mmu.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. enum {
  48. AUDIT_PRE_PAGE_FAULT,
  49. AUDIT_POST_PAGE_FAULT,
  50. AUDIT_PRE_PTE_WRITE,
  51. AUDIT_POST_PTE_WRITE
  52. };
  53. char *audit_point_name[] = {
  54. "pre page fault",
  55. "post page fault",
  56. "pre pte write",
  57. "post pte write"
  58. };
  59. #undef MMU_DEBUG
  60. #ifdef MMU_DEBUG
  61. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  62. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  63. #else
  64. #define pgprintk(x...) do { } while (0)
  65. #define rmap_printk(x...) do { } while (0)
  66. #endif
  67. #ifdef MMU_DEBUG
  68. static int dbg = 0;
  69. module_param(dbg, bool, 0644);
  70. #endif
  71. static int oos_shadow = 1;
  72. module_param(oos_shadow, bool, 0644);
  73. #ifndef MMU_DEBUG
  74. #define ASSERT(x) do { } while (0)
  75. #else
  76. #define ASSERT(x) \
  77. if (!(x)) { \
  78. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  79. __FILE__, __LINE__, #x); \
  80. }
  81. #endif
  82. #define PTE_PREFETCH_NUM 8
  83. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  84. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  85. #define PT64_LEVEL_BITS 9
  86. #define PT64_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  88. #define PT64_LEVEL_MASK(level) \
  89. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  90. #define PT64_INDEX(address, level)\
  91. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  92. #define PT32_LEVEL_BITS 10
  93. #define PT32_LEVEL_SHIFT(level) \
  94. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  95. #define PT32_LEVEL_MASK(level) \
  96. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  97. #define PT32_LVL_OFFSET_MASK(level) \
  98. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT32_LEVEL_BITS))) - 1))
  100. #define PT32_INDEX(address, level)\
  101. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  102. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  103. #define PT64_DIR_BASE_ADDR_MASK \
  104. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  105. #define PT64_LVL_ADDR_MASK(level) \
  106. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT64_LEVEL_BITS))) - 1))
  108. #define PT64_LVL_OFFSET_MASK(level) \
  109. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  110. * PT64_LEVEL_BITS))) - 1))
  111. #define PT32_BASE_ADDR_MASK PAGE_MASK
  112. #define PT32_DIR_BASE_ADDR_MASK \
  113. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  114. #define PT32_LVL_ADDR_MASK(level) \
  115. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  116. * PT32_LEVEL_BITS))) - 1))
  117. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  118. | PT64_NX_MASK)
  119. #define RMAP_EXT 4
  120. #define ACC_EXEC_MASK 1
  121. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  122. #define ACC_USER_MASK PT_USER_MASK
  123. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  124. #include <trace/events/kvm.h>
  125. #define CREATE_TRACE_POINTS
  126. #include "mmutrace.h"
  127. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  128. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  129. struct kvm_rmap_desc {
  130. u64 *sptes[RMAP_EXT];
  131. struct kvm_rmap_desc *more;
  132. };
  133. struct kvm_shadow_walk_iterator {
  134. u64 addr;
  135. hpa_t shadow_addr;
  136. int level;
  137. u64 *sptep;
  138. unsigned index;
  139. };
  140. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  141. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  142. shadow_walk_okay(&(_walker)); \
  143. shadow_walk_next(&(_walker)))
  144. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  145. static struct kmem_cache *pte_chain_cache;
  146. static struct kmem_cache *rmap_desc_cache;
  147. static struct kmem_cache *mmu_page_header_cache;
  148. static struct percpu_counter kvm_total_used_mmu_pages;
  149. static u64 __read_mostly shadow_trap_nonpresent_pte;
  150. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  151. static u64 __read_mostly shadow_base_present_pte;
  152. static u64 __read_mostly shadow_nx_mask;
  153. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  154. static u64 __read_mostly shadow_user_mask;
  155. static u64 __read_mostly shadow_accessed_mask;
  156. static u64 __read_mostly shadow_dirty_mask;
  157. static inline u64 rsvd_bits(int s, int e)
  158. {
  159. return ((1ULL << (e - s + 1)) - 1) << s;
  160. }
  161. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  162. {
  163. shadow_trap_nonpresent_pte = trap_pte;
  164. shadow_notrap_nonpresent_pte = notrap_pte;
  165. }
  166. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  167. void kvm_mmu_set_base_ptes(u64 base_pte)
  168. {
  169. shadow_base_present_pte = base_pte;
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  172. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  173. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  174. {
  175. shadow_user_mask = user_mask;
  176. shadow_accessed_mask = accessed_mask;
  177. shadow_dirty_mask = dirty_mask;
  178. shadow_nx_mask = nx_mask;
  179. shadow_x_mask = x_mask;
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  182. static bool is_write_protection(struct kvm_vcpu *vcpu)
  183. {
  184. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  185. }
  186. static int is_cpuid_PSE36(void)
  187. {
  188. return 1;
  189. }
  190. static int is_nx(struct kvm_vcpu *vcpu)
  191. {
  192. return vcpu->arch.efer & EFER_NX;
  193. }
  194. static int is_shadow_present_pte(u64 pte)
  195. {
  196. return pte != shadow_trap_nonpresent_pte
  197. && pte != shadow_notrap_nonpresent_pte;
  198. }
  199. static int is_large_pte(u64 pte)
  200. {
  201. return pte & PT_PAGE_SIZE_MASK;
  202. }
  203. static int is_writable_pte(unsigned long pte)
  204. {
  205. return pte & PT_WRITABLE_MASK;
  206. }
  207. static int is_dirty_gpte(unsigned long pte)
  208. {
  209. return pte & PT_DIRTY_MASK;
  210. }
  211. static int is_rmap_spte(u64 pte)
  212. {
  213. return is_shadow_present_pte(pte);
  214. }
  215. static int is_last_spte(u64 pte, int level)
  216. {
  217. if (level == PT_PAGE_TABLE_LEVEL)
  218. return 1;
  219. if (is_large_pte(pte))
  220. return 1;
  221. return 0;
  222. }
  223. static pfn_t spte_to_pfn(u64 pte)
  224. {
  225. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  226. }
  227. static gfn_t pse36_gfn_delta(u32 gpte)
  228. {
  229. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  230. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  231. }
  232. static void __set_spte(u64 *sptep, u64 spte)
  233. {
  234. set_64bit(sptep, spte);
  235. }
  236. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  237. {
  238. #ifdef CONFIG_X86_64
  239. return xchg(sptep, new_spte);
  240. #else
  241. u64 old_spte;
  242. do {
  243. old_spte = *sptep;
  244. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  245. return old_spte;
  246. #endif
  247. }
  248. static bool spte_has_volatile_bits(u64 spte)
  249. {
  250. if (!shadow_accessed_mask)
  251. return false;
  252. if (!is_shadow_present_pte(spte))
  253. return false;
  254. if ((spte & shadow_accessed_mask) &&
  255. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  256. return false;
  257. return true;
  258. }
  259. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  260. {
  261. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  262. }
  263. static void update_spte(u64 *sptep, u64 new_spte)
  264. {
  265. u64 mask, old_spte = *sptep;
  266. WARN_ON(!is_rmap_spte(new_spte));
  267. new_spte |= old_spte & shadow_dirty_mask;
  268. mask = shadow_accessed_mask;
  269. if (is_writable_pte(old_spte))
  270. mask |= shadow_dirty_mask;
  271. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  272. __set_spte(sptep, new_spte);
  273. else
  274. old_spte = __xchg_spte(sptep, new_spte);
  275. if (!shadow_accessed_mask)
  276. return;
  277. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  278. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  279. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  280. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  281. }
  282. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  283. struct kmem_cache *base_cache, int min)
  284. {
  285. void *obj;
  286. if (cache->nobjs >= min)
  287. return 0;
  288. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  289. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  290. if (!obj)
  291. return -ENOMEM;
  292. cache->objects[cache->nobjs++] = obj;
  293. }
  294. return 0;
  295. }
  296. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  297. struct kmem_cache *cache)
  298. {
  299. while (mc->nobjs)
  300. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  301. }
  302. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  303. int min)
  304. {
  305. struct page *page;
  306. if (cache->nobjs >= min)
  307. return 0;
  308. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  309. page = alloc_page(GFP_KERNEL);
  310. if (!page)
  311. return -ENOMEM;
  312. cache->objects[cache->nobjs++] = page_address(page);
  313. }
  314. return 0;
  315. }
  316. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  317. {
  318. while (mc->nobjs)
  319. free_page((unsigned long)mc->objects[--mc->nobjs]);
  320. }
  321. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  322. {
  323. int r;
  324. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  325. pte_chain_cache, 4);
  326. if (r)
  327. goto out;
  328. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  329. rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
  330. if (r)
  331. goto out;
  332. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  333. if (r)
  334. goto out;
  335. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  336. mmu_page_header_cache, 4);
  337. out:
  338. return r;
  339. }
  340. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  341. {
  342. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  343. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  344. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  345. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  346. mmu_page_header_cache);
  347. }
  348. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  349. size_t size)
  350. {
  351. void *p;
  352. BUG_ON(!mc->nobjs);
  353. p = mc->objects[--mc->nobjs];
  354. return p;
  355. }
  356. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  357. {
  358. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  359. sizeof(struct kvm_pte_chain));
  360. }
  361. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  362. {
  363. kmem_cache_free(pte_chain_cache, pc);
  364. }
  365. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  366. {
  367. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  368. sizeof(struct kvm_rmap_desc));
  369. }
  370. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  371. {
  372. kmem_cache_free(rmap_desc_cache, rd);
  373. }
  374. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  375. {
  376. if (!sp->role.direct)
  377. return sp->gfns[index];
  378. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  379. }
  380. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  381. {
  382. if (sp->role.direct)
  383. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  384. else
  385. sp->gfns[index] = gfn;
  386. }
  387. /*
  388. * Return the pointer to the largepage write count for a given
  389. * gfn, handling slots that are not large page aligned.
  390. */
  391. static int *slot_largepage_idx(gfn_t gfn,
  392. struct kvm_memory_slot *slot,
  393. int level)
  394. {
  395. unsigned long idx;
  396. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  397. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  398. return &slot->lpage_info[level - 2][idx].write_count;
  399. }
  400. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  401. {
  402. struct kvm_memory_slot *slot;
  403. int *write_count;
  404. int i;
  405. slot = gfn_to_memslot(kvm, gfn);
  406. for (i = PT_DIRECTORY_LEVEL;
  407. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  408. write_count = slot_largepage_idx(gfn, slot, i);
  409. *write_count += 1;
  410. }
  411. }
  412. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  413. {
  414. struct kvm_memory_slot *slot;
  415. int *write_count;
  416. int i;
  417. slot = gfn_to_memslot(kvm, gfn);
  418. for (i = PT_DIRECTORY_LEVEL;
  419. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  420. write_count = slot_largepage_idx(gfn, slot, i);
  421. *write_count -= 1;
  422. WARN_ON(*write_count < 0);
  423. }
  424. }
  425. static int has_wrprotected_page(struct kvm *kvm,
  426. gfn_t gfn,
  427. int level)
  428. {
  429. struct kvm_memory_slot *slot;
  430. int *largepage_idx;
  431. slot = gfn_to_memslot(kvm, gfn);
  432. if (slot) {
  433. largepage_idx = slot_largepage_idx(gfn, slot, level);
  434. return *largepage_idx;
  435. }
  436. return 1;
  437. }
  438. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  439. {
  440. unsigned long page_size;
  441. int i, ret = 0;
  442. page_size = kvm_host_page_size(kvm, gfn);
  443. for (i = PT_PAGE_TABLE_LEVEL;
  444. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  445. if (page_size >= KVM_HPAGE_SIZE(i))
  446. ret = i;
  447. else
  448. break;
  449. }
  450. return ret;
  451. }
  452. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  453. {
  454. struct kvm_memory_slot *slot;
  455. int host_level, level, max_level;
  456. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  457. if (slot && slot->dirty_bitmap)
  458. return PT_PAGE_TABLE_LEVEL;
  459. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  460. if (host_level == PT_PAGE_TABLE_LEVEL)
  461. return host_level;
  462. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  463. kvm_x86_ops->get_lpage_level() : host_level;
  464. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  465. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  466. break;
  467. return level - 1;
  468. }
  469. /*
  470. * Take gfn and return the reverse mapping to it.
