readahead.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. /*
  2. * mm/readahead.c - address_space-level file readahead.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds
  5. *
  6. * 09Apr2002 akpm@zip.com.au
  7. * Initial version.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/fs.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/blkdev.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/pagevec.h>
  16. void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  17. {
  18. }
  19. EXPORT_SYMBOL(default_unplug_io_fn);
  20. struct backing_dev_info default_backing_dev_info = {
  21. .ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE,
  22. .state = 0,
  23. .capabilities = BDI_CAP_MAP_COPY,
  24. .unplug_io_fn = default_unplug_io_fn,
  25. };
  26. EXPORT_SYMBOL_GPL(default_backing_dev_info);
  27. /*
  28. * Initialise a struct file's readahead state. Assumes that the caller has
  29. * memset *ra to zero.
  30. */
  31. void
  32. file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  33. {
  34. ra->ra_pages = mapping->backing_dev_info->ra_pages;
  35. ra->prev_page = -1;
  36. }
  37. EXPORT_SYMBOL_GPL(file_ra_state_init);
  38. /*
  39. * Return max readahead size for this inode in number-of-pages.
  40. */
  41. static inline unsigned long get_max_readahead(struct file_ra_state *ra)
  42. {
  43. return ra->ra_pages;
  44. }
  45. static inline unsigned long get_min_readahead(struct file_ra_state *ra)
  46. {
  47. return (VM_MIN_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  48. }
  49. static inline void ra_off(struct file_ra_state *ra)
  50. {
  51. ra->start = 0;
  52. ra->flags = 0;
  53. ra->size = 0;
  54. ra->ahead_start = 0;
  55. ra->ahead_size = 0;
  56. return;
  57. }
  58. /*
  59. * Set the initial window size, round to next power of 2 and square
  60. * for small size, x 4 for medium, and x 2 for large
  61. * for 128k (32 page) max ra
  62. * 1-8 page = 32k initial, > 8 page = 128k initial
  63. */
  64. static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
  65. {
  66. unsigned long newsize = roundup_pow_of_two(size);
  67. if (newsize <= max / 64)
  68. newsize = newsize * newsize;
  69. else if (newsize <= max / 4)
  70. newsize = max / 4;
  71. else
  72. newsize = max;
  73. return newsize;
  74. }
  75. /*
  76. * Set the new window size, this is called only when I/O is to be submitted,
  77. * not for each call to readahead. If a cache miss occured, reduce next I/O
  78. * size, else increase depending on how close to max we are.
  79. */
  80. static inline unsigned long get_next_ra_size(struct file_ra_state *ra)
  81. {
  82. unsigned long max = get_max_readahead(ra);
  83. unsigned long min = get_min_readahead(ra);
  84. unsigned long cur = ra->size;
  85. unsigned long newsize;
  86. if (ra->flags & RA_FLAG_MISS) {
  87. ra->flags &= ~RA_FLAG_MISS;
  88. newsize = max((cur - 2), min);
  89. } else if (cur < max / 16) {
  90. newsize = 4 * cur;
  91. } else {
  92. newsize = 2 * cur;
  93. }
  94. return min(newsize, max);
  95. }
  96. #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
  97. /**
  98. * read_cache_pages - populate an address space with some pages, and
  99. * start reads against them.
  100. * @mapping: the address_space
  101. * @pages: The address of a list_head which contains the target pages. These
  102. * pages have their ->index populated and are otherwise uninitialised.
  103. * @filler: callback routine for filling a single page.
  104. * @data: private data for the callback routine.
  105. *
  106. * Hides the details of the LRU cache etc from the filesystems.
  107. */
  108. int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  109. int (*filler)(void *, struct page *), void *data)
  110. {
  111. struct page *page;
  112. struct pagevec lru_pvec;
  113. int ret = 0;
  114. pagevec_init(&lru_pvec, 0);
  115. while (!list_empty(pages)) {
  116. page = list_to_page(pages);
  117. list_del(&page->lru);
  118. if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
  119. page_cache_release(page);
  120. continue;
  121. }
  122. ret = filler(data, page);
  123. if (!pagevec_add(&lru_pvec, page))
  124. __pagevec_lru_add(&lru_pvec);
  125. if (ret) {
  126. while (!list_empty(pages)) {
  127. struct page *victim;
  128. victim = list_to_page(pages);
  129. list_del(&victim->lru);
  130. page_cache_release(victim);
  131. }
  132. break;
  133. }
  134. }
  135. pagevec_lru_add(&lru_pvec);
  136. return ret;
  137. }
  138. EXPORT_SYMBOL(read_cache_pages);
  139. static int read_pages(struct address_space *mapping, struct file *filp,
  140. struct list_head *pages, unsigned nr_pages)
  141. {
  142. unsigned page_idx;
  143. struct pagevec lru_pvec;
  144. int ret;
  145. if (mapping->a_ops->readpages) {
  146. ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
  147. goto out;
  148. }
  149. pagevec_init(&lru_pvec, 0);
  150. for (page_idx = 0; page_idx < nr_pages; page_idx++) {
  151. struct page *page = list_to_page(pages);
  152. list_del(&page->lru);
  153. if (!add_to_page_cache(page, mapping,
  154. page->index, GFP_KERNEL)) {
  155. ret = mapping->a_ops->readpage(filp, page);
  156. if (ret != AOP_TRUNCATED_PAGE) {
  157. if (!pagevec_add(&lru_pvec, page))
  158. __pagevec_lru_add(&lru_pvec);
  159. continue;
  160. } /* else fall through to release */
  161. }
  162. page_cache_release(page);
  163. }
  164. pagevec_lru_add(&lru_pvec);
  165. ret = 0;
  166. out:
  167. return ret;
  168. }
  169. /*
  170. * Readahead design.
