  5414. atomic_inc(&rd->refcount);
  5415. rq->rd = rd;
  5416. cpumask_set_cpu(rq->cpu, rd->span);
  5417. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5418. set_rq_online(rq);
  5419. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5420. if (old_rd)
  5421. free_rootdomain(old_rd);
  5422. }
  5423. static int init_rootdomain(struct root_domain *rd)
  5424. {
  5425. memset(rd, 0, sizeof(*rd));
  5426. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5427. goto out;
  5428. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5429. goto free_span;
  5430. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5431. goto free_online;
  5432. if (cpupri_init(&rd->cpupri) != 0)
  5433. goto free_rto_mask;
  5434. return 0;
  5435. free_rto_mask:
  5436. free_cpumask_var(rd->rto_mask);
  5437. free_online:
  5438. free_cpumask_var(rd->online);
  5439. free_span:
  5440. free_cpumask_var(rd->span);
  5441. out:
  5442. return -ENOMEM;
  5443. }
  5444. static void init_defrootdomain(void)
  5445. {
  5446. init_rootdomain(&def_root_domain);
  5447. atomic_set(&def_root_domain.refcount, 1);
  5448. }
  5449. static struct root_domain *alloc_rootdomain(void)
  5450. {
  5451. struct root_domain *rd;
  5452. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5453. if (!rd)
  5454. return NULL;
  5455. if (init_rootdomain(rd) != 0) {
  5456. kfree(rd);
  5457. return NULL;
  5458. }
  5459. return rd;
  5460. }
  5461. /*
  5462. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5463. * hold the hotplug lock.
  5464. */
  5465. static void
  5466. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5467. {
  5468. struct rq *rq = cpu_rq(cpu);
  5469. struct sched_domain *tmp;
  5470. for (tmp = sd; tmp; tmp = tmp->parent)
  5471. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5472. /* Remove the sched domains which do not contribute to scheduling. */
  5473. for (tmp = sd; tmp; ) {
  5474. struct sched_domain *parent = tmp->parent;
  5475. if (!parent)
  5476. break;
  5477. if (sd_parent_degenerate(tmp, parent)) {
  5478. tmp->parent = parent->parent;
  5479. if (parent->parent)
  5480. parent->parent->child = tmp;
  5481. } else
  5482. tmp = tmp->parent;
  5483. }
  5484. if (sd && sd_degenerate(sd)) {
  5485. sd = sd->parent;
  5486. if (sd)
  5487. sd->child = NULL;
  5488. }
  5489. sched_domain_debug(sd, cpu);
  5490. rq_attach_root(rq, rd);
  5491. rcu_assign_pointer(rq->sd, sd);
  5492. }
  5493. /* cpus with isolated domains */
  5494. static cpumask_var_t cpu_isolated_map;
  5495. /* Setup the mask of cpus configured for isolated domains */
  5496. static int __init isolated_cpu_setup(char *str)
  5497. {
  5498. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5499. cpulist_parse(str, cpu_isolated_map);
  5500. return 1;
  5501. }
  5502. __setup("isolcpus=", isolated_cpu_setup);
  5503. /*
  5504. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5505. * to a function which identifies what group(along with sched group) a CPU
  5506. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5507. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5508. *
  5509. * init_sched_build_groups will build a circular linked list of the groups
  5510. * covered by the given span, and will set each group's ->cpumask correctly,
  5511. * and ->cpu_power to 0.
  5512. */
  5513. static void
  5514. init_sched_build_groups(const struct cpumask *span,
  5515. const struct cpumask *cpu_map,
  5516. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5517. struct sched_group **sg,
  5518. struct cpumask *tmpmask),
  5519. struct cpumask *covered, struct cpumask *tmpmask)
  5520. {
  5521. struct sched_group *first = NULL, *last = NULL;
  5522. int i;
  5523. cpumask_clear(covered);
  5524. for_each_cpu(i, span) {
  5525. struct sched_group *sg;
  5526. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5527. int j;
  5528. if (cpumask_test_cpu(i, covered))
  5529. continue;
  5530. cpumask_clear(sched_group_cpus(sg));
  5531. sg->cpu_power = 0;
  5532. for_each_cpu(j, span) {
  5533. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5534. continue;
  5535. cpumask_set_cpu(j, covered);
  5536. cpumask_set_cpu(j, sched_group_cpus(sg));
  5537. }
  5538. if (!first)
  5539. first = sg;
  5540. if (last)
  5541. last->next = sg;
  5542. last = sg;
  5543. }
  5544. last->next = first;
  5545. }
  5546. #define SD_NODES_PER_DOMAIN 16
  5547. #ifdef CONFIG_NUMA
  5548. /**
  5549. * find_next_best_node - find the next node to include in a sched_domain
  5550. * @node: node whose sched_domain we're building
  5551. * @used_nodes: nodes already in the sched_domain
  5552. *
  5553. * Find the next node to include in a given scheduling domain. Simply
  5554. * finds the closest node not already in the @used_nodes map.
  5555. *
  5556. * Should use nodemask_t.
  5557. */
  5558. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5559. {
  5560. int i, n, val, min_val, best_node = 0;
  5561. min_val = INT_MAX;
  5562. for (i = 0; i < nr_node_ids; i++) {
  5563. /* Start at @node */
  5564. n = (node + i) % nr_node_ids;
  5565. if (!nr_cpus_node(n))
  5566. continue;
  5567. /* Skip already used nodes */
  5568. if (node_isset(n, *used_nodes))
  5569. continue;
  5570. /* Simple min distance search */
  5571. val = node_distance(node, n);
  5572. if (val < min_val) {
  5573. min_val = val;
  5574. best_node = n;
  5575. }
  5576. }
  5577. node_set(best_node, *used_nodes);
  5578. return best_node;
  5579. }
  5580. /**
  5581. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5582. * @node: node whose cpumask we're constructing
  5583. * @span: resulting cpumask
  5584. *
  5585. * Given a node, construct a good cpumask for its sched_domain to span. It
  5586. * should be one that prevents unnecessary balancing, but also spreads tasks
  5587. * out optimally.
  5588. */
  5589. static void sched_domain_node_span(int node, struct cpumask *span)
  5590. {
  5591. nodemask_t used_nodes;
  5592. int i;
  5593. cpumask_clear(span);
  5594. nodes_clear(used_nodes);
  5595. cpumask_or(span, span, cpumask_of_node(node));
  5596. node_set(node, used_nodes);
  5597. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5598. int next_node = find_next_best_node(node, &used_nodes);
  5599. cpumask_or(span, span, cpumask_of_node(next_node));
  5600. }
  5601. }
  5602. #endif /* CONFIG_NUMA */
  5603. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5604. /*
  5605. * The cpus mask in sched_group and sched_domain hangs off the end.
  5606. *
  5607. * ( See the the comments in include/linux/sched.h:struct sched_group
  5608. * and struct sched_domain. )
  5609. */
  5610. struct static_sched_group {
  5611. struct sched_group sg;
  5612. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5613. };
  5614. struct static_sched_domain {
  5615. struct sched_domain sd;
  5616. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5617. };
  5618. struct s_data {
  5619. #ifdef CONFIG_NUMA
  5620. int sd_allnodes;
  5621. cpumask_var_t domainspan;
  5622. cpumask_var_t covered;
  5623. cpumask_var_t notcovered;
  5624. #endif
  5625. cpumask_var_t nodemask;
  5626. cpumask_var_t this_sibling_map;
  5627. cpumask_var_t this_core_map;
  5628. cpumask_var_t this_book_map;
  5629. cpumask_var_t send_covered;
  5630. cpumask_var_t tmpmask;
  5631. struct sched_group **sched_group_nodes;
  5632. struct root_domain *rd;
  5633. };
  5634. enum s_alloc {
  5635. sa_sched_groups = 0,
  5636. sa_rootdomain,
  5637. sa_tmpmask,
  5638. sa_send_covered,
  5639. sa_this_book_map,
  5640. sa_this_core_map,
  5641. sa_this_sibling_map,
  5642. sa_nodemask,
  5643. sa_sched_group_nodes,
  5644. #ifdef CONFIG_NUMA
  5645. sa_notcovered,
  5646. sa_covered,
  5647. sa_domainspan,
  5648. #endif
  5649. sa_none,
  5650. };
  5651. /*
  5652. * SMT sched-domains:
  5653. */
  5654. #ifdef CONFIG_SCHED_SMT
  5655. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5656. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5657. static int
  5658. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5659. struct sched_group **sg, struct cpumask *unused)
  5660. {
  5661. if (sg)
  5662. *sg = &per_cpu(sched_groups, cpu).sg;
  5663. return cpu;
  5664. }
  5665. #endif /* CONFIG_SCHED_SMT */
  5666. /*
  5667. * multi-core sched-domains:
  5668. */
  5669. #ifdef CONFIG_SCHED_MC
  5670. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5671. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5672. static int
  5673. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5674. struct sched_group **sg, struct cpumask *mask)
  5675. {
  5676. int group;
  5677. #ifdef CONFIG_SCHED_SMT
  5678. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5679. group = cpumask_first(mask);
  5680. #else
  5681. group = cpu;
  5682. #endif
  5683. if (sg)
  5684. *sg = &per_cpu(sched_group_core, group).sg;
  5685. return group;
  5686. }
  5687. #endif /* CONFIG_SCHED_MC */
  5688. /*
  5689. * book sched-domains:
  5690. */
  5691. #ifdef CONFIG_SCHED_BOOK
  5692. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5693. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5694. static int
  5695. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5696. struct sched_group **sg, struct cpumask *mask)
  5697. {
  5698. int group = cpu;
  5699. #ifdef CONFIG_SCHED_MC
  5700. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5701. group = cpumask_first(mask);
  5702. #elif defined(CONFIG_SCHED_SMT)
  5703. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5704. group = cpumask_first(mask);
  5705. #endif
  5706. if (sg)
  5707. *sg = &per_cpu(sched_group_book, group).sg;
  5708. return group;
  5709. }
  5710. #endif /* CONFIG_SCHED_BOOK */
  5711. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5712. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5713. static int
  5714. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5715. struct sched_group **sg, struct cpumask *mask)
  5716. {
  5717. int group;
  5718. #ifdef CONFIG_SCHED_BOOK
  5719. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5720. group = cpumask_first(mask);
  5721. #elif defined(CONFIG_SCHED_MC)
  5722. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5723. group = cpumask_first(mask);
  5724. #elif defined(CONFIG_SCHED_SMT)
  5725. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5726. group = cpumask_first(mask);
  5727. #else
  5728. group = cpu;
  5729. #endif
  5730. if (sg)
  5731. *sg = &per_cpu(sched_group_phys, group).sg;
  5732. return group;
  5733. }
  5734. #ifdef CONFIG_NUMA
  5735. /*
  5736. * The init_sched_build_groups can't handle what we want to do with node
  5737. * groups, so roll our own. Now each node has its own list of groups which
  5738. * gets dynamically allocated.