  471. */
  472. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  473. {
  474. struct kvm_memory_slot *slot;
  475. unsigned long idx;
  476. slot = gfn_to_memslot(kvm, gfn);
  477. if (likely(level == PT_PAGE_TABLE_LEVEL))
  478. return &slot->rmap[gfn - slot->base_gfn];
  479. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  480. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  481. return &slot->lpage_info[level - 2][idx].rmap_pde;
  482. }
  483. /*
  484. * Reverse mapping data structures:
  485. *
  486. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  487. * that points to page_address(page).
  488. *
  489. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  490. * containing more mappings.
  491. *
  492. * Returns the number of rmap entries before the spte was added or zero if
  493. * the spte was not added.
  494. *
  495. */
  496. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  497. {
  498. struct kvm_mmu_page *sp;
  499. struct kvm_rmap_desc *desc;
  500. unsigned long *rmapp;
  501. int i, count = 0;
  502. if (!is_rmap_spte(*spte))
  503. return count;
  504. sp = page_header(__pa(spte));
  505. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  506. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  507. if (!*rmapp) {
  508. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  509. *rmapp = (unsigned long)spte;
  510. } else if (!(*rmapp & 1)) {
  511. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  512. desc = mmu_alloc_rmap_desc(vcpu);
  513. desc->sptes[0] = (u64 *)*rmapp;
  514. desc->sptes[1] = spte;
  515. *rmapp = (unsigned long)desc | 1;
  516. } else {
  517. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  518. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  519. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  520. desc = desc->more;
  521. count += RMAP_EXT;
  522. }
  523. if (desc->sptes[RMAP_EXT-1]) {
  524. desc->more = mmu_alloc_rmap_desc(vcpu);
  525. desc = desc->more;
  526. }
  527. for (i = 0; desc->sptes[i]; ++i)
  528. ;
  529. desc->sptes[i] = spte;
  530. }
  531. return count;
  532. }
  533. static void rmap_desc_remove_entry(unsigned long *rmapp,
  534. struct kvm_rmap_desc *desc,
  535. int i,
  536. struct kvm_rmap_desc *prev_desc)
  537. {
  538. int j;
  539. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  540. ;
  541. desc->sptes[i] = desc->sptes[j];
  542. desc->sptes[j] = NULL;
  543. if (j != 0)
  544. return;
  545. if (!prev_desc && !desc->more)
  546. *rmapp = (unsigned long)desc->sptes[0];
  547. else
  548. if (prev_desc)
  549. prev_desc->more = desc->more;
  550. else
  551. *rmapp = (unsigned long)desc->more | 1;
  552. mmu_free_rmap_desc(desc);
  553. }
  554. static void rmap_remove(struct kvm *kvm, u64 *spte)
  555. {
  556. struct kvm_rmap_desc *desc;
  557. struct kvm_rmap_desc *prev_desc;
  558. struct kvm_mmu_page *sp;
  559. gfn_t gfn;
  560. unsigned long *rmapp;
  561. int i;
  562. sp = page_header(__pa(spte));
  563. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  564. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  565. if (!*rmapp) {
  566. printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
  567. BUG();
  568. } else if (!(*rmapp & 1)) {
  569. rmap_printk("rmap_remove: %p 1->0\n", spte);
  570. if ((u64 *)*rmapp != spte) {
  571. printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
  572. BUG();
  573. }
  574. *rmapp = 0;
  575. } else {
  576. rmap_printk("rmap_remove: %p many->many\n", spte);
  577. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  578. prev_desc = NULL;
  579. while (desc) {
  580. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  581. if (desc->sptes[i] == spte) {
  582. rmap_desc_remove_entry(rmapp,
  583. desc, i,
  584. prev_desc);
  585. return;
  586. }
  587. prev_desc = desc;
  588. desc = desc->more;
  589. }
  590. pr_err("rmap_remove: %p many->many\n", spte);
  591. BUG();
  592. }
  593. }
  594. static void set_spte_track_bits(u64 *sptep, u64 new_spte)
  595. {
  596. pfn_t pfn;
  597. u64 old_spte = *sptep;
  598. if (!spte_has_volatile_bits(old_spte))
  599. __set_spte(sptep, new_spte);
  600. else
  601. old_spte = __xchg_spte(sptep, new_spte);
  602. if (!is_rmap_spte(old_spte))
  603. return;
  604. pfn = spte_to_pfn(old_spte);
  605. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  606. kvm_set_pfn_accessed(pfn);
  607. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  608. kvm_set_pfn_dirty(pfn);
  609. }
  610. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  611. {
  612. set_spte_track_bits(sptep, new_spte);
  613. rmap_remove(kvm, sptep);
  614. }
  615. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  616. {
  617. struct kvm_rmap_desc *desc;
  618. u64 *prev_spte;
  619. int i;
  620. if (!*rmapp)
  621. return NULL;
  622. else if (!(*rmapp & 1)) {
  623. if (!spte)
  624. return (u64 *)*rmapp;
  625. return NULL;
  626. }
  627. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  628. prev_spte = NULL;
  629. while (desc) {
  630. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  631. if (prev_spte == spte)
  632. return desc->sptes[i];
  633. prev_spte = desc->sptes[i];
  634. }
  635. desc = desc->more;
  636. }
  637. return NULL;
  638. }
  639. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  640. {
  641. unsigned long *rmapp;
  642. u64 *spte;
  643. int i, write_protected = 0;
  644. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  645. spte = rmap_next(kvm, rmapp, NULL);
  646. while (spte) {
  647. BUG_ON(!spte);
  648. BUG_ON(!(*spte & PT_PRESENT_MASK));
  649. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  650. if (is_writable_pte(*spte)) {
  651. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  652. write_protected = 1;
  653. }
  654. spte = rmap_next(kvm, rmapp, spte);
  655. }
  656. /* check for huge page mappings */
  657. for (i = PT_DIRECTORY_LEVEL;
  658. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  659. rmapp = gfn_to_rmap(kvm, gfn, i);
  660. spte = rmap_next(kvm, rmapp, NULL);
  661. while (spte) {
  662. BUG_ON(!spte);
  663. BUG_ON(!(*spte & PT_PRESENT_MASK));
  664. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  665. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  666. if (is_writable_pte(*spte)) {
  667. drop_spte(kvm, spte,
  668. shadow_trap_nonpresent_pte);
  669. --kvm->stat.lpages;
  670. spte = NULL;
  671. write_protected = 1;
  672. }
  673. spte = rmap_next(kvm, rmapp, spte);
  674. }
  675. }
  676. return write_protected;
  677. }
  678. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  679. unsigned long data)
  680. {
  681. u64 *spte;
  682. int need_tlb_flush = 0;
  683. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  684. BUG_ON(!(*spte & PT_PRESENT_MASK));
  685. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  686. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  687. need_tlb_flush = 1;
  688. }
  689. return need_tlb_flush;
  690. }
  691. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  692. unsigned long data)
  693. {
  694. int need_flush = 0;
  695. u64 *spte, new_spte;
  696. pte_t *ptep = (pte_t *)data;
  697. pfn_t new_pfn;
  698. WARN_ON(pte_huge(*ptep));
  699. new_pfn = pte_pfn(*ptep);
  700. spte = rmap_next(kvm, rmapp, NULL);
  701. while (spte) {
  702. BUG_ON(!is_shadow_present_pte(*spte));
  703. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  704. need_flush = 1;
  705. if (pte_write(*ptep)) {
  706. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  707. spte = rmap_next(kvm, rmapp, NULL);
  708. } else {
  709. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  710. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  711. new_spte &= ~PT_WRITABLE_MASK;
  712. new_spte &= ~SPTE_HOST_WRITEABLE;
  713. new_spte &= ~shadow_accessed_mask;
  714. set_spte_track_bits(spte, new_spte);
  715. spte = rmap_next(kvm, rmapp, spte);
  716. }
  717. }
  718. if (need_flush)
  719. kvm_flush_remote_tlbs(kvm);
  720. return 0;
  721. }
  722. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  723. unsigned long data,
  724. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  725. unsigned long data))
  726. {
  727. int i, j;
  728. int ret;
  729. int retval = 0;
  730. struct kvm_memslots *slots;
  731. slots = kvm_memslots(kvm);
  732. for (i = 0; i < slots->nmemslots; i++) {
  733. struct kvm_memory_slot *memslot = &slots->memslots[i];
  734. unsigned long start = memslot->userspace_addr;
  735. unsigned long end;
  736. end = start + (memslot->npages << PAGE_SHIFT);
  737. if (hva >= start && hva < end) {
  738. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  739. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  740. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  741. unsigned long idx;
  742. int sh;
  743. sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
  744. idx = ((memslot->base_gfn+gfn_offset) >> sh) -
  745. (memslot->base_gfn >> sh);
  746. ret |= handler(kvm,
  747. &memslot->lpage_info[j][idx].rmap_pde,
  748. data);
  749. }
  750. trace_kvm_age_page(hva, memslot, ret);
  751. retval |= ret;
  752. }
  753. }
  754. return retval;
  755. }
  756. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  757. {
  758. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  759. }
  760. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  761. {
  762. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  763. }
  764. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  765. unsigned long data)
  766. {
  767. u64 *spte;
  768. int young = 0;
  769. /*
  770. * Emulate the accessed bit for EPT, by checking if this page has
  771. * an EPT mapping, and clearing it if it does. On the next access,
  772. * a new EPT mapping will be established.
  773. * This has some overhead, but not as much as the cost of swapping
  774. * out actively used pages or breaking up actively used hugepages.