  171. *
  172. * The fields in struct file_ra_state represent the most-recently-executed
  173. * readahead attempt:
  174. *
  175. * start: Page index at which we started the readahead
  176. * size: Number of pages in that read
  177. * Together, these form the "current window".
  178. * Together, start and size represent the `readahead window'.
  179. * prev_page: The page which the readahead algorithm most-recently inspected.
  180. * It is mainly used to detect sequential file reading.
  181. * If page_cache_readahead sees that it is again being called for
  182. * a page which it just looked at, it can return immediately without
  183. * making any state changes.
  184. * ahead_start,
  185. * ahead_size: Together, these form the "ahead window".
  186. * ra_pages: The externally controlled max readahead for this fd.
  187. *
  188. * When readahead is in the off state (size == 0), readahead is disabled.
  189. * In this state, prev_page is used to detect the resumption of sequential I/O.
  190. *
  191. * The readahead code manages two windows - the "current" and the "ahead"
  192. * windows. The intent is that while the application is walking the pages
  193. * in the current window, I/O is underway on the ahead window. When the
  194. * current window is fully traversed, it is replaced by the ahead window
  195. * and the ahead window is invalidated. When this copying happens, the
  196. * new current window's pages are probably still locked. So
  197. * we submit a new batch of I/O immediately, creating a new ahead window.
  198. *
  199. * So:
  200. *
  201. * ----|----------------|----------------|-----
  202. * ^start ^start+size
  203. * ^ahead_start ^ahead_start+ahead_size
  204. *
  205. * ^ When this page is read, we submit I/O for the
  206. * ahead window.
  207. *
  208. * A `readahead hit' occurs when a read request is made against a page which is
  209. * the next sequential page. Ahead window calculations are done only when it
  210. * is time to submit a new IO. The code ramps up the size agressively at first,
  211. * but slow down as it approaches max_readhead.
  212. *
  213. * Any seek/ramdom IO will result in readahead being turned off. It will resume
  214. * at the first sequential access.
  215. *
  216. * There is a special-case: if the first page which the application tries to
  217. * read happens to be the first page of the file, it is assumed that a linear
  218. * read is about to happen and the window is immediately set to the initial size
  219. * based on I/O request size and the max_readahead.
  220. *
  221. * This function is to be called for every read request, rather than when
  222. * it is time to perform readahead. It is called only once for the entire I/O
  223. * regardless of size unless readahead is unable to start enough I/O to satisfy
  224. * the request (I/O request > max_readahead).
  225. */
  226. /*
  227. * do_page_cache_readahead actually reads a chunk of disk. It allocates all
  228. * the pages first, then submits them all for I/O. This avoids the very bad
  229. * behaviour which would occur if page allocations are causing VM writeback.
  230. * We really don't want to intermingle reads and writes like that.
  231. *
  232. * Returns the number of pages requested, or the maximum amount of I/O allowed.
  233. *
  234. * do_page_cache_readahead() returns -1 if it encountered request queue
  235. * congestion.
  236. */
  237. static int
  238. __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  239. pgoff_t offset, unsigned long nr_to_read)
  240. {
  241. struct inode *inode = mapping->host;
  242. struct page *page;
  243. unsigned long end_index; /* The last page we want to read */
  244. LIST_HEAD(page_pool);
  245. int page_idx;
  246. int ret = 0;
  247. loff_t isize = i_size_read(inode);
  248. if (isize == 0)
  249. goto out;
  250. end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
  251. /*
  252. * Preallocate as many pages as we will need.
