smp.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/config.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/cpu.h>
  21. #include <linux/smp.h>
  22. #include <linux/seq_file.h>
  23. #include <asm/atomic.h>
  24. #include <asm/cacheflush.h>
  25. #include <asm/cpu.h>
  26. #include <asm/mmu_context.h>
  27. #include <asm/pgtable.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/processor.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/ptrace.h>
  32. /*
  33. * bitmask of present and online CPUs.
  34. * The present bitmask indicates that the CPU is physically present.
  35. * The online bitmask indicates that the CPU is up and running.
  36. */
  37. cpumask_t cpu_possible_map;
  38. cpumask_t cpu_online_map;
  39. /*
  40. * as from 2.5, kernels no longer have an init_tasks structure
  41. * so we need some other way of telling a new secondary core
  42. * where to place its SVC stack
  43. */
  44. struct secondary_data secondary_data;
  45. /*
  46. * structures for inter-processor calls
  47. * - A collection of single bit ipi messages.
  48. */
  49. struct ipi_data {
  50. spinlock_t lock;
  51. unsigned long ipi_count;
  52. unsigned long bits;
  53. };
  54. static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
  55. .lock = SPIN_LOCK_UNLOCKED,
  56. };
  57. enum ipi_msg_type {
  58. IPI_TIMER,
  59. IPI_RESCHEDULE,
  60. IPI_CALL_FUNC,
  61. IPI_CPU_STOP,
  62. };
  63. struct smp_call_struct {
  64. void (*func)(void *info);
  65. void *info;
  66. int wait;
  67. cpumask_t pending;
  68. cpumask_t unfinished;
  69. };
  70. static struct smp_call_struct * volatile smp_call_function_data;
  71. static DEFINE_SPINLOCK(smp_call_function_lock);
  72. int __cpuinit __cpu_up(unsigned int cpu)
  73. {
  74. struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
  75. struct task_struct *idle = ci->idle;
  76. pgd_t *pgd;
  77. pmd_t *pmd;
  78. int ret;
  79. /*
  80. * Spawn a new process manually, if not already done.
  81. * Grab a pointer to its task struct so we can mess with it
  82. */
  83. if (!idle) {
  84. idle = fork_idle(cpu);
  85. if (IS_ERR(idle)) {
  86. printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
  87. return PTR_ERR(idle);
  88. }
  89. ci->idle = idle;
  90. }
  91. /*
  92. * Allocate initial page tables to allow the new CPU to
  93. * enable the MMU safely. This essentially means a set
  94. * of our "standard" page tables, with the addition of
  95. * a 1:1 mapping for the physical address of the kernel.
  96. */
  97. pgd = pgd_alloc(&init_mm);
  98. pmd = pmd_offset(pgd, PHYS_OFFSET);
  99. *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
  100. PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
  101. /*
  102. * We need to tell the secondary core where to find
  103. * its stack and the page tables.
  104. */
  105. secondary_data.stack = (void *)idle->thread_info + THREAD_START_SP;
  106. secondary_data.pgdir = virt_to_phys(pgd);
  107. wmb();
  108. /*
  109. * Now bring the CPU into our world.
  110. */
  111. ret = boot_secondary(cpu, idle);
  112. if (ret == 0) {
  113. unsigned long timeout;
  114. /*
  115. * CPU was successfully started, wait for it
  116. * to come online or time out.
  117. */
  118. timeout = jiffies + HZ;
  119. while (time_before(jiffies, timeout)) {
  120. if (cpu_online(cpu))
  121. break;
  122. udelay(10);
  123. barrier();
  124. }
  125. if (!cpu_online(cpu))
  126. ret = -EIO;
  127. }
  128. secondary_data.stack = 0;
  129. secondary_data.pgdir = 0;
  130. *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
  131. pgd_free(pgd);
  132. if (ret) {
  133. printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
  134. /*
  135. * FIXME: We need to clean up the new idle thread. --rmk
  136. */
  137. }
  138. return ret;
  139. }
  140. #ifdef CONFIG_HOTPLUG_CPU
  141. /*
  142. * __cpu_disable runs on the processor to be shutdown.
  143. */
  144. int __cpuexit __cpu_disable(void)
  145. {
  146. unsigned int cpu = smp_processor_id();
  147. struct task_struct *p;
  148. int ret;
  149. ret = mach_cpu_disable(cpu);
  150. if (ret)
  151. return ret;
  152. /*
  153. * Take this CPU offline. Once we clear this, we can't return,
  154. * and we must not schedule until we're ready to give up the cpu.