  775. */
  776. if (!shadow_accessed_mask)
  777. return kvm_unmap_rmapp(kvm, rmapp, data);
  778. spte = rmap_next(kvm, rmapp, NULL);
  779. while (spte) {
  780. int _young;
  781. u64 _spte = *spte;
  782. BUG_ON(!(_spte & PT_PRESENT_MASK));
  783. _young = _spte & PT_ACCESSED_MASK;
  784. if (_young) {
  785. young = 1;
  786. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  787. }
  788. spte = rmap_next(kvm, rmapp, spte);
  789. }
  790. return young;
  791. }
  792. #define RMAP_RECYCLE_THRESHOLD 1000
  793. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  794. {
  795. unsigned long *rmapp;
  796. struct kvm_mmu_page *sp;
  797. sp = page_header(__pa(spte));
  798. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  799. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  800. kvm_flush_remote_tlbs(vcpu->kvm);
  801. }
  802. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  803. {
  804. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  805. }
  806. #ifdef MMU_DEBUG
  807. static int is_empty_shadow_page(u64 *spt)
  808. {
  809. u64 *pos;
  810. u64 *end;
  811. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  812. if (is_shadow_present_pte(*pos)) {
  813. printk(KERN_ERR "%s: %p %llx\n", __func__,
  814. pos, *pos);
  815. return 0;
  816. }
  817. return 1;
  818. }
  819. #endif
  820. /*
  821. * This value is the sum of all of the kvm instances's
  822. * kvm->arch.n_used_mmu_pages values. We need a global,
  823. * aggregate version in order to make the slab shrinker
  824. * faster
  825. */
  826. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  827. {
  828. kvm->arch.n_used_mmu_pages += nr;
  829. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  830. }
  831. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  832. {
  833. ASSERT(is_empty_shadow_page(sp->spt));
  834. hlist_del(&sp->hash_link);
  835. list_del(&sp->link);
  836. __free_page(virt_to_page(sp->spt));
  837. if (!sp->role.direct)
  838. __free_page(virt_to_page(sp->gfns));
  839. kmem_cache_free(mmu_page_header_cache, sp);
  840. kvm_mod_used_mmu_pages(kvm, -1);
  841. }
  842. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  843. {
  844. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  845. }
  846. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  847. u64 *parent_pte, int direct)
  848. {
  849. struct kvm_mmu_page *sp;
  850. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  851. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  852. if (!direct)
  853. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  854. PAGE_SIZE);
  855. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  856. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  857. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  858. sp->multimapped = 0;
  859. sp->parent_pte = parent_pte;
  860. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  861. return sp;
  862. }
  863. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  864. struct kvm_mmu_page *sp, u64 *parent_pte)
  865. {
  866. struct kvm_pte_chain *pte_chain;
  867. struct hlist_node *node;
  868. int i;
  869. if (!parent_pte)
  870. return;
  871. if (!sp->multimapped) {
  872. u64 *old = sp->parent_pte;
  873. if (!old) {
  874. sp->parent_pte = parent_pte;
  875. return;
  876. }
  877. sp->multimapped = 1;
  878. pte_chain = mmu_alloc_pte_chain(vcpu);
  879. INIT_HLIST_HEAD(&sp->parent_ptes);
  880. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  881. pte_chain->parent_ptes[0] = old;
  882. }
  883. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  884. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  885. continue;
  886. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  887. if (!pte_chain->parent_ptes[i]) {
  888. pte_chain->parent_ptes[i] = parent_pte;
  889. return;
  890. }
  891. }
  892. pte_chain = mmu_alloc_pte_chain(vcpu);
  893. BUG_ON(!pte_chain);
  894. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  895. pte_chain->parent_ptes[0] = parent_pte;
  896. }
  897. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  898. u64 *parent_pte)
  899. {
  900. struct kvm_pte_chain *pte_chain;
  901. struct hlist_node *node;
  902. int i;
  903. if (!sp->multimapped) {
  904. BUG_ON(sp->parent_pte != parent_pte);
  905. sp->parent_pte = NULL;
  906. return;
  907. }
  908. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  909. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  910. if (!pte_chain->parent_ptes[i])
  911. break;
  912. if (pte_chain->parent_ptes[i] != parent_pte)
  913. continue;
  914. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  915. && pte_chain->parent_ptes[i + 1]) {
  916. pte_chain->parent_ptes[i]
  917. = pte_chain->parent_ptes[i + 1];
  918. ++i;
  919. }
  920. pte_chain->parent_ptes[i] = NULL;
  921. if (i == 0) {
  922. hlist_del(&pte_chain->link);
  923. mmu_free_pte_chain(pte_chain);
  924. if (hlist_empty(&sp->parent_ptes)) {
  925. sp->multimapped = 0;
  926. sp->parent_pte = NULL;
  927. }
  928. }
  929. return;
  930. }
  931. BUG();
  932. }
  933. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  934. {
  935. struct kvm_pte_chain *pte_chain;
  936. struct hlist_node *node;
  937. struct kvm_mmu_page *parent_sp;
  938. int i;
  939. if (!sp->multimapped && sp->parent_pte) {
  940. parent_sp = page_header(__pa(sp->parent_pte));
  941. fn(parent_sp, sp->parent_pte);
  942. return;
  943. }
  944. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  945. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  946. u64 *spte = pte_chain->parent_ptes[i];
  947. if (!spte)
  948. break;
  949. parent_sp = page_header(__pa(spte));
  950. fn(parent_sp, spte);
  951. }
  952. }
  953. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  954. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  955. {
  956. mmu_parent_walk(sp, mark_unsync);
  957. }
  958. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  959. {
  960. unsigned int index;
  961. index = spte - sp->spt;
  962. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  963. return;
  964. if (sp->unsync_children++)
  965. return;
  966. kvm_mmu_mark_parents_unsync(sp);
  967. }
  968. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  969. struct kvm_mmu_page *sp)
  970. {
  971. int i;
  972. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  973. sp->spt[i] = shadow_trap_nonpresent_pte;
  974. }
  975. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  976. struct kvm_mmu_page *sp, bool clear_unsync)
  977. {
  978. return 1;
  979. }
  980. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  981. {
  982. }
  983. #define KVM_PAGE_ARRAY_NR 16
  984. struct kvm_mmu_pages {
  985. struct mmu_page_and_offset {
  986. struct kvm_mmu_page *sp;
  987. unsigned int idx;
  988. } page[KVM_PAGE_ARRAY_NR];
  989. unsigned int nr;
  990. };
  991. #define for_each_unsync_children(bitmap, idx) \
  992. for (idx = find_first_bit(bitmap, 512); \
  993. idx < 512; \
  994. idx = find_next_bit(bitmap, 512, idx+1))
  995. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  996. int idx)
  997. {
  998. int i;
  999. if (sp->unsync)
  1000. for (i=0; i < pvec->nr; i++)
  1001. if (pvec->page[i].sp == sp)
  1002. return 0;
  1003. pvec->page[pvec->nr].sp = sp;
  1004. pvec->page[pvec->nr].idx = idx;
  1005. pvec->nr++;
  1006. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1007. }
  1008. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1009. struct kvm_mmu_pages *pvec)
  1010. {
  1011. int i, ret, nr_unsync_leaf = 0;
  1012. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  1013. struct kvm_mmu_page *child;
  1014. u64 ent = sp->spt[i];
  1015. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1016. goto clear_child_bitmap;
  1017. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1018. if (child->unsync_children) {
  1019. if (mmu_pages_add(pvec, child, i))
  1020. return -ENOSPC;
  1021. ret = __mmu_unsync_walk(child, pvec);
  1022. if (!ret)
  1023. goto clear_child_bitmap;
  1024. else if (ret > 0)
  1025. nr_unsync_leaf += ret;
  1026. else
  1027. return ret;
  1028. } else if (child->unsync) {
  1029. nr_unsync_leaf++;
  1030. if (mmu_pages_add(pvec, child, i))
  1031. return -ENOSPC;
  1032. } else
  1033. goto clear_child_bitmap;
  1034. continue;
  1035. clear_child_bitmap:
  1036. __clear_bit(i, sp->unsync_child_bitmap);
  1037. sp->unsync_children--;
  1038. WARN_ON((int)sp->unsync_children < 0);
  1039. }
  1040. return nr_unsync_leaf;
  1041. }
  1042. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1043. struct kvm_mmu_pages *pvec)
  1044. {
  1045. if (!sp->unsync_children)
  1046. return 0;
  1047. mmu_pages_add(pvec, sp, 0);
  1048. return __mmu_unsync_walk(sp, pvec);
  1049. }
  1050. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1051. {
  1052. WARN_ON(!sp->unsync);
  1053. trace_kvm_mmu_sync_page(sp);
  1054. sp->unsync = 0;
  1055. --kvm->stat.mmu_unsync;
  1056. }
  1057. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1058. struct list_head *invalid_list);
  1059. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1060. struct list_head *invalid_list);
  1061. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1062. hlist_for_each_entry(sp, pos, \
  1063. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1064. if ((sp)->gfn != (gfn)) {} else
  1065. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1066. hlist_for_each_entry(sp, pos, \
  1067. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1068. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1069. (sp)->role.invalid) {} else
  1070. /* @sp->gfn should be write-protected at the call site */
  1071. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1072. struct list_head *invalid_list, bool clear_unsync)
  1073. {
  1074. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1075. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1076. return 1;
  1077. }
  1078. if (clear_unsync)
  1079. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1080. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1081. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1082. return 1;
  1083. }
  1084. kvm_mmu_flush_tlb(vcpu);
  1085. return 0;
  1086. }
  1087. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1088. struct kvm_mmu_page *sp)
  1089. {
  1090. LIST_HEAD(invalid_list);
  1091. int ret;
  1092. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1093. if (ret)
  1094. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1095. return ret;
  1096. }
  1097. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1098. struct list_head *invalid_list)
  1099. {
  1100. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1101. }
  1102. /* @gfn should be write-protected at the call site */
  1103. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1104. {
  1105. struct kvm_mmu_page *s;
  1106. struct hlist_node *node;
  1107. LIST_HEAD(invalid_list);
  1108. bool flush = false;
  1109. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1110. if (!s->unsync)
  1111. continue;
  1112. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1113. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1114. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1115. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1116. continue;
  1117. }
  1118. kvm_unlink_unsync_page(vcpu->kvm, s);
  1119. flush = true;
  1120. }
  1121. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1122. if (flush)
  1123. kvm_mmu_flush_tlb(vcpu);
  1124. }
  1125. struct mmu_page_path {
  1126. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1127. unsigned int idx[PT64_ROOT_LEVEL-1];
  1128. };
  1129. #define for_each_sp(pvec, sp, parents, i) \
  1130. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1131. sp = pvec.page[i].sp; \
  1132. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1133. i = mmu_pages_next(&pvec, &parents, i))
  1134. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1135. struct mmu_page_path *parents,
  1136. int i)
  1137. {
  1138. int n;
  1139. for (n = i+1; n < pvec->nr; n++) {
  1140. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1141. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1142. parents->idx[0] = pvec->page[n].idx;
  1143. return n;
  1144. }
  1145. parents->parent[sp->role.level-2] = sp;
  1146. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1147. }
  1148. return n;
  1149. }
  1150. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1151. {
  1152. struct kvm_mmu_page *sp;
  1153. unsigned int level = 0;
  1154. do {
  1155. unsigned int idx = parents->idx[level];
  1156. sp = parents->parent[level];
  1157. if (!sp)
  1158. return;
  1159. --sp->unsync_children;
  1160. WARN_ON((int)sp->unsync_children < 0);
  1161. __clear_bit(idx, sp->unsync_child_bitmap);
  1162. level++;
  1163. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1164. }
  1165. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1166. struct mmu_page_path *parents,
  1167. struct kvm_mmu_pages *pvec)
  1168. {
  1169. parents->parent[parent->role.level-1] = NULL;
  1170. pvec->nr = 0;
  1171. }
  1172. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1173. struct kvm_mmu_page *parent)
  1174. {
  1175. int i;
  1176. struct kvm_mmu_page *sp;
  1177. struct mmu_page_path parents;
  1178. struct kvm_mmu_pages pages;
  1179. LIST_HEAD(invalid_list);
  1180. kvm_mmu_pages_init(parent, &parents, &pages);
  1181. while (mmu_unsync_walk(parent, &pages)) {
  1182. int protected = 0;
  1183. for_each_sp(pages, sp, parents, i)
  1184. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1185. if (protected)
  1186. kvm_flush_remote_tlbs(vcpu->kvm);
  1187. for_each_sp(pages, sp, parents, i) {
  1188. kvm_sync_page(vcpu, sp, &invalid_list);
  1189. mmu_pages_clear_parents(&parents);
  1190. }
  1191. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1192. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1193. kvm_mmu_pages_init(parent, &parents, &pages);
  1194. }
  1195. }
  1196. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1197. gfn_t gfn,
  1198. gva_t gaddr,
  1199. unsigned level,
  1200. int direct,
  1201. unsigned access,
  1202. u64 *parent_pte)
  1203. {
  1204. union kvm_mmu_page_role role;
  1205. unsigned quadrant;
  1206. struct kvm_mmu_page *sp;
  1207. struct hlist_node *node;
  1208. bool need_sync = false;
  1209. role = vcpu->arch.mmu.base_role;
  1210. role.level = level;
  1211. role.direct = direct;
  1212. if (role.direct)
  1213. role.cr4_pae = 0;
  1214. role.access = access;
  1215. if (!vcpu->arch.mmu.direct_map
  1216. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1217. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1218. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1219. role.quadrant = quadrant;
  1220. }
  1221. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1222. if (!need_sync && sp->unsync)
  1223. need_sync = true;
  1224. if (sp->role.word != role.word)
  1225. continue;
  1226. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1227. break;
  1228. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1229. if (sp->unsync_children) {
  1230. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1231. kvm_mmu_mark_parents_unsync(sp);
  1232. } else if (sp->unsync)
  1233. kvm_mmu_mark_parents_unsync(sp);
  1234. trace_kvm_mmu_get_page(sp, false);
  1235. return sp;
  1236. }
  1237. ++vcpu->kvm->stat.mmu_cache_miss;
  1238. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1239. if (!sp)
  1240. return sp;
  1241. sp->gfn = gfn;
  1242. sp->role = role;
  1243. hlist_add_head(&sp->hash_link,
  1244. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1245. if (!direct) {
  1246. if (rmap_write_protect(vcpu->kvm, gfn))
  1247. kvm_flush_remote_tlbs(vcpu->kvm);
  1248. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1249. kvm_sync_pages(vcpu, gfn);
  1250. account_shadowed(vcpu->kvm, gfn);
  1251. }
  1252. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1253. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1254. else
  1255. nonpaging_prefetch_page(vcpu, sp);
  1256. trace_kvm_mmu_get_page(sp, true);
  1257. return sp;
  1258. }
  1259. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1260. struct kvm_vcpu *vcpu, u64 addr)
  1261. {
  1262. iterator->addr = addr;
  1263. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1264. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1265. if (iterator->level == PT32E_ROOT_LEVEL) {
  1266. iterator->shadow_addr
  1267. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1268. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1269. --iterator->level;
  1270. if (!iterator->shadow_addr)
  1271. iterator->level = 0;
  1272. }
  1273. }
  1274. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1275. {
  1276. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1277. return false;
  1278. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1279. if (is_large_pte(*iterator->sptep))
  1280. return false;
  1281. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1282. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1283. return true;
  1284. }
  1285. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1286. {
  1287. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1288. --iterator->level;
  1289. }
  1290. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1291. {
  1292. u64 spte;
  1293. spte = __pa(sp->spt)
  1294. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1295. | PT_WRITABLE_MASK | PT_USER_MASK;
  1296. __set_spte(sptep, spte);
  1297. }
  1298. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1299. {
  1300. if (is_large_pte(*sptep)) {
  1301. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1302. kvm_flush_remote_tlbs(vcpu->kvm);
  1303. }
  1304. }
  1305. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1306. unsigned direct_access)
  1307. {
  1308. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1309. struct kvm_mmu_page *child;
  1310. /*
  1311. * For the direct sp, if the guest pte's dirty bit
  1312. * changed form clean to dirty, it will corrupt the
  1313. * sp's access: allow writable in the read-only sp,
  1314. * so we should update the spte at this point to get
  1315. * a new sp with the correct access.