  253. */
  254. read_lock_irq(&mapping->tree_lock);
  255. for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
  256. pgoff_t page_offset = offset + page_idx;
  257. if (page_offset > end_index)
  258. break;
  259. page = radix_tree_lookup(&mapping->page_tree, page_offset);
  260. if (page)
  261. continue;
  262. read_unlock_irq(&mapping->tree_lock);
  263. page = page_cache_alloc_cold(mapping);
  264. read_lock_irq(&mapping->tree_lock);
  265. if (!page)
  266. break;
  267. page->index = page_offset;
  268. list_add(&page->lru, &page_pool);
  269. ret++;
  270. }
  271. read_unlock_irq(&mapping->tree_lock);
  272. /*
  273. * Now start the IO. We ignore I/O errors - if the page is not
  274. * uptodate then the caller will launch readpage again, and
  275. * will then handle the error.
  276. */
  277. if (ret)
  278. read_pages(mapping, filp, &page_pool, ret);
  279. BUG_ON(!list_empty(&page_pool));
  280. out:
  281. return ret;
  282. }
  283. /*
  284. * Chunk the readahead into 2 megabyte units, so that we don't pin too much
  285. * memory at once.
  286. */
  287. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  288. pgoff_t offset, unsigned long nr_to_read)
  289. {
  290. int ret = 0;
  291. if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
  292. return -EINVAL;
  293. while (nr_to_read) {
  294. int err;
  295. unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
  296. if (this_chunk > nr_to_read)
  297. this_chunk = nr_to_read;
  298. err = __do_page_cache_readahead(mapping, filp,
  299. offset, this_chunk);
  300. if (err < 0) {
  301. ret = err;
  302. break;
  303. }
  304. ret += err;
  305. offset += this_chunk;
  306. nr_to_read -= this_chunk;
  307. }
  308. return ret;
  309. }
  310. /*
  311. * Check how effective readahead is being. If the amount of started IO is
  312. * less than expected then the file is partly or fully in pagecache and
  313. * readahead isn't helping.
  314. *
  315. */
  316. static inline int check_ra_success(struct file_ra_state *ra,
  317. unsigned long nr_to_read, unsigned long actual)
  318. {
  319. if (actual == 0) {
  320. ra->cache_hit += nr_to_read;
  321. if (ra->cache_hit >= VM_MAX_CACHE_HIT) {
  322. ra_off(ra);
  323. ra->flags |= RA_FLAG_INCACHE;
  324. return 0;
  325. }
  326. } else {
  327. ra->cache_hit=0;
  328. }
  329. return 1;
  330. }
  331. /*
  332. * This version skips the IO if the queue is read-congested, and will tell the
  333. * block layer to abandon the readahead if request allocation would block.
  334. *
  335. * force_page_cache_readahead() will ignore queue congestion and will block on
  336. * request queues.
  337. */
  338. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  339. pgoff_t offset, unsigned long nr_to_read)
  340. {
  341. if (bdi_read_congested(mapping->backing_dev_info))
  342. return -1;
  343. return __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
  344. }
  345. /*
  346. * Read 'nr_to_read' pages starting at page 'offset'. If the flag 'block'
  347. * is set wait till the read completes. Otherwise attempt to read without
  348. * blocking.
  349. * Returns 1 meaning 'success' if read is succesfull without switching off
  350. * readhaead mode. Otherwise return failure.
  351. */
  352. static int
  353. blockable_page_cache_readahead(struct address_space *mapping, struct file *filp,
  354. pgoff_t offset, unsigned long nr_to_read,
  355. struct file_ra_state *ra, int block)
  356. {
  357. int actual;
  358. if (!block && bdi_read_congested(mapping->backing_dev_info))
  359. return 0;
  360. actual = __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
  361. return check_ra_success(ra, nr_to_read, actual);
  362. }
  363. static int make_ahead_window(struct address_space *mapping, struct file *filp,
  364. struct file_ra_state *ra, int force)
  365. {
  366. int block, ret;
  367. ra->ahead_size = get_next_ra_size(ra);
  368. ra->ahead_start = ra->start + ra->size;
  369. block = force || (ra->prev_page >= ra->ahead_start);
  370. ret = blockable_page_cache_readahead(mapping, filp,
  371. ra->ahead_start, ra->ahead_size, ra, block);
  372. if (!ret && !force) {
  373. /* A read failure in blocking mode, implies pages are
  374. * all cached. So we can safely assume we have taken
  375. * care of all the pages requested in this call.
  376. * A read failure in non-blocking mode, implies we are
  377. * reading more pages than requested in this call. So
  378. * we safely assume we have taken care of all the pages
  379. * requested in this call.
  380. *
  381. * Just reset the ahead window in case we failed due to
  382. * congestion. The ahead window will any way be closed
  383. * in case we failed due to excessive page cache hits.