  5739. */
  5740. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5741. static struct sched_group ***sched_group_nodes_bycpu;
  5742. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5743. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5744. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5745. struct sched_group **sg,
  5746. struct cpumask *nodemask)
  5747. {
  5748. int group;
  5749. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5750. group = cpumask_first(nodemask);
  5751. if (sg)
  5752. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5753. return group;
  5754. }
  5755. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5756. {
  5757. struct sched_group *sg = group_head;
  5758. int j;
  5759. if (!sg)
  5760. return;
  5761. do {
  5762. for_each_cpu(j, sched_group_cpus(sg)) {
  5763. struct sched_domain *sd;
  5764. sd = &per_cpu(phys_domains, j).sd;
  5765. if (j != group_first_cpu(sd->groups)) {
  5766. /*
  5767. * Only add "power" once for each
  5768. * physical package.
  5769. */
  5770. continue;
  5771. }
  5772. sg->cpu_power += sd->groups->cpu_power;
  5773. }
  5774. sg = sg->next;
  5775. } while (sg != group_head);
  5776. }
  5777. static int build_numa_sched_groups(struct s_data *d,
  5778. const struct cpumask *cpu_map, int num)
  5779. {
  5780. struct sched_domain *sd;
  5781. struct sched_group *sg, *prev;
  5782. int n, j;
  5783. cpumask_clear(d->covered);
  5784. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5785. if (cpumask_empty(d->nodemask)) {
  5786. d->sched_group_nodes[num] = NULL;
  5787. goto out;
  5788. }
  5789. sched_domain_node_span(num, d->domainspan);
  5790. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5791. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5792. GFP_KERNEL, num);
  5793. if (!sg) {
  5794. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5795. num);
  5796. return -ENOMEM;
  5797. }
  5798. d->sched_group_nodes[num] = sg;
  5799. for_each_cpu(j, d->nodemask) {
  5800. sd = &per_cpu(node_domains, j).sd;
  5801. sd->groups = sg;
  5802. }
  5803. sg->cpu_power = 0;
  5804. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5805. sg->next = sg;
  5806. cpumask_or(d->covered, d->covered, d->nodemask);
  5807. prev = sg;
  5808. for (j = 0; j < nr_node_ids; j++) {
  5809. n = (num + j) % nr_node_ids;
  5810. cpumask_complement(d->notcovered, d->covered);
  5811. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5812. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5813. if (cpumask_empty(d->tmpmask))
  5814. break;
  5815. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5816. if (cpumask_empty(d->tmpmask))
  5817. continue;
  5818. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5819. GFP_KERNEL, num);
  5820. if (!sg) {
  5821. printk(KERN_WARNING
  5822. "Can not alloc domain group for node %d\n", j);
  5823. return -ENOMEM;
  5824. }
  5825. sg->cpu_power = 0;
  5826. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5827. sg->next = prev->next;
  5828. cpumask_or(d->covered, d->covered, d->tmpmask);
  5829. prev->next = sg;
  5830. prev = sg;
  5831. }
  5832. out:
  5833. return 0;
  5834. }
  5835. #endif /* CONFIG_NUMA */
  5836. #ifdef CONFIG_NUMA
  5837. /* Free memory allocated for various sched_group structures */
  5838. static void free_sched_groups(const struct cpumask *cpu_map,
  5839. struct cpumask *nodemask)
  5840. {
  5841. int cpu, i;
  5842. for_each_cpu(cpu, cpu_map) {
  5843. struct sched_group **sched_group_nodes
  5844. = sched_group_nodes_bycpu[cpu];
  5845. if (!sched_group_nodes)
  5846. continue;
  5847. for (i = 0; i < nr_node_ids; i++) {
  5848. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5849. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5850. if (cpumask_empty(nodemask))
  5851. continue;
  5852. if (sg == NULL)
  5853. continue;
  5854. sg = sg->next;
  5855. next_sg:
  5856. oldsg = sg;
  5857. sg = sg->next;
  5858. kfree(oldsg);
  5859. if (oldsg != sched_group_nodes[i])
  5860. goto next_sg;
  5861. }
  5862. kfree(sched_group_nodes);
  5863. sched_group_nodes_bycpu[cpu] = NULL;
  5864. }
  5865. }
  5866. #else /* !CONFIG_NUMA */
  5867. static void free_sched_groups(const struct cpumask *cpu_map,
  5868. struct cpumask *nodemask)
  5869. {
  5870. }
  5871. #endif /* CONFIG_NUMA */
  5872. /*
  5873. * Initialize sched groups cpu_power.
  5874. *
  5875. * cpu_power indicates the capacity of sched group, which is used while
  5876. * distributing the load between different sched groups in a sched domain.
  5877. * Typically cpu_power for all the groups in a sched domain will be same unless
  5878. * there are asymmetries in the topology. If there are asymmetries, group
  5879. * having more cpu_power will pickup more load compared to the group having
  5880. * less cpu_power.
  5881. */
  5882. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5883. {
  5884. struct sched_domain *child;
  5885. struct sched_group *group;
  5886. long power;
  5887. int weight;
  5888. WARN_ON(!sd || !sd->groups);
  5889. if (cpu != group_first_cpu(sd->groups))
  5890. return;
  5891. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  5892. child = sd->child;
  5893. sd->groups->cpu_power = 0;
  5894. if (!child) {
  5895. power = SCHED_LOAD_SCALE;
  5896. weight = cpumask_weight(sched_domain_span(sd));
  5897. /*
  5898. * SMT siblings share the power of a single core.
  5899. * Usually multiple threads get a better yield out of
  5900. * that one core than a single thread would have,
  5901. * reflect that in sd->smt_gain.
  5902. */
  5903. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5904. power *= sd->smt_gain;
  5905. power /= weight;
  5906. power >>= SCHED_LOAD_SHIFT;
  5907. }
  5908. sd->groups->cpu_power += power;
  5909. return;
  5910. }
  5911. /*
  5912. * Add cpu_power of each child group to this groups cpu_power.
  5913. */
  5914. group = child->groups;
  5915. do {
  5916. sd->groups->cpu_power += group->cpu_power;
  5917. group = group->next;
  5918. } while (group != child->groups);
  5919. }
  5920. /*
  5921. * Initializers for schedule domains
  5922. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5923. */
  5924. #ifdef CONFIG_SCHED_DEBUG
  5925. # define SD_INIT_NAME(sd, type) sd->name = #type
  5926. #else
  5927. # define SD_INIT_NAME(sd, type) do { } while (0)
  5928. #endif
  5929. #define SD_INIT(sd, type) sd_init_##type(sd)
  5930. #define SD_INIT_FUNC(type) \
  5931. static noinline void sd_init_##type(struct sched_domain *sd) \
  5932. { \
  5933. memset(sd, 0, sizeof(*sd)); \
  5934. *sd = SD_##type##_INIT; \
  5935. sd->level = SD_LV_##type; \
  5936. SD_INIT_NAME(sd, type); \
  5937. }
  5938. SD_INIT_FUNC(CPU)
  5939. #ifdef CONFIG_NUMA
  5940. SD_INIT_FUNC(ALLNODES)
  5941. SD_INIT_FUNC(NODE)
  5942. #endif
  5943. #ifdef CONFIG_SCHED_SMT
  5944. SD_INIT_FUNC(SIBLING)
  5945. #endif
  5946. #ifdef CONFIG_SCHED_MC
  5947. SD_INIT_FUNC(MC)
  5948. #endif
  5949. #ifdef CONFIG_SCHED_BOOK
  5950. SD_INIT_FUNC(BOOK)
  5951. #endif
  5952. static int default_relax_domain_level = -1;
  5953. static int __init setup_relax_domain_level(char *str)
  5954. {
  5955. unsigned long val;
  5956. val = simple_strtoul(str, NULL, 0);
  5957. if (val < SD_LV_MAX)
  5958. default_relax_domain_level = val;
  5959. return 1;
  5960. }
  5961. __setup("relax_domain_level=", setup_relax_domain_level);
  5962. static void set_domain_attribute(struct sched_domain *sd,
  5963. struct sched_domain_attr *attr)
  5964. {
  5965. int request;
  5966. if (!attr || attr->relax_domain_level < 0) {
  5967. if (default_relax_domain_level < 0)
  5968. return;
  5969. else
  5970. request = default_relax_domain_level;
  5971. } else
  5972. request = attr->relax_domain_level;
  5973. if (request < sd->level) {
  5974. /* turn off idle balance on this domain */
  5975. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5976. } else {
  5977. /* turn on idle balance on this domain */
  5978. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5979. }
  5980. }
  5981. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5982. const struct cpumask *cpu_map)
  5983. {
  5984. switch (what) {
  5985. case sa_sched_groups:
  5986. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5987. d->sched_group_nodes = NULL;
  5988. case sa_rootdomain:
  5989. free_rootdomain(d->rd); /* fall through */
  5990. case sa_tmpmask:
  5991. free_cpumask_var(d->tmpmask); /* fall through */
  5992. case sa_send_covered:
  5993. free_cpumask_var(d->send_covered); /* fall through */
  5994. case sa_this_book_map:
  5995. free_cpumask_var(d->this_book_map); /* fall through */
  5996. case sa_this_core_map:
  5997. free_cpumask_var(d->this_core_map); /* fall through */
  5998. case sa_this_sibling_map:
  5999. free_cpumask_var(d->this_sibling_map); /* fall through */
  6000. case sa_nodemask:
  6001. free_cpumask_var(d->nodemask); /* fall through */
  6002. case sa_sched_group_nodes:
  6003. #ifdef CONFIG_NUMA
  6004. kfree(d->sched_group_nodes); /* fall through */
  6005. case sa_notcovered:
  6006. free_cpumask_var(d->notcovered); /* fall through */
  6007. case sa_covered:
  6008. free_cpumask_var(d->covered); /* fall through */
  6009. case sa_domainspan:
  6010. free_cpumask_var(d->domainspan); /* fall through */
  6011. #endif
  6012. case sa_none:
  6013. break;
  6014. }
  6015. }
  6016. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6017. const struct cpumask *cpu_map)
  6018. {
  6019. #ifdef CONFIG_NUMA
  6020. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6021. return sa_none;
  6022. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6023. return sa_domainspan;
  6024. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6025. return sa_covered;
  6026. /* Allocate the per-node list of sched groups */
  6027. d->sched_group_nodes = kcalloc(nr_node_ids,
  6028. sizeof(struct sched_group *), GFP_KERNEL);
  6029. if (!d->sched_group_nodes) {
  6030. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6031. return sa_notcovered;