  1316. */
  1317. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1318. if (child->role.access == direct_access)
  1319. return;
  1320. mmu_page_remove_parent_pte(child, sptep);
  1321. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1322. kvm_flush_remote_tlbs(vcpu->kvm);
  1323. }
  1324. }
  1325. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1326. struct kvm_mmu_page *sp)
  1327. {
  1328. unsigned i;
  1329. u64 *pt;
  1330. u64 ent;
  1331. pt = sp->spt;
  1332. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1333. ent = pt[i];
  1334. if (is_shadow_present_pte(ent)) {
  1335. if (!is_last_spte(ent, sp->role.level)) {
  1336. ent &= PT64_BASE_ADDR_MASK;
  1337. mmu_page_remove_parent_pte(page_header(ent),
  1338. &pt[i]);
  1339. } else {
  1340. if (is_large_pte(ent))
  1341. --kvm->stat.lpages;
  1342. drop_spte(kvm, &pt[i],
  1343. shadow_trap_nonpresent_pte);
  1344. }
  1345. }
  1346. pt[i] = shadow_trap_nonpresent_pte;
  1347. }
  1348. }
  1349. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1350. {
  1351. mmu_page_remove_parent_pte(sp, parent_pte);
  1352. }
  1353. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1354. {
  1355. int i;
  1356. struct kvm_vcpu *vcpu;
  1357. kvm_for_each_vcpu(i, vcpu, kvm)
  1358. vcpu->arch.last_pte_updated = NULL;
  1359. }
  1360. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1361. {
  1362. u64 *parent_pte;
  1363. while (sp->multimapped || sp->parent_pte) {
  1364. if (!sp->multimapped)
  1365. parent_pte = sp->parent_pte;
  1366. else {
  1367. struct kvm_pte_chain *chain;
  1368. chain = container_of(sp->parent_ptes.first,
  1369. struct kvm_pte_chain, link);
  1370. parent_pte = chain->parent_ptes[0];
  1371. }
  1372. BUG_ON(!parent_pte);
  1373. kvm_mmu_put_page(sp, parent_pte);
  1374. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1375. }
  1376. }
  1377. static int mmu_zap_unsync_children(struct kvm *kvm,
  1378. struct kvm_mmu_page *parent,
  1379. struct list_head *invalid_list)
  1380. {
  1381. int i, zapped = 0;
  1382. struct mmu_page_path parents;
  1383. struct kvm_mmu_pages pages;
  1384. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1385. return 0;
  1386. kvm_mmu_pages_init(parent, &parents, &pages);
  1387. while (mmu_unsync_walk(parent, &pages)) {
  1388. struct kvm_mmu_page *sp;
  1389. for_each_sp(pages, sp, parents, i) {
  1390. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1391. mmu_pages_clear_parents(&parents);
  1392. zapped++;
  1393. }
  1394. kvm_mmu_pages_init(parent, &parents, &pages);
  1395. }
  1396. return zapped;
  1397. }
  1398. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1399. struct list_head *invalid_list)
  1400. {
  1401. int ret;
  1402. trace_kvm_mmu_prepare_zap_page(sp);
  1403. ++kvm->stat.mmu_shadow_zapped;
  1404. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1405. kvm_mmu_page_unlink_children(kvm, sp);
  1406. kvm_mmu_unlink_parents(kvm, sp);
  1407. if (!sp->role.invalid && !sp->role.direct)
  1408. unaccount_shadowed(kvm, sp->gfn);
  1409. if (sp->unsync)
  1410. kvm_unlink_unsync_page(kvm, sp);
  1411. if (!sp->root_count) {
  1412. /* Count self */
  1413. ret++;
  1414. list_move(&sp->link, invalid_list);
  1415. } else {
  1416. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1417. kvm_reload_remote_mmus(kvm);
  1418. }
  1419. sp->role.invalid = 1;
  1420. kvm_mmu_reset_last_pte_updated(kvm);
  1421. return ret;
  1422. }
  1423. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1424. struct list_head *invalid_list)
  1425. {
  1426. struct kvm_mmu_page *sp;
  1427. if (list_empty(invalid_list))
  1428. return;
  1429. kvm_flush_remote_tlbs(kvm);
  1430. do {
  1431. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1432. WARN_ON(!sp->role.invalid || sp->root_count);
  1433. kvm_mmu_free_page(kvm, sp);
  1434. } while (!list_empty(invalid_list));
  1435. }
  1436. /*
  1437. * Changing the number of mmu pages allocated to the vm
  1438. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1439. */
  1440. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1441. {
  1442. LIST_HEAD(invalid_list);
  1443. /*
  1444. * If we set the number of mmu pages to be smaller be than the
  1445. * number of actived pages , we must to free some mmu pages before we
  1446. * change the value
  1447. */
  1448. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1449. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1450. !list_empty(&kvm->arch.active_mmu_pages)) {
  1451. struct kvm_mmu_page *page;
  1452. page = container_of(kvm->arch.active_mmu_pages.prev,
  1453. struct kvm_mmu_page, link);
  1454. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1455. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1456. }
  1457. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1458. }
  1459. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1460. }
  1461. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1462. {
  1463. struct kvm_mmu_page *sp;
  1464. struct hlist_node *node;
  1465. LIST_HEAD(invalid_list);
  1466. int r;
  1467. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1468. r = 0;
  1469. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1470. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1471. sp->role.word);
  1472. r = 1;
  1473. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1474. }
  1475. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1476. return r;
  1477. }
  1478. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1479. {
  1480. struct kvm_mmu_page *sp;
  1481. struct hlist_node *node;
  1482. LIST_HEAD(invalid_list);
  1483. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1484. pgprintk("%s: zap %llx %x\n",
  1485. __func__, gfn, sp->role.word);
  1486. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1487. }
  1488. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1489. }
  1490. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1491. {
  1492. int slot = memslot_id(kvm, gfn);
  1493. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1494. __set_bit(slot, sp->slot_bitmap);
  1495. }
  1496. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1497. {
  1498. int i;
  1499. u64 *pt = sp->spt;
  1500. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1501. return;
  1502. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1503. if (pt[i] == shadow_notrap_nonpresent_pte)
  1504. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1505. }
  1506. }
  1507. /*
  1508. * The function is based on mtrr_type_lookup() in
  1509. * arch/x86/kernel/cpu/mtrr/generic.c
  1510. */
  1511. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1512. u64 start, u64 end)
  1513. {
  1514. int i;
  1515. u64 base, mask;
  1516. u8 prev_match, curr_match;
  1517. int num_var_ranges = KVM_NR_VAR_MTRR;
  1518. if (!mtrr_state->enabled)
  1519. return 0xFF;
  1520. /* Make end inclusive end, instead of exclusive */
  1521. end--;
  1522. /* Look in fixed ranges. Just return the type as per start */
  1523. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1524. int idx;
  1525. if (start < 0x80000) {
  1526. idx = 0;
  1527. idx += (start >> 16);
  1528. return mtrr_state->fixed_ranges[idx];
  1529. } else if (start < 0xC0000) {
  1530. idx = 1 * 8;
  1531. idx += ((start - 0x80000) >> 14);
  1532. return mtrr_state->fixed_ranges[idx];
  1533. } else if (start < 0x1000000) {
  1534. idx = 3 * 8;
  1535. idx += ((start - 0xC0000) >> 12);
  1536. return mtrr_state->fixed_ranges[idx];
  1537. }
  1538. }
  1539. /*
  1540. * Look in variable ranges
  1541. * Look of multiple ranges matching this address and pick type
  1542. * as per MTRR precedence
  1543. */
  1544. if (!(mtrr_state->enabled & 2))
  1545. return mtrr_state->def_type;
  1546. prev_match = 0xFF;
  1547. for (i = 0; i < num_var_ranges; ++i) {
  1548. unsigned short start_state, end_state;
  1549. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1550. continue;
  1551. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1552. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1553. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1554. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1555. start_state = ((start & mask) == (base & mask));
  1556. end_state = ((end & mask) == (base & mask));
  1557. if (start_state != end_state)
  1558. return 0xFE;
  1559. if ((start & mask) != (base & mask))
  1560. continue;
  1561. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1562. if (prev_match == 0xFF) {
  1563. prev_match = curr_match;
  1564. continue;
  1565. }
  1566. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1567. curr_match == MTRR_TYPE_UNCACHABLE)
  1568. return MTRR_TYPE_UNCACHABLE;
  1569. if ((prev_match == MTRR_TYPE_WRBACK &&
  1570. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1571. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1572. curr_match == MTRR_TYPE_WRBACK)) {
  1573. prev_match = MTRR_TYPE_WRTHROUGH;
  1574. curr_match = MTRR_TYPE_WRTHROUGH;
  1575. }
  1576. if (prev_match != curr_match)
  1577. return MTRR_TYPE_UNCACHABLE;
  1578. }
  1579. if (prev_match != 0xFF)
  1580. return prev_match;
  1581. return mtrr_state->def_type;
  1582. }
  1583. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1584. {
  1585. u8 mtrr;
  1586. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1587. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1588. if (mtrr == 0xfe || mtrr == 0xff)
  1589. mtrr = MTRR_TYPE_WRBACK;
  1590. return mtrr;
  1591. }
  1592. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1593. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1594. {
  1595. trace_kvm_mmu_unsync_page(sp);
  1596. ++vcpu->kvm->stat.mmu_unsync;
  1597. sp->unsync = 1;
  1598. kvm_mmu_mark_parents_unsync(sp);
  1599. mmu_convert_notrap(sp);
  1600. }
  1601. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1602. {
  1603. struct kvm_mmu_page *s;
  1604. struct hlist_node *node;
  1605. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1606. if (s->unsync)
  1607. continue;
  1608. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1609. __kvm_unsync_page(vcpu, s);
  1610. }
  1611. }
  1612. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1613. bool can_unsync)
  1614. {
  1615. struct kvm_mmu_page *s;
  1616. struct hlist_node *node;
  1617. bool need_unsync = false;
  1618. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1619. if (!can_unsync)
  1620. return 1;
  1621. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1622. return 1;
  1623. if (!need_unsync && !s->unsync) {
  1624. if (!oos_shadow)
  1625. return 1;
  1626. need_unsync = true;
  1627. }
  1628. }
  1629. if (need_unsync)
  1630. kvm_unsync_pages(vcpu, gfn);
  1631. return 0;
  1632. }
  1633. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1634. unsigned pte_access, int user_fault,
  1635. int write_fault, int dirty, int level,
  1636. gfn_t gfn, pfn_t pfn, bool speculative,
  1637. bool can_unsync, bool reset_host_protection)
  1638. {
  1639. u64 spte;
  1640. int ret = 0;
  1641. /*
  1642. * We don't set the accessed bit, since we sometimes want to see
  1643. * whether the guest actually used the pte (in order to detect
  1644. * demand paging).