  155. */
  156. cpu_clear(cpu, cpu_online_map);
  157. /*
  158. * OK - migrate IRQs away from this CPU
  159. */
  160. migrate_irqs();
  161. /*
  162. * Flush user cache and TLB mappings, and then remove this CPU
  163. * from the vm mask set of all processes.
  164. */
  165. flush_cache_all();
  166. local_flush_tlb_all();
  167. read_lock(&tasklist_lock);
  168. for_each_process(p) {
  169. if (p->mm)
  170. cpu_clear(cpu, p->mm->cpu_vm_mask);
  171. }
  172. read_unlock(&tasklist_lock);
  173. return 0;
  174. }
  175. /*
  176. * called on the thread which is asking for a CPU to be shutdown -
  177. * waits until shutdown has completed, or it is timed out.
  178. */
  179. void __cpuexit __cpu_die(unsigned int cpu)
  180. {
  181. if (!platform_cpu_kill(cpu))
  182. printk("CPU%u: unable to kill\n", cpu);
  183. }
  184. /*
  185. * Called from the idle thread for the CPU which has been shutdown.
  186. *
  187. * Note that we disable IRQs here, but do not re-enable them
  188. * before returning to the caller. This is also the behaviour
  189. * of the other hotplug-cpu capable cores, so presumably coming
  190. * out of idle fixes this.
  191. */
  192. void __cpuexit cpu_die(void)
  193. {
  194. unsigned int cpu = smp_processor_id();
  195. local_irq_disable();
  196. idle_task_exit();
  197. /*
  198. * actual CPU shutdown procedure is at least platform (if not
  199. * CPU) specific
  200. */
  201. platform_cpu_die(cpu);
  202. /*
  203. * Do not return to the idle loop - jump back to the secondary
  204. * cpu initialisation. There's some initialisation which needs
  205. * to be repeated to undo the effects of taking the CPU offline.
  206. */
  207. __asm__("mov sp, %0\n"
  208. " b secondary_start_kernel"
  209. :
  210. : "r" ((void *)current->thread_info + THREAD_SIZE - 8));
  211. }
  212. #endif /* CONFIG_HOTPLUG_CPU */
  213. /*
  214. * This is the secondary CPU boot entry. We're using this CPUs
  215. * idle thread stack, but a set of temporary page tables.
  216. */
  217. asmlinkage void __cpuinit secondary_start_kernel(void)
  218. {
  219. struct mm_struct *mm = &init_mm;
  220. unsigned int cpu = smp_processor_id();
  221. printk("CPU%u: Booted secondary processor\n", cpu);
  222. /*
  223. * All kernel threads share the same mm context; grab a
  224. * reference and switch to it.
  225. */
  226. atomic_inc(&mm->mm_users);
  227. atomic_inc(&mm->mm_count);
  228. current->active_mm = mm;
  229. cpu_set(cpu, mm->cpu_vm_mask);
  230. cpu_switch_mm(mm->pgd, mm);
  231. enter_lazy_tlb(mm, current);
  232. local_flush_tlb_all();
  233. cpu_init();
  234. /*
  235. * Give the platform a chance to do its own initialisation.
  236. */
  237. platform_secondary_init(cpu);
  238. /*
  239. * Enable local interrupts.
  240. */
  241. local_irq_enable();
  242. local_fiq_enable();
  243. calibrate_delay();
  244. smp_store_cpu_info(cpu);
  245. /*
  246. * OK, now it's safe to let the boot CPU continue
  247. */
  248. cpu_set(cpu, cpu_online_map);
  249. /*
  250. * OK, it's off to the idle thread for us
  251. */
  252. cpu_idle();
  253. }
  254. /*
  255. * Called by both boot and secondaries to move global data into
  256. * per-processor storage.