  6032. }
  6033. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6034. #endif
  6035. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6036. return sa_sched_group_nodes;
  6037. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6038. return sa_nodemask;
  6039. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6040. return sa_this_sibling_map;
  6041. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6042. return sa_this_core_map;
  6043. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6044. return sa_this_book_map;
  6045. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6046. return sa_send_covered;
  6047. d->rd = alloc_rootdomain();
  6048. if (!d->rd) {
  6049. printk(KERN_WARNING "Cannot alloc root domain\n");
  6050. return sa_tmpmask;
  6051. }
  6052. return sa_rootdomain;
  6053. }
  6054. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6055. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6056. {
  6057. struct sched_domain *sd = NULL;
  6058. #ifdef CONFIG_NUMA
  6059. struct sched_domain *parent;
  6060. d->sd_allnodes = 0;
  6061. if (cpumask_weight(cpu_map) >
  6062. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6063. sd = &per_cpu(allnodes_domains, i).sd;
  6064. SD_INIT(sd, ALLNODES);
  6065. set_domain_attribute(sd, attr);
  6066. cpumask_copy(sched_domain_span(sd), cpu_map);
  6067. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6068. d->sd_allnodes = 1;
  6069. }
  6070. parent = sd;
  6071. sd = &per_cpu(node_domains, i).sd;
  6072. SD_INIT(sd, NODE);
  6073. set_domain_attribute(sd, attr);
  6074. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6075. sd->parent = parent;
  6076. if (parent)
  6077. parent->child = sd;
  6078. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6079. #endif
  6080. return sd;
  6081. }
  6082. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6083. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6084. struct sched_domain *parent, int i)
  6085. {
  6086. struct sched_domain *sd;
  6087. sd = &per_cpu(phys_domains, i).sd;
  6088. SD_INIT(sd, CPU);
  6089. set_domain_attribute(sd, attr);
  6090. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6091. sd->parent = parent;
  6092. if (parent)
  6093. parent->child = sd;
  6094. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6095. return sd;
  6096. }
  6097. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6098. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6099. struct sched_domain *parent, int i)
  6100. {
  6101. struct sched_domain *sd = parent;
  6102. #ifdef CONFIG_SCHED_BOOK
  6103. sd = &per_cpu(book_domains, i).sd;
  6104. SD_INIT(sd, BOOK);
  6105. set_domain_attribute(sd, attr);
  6106. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6107. sd->parent = parent;
  6108. parent->child = sd;
  6109. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6110. #endif
  6111. return sd;
  6112. }
  6113. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6114. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6115. struct sched_domain *parent, int i)
  6116. {
  6117. struct sched_domain *sd = parent;
  6118. #ifdef CONFIG_SCHED_MC
  6119. sd = &per_cpu(core_domains, i).sd;
  6120. SD_INIT(sd, MC);
  6121. set_domain_attribute(sd, attr);
  6122. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6123. sd->parent = parent;
  6124. parent->child = sd;
  6125. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6126. #endif
  6127. return sd;
  6128. }
  6129. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6130. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6131. struct sched_domain *parent, int i)
  6132. {
  6133. struct sched_domain *sd = parent;
  6134. #ifdef CONFIG_SCHED_SMT
  6135. sd = &per_cpu(cpu_domains, i).sd;
  6136. SD_INIT(sd, SIBLING);
  6137. set_domain_attribute(sd, attr);
  6138. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6139. sd->parent = parent;
  6140. parent->child = sd;
  6141. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6142. #endif
  6143. return sd;
  6144. }
  6145. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6146. const struct cpumask *cpu_map, int cpu)
  6147. {
  6148. switch (l) {
  6149. #ifdef CONFIG_SCHED_SMT
  6150. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6151. cpumask_and(d->this_sibling_map, cpu_map,
  6152. topology_thread_cpumask(cpu));
  6153. if (cpu == cpumask_first(d->this_sibling_map))
  6154. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6155. &cpu_to_cpu_group,
  6156. d->send_covered, d->tmpmask);
  6157. break;
  6158. #endif
  6159. #ifdef CONFIG_SCHED_MC
  6160. case SD_LV_MC: /* set up multi-core groups */
  6161. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6162. if (cpu == cpumask_first(d->this_core_map))
  6163. init_sched_build_groups(d->this_core_map, cpu_map,
  6164. &cpu_to_core_group,
  6165. d->send_covered, d->tmpmask);
  6166. break;
  6167. #endif
  6168. #ifdef CONFIG_SCHED_BOOK
  6169. case SD_LV_BOOK: /* set up book groups */
  6170. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6171. if (cpu == cpumask_first(d->this_book_map))
  6172. init_sched_build_groups(d->this_book_map, cpu_map,
  6173. &cpu_to_book_group,
  6174. d->send_covered, d->tmpmask);
  6175. break;
  6176. #endif
  6177. case SD_LV_CPU: /* set up physical groups */
  6178. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6179. if (!cpumask_empty(d->nodemask))
  6180. init_sched_build_groups(d->nodemask, cpu_map,
  6181. &cpu_to_phys_group,
  6182. d->send_covered, d->tmpmask);
  6183. break;
  6184. #ifdef CONFIG_NUMA
  6185. case SD_LV_ALLNODES:
  6186. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6187. d->send_covered, d->tmpmask);
  6188. break;
  6189. #endif
  6190. default:
  6191. break;
  6192. }
  6193. }
  6194. /*
  6195. * Build sched domains for a given set of cpus and attach the sched domains
  6196. * to the individual cpus
  6197. */
  6198. static int __build_sched_domains(const struct cpumask *cpu_map,
  6199. struct sched_domain_attr *attr)
  6200. {
  6201. enum s_alloc alloc_state = sa_none;
  6202. struct s_data d;
  6203. struct sched_domain *sd;
  6204. int i;
  6205. #ifdef CONFIG_NUMA
  6206. d.sd_allnodes = 0;
  6207. #endif
  6208. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6209. if (alloc_state != sa_rootdomain)
  6210. goto error;
  6211. alloc_state = sa_sched_groups;
  6212. /*
  6213. * Set up domains for cpus specified by the cpu_map.
  6214. */
  6215. for_each_cpu(i, cpu_map) {
  6216. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6217. cpu_map);
  6218. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6219. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6220. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6221. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6222. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6223. }
  6224. for_each_cpu(i, cpu_map) {
  6225. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6226. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6227. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6228. }
  6229. /* Set up physical groups */
  6230. for (i = 0; i < nr_node_ids; i++)
  6231. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6232. #ifdef CONFIG_NUMA
  6233. /* Set up node groups */
  6234. if (d.sd_allnodes)
  6235. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6236. for (i = 0; i < nr_node_ids; i++)
  6237. if (build_numa_sched_groups(&d, cpu_map, i))
  6238. goto error;
  6239. #endif
  6240. /* Calculate CPU power for physical packages and nodes */
  6241. #ifdef CONFIG_SCHED_SMT
  6242. for_each_cpu(i, cpu_map) {
  6243. sd = &per_cpu(cpu_domains, i).sd;
  6244. init_sched_groups_power(i, sd);
  6245. }
  6246. #endif
  6247. #ifdef CONFIG_SCHED_MC
  6248. for_each_cpu(i, cpu_map) {
  6249. sd = &per_cpu(core_domains, i).sd;
  6250. init_sched_groups_power(i, sd);
  6251. }
  6252. #endif
  6253. #ifdef CONFIG_SCHED_BOOK
  6254. for_each_cpu(i, cpu_map) {
  6255. sd = &per_cpu(book_domains, i).sd;
  6256. init_sched_groups_power(i, sd);
  6257. }
  6258. #endif
  6259. for_each_cpu(i, cpu_map) {
  6260. sd = &per_cpu(phys_domains, i).sd;
  6261. init_sched_groups_power(i, sd);
  6262. }
  6263. #ifdef CONFIG_NUMA
  6264. for (i = 0; i < nr_node_ids; i++)
  6265. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6266. if (d.sd_allnodes) {
  6267. struct sched_group *sg;
  6268. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6269. d.tmpmask);
  6270. init_numa_sched_groups_power(sg);
  6271. }
  6272. #endif
  6273. /* Attach the domains */
  6274. for_each_cpu(i, cpu_map) {
  6275. #ifdef CONFIG_SCHED_SMT
  6276. sd = &per_cpu(cpu_domains, i).sd;
  6277. #elif defined(CONFIG_SCHED_MC)
  6278. sd = &per_cpu(core_domains, i).sd;
  6279. #elif defined(CONFIG_SCHED_BOOK)
  6280. sd = &per_cpu(book_domains, i).sd;
  6281. #else
  6282. sd = &per_cpu(phys_domains, i).sd;
  6283. #endif
  6284. cpu_attach_domain(sd, d.rd, i);
  6285. }
  6286. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6287. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6288. return 0;
  6289. error:
  6290. __free_domain_allocs(&d, alloc_state, cpu_map);
  6291. return -ENOMEM;
  6292. }
  6293. static int build_sched_domains(const struct cpumask *cpu_map)
  6294. {
  6295. return __build_sched_domains(cpu_map, NULL);
  6296. }
  6297. static cpumask_var_t *doms_cur; /* current sched domains */
  6298. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6299. static struct sched_domain_attr *dattr_cur;
  6300. /* attribues of custom domains in 'doms_cur' */
  6301. /*
  6302. * Special case: If a kmalloc of a doms_cur partition (array of
  6303. * cpumask) fails, then fallback to a single sched domain,
  6304. * as determined by the single cpumask fallback_doms.
  6305. */
  6306. static cpumask_var_t fallback_doms;
  6307. /*
  6308. * arch_update_cpu_topology lets virtualized architectures update the
  6309. * cpu core maps. It is supposed to return 1 if the topology changed
  6310. * or 0 if it stayed the same.