  1645. */
  1646. spte = shadow_base_present_pte;
  1647. if (!speculative)
  1648. spte |= shadow_accessed_mask;
  1649. if (!dirty)
  1650. pte_access &= ~ACC_WRITE_MASK;
  1651. if (pte_access & ACC_EXEC_MASK)
  1652. spte |= shadow_x_mask;
  1653. else
  1654. spte |= shadow_nx_mask;
  1655. if (pte_access & ACC_USER_MASK)
  1656. spte |= shadow_user_mask;
  1657. if (level > PT_PAGE_TABLE_LEVEL)
  1658. spte |= PT_PAGE_SIZE_MASK;
  1659. if (vcpu->arch.mmu.direct_map)
  1660. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1661. kvm_is_mmio_pfn(pfn));
  1662. if (reset_host_protection)
  1663. spte |= SPTE_HOST_WRITEABLE;
  1664. spte |= (u64)pfn << PAGE_SHIFT;
  1665. if ((pte_access & ACC_WRITE_MASK)
  1666. || (!vcpu->arch.mmu.direct_map && write_fault
  1667. && !is_write_protection(vcpu) && !user_fault)) {
  1668. if (level > PT_PAGE_TABLE_LEVEL &&
  1669. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1670. ret = 1;
  1671. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1672. goto done;
  1673. }
  1674. spte |= PT_WRITABLE_MASK;
  1675. if (!vcpu->arch.mmu.direct_map
  1676. && !(pte_access & ACC_WRITE_MASK))
  1677. spte &= ~PT_USER_MASK;
  1678. /*
  1679. * Optimization: for pte sync, if spte was writable the hash
  1680. * lookup is unnecessary (and expensive). Write protection
  1681. * is responsibility of mmu_get_page / kvm_sync_page.
  1682. * Same reasoning can be applied to dirty page accounting.
  1683. */
  1684. if (!can_unsync && is_writable_pte(*sptep))
  1685. goto set_pte;
  1686. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1687. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1688. __func__, gfn);
  1689. ret = 1;
  1690. pte_access &= ~ACC_WRITE_MASK;
  1691. if (is_writable_pte(spte))
  1692. spte &= ~PT_WRITABLE_MASK;
  1693. }
  1694. }
  1695. if (pte_access & ACC_WRITE_MASK)
  1696. mark_page_dirty(vcpu->kvm, gfn);
  1697. set_pte:
  1698. update_spte(sptep, spte);
  1699. done:
  1700. return ret;
  1701. }
  1702. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1703. unsigned pt_access, unsigned pte_access,
  1704. int user_fault, int write_fault, int dirty,
  1705. int *ptwrite, int level, gfn_t gfn,
  1706. pfn_t pfn, bool speculative,
  1707. bool reset_host_protection)
  1708. {
  1709. int was_rmapped = 0;
  1710. int rmap_count;
  1711. pgprintk("%s: spte %llx access %x write_fault %d"
  1712. " user_fault %d gfn %llx\n",
  1713. __func__, *sptep, pt_access,
  1714. write_fault, user_fault, gfn);
  1715. if (is_rmap_spte(*sptep)) {
  1716. /*
  1717. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1718. * the parent of the now unreachable PTE.
  1719. */
  1720. if (level > PT_PAGE_TABLE_LEVEL &&
  1721. !is_large_pte(*sptep)) {
  1722. struct kvm_mmu_page *child;
  1723. u64 pte = *sptep;
  1724. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1725. mmu_page_remove_parent_pte(child, sptep);
  1726. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1727. kvm_flush_remote_tlbs(vcpu->kvm);
  1728. } else if (pfn != spte_to_pfn(*sptep)) {
  1729. pgprintk("hfn old %llx new %llx\n",
  1730. spte_to_pfn(*sptep), pfn);
  1731. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1732. kvm_flush_remote_tlbs(vcpu->kvm);
  1733. } else
  1734. was_rmapped = 1;
  1735. }
  1736. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1737. dirty, level, gfn, pfn, speculative, true,
  1738. reset_host_protection)) {
  1739. if (write_fault)
  1740. *ptwrite = 1;
  1741. kvm_mmu_flush_tlb(vcpu);
  1742. }
  1743. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1744. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1745. is_large_pte(*sptep)? "2MB" : "4kB",
  1746. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1747. *sptep, sptep);
  1748. if (!was_rmapped && is_large_pte(*sptep))
  1749. ++vcpu->kvm->stat.lpages;
  1750. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1751. if (!was_rmapped) {
  1752. rmap_count = rmap_add(vcpu, sptep, gfn);
  1753. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1754. rmap_recycle(vcpu, sptep, gfn);
  1755. }
  1756. kvm_release_pfn_clean(pfn);
  1757. if (speculative) {
  1758. vcpu->arch.last_pte_updated = sptep;
  1759. vcpu->arch.last_pte_gfn = gfn;
  1760. }
  1761. }
  1762. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1763. {
  1764. }
  1765. static struct kvm_memory_slot *
  1766. pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
  1767. {
  1768. struct kvm_memory_slot *slot;
  1769. slot = gfn_to_memslot(vcpu->kvm, gfn);
  1770. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  1771. (no_dirty_log && slot->dirty_bitmap))
  1772. slot = NULL;
  1773. return slot;
  1774. }
  1775. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1776. bool no_dirty_log)
  1777. {
  1778. struct kvm_memory_slot *slot;
  1779. unsigned long hva;
  1780. slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
  1781. if (!slot) {
  1782. get_page(bad_page);
  1783. return page_to_pfn(bad_page);
  1784. }
  1785. hva = gfn_to_hva_memslot(slot, gfn);
  1786. return hva_to_pfn_atomic(vcpu->kvm, hva);
  1787. }
  1788. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  1789. struct kvm_mmu_page *sp,
  1790. u64 *start, u64 *end)
  1791. {
  1792. struct page *pages[PTE_PREFETCH_NUM];
  1793. unsigned access = sp->role.access;
  1794. int i, ret;
  1795. gfn_t gfn;
  1796. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  1797. if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
  1798. return -1;
  1799. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  1800. if (ret <= 0)
  1801. return -1;
  1802. for (i = 0; i < ret; i++, gfn++, start++)
  1803. mmu_set_spte(vcpu, start, ACC_ALL,
  1804. access, 0, 0, 1, NULL,
  1805. sp->role.level, gfn,
  1806. page_to_pfn(pages[i]), true, true);
  1807. return 0;
  1808. }
  1809. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  1810. struct kvm_mmu_page *sp, u64 *sptep)
  1811. {
  1812. u64 *spte, *start = NULL;
  1813. int i;
  1814. WARN_ON(!sp->role.direct);
  1815. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  1816. spte = sp->spt + i;
  1817. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  1818. if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
  1819. if (!start)
  1820. continue;
  1821. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  1822. break;
  1823. start = NULL;
  1824. } else if (!start)
  1825. start = spte;
  1826. }
  1827. }
  1828. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  1829. {
  1830. struct kvm_mmu_page *sp;
  1831. /*
  1832. * Since it's no accessed bit on EPT, it's no way to
  1833. * distinguish between actually accessed translations
  1834. * and prefetched, so disable pte prefetch if EPT is
  1835. * enabled.
  1836. */
  1837. if (!shadow_accessed_mask)
  1838. return;
  1839. sp = page_header(__pa(sptep));
  1840. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  1841. return;
  1842. __direct_pte_prefetch(vcpu, sp, sptep);
  1843. }
  1844. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1845. int level, gfn_t gfn, pfn_t pfn)
  1846. {
  1847. struct kvm_shadow_walk_iterator iterator;
  1848. struct kvm_mmu_page *sp;
  1849. int pt_write = 0;
  1850. gfn_t pseudo_gfn;
  1851. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1852. if (iterator.level == level) {
  1853. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1854. 0, write, 1, &pt_write,
  1855. level, gfn, pfn, false, true);
  1856. direct_pte_prefetch(vcpu, iterator.sptep);
  1857. ++vcpu->stat.pf_fixed;
  1858. break;
  1859. }
  1860. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1861. u64 base_addr = iterator.addr;
  1862. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1863. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1864. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1865. iterator.level - 1,
  1866. 1, ACC_ALL, iterator.sptep);
  1867. if (!sp) {
  1868. pgprintk("nonpaging_map: ENOMEM\n");
  1869. kvm_release_pfn_clean(pfn);
  1870. return -ENOMEM;
  1871. }
  1872. __set_spte(iterator.sptep,
  1873. __pa(sp->spt)
  1874. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1875. | shadow_user_mask | shadow_x_mask);
  1876. }
  1877. }
  1878. return pt_write;
  1879. }
  1880. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1881. {
  1882. char buf[1];
  1883. void __user *hva;
  1884. int r;
  1885. /* Touch the page, so send SIGBUS */
  1886. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1887. r = copy_from_user(buf, hva, 1);
  1888. }
  1889. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1890. {
  1891. kvm_release_pfn_clean(pfn);
  1892. if (is_hwpoison_pfn(pfn)) {
  1893. kvm_send_hwpoison_signal(kvm, gfn);
  1894. return 0;
  1895. } else if (is_fault_pfn(pfn))
  1896. return -EFAULT;
  1897. return 1;
  1898. }
  1899. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1900. {
  1901. int r;
  1902. int level;
  1903. pfn_t pfn;
  1904. unsigned long mmu_seq;
  1905. level = mapping_level(vcpu, gfn);
  1906. /*
  1907. * This path builds a PAE pagetable - so we can map 2mb pages at
  1908. * maximum. Therefore check if the level is larger than that.