  384. */
  385. ra->ahead_start = 0;
  386. ra->ahead_size = 0;
  387. }
  388. return ret;
  389. }
  390. /**
  391. * page_cache_readahead - generic adaptive readahead
  392. * @mapping: address_space which holds the pagecache and I/O vectors
  393. * @ra: file_ra_state which holds the readahead state
  394. * @filp: passed on to ->readpage() and ->readpages()
  395. * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
  396. * @req_size: hint: total size of the read which the caller is performing in
  397. * PAGE_CACHE_SIZE units
  398. *
  399. * page_cache_readahead() is the main function. If performs the adaptive
  400. * readahead window size management and submits the readahead I/O.
  401. *
  402. * Note that @filp is purely used for passing on to the ->readpage[s]()
  403. * handler: it may refer to a different file from @mapping (so we may not use
  404. * @filp->f_mapping or @filp->f_dentry->d_inode here).
  405. * Also, @ra may not be equal to &@filp->f_ra.
  406. *
  407. */
  408. unsigned long
  409. page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
  410. struct file *filp, pgoff_t offset, unsigned long req_size)
  411. {
  412. unsigned long max, newsize;
  413. int sequential;
  414. /*
  415. * We avoid doing extra work and bogusly perturbing the readahead
  416. * window expansion logic.
  417. */
  418. if (offset == ra->prev_page && --req_size)
  419. ++offset;
  420. /* Note that prev_page == -1 if it is a first read */
  421. sequential = (offset == ra->prev_page + 1);
  422. ra->prev_page = offset;
  423. max = get_max_readahead(ra);
  424. newsize = min(req_size, max);
  425. /* No readahead or sub-page sized read or file already in cache */
  426. if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
  427. goto out;
  428. ra->prev_page += newsize - 1;
  429. /*
  430. * Special case - first read at start of file. We'll assume it's
  431. * a whole-file read and grow the window fast. Or detect first
  432. * sequential access
  433. */
  434. if (sequential && ra->size == 0) {
  435. ra->size = get_init_ra_size(newsize, max);
  436. ra->start = offset;
  437. if (!blockable_page_cache_readahead(mapping, filp, offset,
  438. ra->size, ra, 1))
  439. goto out;
  440. /*
  441. * If the request size is larger than our max readahead, we
  442. * at least want to be sure that we get 2 IOs in flight and
  443. * we know that we will definitly need the new I/O.
  444. * once we do this, subsequent calls should be able to overlap
  445. * IOs,* thus preventing stalls. so issue the ahead window
  446. * immediately.
  447. */
  448. if (req_size >= max)
  449. make_ahead_window(mapping, filp, ra, 1);
  450. goto out;
  451. }
  452. /*
  453. * Now handle the random case:
  454. * partial page reads and first access were handled above,
  455. * so this must be the next page otherwise it is random
  456. */
  457. if (!sequential) {
  458. ra_off(ra);
  459. blockable_page_cache_readahead(mapping, filp, offset,
  460. newsize, ra, 1);
  461. goto out;
  462. }
  463. /*
  464. * If we get here we are doing sequential IO and this was not the first
  465. * occurence (ie we have an existing window)
  466. */
  467. if (ra->ahead_start == 0) { /* no ahead window yet */
  468. if (!make_ahead_window(mapping, filp, ra, 0))
  469. goto out;
  470. }
  471. /*
  472. * Already have an ahead window, check if we crossed into it.
  473. * If so, shift windows and issue a new ahead window.
  474. * Only return the #pages that are in the current window, so that
  475. * we get called back on the first page of the ahead window which
  476. * will allow us to submit more IO.
  477. */
  478. if (ra->prev_page >= ra->ahead_start) {
  479. ra->start = ra->ahead_start;
  480. ra->size = ra->ahead_size;
  481. make_ahead_window(mapping, filp, ra, 0);
  482. }
  483. out:
  484. return ra->prev_page + 1;
  485. }
  486. /*
  487. * handle_ra_miss() is called when it is known that a page which should have
  488. * been present in the pagecache (we just did some readahead there) was in fact
  489. * not found. This will happen if it was evicted by the VM (readahead
  490. * thrashing)
  491. *
  492. * Turn on the cache miss flag in the RA struct, this will cause the RA code
  493. * to reduce the RA size on the next read.
  494. */
  495. void handle_ra_miss(struct address_space *mapping,
  496. struct file_ra_state *ra, pgoff_t offset)
  497. {
  498. ra->flags |= RA_FLAG_MISS;
  499. ra->flags &= ~RA_FLAG_INCACHE;
  500. ra->cache_hit = 0;
  501. }
  502. /*
  503. * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
  504. * sensible upper limit.
  505. */
  506. unsigned long max_sane_readahead(unsigned long nr)
  507. {
  508. unsigned long active;
  509. unsigned long inactive;
  510. unsigned long free;
  511. __get_zone_counts(&active, &inactive, &free, NODE_DATA(numa_node_id()));
  512. return min(nr, (inactive + free) / 2);
  513. }