  6311. */
  6312. int __attribute__((weak)) arch_update_cpu_topology(void)
  6313. {
  6314. return 0;
  6315. }
  6316. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6317. {
  6318. int i;
  6319. cpumask_var_t *doms;
  6320. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6321. if (!doms)
  6322. return NULL;
  6323. for (i = 0; i < ndoms; i++) {
  6324. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6325. free_sched_domains(doms, i);
  6326. return NULL;
  6327. }
  6328. }
  6329. return doms;
  6330. }
  6331. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6332. {
  6333. unsigned int i;
  6334. for (i = 0; i < ndoms; i++)
  6335. free_cpumask_var(doms[i]);
  6336. kfree(doms);
  6337. }
  6338. /*
  6339. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6340. * For now this just excludes isolated cpus, but could be used to
  6341. * exclude other special cases in the future.
  6342. */
  6343. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6344. {
  6345. int err;
  6346. arch_update_cpu_topology();
  6347. ndoms_cur = 1;
  6348. doms_cur = alloc_sched_domains(ndoms_cur);
  6349. if (!doms_cur)
  6350. doms_cur = &fallback_doms;
  6351. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6352. dattr_cur = NULL;
  6353. err = build_sched_domains(doms_cur[0]);
  6354. register_sched_domain_sysctl();
  6355. return err;
  6356. }
  6357. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6358. struct cpumask *tmpmask)
  6359. {
  6360. free_sched_groups(cpu_map, tmpmask);
  6361. }
  6362. /*
  6363. * Detach sched domains from a group of cpus specified in cpu_map
  6364. * These cpus will now be attached to the NULL domain
  6365. */
  6366. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6367. {
  6368. /* Save because hotplug lock held. */
  6369. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6370. int i;
  6371. for_each_cpu(i, cpu_map)
  6372. cpu_attach_domain(NULL, &def_root_domain, i);
  6373. synchronize_sched();
  6374. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6375. }
  6376. /* handle null as "default" */
  6377. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6378. struct sched_domain_attr *new, int idx_new)
  6379. {
  6380. struct sched_domain_attr tmp;
  6381. /* fast path */
  6382. if (!new && !cur)
  6383. return 1;
  6384. tmp = SD_ATTR_INIT;
  6385. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6386. new ? (new + idx_new) : &tmp,
  6387. sizeof(struct sched_domain_attr));
  6388. }
  6389. /*
  6390. * Partition sched domains as specified by the 'ndoms_new'
  6391. * cpumasks in the array doms_new[] of cpumasks. This compares
  6392. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6393. * It destroys each deleted domain and builds each new domain.
  6394. *
  6395. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6396. * The masks don't intersect (don't overlap.) We should setup one
  6397. * sched domain for each mask. CPUs not in any of the cpumasks will
  6398. * not be load balanced. If the same cpumask appears both in the
  6399. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6400. * it as it is.
  6401. *
  6402. * The passed in 'doms_new' should be allocated using
  6403. * alloc_sched_domains. This routine takes ownership of it and will
  6404. * free_sched_domains it when done with it. If the caller failed the
  6405. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6406. * and partition_sched_domains() will fallback to the single partition
  6407. * 'fallback_doms', it also forces the domains to be rebuilt.
  6408. *
  6409. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6410. * ndoms_new == 0 is a special case for destroying existing domains,
  6411. * and it will not create the default domain.
  6412. *
  6413. * Call with hotplug lock held
  6414. */
  6415. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6416. struct sched_domain_attr *dattr_new)
  6417. {
  6418. int i, j, n;
  6419. int new_topology;
  6420. mutex_lock(&sched_domains_mutex);
  6421. /* always unregister in case we don't destroy any domains */
  6422. unregister_sched_domain_sysctl();
  6423. /* Let architecture update cpu core mappings. */
  6424. new_topology = arch_update_cpu_topology();
  6425. n = doms_new ? ndoms_new : 0;
  6426. /* Destroy deleted domains */
  6427. for (i = 0; i < ndoms_cur; i++) {
  6428. for (j = 0; j < n && !new_topology; j++) {
  6429. if (cpumask_equal(doms_cur[i], doms_new[j])
  6430. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6431. goto match1;
  6432. }
  6433. /* no match - a current sched domain not in new doms_new[] */
  6434. detach_destroy_domains(doms_cur[i]);
  6435. match1:
  6436. ;
  6437. }
  6438. if (doms_new == NULL) {
  6439. ndoms_cur = 0;
  6440. doms_new = &fallback_doms;
  6441. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6442. WARN_ON_ONCE(dattr_new);
  6443. }
  6444. /* Build new domains */
  6445. for (i = 0; i < ndoms_new; i++) {
  6446. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6447. if (cpumask_equal(doms_new[i], doms_cur[j])
  6448. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6449. goto match2;
  6450. }
  6451. /* no match - add a new doms_new */
  6452. __build_sched_domains(doms_new[i],
  6453. dattr_new ? dattr_new + i : NULL);
  6454. match2:
  6455. ;
  6456. }
  6457. /* Remember the new sched domains */
  6458. if (doms_cur != &fallback_doms)
  6459. free_sched_domains(doms_cur, ndoms_cur);
  6460. kfree(dattr_cur); /* kfree(NULL) is safe */
  6461. doms_cur = doms_new;
  6462. dattr_cur = dattr_new;
  6463. ndoms_cur = ndoms_new;
  6464. register_sched_domain_sysctl();
  6465. mutex_unlock(&sched_domains_mutex);
  6466. }
  6467. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6468. static void arch_reinit_sched_domains(void)
  6469. {
  6470. get_online_cpus();
  6471. /* Destroy domains first to force the rebuild */
  6472. partition_sched_domains(0, NULL, NULL);
  6473. rebuild_sched_domains();
  6474. put_online_cpus();
  6475. }
  6476. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6477. {
  6478. unsigned int level = 0;
  6479. if (sscanf(buf, "%u", &level) != 1)
  6480. return -EINVAL;
  6481. /*
  6482. * level is always be positive so don't check for
  6483. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6484. * What happens on 0 or 1 byte write,
  6485. * need to check for count as well?
  6486. */
  6487. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6488. return -EINVAL;
  6489. if (smt)
  6490. sched_smt_power_savings = level;
  6491. else
  6492. sched_mc_power_savings = level;
  6493. arch_reinit_sched_domains();
  6494. return count;
  6495. }
  6496. #ifdef CONFIG_SCHED_MC
  6497. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6498. struct sysdev_class_attribute *attr,
  6499. char *page)
  6500. {
  6501. return sprintf(page, "%u\n", sched_mc_power_savings);
  6502. }
  6503. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6504. struct sysdev_class_attribute *attr,
  6505. const char *buf, size_t count)
  6506. {
  6507. return sched_power_savings_store(buf, count, 0);
  6508. }
  6509. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6510. sched_mc_power_savings_show,
  6511. sched_mc_power_savings_store);
  6512. #endif
  6513. #ifdef CONFIG_SCHED_SMT
  6514. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6515. struct sysdev_class_attribute *attr,
  6516. char *page)
  6517. {
  6518. return sprintf(page, "%u\n", sched_smt_power_savings);
  6519. }
  6520. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6521. struct sysdev_class_attribute *attr,
  6522. const char *buf, size_t count)
  6523. {
  6524. return sched_power_savings_store(buf, count, 1);
  6525. }
  6526. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6527. sched_smt_power_savings_show,
  6528. sched_smt_power_savings_store);
  6529. #endif
  6530. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6531. {
  6532. int err = 0;
  6533. #ifdef CONFIG_SCHED_SMT
  6534. if (smt_capable())
  6535. err = sysfs_create_file(&cls->kset.kobj,
  6536. &attr_sched_smt_power_savings.attr);
  6537. #endif
  6538. #ifdef CONFIG_SCHED_MC
  6539. if (!err && mc_capable())
  6540. err = sysfs_create_file(&cls->kset.kobj,
  6541. &attr_sched_mc_power_savings.attr);
  6542. #endif
  6543. return err;
  6544. }
  6545. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6546. /*
  6547. * Update cpusets according to cpu_active mask. If cpusets are
  6548. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6549. * around partition_sched_domains().