  1909. */
  1910. if (level > PT_DIRECTORY_LEVEL)
  1911. level = PT_DIRECTORY_LEVEL;
  1912. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1913. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1914. smp_rmb();
  1915. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1916. /* mmio */
  1917. if (is_error_pfn(pfn))
  1918. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1919. spin_lock(&vcpu->kvm->mmu_lock);
  1920. if (mmu_notifier_retry(vcpu, mmu_seq))
  1921. goto out_unlock;
  1922. kvm_mmu_free_some_pages(vcpu);
  1923. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1924. spin_unlock(&vcpu->kvm->mmu_lock);
  1925. return r;
  1926. out_unlock:
  1927. spin_unlock(&vcpu->kvm->mmu_lock);
  1928. kvm_release_pfn_clean(pfn);
  1929. return 0;
  1930. }
  1931. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1932. {
  1933. int i;
  1934. struct kvm_mmu_page *sp;
  1935. LIST_HEAD(invalid_list);
  1936. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1937. return;
  1938. spin_lock(&vcpu->kvm->mmu_lock);
  1939. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1940. hpa_t root = vcpu->arch.mmu.root_hpa;
  1941. sp = page_header(root);
  1942. --sp->root_count;
  1943. if (!sp->root_count && sp->role.invalid) {
  1944. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1945. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1946. }
  1947. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1948. spin_unlock(&vcpu->kvm->mmu_lock);
  1949. return;
  1950. }
  1951. for (i = 0; i < 4; ++i) {
  1952. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1953. if (root) {
  1954. root &= PT64_BASE_ADDR_MASK;
  1955. sp = page_header(root);
  1956. --sp->root_count;
  1957. if (!sp->root_count && sp->role.invalid)
  1958. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1959. &invalid_list);
  1960. }
  1961. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1962. }
  1963. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1964. spin_unlock(&vcpu->kvm->mmu_lock);
  1965. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1966. }
  1967. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1968. {
  1969. int ret = 0;
  1970. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1971. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1972. ret = 1;
  1973. }
  1974. return ret;
  1975. }
  1976. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1977. {
  1978. int i;
  1979. gfn_t root_gfn;
  1980. struct kvm_mmu_page *sp;
  1981. int direct = 0;
  1982. u64 pdptr;
  1983. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  1984. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1985. hpa_t root = vcpu->arch.mmu.root_hpa;
  1986. ASSERT(!VALID_PAGE(root));
  1987. if (mmu_check_root(vcpu, root_gfn))
  1988. return 1;
  1989. if (vcpu->arch.mmu.direct_map) {
  1990. direct = 1;
  1991. root_gfn = 0;
  1992. }
  1993. spin_lock(&vcpu->kvm->mmu_lock);
  1994. kvm_mmu_free_some_pages(vcpu);
  1995. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1996. PT64_ROOT_LEVEL, direct,
  1997. ACC_ALL, NULL);
  1998. root = __pa(sp->spt);
  1999. ++sp->root_count;
  2000. spin_unlock(&vcpu->kvm->mmu_lock);
  2001. vcpu->arch.mmu.root_hpa = root;
  2002. return 0;
  2003. }
  2004. direct = !is_paging(vcpu);
  2005. if (mmu_check_root(vcpu, root_gfn))
  2006. return 1;
  2007. for (i = 0; i < 4; ++i) {
  2008. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2009. ASSERT(!VALID_PAGE(root));
  2010. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2011. pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
  2012. if (!is_present_gpte(pdptr)) {
  2013. vcpu->arch.mmu.pae_root[i] = 0;
  2014. continue;
  2015. }
  2016. root_gfn = pdptr >> PAGE_SHIFT;
  2017. if (mmu_check_root(vcpu, root_gfn))
  2018. return 1;
  2019. } else if (vcpu->arch.mmu.root_level == 0)
  2020. root_gfn = 0;
  2021. if (vcpu->arch.mmu.direct_map) {
  2022. direct = 1;
  2023. root_gfn = i << 30;
  2024. }
  2025. spin_lock(&vcpu->kvm->mmu_lock);
  2026. kvm_mmu_free_some_pages(vcpu);
  2027. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2028. PT32_ROOT_LEVEL, direct,
  2029. ACC_ALL, NULL);
  2030. root = __pa(sp->spt);
  2031. ++sp->root_count;
  2032. spin_unlock(&vcpu->kvm->mmu_lock);
  2033. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2034. }
  2035. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2036. return 0;
  2037. }
  2038. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2039. {
  2040. int i;
  2041. struct kvm_mmu_page *sp;
  2042. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2043. return;
  2044. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2045. hpa_t root = vcpu->arch.mmu.root_hpa;
  2046. sp = page_header(root);
  2047. mmu_sync_children(vcpu, sp);
  2048. return;
  2049. }
  2050. for (i = 0; i < 4; ++i) {
  2051. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2052. if (root && VALID_PAGE(root)) {
  2053. root &= PT64_BASE_ADDR_MASK;
  2054. sp = page_header(root);
  2055. mmu_sync_children(vcpu, sp);
  2056. }
  2057. }
  2058. }
  2059. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2060. {
  2061. spin_lock(&vcpu->kvm->mmu_lock);
  2062. mmu_sync_roots(vcpu);
  2063. spin_unlock(&vcpu->kvm->mmu_lock);
  2064. }
  2065. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2066. u32 access, u32 *error)
  2067. {
  2068. if (error)
  2069. *error = 0;
  2070. return vaddr;
  2071. }
  2072. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2073. u32 access, u32 *error)
  2074. {
  2075. if (error)
  2076. *error = 0;
  2077. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2078. }
  2079. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2080. u32 error_code)
  2081. {
  2082. gfn_t gfn;
  2083. int r;
  2084. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2085. r = mmu_topup_memory_caches(vcpu);
  2086. if (r)
  2087. return r;
  2088. ASSERT(vcpu);
  2089. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2090. gfn = gva >> PAGE_SHIFT;
  2091. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2092. error_code & PFERR_WRITE_MASK, gfn);
  2093. }
  2094. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  2095. u32 error_code)
  2096. {
  2097. pfn_t pfn;
  2098. int r;
  2099. int level;
  2100. gfn_t gfn = gpa >> PAGE_SHIFT;
  2101. unsigned long mmu_seq;
  2102. ASSERT(vcpu);
  2103. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2104. r = mmu_topup_memory_caches(vcpu);
  2105. if (r)
  2106. return r;
  2107. level = mapping_level(vcpu, gfn);
  2108. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2109. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2110. smp_rmb();
  2111. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2112. if (is_error_pfn(pfn))
  2113. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2114. spin_lock(&vcpu->kvm->mmu_lock);
  2115. if (mmu_notifier_retry(vcpu, mmu_seq))
  2116. goto out_unlock;
  2117. kvm_mmu_free_some_pages(vcpu);
  2118. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  2119. level, gfn, pfn);
  2120. spin_unlock(&vcpu->kvm->mmu_lock);
  2121. return r;
  2122. out_unlock:
  2123. spin_unlock(&vcpu->kvm->mmu_lock);
  2124. kvm_release_pfn_clean(pfn);
  2125. return 0;
  2126. }
  2127. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2128. {
  2129. mmu_free_roots(vcpu);
  2130. }
  2131. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2132. struct kvm_mmu *context)
  2133. {
  2134. context->new_cr3 = nonpaging_new_cr3;
  2135. context->page_fault = nonpaging_page_fault;
  2136. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2137. context->free = nonpaging_free;
  2138. context->prefetch_page = nonpaging_prefetch_page;
  2139. context->sync_page = nonpaging_sync_page;
  2140. context->invlpg = nonpaging_invlpg;
  2141. context->root_level = 0;
  2142. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2143. context->root_hpa = INVALID_PAGE;
  2144. context->direct_map = true;
  2145. return 0;
  2146. }
  2147. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2148. {
  2149. ++vcpu->stat.tlb_flush;
  2150. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2151. }
  2152. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2153. {
  2154. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2155. mmu_free_roots(vcpu);
  2156. }
  2157. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2158. {
  2159. return vcpu->arch.cr3;
  2160. }
  2161. static void inject_page_fault(struct kvm_vcpu *vcpu)
  2162. {
  2163. vcpu->arch.mmu.inject_page_fault(vcpu);
  2164. }
  2165. static void paging_free(struct kvm_vcpu *vcpu)
  2166. {
  2167. nonpaging_free(vcpu);
  2168. }
  2169. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2170. {
  2171. int bit7;
  2172. bit7 = (gpte >> 7) & 1;
  2173. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2174. }
  2175. #define PTTYPE 64
  2176. #include "paging_tmpl.h"
  2177. #undef PTTYPE
  2178. #define PTTYPE 32
  2179. #include "paging_tmpl.h"
  2180. #undef PTTYPE
  2181. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2182. struct kvm_mmu *context,
  2183. int level)
  2184. {
  2185. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2186. u64 exb_bit_rsvd = 0;
  2187. if (!is_nx(vcpu))
  2188. exb_bit_rsvd = rsvd_bits(63, 63);
  2189. switch (level) {
  2190. case PT32_ROOT_LEVEL:
  2191. /* no rsvd bits for 2 level 4K page table entries */
  2192. context->rsvd_bits_mask[0][1] = 0;
  2193. context->rsvd_bits_mask[0][0] = 0;
  2194. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2195. if (!is_pse(vcpu)) {
  2196. context->rsvd_bits_mask[1][1] = 0;
  2197. break;
  2198. }
  2199. if (is_cpuid_PSE36())
  2200. /* 36bits PSE 4MB page */
  2201. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2202. else
  2203. /* 32 bits PSE 4MB page */
  2204. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2205. break;
  2206. case PT32E_ROOT_LEVEL:
  2207. context->rsvd_bits_mask[0][2] =
  2208. rsvd_bits(maxphyaddr, 63) |
  2209. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2210. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2211. rsvd_bits(maxphyaddr, 62); /* PDE */
  2212. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2213. rsvd_bits(maxphyaddr, 62); /* PTE */
  2214. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2215. rsvd_bits(maxphyaddr, 62) |
  2216. rsvd_bits(13, 20); /* large page */
  2217. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2218. break;
  2219. case PT64_ROOT_LEVEL:
  2220. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2221. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2222. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2223. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2224. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2225. rsvd_bits(maxphyaddr, 51);
  2226. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2227. rsvd_bits(maxphyaddr, 51);
  2228. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2229. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2230. rsvd_bits(maxphyaddr, 51) |
  2231. rsvd_bits(13, 29);
  2232. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2233. rsvd_bits(maxphyaddr, 51) |
  2234. rsvd_bits(13, 20); /* large page */
  2235. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2236. break;
  2237. }
  2238. }
  2239. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2240. struct kvm_mmu *context,
  2241. int level)
  2242. {
  2243. reset_rsvds_bits_mask(vcpu, context, level);
  2244. ASSERT(is_pae(vcpu));
  2245. context->new_cr3 = paging_new_cr3;
  2246. context->page_fault = paging64_page_fault;
  2247. context->gva_to_gpa = paging64_gva_to_gpa;
  2248. context->prefetch_page = paging64_prefetch_page;
  2249. context->sync_page = paging64_sync_page;
  2250. context->invlpg = paging64_invlpg;
  2251. context->free = paging_free;
  2252. context->root_level = level;
  2253. context->shadow_root_level = level;
  2254. context->root_hpa = INVALID_PAGE;
  2255. context->direct_map = false;
  2256. return 0;
  2257. }
  2258. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2259. struct kvm_mmu *context)
  2260. {
  2261. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2262. }
  2263. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2264. struct kvm_mmu *context)
  2265. {
  2266. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2267. context->new_cr3 = paging_new_cr3;
  2268. context->page_fault = paging32_page_fault;
  2269. context->gva_to_gpa = paging32_gva_to_gpa;
  2270. context->free = paging_free;
  2271. context->prefetch_page = paging32_prefetch_page;
  2272. context->sync_page = paging32_sync_page;
  2273. context->invlpg = paging32_invlpg;
  2274. context->root_level = PT32_ROOT_LEVEL;
  2275. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2276. context->root_hpa = INVALID_PAGE;
  2277. context->direct_map = false;
  2278. return 0;
  2279. }
  2280. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2281. struct kvm_mmu *context)
  2282. {
  2283. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2284. }
  2285. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2286. {
  2287. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2288. context->new_cr3 = nonpaging_new_cr3;
  2289. context->page_fault = tdp_page_fault;
  2290. context->free = nonpaging_free;
  2291. context->prefetch_page = nonpaging_prefetch_page;
  2292. context->sync_page = nonpaging_sync_page;
  2293. context->invlpg = nonpaging_invlpg;
  2294. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2295. context->root_hpa = INVALID_PAGE;
  2296. context->direct_map = true;
  2297. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2298. context->get_cr3 = get_cr3;
  2299. context->inject_page_fault = kvm_inject_page_fault;
  2300. if (!is_paging(vcpu)) {
  2301. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2302. context->root_level = 0;
  2303. } else if (is_long_mode(vcpu)) {
  2304. reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
  2305. context->gva_to_gpa = paging64_gva_to_gpa;
  2306. context->root_level = PT64_ROOT_LEVEL;
  2307. } else if (is_pae(vcpu)) {
  2308. reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
  2309. context->gva_to_gpa = paging64_gva_to_gpa;
  2310. context->root_level = PT32E_ROOT_LEVEL;
  2311. } else {
  2312. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2313. context->gva_to_gpa = paging32_gva_to_gpa;
  2314. context->root_level = PT32_ROOT_LEVEL;
  2315. }
  2316. return 0;
  2317. }
  2318. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2319. {
  2320. int r;
  2321. ASSERT(vcpu);
  2322. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2323. if (!is_paging(vcpu))
  2324. r = nonpaging_init_context(vcpu, context);
  2325. else if (is_long_mode(vcpu))
  2326. r = paging64_init_context(vcpu, context);
  2327. else if (is_pae(vcpu))
  2328. r = paging32E_init_context(vcpu, context);
  2329. else
  2330. r = paging32_init_context(vcpu, context);
  2331. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2332. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2333. return r;
  2334. }
  2335. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2336. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2337. {
  2338. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2339. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2340. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2341. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2342. return r;
  2343. }
  2344. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2345. {
  2346. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2347. g_context->get_cr3 = get_cr3;
  2348. g_context->inject_page_fault = kvm_inject_page_fault;
  2349. /*
  2350. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2351. * translation of l2_gpa to l1_gpa addresses is done using the
  2352. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2353. * functions between mmu and nested_mmu are swapped.
  2354. */
  2355. if (!is_paging(vcpu)) {
  2356. g_context->root_level = 0;
  2357. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2358. } else if (is_long_mode(vcpu)) {
  2359. reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
  2360. g_context->root_level = PT64_ROOT_LEVEL;
  2361. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2362. } else if (is_pae(vcpu)) {
  2363. reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
  2364. g_context->root_level = PT32E_ROOT_LEVEL;
  2365. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2366. } else {
  2367. reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
  2368. g_context->root_level = PT32_ROOT_LEVEL;
  2369. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2370. }
  2371. return 0;
  2372. }
  2373. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2374. {
  2375. vcpu->arch.update_pte.pfn = bad_pfn;
  2376. if (mmu_is_nested(vcpu))
  2377. return init_kvm_nested_mmu(vcpu);
  2378. else if (tdp_enabled)
  2379. return init_kvm_tdp_mmu(vcpu);
  2380. else
  2381. return init_kvm_softmmu(vcpu);
  2382. }
  2383. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2384. {
  2385. ASSERT(vcpu);
  2386. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2387. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2388. vcpu->arch.mmu.free(vcpu);
  2389. }
  2390. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2391. {
  2392. destroy_kvm_mmu(vcpu);
  2393. return init_kvm_mmu(vcpu);
  2394. }
  2395. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2396. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2397. {
  2398. int r;
  2399. r = mmu_topup_memory_caches(vcpu);
  2400. if (r)
  2401. goto out;
  2402. r = mmu_alloc_roots(vcpu);
  2403. spin_lock(&vcpu->kvm->mmu_lock);
  2404. mmu_sync_roots(vcpu);
  2405. spin_unlock(&vcpu->kvm->mmu_lock);
  2406. if (r)
  2407. goto out;
  2408. /* set_cr3() should ensure TLB has been flushed */
  2409. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2410. out:
  2411. return r;
  2412. }
  2413. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2414. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2415. {
  2416. mmu_free_roots(vcpu);
  2417. }
  2418. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2419. struct kvm_mmu_page *sp,
  2420. u64 *spte)
  2421. {
  2422. u64 pte;
  2423. struct kvm_mmu_page *child;
  2424. pte = *spte;
  2425. if (is_shadow_present_pte(pte)) {
  2426. if (is_last_spte(pte, sp->role.level))
  2427. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2428. else {
  2429. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2430. mmu_page_remove_parent_pte(child, spte);
  2431. }
  2432. }
  2433. __set_spte(spte, shadow_trap_nonpresent_pte);
  2434. if (is_large_pte(pte))
  2435. --vcpu->kvm->stat.lpages;
  2436. }
  2437. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2438. struct kvm_mmu_page *sp,
  2439. u64 *spte,
  2440. const void *new)
  2441. {
  2442. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2443. ++vcpu->kvm->stat.mmu_pde_zapped;
  2444. return;
  2445. }
  2446. if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
  2447. return;
  2448. ++vcpu->kvm->stat.mmu_pte_updated;
  2449. if (!sp->role.cr4_pae)
  2450. paging32_update_pte(vcpu, sp, spte, new);
  2451. else
  2452. paging64_update_pte(vcpu, sp, spte, new);
  2453. }
  2454. static bool need_remote_flush(u64 old, u64 new)
  2455. {
  2456. if (!is_shadow_present_pte(old))
  2457. return false;
  2458. if (!is_shadow_present_pte(new))
  2459. return true;
  2460. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2461. return true;
  2462. old ^= PT64_NX_MASK;
  2463. new ^= PT64_NX_MASK;
  2464. return (old & ~new & PT64_PERM_MASK) != 0;
  2465. }
  2466. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2467. bool remote_flush, bool local_flush)
  2468. {
  2469. if (zap_page)
  2470. return;
  2471. if (remote_flush)
  2472. kvm_flush_remote_tlbs(vcpu->kvm);
  2473. else if (local_flush)
  2474. kvm_mmu_flush_tlb(vcpu);
  2475. }
  2476. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2477. {
  2478. u64 *spte = vcpu->arch.last_pte_updated;
  2479. return !!(spte && (*spte & shadow_accessed_mask));
  2480. }
  2481. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2482. u64 gpte)
  2483. {
  2484. gfn_t gfn;
  2485. pfn_t pfn;
  2486. if (!is_present_gpte(gpte))
  2487. return;
  2488. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2489. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2490. smp_rmb();
  2491. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2492. if (is_error_pfn(pfn)) {
  2493. kvm_release_pfn_clean(pfn);
  2494. return;
  2495. }
  2496. vcpu->arch.update_pte.gfn = gfn;
  2497. vcpu->arch.update_pte.pfn = pfn;
  2498. }
  2499. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2500. {
  2501. u64 *spte = vcpu->arch.last_pte_updated;
  2502. if (spte
  2503. && vcpu->arch.last_pte_gfn == gfn
  2504. && shadow_accessed_mask
  2505. && !(*spte & shadow_accessed_mask)
  2506. && is_shadow_present_pte(*spte))
  2507. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2508. }
  2509. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2510. const u8 *new, int bytes,
  2511. bool guest_initiated)
  2512. {
  2513. gfn_t gfn = gpa >> PAGE_SHIFT;
  2514. union kvm_mmu_page_role mask = { .word = 0 };
  2515. struct kvm_mmu_page *sp;
  2516. struct hlist_node *node;
  2517. LIST_HEAD(invalid_list);
  2518. u64 entry, gentry;
  2519. u64 *spte;
  2520. unsigned offset = offset_in_page(gpa);
  2521. unsigned pte_size;
  2522. unsigned page_offset;
  2523. unsigned misaligned;
  2524. unsigned quadrant;
  2525. int level;
  2526. int flooded = 0;
  2527. int npte;
  2528. int r;
  2529. int invlpg_counter;
  2530. bool remote_flush, local_flush, zap_page;
  2531. zap_page = remote_flush = local_flush = false;
  2532. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2533. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2534. /*
  2535. * Assume that the pte write on a page table of the same type
  2536. * as the current vcpu paging mode. This is nearly always true
  2537. * (might be false while changing modes). Note it is verified later
  2538. * by update_pte().
  2539. */
  2540. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2541. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2542. if (is_pae(vcpu)) {
  2543. gpa &= ~(gpa_t)7;
  2544. bytes = 8;
  2545. }
  2546. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2547. if (r)
  2548. gentry = 0;
  2549. new = (const u8 *)&gentry;
  2550. }
  2551. switch (bytes) {
  2552. case 4:
  2553. gentry = *(const u32 *)new;
  2554. break;
  2555. case 8:
  2556. gentry = *(const u64 *)new;
  2557. break;
  2558. default:
  2559. gentry = 0;
  2560. break;
  2561. }
  2562. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2563. spin_lock(&vcpu->kvm->mmu_lock);
  2564. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2565. gentry = 0;
  2566. kvm_mmu_access_page(vcpu, gfn);
  2567. kvm_mmu_free_some_pages(vcpu);
  2568. ++vcpu->kvm->stat.mmu_pte_write;
  2569. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  2570. if (guest_initiated) {
  2571. if (gfn == vcpu->arch.last_pt_write_gfn
  2572. && !last_updated_pte_accessed(vcpu)) {
  2573. ++vcpu->arch.last_pt_write_count;
  2574. if (vcpu->arch.last_pt_write_count >= 3)
  2575. flooded = 1;
  2576. } else {
  2577. vcpu->arch.last_pt_write_gfn = gfn;
  2578. vcpu->arch.last_pt_write_count = 1;
  2579. vcpu->arch.last_pte_updated = NULL;
  2580. }
  2581. }
  2582. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2583. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2584. pte_size = sp->role.cr4_pae ? 8 : 4;
  2585. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2586. misaligned |= bytes < 4;
  2587. if (misaligned || flooded) {
  2588. /*
  2589. * Misaligned accesses are too much trouble to fix
  2590. * up; also, they usually indicate a page is not used
  2591. * as a page table.
  2592. *
  2593. * If we're seeing too many writes to a page,
  2594. * it may no longer be a page table, or we may be
  2595. * forking, in which case it is better to unmap the
  2596. * page.
  2597. */
  2598. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2599. gpa, bytes, sp->role.word);
  2600. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2601. &invalid_list);
  2602. ++vcpu->kvm->stat.mmu_flooded;
  2603. continue;
  2604. }
  2605. page_offset = offset;
  2606. level = sp->role.level;
  2607. npte = 1;
  2608. if (!sp->role.cr4_pae) {
  2609. page_offset <<= 1; /* 32->64 */
  2610. /*
  2611. * A 32-bit pde maps 4MB while the shadow pdes map
  2612. * only 2MB. So we need to double the offset again
  2613. * and zap two pdes instead of one.