  6550. */
  6551. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6552. void *hcpu)
  6553. {
  6554. switch (action & ~CPU_TASKS_FROZEN) {
  6555. case CPU_ONLINE:
  6556. case CPU_DOWN_FAILED:
  6557. cpuset_update_active_cpus();
  6558. return NOTIFY_OK;
  6559. default:
  6560. return NOTIFY_DONE;
  6561. }
  6562. }
  6563. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6564. void *hcpu)
  6565. {
  6566. switch (action & ~CPU_TASKS_FROZEN) {
  6567. case CPU_DOWN_PREPARE:
  6568. cpuset_update_active_cpus();
  6569. return NOTIFY_OK;
  6570. default:
  6571. return NOTIFY_DONE;
  6572. }
  6573. }
  6574. static int update_runtime(struct notifier_block *nfb,
  6575. unsigned long action, void *hcpu)
  6576. {
  6577. int cpu = (int)(long)hcpu;
  6578. switch (action) {
  6579. case CPU_DOWN_PREPARE:
  6580. case CPU_DOWN_PREPARE_FROZEN:
  6581. disable_runtime(cpu_rq(cpu));
  6582. return NOTIFY_OK;
  6583. case CPU_DOWN_FAILED:
  6584. case CPU_DOWN_FAILED_FROZEN:
  6585. case CPU_ONLINE:
  6586. case CPU_ONLINE_FROZEN:
  6587. enable_runtime(cpu_rq(cpu));
  6588. return NOTIFY_OK;
  6589. default:
  6590. return NOTIFY_DONE;
  6591. }
  6592. }
  6593. void __init sched_init_smp(void)
  6594. {
  6595. cpumask_var_t non_isolated_cpus;
  6596. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6597. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6598. #if defined(CONFIG_NUMA)
  6599. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6600. GFP_KERNEL);
  6601. BUG_ON(sched_group_nodes_bycpu == NULL);
  6602. #endif
  6603. get_online_cpus();
  6604. mutex_lock(&sched_domains_mutex);
  6605. arch_init_sched_domains(cpu_active_mask);
  6606. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6607. if (cpumask_empty(non_isolated_cpus))
  6608. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6609. mutex_unlock(&sched_domains_mutex);
  6610. put_online_cpus();
  6611. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6612. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6613. /* RT runtime code needs to handle some hotplug events */
  6614. hotcpu_notifier(update_runtime, 0);
  6615. init_hrtick();
  6616. /* Move init over to a non-isolated CPU */
  6617. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6618. BUG();
  6619. sched_init_granularity();
  6620. free_cpumask_var(non_isolated_cpus);
  6621. init_sched_rt_class();
  6622. }
  6623. #else
  6624. void __init sched_init_smp(void)
  6625. {
  6626. sched_init_granularity();
  6627. }
  6628. #endif /* CONFIG_SMP */
  6629. const_debug unsigned int sysctl_timer_migration = 1;
  6630. int in_sched_functions(unsigned long addr)
  6631. {
  6632. return in_lock_functions(addr) ||
  6633. (addr >= (unsigned long)__sched_text_start
  6634. && addr < (unsigned long)__sched_text_end);
  6635. }
  6636. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6637. {
  6638. cfs_rq->tasks_timeline = RB_ROOT;
  6639. INIT_LIST_HEAD(&cfs_rq->tasks);
  6640. #ifdef CONFIG_FAIR_GROUP_SCHED
  6641. cfs_rq->rq = rq;
  6642. #endif
  6643. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6644. }
  6645. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6646. {
  6647. struct rt_prio_array *array;
  6648. int i;
  6649. array = &rt_rq->active;
  6650. for (i = 0; i < MAX_RT_PRIO; i++) {
  6651. INIT_LIST_HEAD(array->queue + i);
  6652. __clear_bit(i, array->bitmap);
  6653. }
  6654. /* delimiter for bitsearch: */
  6655. __set_bit(MAX_RT_PRIO, array->bitmap);
  6656. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6657. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6658. #ifdef CONFIG_SMP
  6659. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6660. #endif
  6661. #endif
  6662. #ifdef CONFIG_SMP
  6663. rt_rq->rt_nr_migratory = 0;
  6664. rt_rq->overloaded = 0;
  6665. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6666. #endif
  6667. rt_rq->rt_time = 0;
  6668. rt_rq->rt_throttled = 0;
  6669. rt_rq->rt_runtime = 0;
  6670. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6671. #ifdef CONFIG_RT_GROUP_SCHED
  6672. rt_rq->rt_nr_boosted = 0;
  6673. rt_rq->rq = rq;
  6674. #endif
  6675. }
  6676. #ifdef CONFIG_FAIR_GROUP_SCHED
  6677. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6678. struct sched_entity *se, int cpu,
  6679. struct sched_entity *parent)
  6680. {
  6681. struct rq *rq = cpu_rq(cpu);
  6682. tg->cfs_rq[cpu] = cfs_rq;
  6683. init_cfs_rq(cfs_rq, rq);
  6684. cfs_rq->tg = tg;
  6685. tg->se[cpu] = se;
  6686. /* se could be NULL for root_task_group */
  6687. if (!se)
  6688. return;
  6689. if (!parent)
  6690. se->cfs_rq = &rq->cfs;
  6691. else
  6692. se->cfs_rq = parent->my_q;
  6693. se->my_q = cfs_rq;
  6694. update_load_set(&se->load, 0);
  6695. se->parent = parent;
  6696. }
  6697. #endif
  6698. #ifdef CONFIG_RT_GROUP_SCHED
  6699. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6700. struct sched_rt_entity *rt_se, int cpu,
  6701. struct sched_rt_entity *parent)
  6702. {
  6703. struct rq *rq = cpu_rq(cpu);
  6704. tg->rt_rq[cpu] = rt_rq;
  6705. init_rt_rq(rt_rq, rq);
  6706. rt_rq->tg = tg;
  6707. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6708. tg->rt_se[cpu] = rt_se;
  6709. if (!rt_se)
  6710. return;
  6711. if (!parent)
  6712. rt_se->rt_rq = &rq->rt;
  6713. else
  6714. rt_se->rt_rq = parent->my_q;
  6715. rt_se->my_q = rt_rq;
  6716. rt_se->parent = parent;
  6717. INIT_LIST_HEAD(&rt_se->run_list);
  6718. }
  6719. #endif
  6720. void __init sched_init(void)
  6721. {
  6722. int i, j;
  6723. unsigned long alloc_size = 0, ptr;
  6724. #ifdef CONFIG_FAIR_GROUP_SCHED
  6725. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6726. #endif
  6727. #ifdef CONFIG_RT_GROUP_SCHED
  6728. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6729. #endif
  6730. #ifdef CONFIG_CPUMASK_OFFSTACK
  6731. alloc_size += num_possible_cpus() * cpumask_size();
  6732. #endif
  6733. if (alloc_size) {
  6734. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6735. #ifdef CONFIG_FAIR_GROUP_SCHED
  6736. root_task_group.se = (struct sched_entity **)ptr;
  6737. ptr += nr_cpu_ids * sizeof(void **);
  6738. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6739. ptr += nr_cpu_ids * sizeof(void **);
  6740. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6741. #ifdef CONFIG_RT_GROUP_SCHED
  6742. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6743. ptr += nr_cpu_ids * sizeof(void **);
  6744. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6745. ptr += nr_cpu_ids * sizeof(void **);
  6746. #endif /* CONFIG_RT_GROUP_SCHED */
  6747. #ifdef CONFIG_CPUMASK_OFFSTACK
  6748. for_each_possible_cpu(i) {
  6749. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6750. ptr += cpumask_size();
  6751. }
  6752. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6753. }
  6754. #ifdef CONFIG_SMP
  6755. init_defrootdomain();
  6756. #endif
  6757. init_rt_bandwidth(&def_rt_bandwidth,
  6758. global_rt_period(), global_rt_runtime());
  6759. #ifdef CONFIG_RT_GROUP_SCHED
  6760. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6761. global_rt_period(), global_rt_runtime());
  6762. #endif /* CONFIG_RT_GROUP_SCHED */
  6763. #ifdef CONFIG_CGROUP_SCHED
  6764. list_add(&root_task_group.list, &task_groups);
  6765. INIT_LIST_HEAD(&root_task_group.children);
  6766. autogroup_init(&init_task);
  6767. #endif /* CONFIG_CGROUP_SCHED */
  6768. for_each_possible_cpu(i) {
  6769. struct rq *rq;
  6770. rq = cpu_rq(i);
  6771. raw_spin_lock_init(&rq->lock);
  6772. rq->nr_running = 0;
  6773. rq->calc_load_active = 0;
  6774. rq->calc_load_update = jiffies + LOAD_FREQ;
  6775. init_cfs_rq(&rq->cfs, rq);
  6776. init_rt_rq(&rq->rt, rq);
  6777. #ifdef CONFIG_FAIR_GROUP_SCHED
  6778. root_task_group.shares = root_task_group_load;
  6779. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6780. /*
  6781. * How much cpu bandwidth does root_task_group get?
  6782. *
  6783. * In case of task-groups formed thr' the cgroup filesystem, it
  6784. * gets 100% of the cpu resources in the system. This overall
  6785. * system cpu resource is divided among the tasks of
  6786. * root_task_group and its child task-groups in a fair manner,
  6787. * based on each entity's (task or task-group's) weight
  6788. * (se->load.weight).
  6789. *
  6790. * In other words, if root_task_group has 10 tasks of weight
  6791. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6792. * then A0's share of the cpu resource is:
  6793. *
  6794. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6795. *
  6796. * We achieve this by letting root_task_group's tasks sit
  6797. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6798. */
  6799. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6800. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6801. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6802. #ifdef CONFIG_RT_GROUP_SCHED
  6803. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6804. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6805. #endif
  6806. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6807. rq->cpu_load[j] = 0;
  6808. rq->last_load_update_tick = jiffies;
  6809. #ifdef CONFIG_SMP
  6810. rq->sd = NULL;
  6811. rq->rd = NULL;
  6812. rq->cpu_power = SCHED_LOAD_SCALE;
  6813. rq->post_schedule = 0;
  6814. rq->active_balance = 0;
  6815. rq->next_balance = jiffies;
  6816. rq->push_cpu = 0;
  6817. rq->cpu = i;
  6818. rq->online = 0;
  6819. rq->idle_stamp = 0;
  6820. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6821. rq_attach_root(rq, &def_root_domain);
  6822. #ifdef CONFIG_NO_HZ
  6823. rq->nohz_balance_kick = 0;
  6824. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6825. #endif
  6826. #endif
  6827. init_rq_hrtick(rq);
  6828. atomic_set(&rq->nr_iowait, 0);
  6829. }
  6830. set_load_weight(&init_task);
  6831. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6832. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6833. #endif
  6834. #ifdef CONFIG_SMP
  6835. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6836. #endif
  6837. #ifdef CONFIG_RT_MUTEXES
  6838. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6839. #endif
  6840. /*
  6841. * The boot idle thread does lazy MMU switching as well:
  6842. */
  6843. atomic_inc(&init_mm.mm_count);
  6844. enter_lazy_tlb(&init_mm, current);
  6845. /*
  6846. * Make us the idle thread. Technically, schedule() should not be
  6847. * called from this thread, however somewhere below it might be,
  6848. * but because we are the idle thread, we just pick up running again
  6849. * when this runqueue becomes "idle".
  6850. */
  6851. init_idle(current, smp_processor_id());
  6852. calc_load_update = jiffies + LOAD_FREQ;
  6853. /*
  6854. * During early bootup we pretend to be a normal task:
  6855. */
  6856. current->sched_class = &fair_sched_class;
  6857. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6858. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6859. #ifdef CONFIG_SMP
  6860. #ifdef CONFIG_NO_HZ
  6861. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6862. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6863. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6864. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6865. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6866. #endif
  6867. /* May be allocated at isolcpus cmdline parse time */
  6868. if (cpu_isolated_map == NULL)
  6869. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6870. #endif /* SMP */
  6871. scheduler_running = 1;
  6872. }
  6873. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6874. static inline int preempt_count_equals(int preempt_offset)
  6875. {
  6876. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6877. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6878. }
  6879. void __might_sleep(const char *file, int line, int preempt_offset)
  6880. {
  6881. #ifdef in_atomic
  6882. static unsigned long prev_jiffy; /* ratelimiting */
  6883. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6884. system_state != SYSTEM_RUNNING || oops_in_progress)
  6885. return;
  6886. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6887. return;
  6888. prev_jiffy = jiffies;
  6889. printk(KERN_ERR
  6890. "BUG: sleeping function called from invalid context at %s:%d\n",
  6891. file, line);
  6892. printk(KERN_ERR
  6893. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6894. in_atomic(), irqs_disabled(),
  6895. current->pid, current->comm);
  6896. debug_show_held_locks(current);
  6897. if (irqs_disabled())
  6898. print_irqtrace_events(current);
  6899. dump_stack();
  6900. #endif
  6901. }
  6902. EXPORT_SYMBOL(__might_sleep);
  6903. #endif
  6904. #ifdef CONFIG_MAGIC_SYSRQ
  6905. static void normalize_task(struct rq *rq, struct task_struct *p)
  6906. {
  6907. int on_rq;
  6908. on_rq = p->se.on_rq;
  6909. if (on_rq)
  6910. deactivate_task(rq, p, 0);
  6911. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6912. if (on_rq) {
  6913. activate_task(rq, p, 0);
  6914. resched_task(rq->curr);
  6915. }
  6916. }
  6917. void normalize_rt_tasks(void)
  6918. {
  6919. struct task_struct *g, *p;
  6920. unsigned long flags;
  6921. struct rq *rq;
  6922. read_lock_irqsave(&tasklist_lock, flags);
  6923. do_each_thread(g, p) {
  6924. /*
  6925. * Only normalize user tasks:
  6926. */
  6927. if (!p->mm)
  6928. continue;
  6929. p->se.exec_start = 0;
  6930. #ifdef CONFIG_SCHEDSTATS
  6931. p->se.statistics.wait_start = 0;
  6932. p->se.statistics.sleep_start = 0;
  6933. p->se.statistics.block_start = 0;
  6934. #endif
  6935. if (!rt_task(p)) {
  6936. /*
  6937. * Renice negative nice level userspace
  6938. * tasks back to 0:
  6939. */
  6940. if (TASK_NICE(p) < 0 && p->mm)
  6941. set_user_nice(p, 0);
  6942. continue;
  6943. }
  6944. raw_spin_lock(&p->pi_lock);
  6945. rq = __task_rq_lock(p);
  6946. normalize_task(rq, p);
  6947. __task_rq_unlock(rq);
  6948. raw_spin_unlock(&p->pi_lock);
  6949. } while_each_thread(g, p);
  6950. read_unlock_irqrestore(&tasklist_lock, flags);
  6951. }
  6952. #endif /* CONFIG_MAGIC_SYSRQ */
  6953. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6954. /*
  6955. * These functions are only useful for the IA64 MCA handling, or kdb.
  6956. *
  6957. * They can only be called when the whole system has been
  6958. * stopped - every CPU needs to be quiescent, and no scheduling
  6959. * activity can take place. Using them for anything else would
  6960. * be a serious bug, and as a result, they aren't even visible
  6961. * under any other configuration.
  6962. */
  6963. /**
  6964. * curr_task - return the current task for a given cpu.
  6965. * @cpu: the processor in question.
  6966. *
  6967. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6968. */
  6969. struct task_struct *curr_task(int cpu)
  6970. {
  6971. return cpu_curr(cpu);
  6972. }
  6973. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6974. #ifdef CONFIG_IA64
  6975. /**
  6976. * set_curr_task - set the current task for a given cpu.
  6977. * @cpu: the processor in question.
  6978. * @p: the task pointer to set.
  6979. *
  6980. * Description: This function must only be used when non-maskable interrupts
  6981. * are serviced on a separate stack. It allows the architecture to switch the
  6982. * notion of the current task on a cpu in a non-blocking manner. This function
  6983. * must be called with all CPU's synchronized, and interrupts disabled, the
  6984. * and caller must save the original value of the current task (see
  6985. * curr_task() above) and restore that value before reenabling interrupts and
  6986. * re-starting the system.
  6987. *
  6988. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6989. */
  6990. void set_curr_task(int cpu, struct task_struct *p)
  6991. {
  6992. cpu_curr(cpu) = p;
  6993. }
  6994. #endif
  6995. #ifdef CONFIG_FAIR_GROUP_SCHED
  6996. static void free_fair_sched_group(struct task_group *tg)
  6997. {
  6998. int i;
  6999. for_each_possible_cpu(i) {
  7000. if (tg->cfs_rq)
  7001. kfree(tg->cfs_rq[i]);
  7002. if (tg->se)
  7003. kfree(tg->se[i]);
  7004. }
  7005. kfree(tg->cfs_rq);
  7006. kfree(tg->se);
  7007. }
  7008. static
  7009. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7010. {
  7011. struct cfs_rq *cfs_rq;
  7012. struct sched_entity *se;
  7013. struct rq *rq;
  7014. int i;
  7015. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7016. if (!tg->cfs_rq)
  7017. goto err;
  7018. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7019. if (!tg->se)
  7020. goto err;
  7021. tg->shares = NICE_0_LOAD;
  7022. for_each_possible_cpu(i) {
  7023. rq = cpu_rq(i);
  7024. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7025. GFP_KERNEL, cpu_to_node(i));
  7026. if (!cfs_rq)
  7027. goto err;
  7028. se = kzalloc_node(sizeof(struct sched_entity),
  7029. GFP_KERNEL, cpu_to_node(i));
  7030. if (!se)
  7031. goto err_free_rq;
  7032. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7033. }
  7034. return 1;
  7035. err_free_rq:
  7036. kfree(cfs_rq);
  7037. err:
  7038. return 0;
  7039. }
  7040. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7041. {
  7042. struct rq *rq = cpu_rq(cpu);
  7043. unsigned long flags;
  7044. /*
  7045. * Only empty task groups can be destroyed; so we can speculatively
  7046. * check on_list without danger of it being re-added.
  7047. */
  7048. if (!tg->cfs_rq[cpu]->on_list)
  7049. return;
  7050. raw_spin_lock_irqsave(&rq->lock, flags);
  7051. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7052. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7053. }
  7054. #else /* !CONFG_FAIR_GROUP_SCHED */
  7055. static inline void free_fair_sched_group(struct task_group *tg)
  7056. {
  7057. }
  7058. static inline
  7059. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7060. {
  7061. return 1;
  7062. }
  7063. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7064. {
  7065. }
  7066. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7067. #ifdef CONFIG_RT_GROUP_SCHED
  7068. static void free_rt_sched_group(struct task_group *tg)
  7069. {
  7070. int i;
  7071. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7072. for_each_possible_cpu(i) {
  7073. if (tg->rt_rq)
  7074. kfree(tg->rt_rq[i]);
  7075. if (tg->rt_se)
  7076. kfree(tg->rt_se[i]);
  7077. }
  7078. kfree(tg->rt_rq);
  7079. kfree(tg->rt_se);
  7080. }
  7081. static
  7082. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7083. {
  7084. struct rt_rq *rt_rq;
  7085. struct sched_rt_entity *rt_se;
  7086. struct rq *rq;
  7087. int i;
  7088. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7089. if (!tg->rt_rq)
  7090. goto err;
  7091. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7092. if (!tg->rt_se)
  7093. goto err;
  7094. init_rt_bandwidth(&tg->rt_bandwidth,
  7095. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7096. for_each_possible_cpu(i) {
  7097. rq = cpu_rq(i);
  7098. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7099. GFP_KERNEL, cpu_to_node(i));
  7100. if (!rt_rq)
  7101. goto err;
  7102. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7103. GFP_KERNEL, cpu_to_node(i));
  7104. if (!rt_se)
  7105. goto err_free_rq;
  7106. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7107. }
  7108. return 1;
  7109. err_free_rq:
  7110. kfree(rt_rq);
  7111. err:
  7112. return 0;
  7113. }
  7114. #else /* !CONFIG_RT_GROUP_SCHED */
  7115. static inline void free_rt_sched_group(struct task_group *tg)
  7116. {
  7117. }
  7118. static inline
  7119. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7120. {
  7121. return 1;
  7122. }
  7123. #endif /* CONFIG_RT_GROUP_SCHED */
  7124. #ifdef CONFIG_CGROUP_SCHED
  7125. static void free_sched_group(struct task_group *tg)
  7126. {
  7127. free_fair_sched_group(tg);
  7128. free_rt_sched_group(tg);
  7129. autogroup_free(tg);
  7130. kfree(tg);
  7131. }
  7132. /* allocate runqueue etc for a new task group */
  7133. struct task_group *sched_create_group(struct task_group *parent)
  7134. {
  7135. struct task_group *tg;
  7136. unsigned long flags;
  7137. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7138. if (!tg)
  7139. return ERR_PTR(-ENOMEM);
  7140. if (!alloc_fair_sched_group(tg, parent))
  7141. goto err;
  7142. if (!alloc_rt_sched_group(tg, parent))
  7143. goto err;
  7144. spin_lock_irqsave(&task_group_lock, flags);
  7145. list_add_rcu(&tg->list, &task_groups);
  7146. WARN_ON(!parent); /* root should already exist */
  7147. tg->parent = parent;
  7148. INIT_LIST_HEAD(&tg->children);
  7149. list_add_rcu(&tg->siblings, &parent->children);
  7150. spin_unlock_irqrestore(&task_group_lock, flags);
  7151. return tg;
  7152. err:
  7153. free_sched_group(tg);
  7154. return ERR_PTR(-ENOMEM);
  7155. }
  7156. /* rcu callback to free various structures associated with a task group */
  7157. static void free_sched_group_rcu(struct rcu_head *rhp)
  7158. {
  7159. /* now it should be safe to free those cfs_rqs */
  7160. free_sched_group(container_of(rhp, struct task_group, rcu));
  7161. }
  7162. /* Destroy runqueue etc associated with a task group */
  7163. void sched_destroy_group(struct task_group *tg)
  7164. {
  7165. unsigned long flags;
  7166. int i;
  7167. /* end participation in shares distribution */
  7168. for_each_possible_cpu(i)
  7169. unregister_fair_sched_group(tg, i);
  7170. spin_lock_irqsave(&task_group_lock, flags);
  7171. list_del_rcu(&tg->list);
  7172. list_del_rcu(&tg->siblings);
  7173. spin_unlock_irqrestore(&task_group_lock, flags);
  7174. /* wait for possible concurrent references to cfs_rqs complete */
  7175. call_rcu(&tg->rcu, free_sched_group_rcu);
  7176. }
  7177. /* change task's runqueue when it moves between groups.
  7178. * The caller of this function should have put the task in its new group
  7179. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7180. * reflect its new group.