  2614. */
  2615. if (level == PT32_ROOT_LEVEL) {
  2616. page_offset &= ~7; /* kill rounding error */
  2617. page_offset <<= 1;
  2618. npte = 2;
  2619. }
  2620. quadrant = page_offset >> PAGE_SHIFT;
  2621. page_offset &= ~PAGE_MASK;
  2622. if (quadrant != sp->role.quadrant)
  2623. continue;
  2624. }
  2625. local_flush = true;
  2626. spte = &sp->spt[page_offset / sizeof(*spte)];
  2627. while (npte--) {
  2628. entry = *spte;
  2629. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2630. if (gentry &&
  2631. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2632. & mask.word))
  2633. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2634. if (!remote_flush && need_remote_flush(entry, *spte))
  2635. remote_flush = true;
  2636. ++spte;
  2637. }
  2638. }
  2639. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2640. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2641. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  2642. spin_unlock(&vcpu->kvm->mmu_lock);
  2643. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2644. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2645. vcpu->arch.update_pte.pfn = bad_pfn;
  2646. }
  2647. }
  2648. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2649. {
  2650. gpa_t gpa;
  2651. int r;
  2652. if (vcpu->arch.mmu.direct_map)
  2653. return 0;
  2654. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2655. spin_lock(&vcpu->kvm->mmu_lock);
  2656. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2657. spin_unlock(&vcpu->kvm->mmu_lock);
  2658. return r;
  2659. }
  2660. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2661. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2662. {
  2663. LIST_HEAD(invalid_list);
  2664. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2665. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2666. struct kvm_mmu_page *sp;
  2667. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2668. struct kvm_mmu_page, link);
  2669. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2670. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2671. ++vcpu->kvm->stat.mmu_recycled;
  2672. }
  2673. }
  2674. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2675. {
  2676. int r;
  2677. enum emulation_result er;
  2678. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2679. if (r < 0)
  2680. goto out;
  2681. if (!r) {
  2682. r = 1;
  2683. goto out;
  2684. }
  2685. r = mmu_topup_memory_caches(vcpu);
  2686. if (r)
  2687. goto out;
  2688. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2689. switch (er) {
  2690. case EMULATE_DONE:
  2691. return 1;
  2692. case EMULATE_DO_MMIO:
  2693. ++vcpu->stat.mmio_exits;
  2694. /* fall through */
  2695. case EMULATE_FAIL:
  2696. return 0;
  2697. default:
  2698. BUG();
  2699. }
  2700. out:
  2701. return r;
  2702. }
  2703. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2704. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2705. {
  2706. vcpu->arch.mmu.invlpg(vcpu, gva);
  2707. kvm_mmu_flush_tlb(vcpu);
  2708. ++vcpu->stat.invlpg;
  2709. }
  2710. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2711. void kvm_enable_tdp(void)
  2712. {
  2713. tdp_enabled = true;
  2714. }
  2715. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2716. void kvm_disable_tdp(void)
  2717. {
  2718. tdp_enabled = false;
  2719. }
  2720. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2721. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2722. {
  2723. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2724. }
  2725. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2726. {
  2727. struct page *page;
  2728. int i;
  2729. ASSERT(vcpu);
  2730. /*
  2731. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2732. * Therefore we need to allocate shadow page tables in the first
  2733. * 4GB of memory, which happens to fit the DMA32 zone.
  2734. */
  2735. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2736. if (!page)
  2737. return -ENOMEM;
  2738. vcpu->arch.mmu.pae_root = page_address(page);
  2739. for (i = 0; i < 4; ++i)
  2740. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2741. return 0;
  2742. }
  2743. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2744. {
  2745. ASSERT(vcpu);
  2746. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2747. return alloc_mmu_pages(vcpu);
  2748. }
  2749. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2750. {
  2751. ASSERT(vcpu);
  2752. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2753. return init_kvm_mmu(vcpu);
  2754. }
  2755. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2756. {
  2757. ASSERT(vcpu);
  2758. destroy_kvm_mmu(vcpu);
  2759. free_mmu_pages(vcpu);
  2760. mmu_free_memory_caches(vcpu);
  2761. }
  2762. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2763. {
  2764. struct kvm_mmu_page *sp;
  2765. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2766. int i;
  2767. u64 *pt;
  2768. if (!test_bit(slot, sp->slot_bitmap))
  2769. continue;
  2770. pt = sp->spt;
  2771. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2772. /* avoid RMW */
  2773. if (is_writable_pte(pt[i]))
  2774. pt[i] &= ~PT_WRITABLE_MASK;
  2775. }
  2776. kvm_flush_remote_tlbs(kvm);
  2777. }
  2778. void kvm_mmu_zap_all(struct kvm *kvm)
  2779. {
  2780. struct kvm_mmu_page *sp, *node;
  2781. LIST_HEAD(invalid_list);
  2782. spin_lock(&kvm->mmu_lock);
  2783. restart:
  2784. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2785. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2786. goto restart;
  2787. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2788. spin_unlock(&kvm->mmu_lock);
  2789. }
  2790. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2791. struct list_head *invalid_list)
  2792. {
  2793. struct kvm_mmu_page *page;
  2794. page = container_of(kvm->arch.active_mmu_pages.prev,
  2795. struct kvm_mmu_page, link);
  2796. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2797. }
  2798. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2799. {
  2800. struct kvm *kvm;
  2801. struct kvm *kvm_freed = NULL;
  2802. if (nr_to_scan == 0)
  2803. goto out;
  2804. spin_lock(&kvm_lock);
  2805. list_for_each_entry(kvm, &vm_list, vm_list) {
  2806. int idx, freed_pages;
  2807. LIST_HEAD(invalid_list);
  2808. idx = srcu_read_lock(&kvm->srcu);
  2809. spin_lock(&kvm->mmu_lock);
  2810. if (!kvm_freed && nr_to_scan > 0 &&
  2811. kvm->arch.n_used_mmu_pages > 0) {
  2812. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2813. &invalid_list);
  2814. kvm_freed = kvm;
  2815. }
  2816. nr_to_scan--;
  2817. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2818. spin_unlock(&kvm->mmu_lock);
  2819. srcu_read_unlock(&kvm->srcu, idx);
  2820. }
  2821. if (kvm_freed)
  2822. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2823. spin_unlock(&kvm_lock);
  2824. out:
  2825. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  2826. }
  2827. static struct shrinker mmu_shrinker = {
  2828. .shrink = mmu_shrink,
  2829. .seeks = DEFAULT_SEEKS * 10,
  2830. };
  2831. static void mmu_destroy_caches(void)
  2832. {
  2833. if (pte_chain_cache)
  2834. kmem_cache_destroy(pte_chain_cache);
  2835. if (rmap_desc_cache)
  2836. kmem_cache_destroy(rmap_desc_cache);
  2837. if (mmu_page_header_cache)
  2838. kmem_cache_destroy(mmu_page_header_cache);
  2839. }
  2840. void kvm_mmu_module_exit(void)
  2841. {
  2842. mmu_destroy_caches();
  2843. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  2844. unregister_shrinker(&mmu_shrinker);
  2845. }
  2846. int kvm_mmu_module_init(void)
  2847. {
  2848. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2849. sizeof(struct kvm_pte_chain),
  2850. 0, 0, NULL);
  2851. if (!pte_chain_cache)
  2852. goto nomem;
  2853. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2854. sizeof(struct kvm_rmap_desc),
  2855. 0, 0, NULL);
  2856. if (!rmap_desc_cache)
  2857. goto nomem;
  2858. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2859. sizeof(struct kvm_mmu_page),
  2860. 0, 0, NULL);
  2861. if (!mmu_page_header_cache)
  2862. goto nomem;
  2863. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  2864. goto nomem;
  2865. register_shrinker(&mmu_shrinker);
  2866. return 0;
  2867. nomem:
  2868. mmu_destroy_caches();
  2869. return -ENOMEM;
  2870. }
  2871. /*
  2872. * Caculate mmu pages needed for kvm.
  2873. */
  2874. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2875. {
  2876. int i;
  2877. unsigned int nr_mmu_pages;
  2878. unsigned int nr_pages = 0;
  2879. struct kvm_memslots *slots;
  2880. slots = kvm_memslots(kvm);
  2881. for (i = 0; i < slots->nmemslots; i++)
  2882. nr_pages += slots->memslots[i].npages;
  2883. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2884. nr_mmu_pages = max(nr_mmu_pages,
  2885. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2886. return nr_mmu_pages;
  2887. }
  2888. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2889. unsigned len)
  2890. {
  2891. if (len > buffer->len)
  2892. return NULL;
  2893. return buffer->ptr;
  2894. }
  2895. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2896. unsigned len)
  2897. {
  2898. void *ret;
  2899. ret = pv_mmu_peek_buffer(buffer, len);
  2900. if (!ret)
  2901. return ret;
  2902. buffer->ptr += len;
  2903. buffer->len -= len;
  2904. buffer->processed += len;
  2905. return ret;
  2906. }
  2907. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2908. gpa_t addr, gpa_t value)
  2909. {
  2910. int bytes = 8;
  2911. int r;
  2912. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2913. bytes = 4;
  2914. r = mmu_topup_memory_caches(vcpu);
  2915. if (r)
  2916. return r;
  2917. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2918. return -EFAULT;
  2919. return 1;
  2920. }
  2921. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2922. {
  2923. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2924. return 1;
  2925. }
  2926. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2927. {
  2928. spin_lock(&vcpu->kvm->mmu_lock);
  2929. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2930. spin_unlock(&vcpu->kvm->mmu_lock);
  2931. return 1;
  2932. }
  2933. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2934. struct kvm_pv_mmu_op_buffer *buffer)
  2935. {
  2936. struct kvm_mmu_op_header *header;
  2937. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2938. if (!header)
  2939. return 0;
  2940. switch (header->op) {
  2941. case KVM_MMU_OP_WRITE_PTE: {
  2942. struct kvm_mmu_op_write_pte *wpte;
  2943. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2944. if (!wpte)
  2945. return 0;
  2946. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2947. wpte->pte_val);
  2948. }
  2949. case KVM_MMU_OP_FLUSH_TLB: {
  2950. struct kvm_mmu_op_flush_tlb *ftlb;
  2951. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2952. if (!ftlb)
  2953. return 0;
  2954. return kvm_pv_mmu_flush_tlb(vcpu);
  2955. }
  2956. case KVM_MMU_OP_RELEASE_PT: {
  2957. struct kvm_mmu_op_release_pt *rpt;
  2958. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2959. if (!rpt)
  2960. return 0;
  2961. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2962. }
  2963. default: return 0;
  2964. }
  2965. }
  2966. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2967. gpa_t addr, unsigned long *ret)
  2968. {
  2969. int r;
  2970. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2971. buffer->ptr = buffer->buf;
  2972. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2973. buffer->processed = 0;
  2974. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2975. if (r)
  2976. goto out;
  2977. while (buffer->len) {
  2978. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2979. if (r < 0)
  2980. goto out;
  2981. if (r == 0)
  2982. break;
  2983. }
  2984. r = 1;
  2985. out:
  2986. *ret = buffer->processed;
  2987. return r;
  2988. }
  2989. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2990. {
  2991. struct kvm_shadow_walk_iterator iterator;
  2992. int nr_sptes = 0;
  2993. spin_lock(&vcpu->kvm->mmu_lock);
  2994. for_each_shadow_entry(vcpu, addr, iterator) {
  2995. sptes[iterator.level-1] = *iterator.sptep;
  2996. nr_sptes++;
  2997. if (!is_shadow_present_pte(*iterator.sptep))
  2998. break;
  2999. }
  3000. spin_unlock(&vcpu->kvm->mmu_lock);
  3001. return nr_sptes;
  3002. }
  3003. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3004. #ifdef CONFIG_KVM_MMU_AUDIT
  3005. #include "mmu_audit.c"
  3006. #endif