  7181. */
  7182. void sched_move_task(struct task_struct *tsk)
  7183. {
  7184. int on_rq, running;
  7185. unsigned long flags;
  7186. struct rq *rq;
  7187. rq = task_rq_lock(tsk, &flags);
  7188. running = task_current(rq, tsk);
  7189. on_rq = tsk->se.on_rq;
  7190. if (on_rq)
  7191. dequeue_task(rq, tsk, 0);
  7192. if (unlikely(running))
  7193. tsk->sched_class->put_prev_task(rq, tsk);
  7194. #ifdef CONFIG_FAIR_GROUP_SCHED
  7195. if (tsk->sched_class->task_move_group)
  7196. tsk->sched_class->task_move_group(tsk, on_rq);
  7197. else
  7198. #endif
  7199. set_task_rq(tsk, task_cpu(tsk));
  7200. if (unlikely(running))
  7201. tsk->sched_class->set_curr_task(rq);
  7202. if (on_rq)
  7203. enqueue_task(rq, tsk, 0);
  7204. task_rq_unlock(rq, &flags);
  7205. }
  7206. #endif /* CONFIG_CGROUP_SCHED */
  7207. #ifdef CONFIG_FAIR_GROUP_SCHED
  7208. static DEFINE_MUTEX(shares_mutex);
  7209. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7210. {
  7211. int i;
  7212. unsigned long flags;
  7213. /*
  7214. * We can't change the weight of the root cgroup.
  7215. */
  7216. if (!tg->se[0])
  7217. return -EINVAL;
  7218. if (shares < MIN_SHARES)
  7219. shares = MIN_SHARES;
  7220. else if (shares > MAX_SHARES)
  7221. shares = MAX_SHARES;
  7222. mutex_lock(&shares_mutex);
  7223. if (tg->shares == shares)
  7224. goto done;
  7225. tg->shares = shares;
  7226. for_each_possible_cpu(i) {
  7227. struct rq *rq = cpu_rq(i);
  7228. struct sched_entity *se;
  7229. se = tg->se[i];
  7230. /* Propagate contribution to hierarchy */
  7231. raw_spin_lock_irqsave(&rq->lock, flags);
  7232. for_each_sched_entity(se)
  7233. update_cfs_shares(group_cfs_rq(se), 0);
  7234. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7235. }
  7236. done:
  7237. mutex_unlock(&shares_mutex);
  7238. return 0;
  7239. }
  7240. unsigned long sched_group_shares(struct task_group *tg)
  7241. {
  7242. return tg->shares;
  7243. }
  7244. #endif
  7245. #ifdef CONFIG_RT_GROUP_SCHED
  7246. /*
  7247. * Ensure that the real time constraints are schedulable.
  7248. */
  7249. static DEFINE_MUTEX(rt_constraints_mutex);
  7250. static unsigned long to_ratio(u64 period, u64 runtime)
  7251. {
  7252. if (runtime == RUNTIME_INF)
  7253. return 1ULL << 20;
  7254. return div64_u64(runtime << 20, period);
  7255. }
  7256. /* Must be called with tasklist_lock held */
  7257. static inline int tg_has_rt_tasks(struct task_group *tg)
  7258. {
  7259. struct task_struct *g, *p;
  7260. do_each_thread(g, p) {
  7261. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7262. return 1;
  7263. } while_each_thread(g, p);
  7264. return 0;
  7265. }
  7266. struct rt_schedulable_data {
  7267. struct task_group *tg;
  7268. u64 rt_period;
  7269. u64 rt_runtime;
  7270. };
  7271. static int tg_schedulable(struct task_group *tg, void *data)
  7272. {
  7273. struct rt_schedulable_data *d = data;
  7274. struct task_group *child;
  7275. unsigned long total, sum = 0;
  7276. u64 period, runtime;
  7277. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7278. runtime = tg->rt_bandwidth.rt_runtime;
  7279. if (tg == d->tg) {
  7280. period = d->rt_period;
  7281. runtime = d->rt_runtime;
  7282. }
  7283. /*
  7284. * Cannot have more runtime than the period.
  7285. */
  7286. if (runtime > period && runtime != RUNTIME_INF)
  7287. return -EINVAL;
  7288. /*
  7289. * Ensure we don't starve existing RT tasks.
  7290. */
  7291. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7292. return -EBUSY;
  7293. total = to_ratio(period, runtime);
  7294. /*
  7295. * Nobody can have more than the global setting allows.
  7296. */
  7297. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7298. return -EINVAL;
  7299. /*
  7300. * The sum of our children's runtime should not exceed our own.
  7301. */
  7302. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7303. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7304. runtime = child->rt_bandwidth.rt_runtime;
  7305. if (child == d->tg) {
  7306. period = d->rt_period;
  7307. runtime = d->rt_runtime;
  7308. }
  7309. sum += to_ratio(period, runtime);
  7310. }
  7311. if (sum > total)
  7312. return -EINVAL;
  7313. return 0;
  7314. }
  7315. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7316. {
  7317. struct rt_schedulable_data data = {
  7318. .tg = tg,
  7319. .rt_period = period,
  7320. .rt_runtime = runtime,
  7321. };
  7322. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7323. }
  7324. static int tg_set_bandwidth(struct task_group *tg,
  7325. u64 rt_period, u64 rt_runtime)
  7326. {
  7327. int i, err = 0;
  7328. mutex_lock(&rt_constraints_mutex);
  7329. read_lock(&tasklist_lock);
  7330. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7331. if (err)
  7332. goto unlock;
  7333. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7334. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7335. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7336. for_each_possible_cpu(i) {
  7337. struct rt_rq *rt_rq = tg->rt_rq[i];
  7338. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7339. rt_rq->rt_runtime = rt_runtime;
  7340. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7341. }
  7342. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7343. unlock:
  7344. read_unlock(&tasklist_lock);
  7345. mutex_unlock(&rt_constraints_mutex);
  7346. return err;
  7347. }
  7348. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7349. {
  7350. u64 rt_runtime, rt_period;
  7351. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7352. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7353. if (rt_runtime_us < 0)
  7354. rt_runtime = RUNTIME_INF;
  7355. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7356. }
  7357. long sched_group_rt_runtime(struct task_group *tg)
  7358. {
  7359. u64 rt_runtime_us;
  7360. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7361. return -1;
  7362. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7363. do_div(rt_runtime_us, NSEC_PER_USEC);
  7364. return rt_runtime_us;
  7365. }
  7366. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7367. {
  7368. u64 rt_runtime, rt_period;
  7369. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7370. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7371. if (rt_period == 0)
  7372. return -EINVAL;
  7373. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7374. }
  7375. long sched_group_rt_period(struct task_group *tg)
  7376. {
  7377. u64 rt_period_us;
  7378. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7379. do_div(rt_period_us, NSEC_PER_USEC);
  7380. return rt_period_us;
  7381. }
  7382. static int sched_rt_global_constraints(void)
  7383. {
  7384. u64 runtime, period;
  7385. int ret = 0;
  7386. if (sysctl_sched_rt_period <= 0)
  7387. return -EINVAL;
  7388. runtime = global_rt_runtime();
  7389. period = global_rt_period();
  7390. /*
  7391. * Sanity check on the sysctl variables.
  7392. */
  7393. if (runtime > period && runtime != RUNTIME_INF)
  7394. return -EINVAL;
  7395. mutex_lock(&rt_constraints_mutex);
  7396. read_lock(&tasklist_lock);
  7397. ret = __rt_schedulable(NULL, 0, 0);
  7398. read_unlock(&tasklist_lock);
  7399. mutex_unlock(&rt_constraints_mutex);
  7400. return ret;
  7401. }
  7402. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7403. {
  7404. /* Don't accept realtime tasks when there is no way for them to run */
  7405. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7406. return 0;
  7407. return 1;
  7408. }
  7409. #else /* !CONFIG_RT_GROUP_SCHED */
  7410. static int sched_rt_global_constraints(void)
  7411. {
  7412. unsigned long flags;
  7413. int i;
  7414. if (sysctl_sched_rt_period <= 0)
  7415. return -EINVAL;
  7416. /*
  7417. * There's always some RT tasks in the root group
  7418. * -- migration, kstopmachine etc..
  7419. */
  7420. if (sysctl_sched_rt_runtime == 0)
  7421. return -EBUSY;
  7422. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7423. for_each_possible_cpu(i) {
  7424. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7425. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7426. rt_rq->rt_runtime = global_rt_runtime();
  7427. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7428. }
  7429. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7430. return 0;
  7431. }
  7432. #endif /* CONFIG_RT_GROUP_SCHED */
  7433. int sched_rt_handler(struct ctl_table *table, int write,
  7434. void __user *buffer, size_t *lenp,
  7435. loff_t *ppos)
  7436. {
  7437. int ret;
  7438. int old_period, old_runtime;
  7439. static DEFINE_MUTEX(mutex);
  7440. mutex_lock(&mutex);
  7441. old_period = sysctl_sched_rt_period;
  7442. old_runtime = sysctl_sched_rt_runtime;
  7443. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7444. if (!ret && write) {
  7445. ret = sched_rt_global_constraints();
  7446. if (ret) {
  7447. sysctl_sched_rt_period = old_period;
  7448. sysctl_sched_rt_runtime = old_runtime;
  7449. } else {
  7450. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7451. def_rt_bandwidth.rt_period =
  7452. ns_to_ktime(global_rt_period());
  7453. }
  7454. }
  7455. mutex_unlock(&mutex);
  7456. return ret;
  7457. }
  7458. #ifdef CONFIG_CGROUP_SCHED
  7459. /* return corresponding task_group object of a cgroup */
  7460. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7461. {
  7462. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7463. struct task_group, css);
  7464. }
  7465. static struct cgroup_subsys_state *
  7466. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7467. {
  7468. struct task_group *tg, *parent;
  7469. if (!cgrp->parent) {
  7470. /* This is early initialization for the top cgroup */
  7471. return &root_task_group.css;
  7472. }
  7473. parent = cgroup_tg(cgrp->parent);
  7474. tg = sched_create_group(parent);
  7475. if (IS_ERR(tg))
  7476. return ERR_PTR(-ENOMEM);
  7477. return &tg->css;
  7478. }
  7479. static void
  7480. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7481. {
  7482. struct task_group *tg = cgroup_tg(cgrp);
  7483. sched_destroy_group(tg);
  7484. }
  7485. static int
  7486. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7487. {
  7488. #ifdef CONFIG_RT_GROUP_SCHED
  7489. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7490. return -EINVAL;
  7491. #else
  7492. /* We don't support RT-tasks being in separate groups */
  7493. if (tsk->sched_class != &fair_sched_class)
  7494. return -EINVAL;
  7495. #endif
  7496. return 0;
  7497. }
  7498. static int
  7499. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7500. struct task_struct *tsk, bool threadgroup)
  7501. {
  7502. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7503. if (retval)
  7504. return retval;
  7505. if (threadgroup) {
  7506. struct task_struct *c;
  7507. rcu_read_lock();
  7508. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7509. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7510. if (retval) {
  7511. rcu_read_unlock();
  7512. return retval;
  7513. }
  7514. }
  7515. rcu_read_unlock();
  7516. }
  7517. return 0;
  7518. }
  7519. static void
  7520. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7521. struct cgroup *old_cont, struct task_struct *tsk,
  7522. bool threadgroup)
  7523. {
  7524. sched_move_task(tsk);
  7525. if (threadgroup) {
  7526. struct task_struct *c;
  7527. rcu_read_lock();
  7528. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7529. sched_move_task(c);
  7530. }
  7531. rcu_read_unlock();
  7532. }
  7533. }
  7534. static void
  7535. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7536. struct cgroup *old_cgrp, struct task_struct *task)
  7537. {
  7538. /*
  7539. * cgroup_exit() is called in the copy_process() failure path.
  7540. * Ignore this case since the task hasn't ran yet, this avoids
  7541. * trying to poke a half freed task state from generic code.
  7542. */
  7543. if (!(task->flags & PF_EXITING))
  7544. return;
  7545. sched_move_task(task);
  7546. }
  7547. #ifdef CONFIG_FAIR_GROUP_SCHED
  7548. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7549. u64 shareval)
  7550. {
  7551. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7552. }
  7553. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7554. {
  7555. struct task_group *tg = cgroup_tg(cgrp);
  7556. return (u64) tg->shares;
  7557. }
  7558. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7559. #ifdef CONFIG_RT_GROUP_SCHED
  7560. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7561. s64 val)
  7562. {
  7563. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7564. }
  7565. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7566. {
  7567. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7568. }
  7569. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7570. u64 rt_period_us)
  7571. {
  7572. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7573. }
  7574. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7575. {
  7576. return sched_group_rt_period(cgroup_tg(cgrp));
  7577. }
  7578. #endif /* CONFIG_RT_GROUP_SCHED */
  7579. static struct cftype cpu_files[] = {
  7580. #ifdef CONFIG_FAIR_GROUP_SCHED
  7581. {
  7582. .name = "shares",
  7583. .read_u64 = cpu_shares_read_u64,
  7584. .write_u64 = cpu_shares_write_u64,
  7585. },
  7586. #endif
  7587. #ifdef CONFIG_RT_GROUP_SCHED
  7588. {
  7589. .name = "rt_runtime_us",
  7590. .read_s64 = cpu_rt_runtime_read,
  7591. .write_s64 = cpu_rt_runtime_write,
  7592. },
  7593. {
  7594. .name = "rt_period_us",
  7595. .read_u64 = cpu_rt_period_read_uint,
  7596. .write_u64 = cpu_rt_period_write_uint,
  7597. },
  7598. #endif
  7599. };
  7600. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7601. {
  7602. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7603. }
  7604. struct cgroup_subsys cpu_cgroup_subsys = {
  7605. .name = "cpu",
  7606. .create = cpu_cgroup_create,
  7607. .destroy = cpu_cgroup_destroy,
  7608. .can_attach = cpu_cgroup_can_attach,
  7609. .attach = cpu_cgroup_attach,
  7610. .exit = cpu_cgroup_exit,
  7611. .populate = cpu_cgroup_populate,
  7612. .subsys_id = cpu_cgroup_subsys_id,
  7613. .early_init = 1,
  7614. };
  7615. #endif /* CONFIG_CGROUP_SCHED */
  7616. #ifdef CONFIG_CGROUP_CPUACCT
  7617. /*
  7618. * CPU accounting code for task groups.
  7619. *
  7620. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7621. * (balbir@in.ibm.com).
  7622. */
  7623. /* track cpu usage of a group of tasks and its child groups */
  7624. struct cpuacct {
  7625. struct cgroup_subsys_state css;
  7626. /* cpuusage holds pointer to a u64-type object on every cpu */
  7627. u64 __percpu *cpuusage;
  7628. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7629. struct cpuacct *parent;
  7630. };
  7631. struct cgroup_subsys cpuacct_subsys;
  7632. /* return cpu accounting group corresponding to this container */
  7633. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7634. {
  7635. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7636. struct cpuacct, css);
  7637. }
  7638. /* return cpu accounting group to which this task belongs */
  7639. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7640. {
  7641. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7642. struct cpuacct, css);
  7643. }
  7644. /* create a new cpu accounting group */
  7645. static struct cgroup_subsys_state *cpuacct_create(
  7646. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7647. {
  7648. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7649. int i;
  7650. if (!ca)
  7651. goto out;
  7652. ca->cpuusage = alloc_percpu(u64);
  7653. if (!ca->cpuusage)
  7654. goto out_free_ca;
  7655. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7656. if (percpu_counter_init(&ca->cpustat[i], 0))
  7657. goto out_free_counters;
  7658. if (cgrp->parent)
  7659. ca->parent = cgroup_ca(cgrp->parent);
  7660. return &ca->css;
  7661. out_free_counters:
  7662. while (--i >= 0)
  7663. percpu_counter_destroy(&ca->cpustat[i]);
  7664. free_percpu(ca->cpuusage);
  7665. out_free_ca:
  7666. kfree(ca);
  7667. out:
  7668. return ERR_PTR(-ENOMEM);
  7669. }
  7670. /* destroy an existing cpu accounting group */
  7671. static void
  7672. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7673. {
  7674. struct cpuacct *ca = cgroup_ca(cgrp);
  7675. int i;
  7676. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7677. percpu_counter_destroy(&ca->cpustat[i]);
  7678. free_percpu(ca->cpuusage);
  7679. kfree(ca);
  7680. }
  7681. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7682. {
  7683. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7684. u64 data;
  7685. #ifndef CONFIG_64BIT
  7686. /*
  7687. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7688. */
  7689. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7690. data = *cpuusage;
  7691. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7692. #else
  7693. data = *cpuusage;
  7694. #endif
  7695. return data;
  7696. }
  7697. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7698. {
  7699. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7700. #ifndef CONFIG_64BIT
  7701. /*
  7702. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7703. */
  7704. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7705. *cpuusage = val;
  7706. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7707. #else
  7708. *cpuusage = val;
  7709. #endif
  7710. }
  7711. /* return total cpu usage (in nanoseconds) of a group */
  7712. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7713. {
  7714. struct cpuacct *ca = cgroup_ca(cgrp);
  7715. u64 totalcpuusage = 0;
  7716. int i;
  7717. for_each_present_cpu(i)
  7718. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7719. return totalcpuusage;
  7720. }
  7721. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7722. u64 reset)
  7723. {
  7724. struct cpuacct *ca = cgroup_ca(cgrp);
  7725. int err = 0;
  7726. int i;
  7727. if (reset) {
  7728. err = -EINVAL;
  7729. goto out;
  7730. }
  7731. for_each_present_cpu(i)
  7732. cpuacct_cpuusage_write(ca, i, 0);
  7733. out:
  7734. return err;
  7735. }
  7736. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7737. struct seq_file *m)
  7738. {
  7739. struct cpuacct *ca = cgroup_ca(cgroup);
  7740. u64 percpu;
  7741. int i;
  7742. for_each_present_cpu(i) {
  7743. percpu = cpuacct_cpuusage_read(ca, i);
  7744. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7745. }
  7746. seq_printf(m, "\n");
  7747. return 0;
  7748. }
  7749. static const char *cpuacct_stat_desc[] = {
  7750. [CPUACCT_STAT_USER] = "user",
  7751. [CPUACCT_STAT_SYSTEM] = "system",
  7752. };
  7753. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7754. struct cgroup_map_cb *cb)
  7755. {
  7756. struct cpuacct *ca = cgroup_ca(cgrp);
  7757. int i;
  7758. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7759. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7760. val = cputime64_to_clock_t(val);
  7761. cb->fill(cb, cpuacct_stat_desc[i], val);
  7762. }
  7763. return 0;
  7764. }
  7765. static struct cftype files[] = {
  7766. {
  7767. .name = "usage",
  7768. .read_u64 = cpuusage_read,
  7769. .write_u64 = cpuusage_write,
  7770. },
  7771. {
  7772. .name = "usage_percpu",
  7773. .read_seq_string = cpuacct_percpu_seq_read,
  7774. },
  7775. {
  7776. .name = "stat",
  7777. .read_map = cpuacct_stats_show,
  7778. },
  7779. };
  7780. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7781. {
  7782. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7783. }
  7784. /*
  7785. * charge this task's execution time to its accounting group.
  7786. *
  7787. * called with rq->lock held.
  7788. */
  7789. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7790. {
  7791. struct cpuacct *ca;
  7792. int cpu;
  7793. if (unlikely(!cpuacct_subsys.active))
  7794. return;
  7795. cpu = task_cpu(tsk);
  7796. rcu_read_lock();
  7797. ca = task_ca(tsk);
  7798. for (; ca; ca = ca->parent) {
  7799. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7800. *cpuusage += cputime;
  7801. }
  7802. rcu_read_unlock();
  7803. }
  7804. /*
  7805. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7806. * in cputime_t units. As a result, cpuacct_update_stats calls
  7807. * percpu_counter_add with values large enough to always overflow the
  7808. * per cpu batch limit causing bad SMP scalability.
  7809. *
  7810. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7811. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7812. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7813. */
  7814. #ifdef CONFIG_SMP
  7815. #define CPUACCT_BATCH \
  7816. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7817. #else
  7818. #define CPUACCT_BATCH 0
  7819. #endif
  7820. /*
  7821. * Charge the system/user time to the task's accounting group.
  7822. */
  7823. static void cpuacct_update_stats(struct task_struct *tsk,
  7824. enum cpuacct_stat_index idx, cputime_t val)
  7825. {
  7826. struct cpuacct *ca;
  7827. int batch = CPUACCT_BATCH;
  7828. if (unlikely(!cpuacct_subsys.active))
  7829. return;
  7830. rcu_read_lock();
  7831. ca = task_ca(tsk);
  7832. do {
  7833. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7834. ca = ca->parent;
  7835. } while (ca);
  7836. rcu_read_unlock();
  7837. }
  7838. struct cgroup_subsys cpuacct_subsys = {
  7839. .name = "cpuacct",
  7840. .create = cpuacct_create,
  7841. .destroy = cpuacct_destroy,
  7842. .populate = cpuacct_populate,
  7843. .subsys_id = cpuacct_subsys_id,
  7844. };
  7845. #endif /* CONFIG_CGROUP_CPUACCT */