  257. */
  258. void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  259. {
  260. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  261. cpu_info->loops_per_jiffy = loops_per_jiffy;
  262. }
  263. void __init smp_cpus_done(unsigned int max_cpus)
  264. {
  265. int cpu;
  266. unsigned long bogosum = 0;
  267. for_each_online_cpu(cpu)
  268. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  269. printk(KERN_INFO "SMP: Total of %d processors activated "
  270. "(%lu.%02lu BogoMIPS).\n",
  271. num_online_cpus(),
  272. bogosum / (500000/HZ),
  273. (bogosum / (5000/HZ)) % 100);
  274. }
  275. void __init smp_prepare_boot_cpu(void)
  276. {
  277. unsigned int cpu = smp_processor_id();
  278. per_cpu(cpu_data, cpu).idle = current;
  279. cpu_set(cpu, cpu_possible_map);
  280. cpu_set(cpu, cpu_present_map);
  281. cpu_set(cpu, cpu_online_map);
  282. }
  283. static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
  284. {
  285. unsigned long flags;
  286. unsigned int cpu;
  287. local_irq_save(flags);
  288. for_each_cpu_mask(cpu, callmap) {
  289. struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
  290. spin_lock(&ipi->lock);
  291. ipi->bits |= 1 << msg;
  292. spin_unlock(&ipi->lock);
  293. }
  294. /*
  295. * Call the platform specific cross-CPU call function.
  296. */
  297. smp_cross_call(callmap);
  298. local_irq_restore(flags);
  299. }
  300. /*
  301. * You must not call this function with disabled interrupts, from a
  302. * hardware interrupt handler, nor from a bottom half handler.
  303. */
  304. int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
  305. int wait, cpumask_t callmap)
  306. {
  307. struct smp_call_struct data;
  308. unsigned long timeout;
  309. int ret = 0;
  310. data.func = func;
  311. data.info = info;
  312. data.wait = wait;
  313. cpu_clear(smp_processor_id(), callmap);
  314. if (cpus_empty(callmap))
  315. goto out;
  316. data.pending = callmap;
  317. if (wait)
  318. data.unfinished = callmap;
  319. /*
  320. * try to get the mutex on smp_call_function_data
  321. */
  322. spin_lock(&smp_call_function_lock);
  323. smp_call_function_data = &data;
  324. send_ipi_message(callmap, IPI_CALL_FUNC);
  325. timeout = jiffies + HZ;
  326. while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
  327. barrier();
  328. /*
  329. * did we time out?
  330. */
  331. if (!cpus_empty(data.pending)) {
  332. /*
  333. * this may be causing our panic - report it
  334. */
  335. printk(KERN_CRIT
  336. "CPU%u: smp_call_function timeout for %p(%p)\n"
  337. " callmap %lx pending %lx, %swait\n",
  338. smp_processor_id(), func, info, *cpus_addr(callmap),
  339. *cpus_addr(data.pending), wait ? "" : "no ");
  340. /*
  341. * TRACE
  342. */
  343. timeout = jiffies + (5 * HZ);
  344. while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
  345. barrier();
  346. if (cpus_empty(data.pending))
  347. printk(KERN_CRIT " RESOLVED\n");
  348. else
  349. printk(KERN_CRIT " STILL STUCK\n");
  350. }
  351. /*
  352. * whatever happened, we're done with the data, so release it
  353. */
  354. smp_call_function_data = NULL;
  355. spin_unlock(&smp_call_function_lock);
  356. if (!cpus_empty(data.pending)) {
  357. ret = -ETIMEDOUT;
  358. goto out;
  359. }
  360. if (wait)
  361. while (!cpus_empty(data.unfinished))
  362. barrier();
  363. out:
  364. return 0;
  365. }
  366. int smp_call_function(void (*func)(void *info), void *info, int retry,
  367. int wait)
  368. {
  369. return smp_call_function_on_cpu(func, info, retry, wait,
  370. cpu_online_map);
  371. }
  372. void show_ipi_list(struct seq_file *p)
  373. {
  374. unsigned int cpu;
  375. seq_puts(p, "IPI:");
  376. for_each_present_cpu(cpu)
  377. seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
  378. seq_putc(p, '\n');
  379. }
  380. static void ipi_timer(struct pt_regs *regs)
  381. {
  382. int user = user_mode(regs);
  383. irq_enter();
  384. profile_tick(CPU_PROFILING, regs);
  385. update_process_times(user);
  386. irq_exit();
  387. }
  388. /*
  389. * ipi_call_function - handle IPI from smp_call_function()
  390. *
  391. * Note that we copy data out of the cross-call structure and then
  392. * let the caller know that we're here and have done with their data
  393. */
  394. static void ipi_call_function(unsigned int cpu)
  395. {
  396. struct smp_call_struct *data = smp_call_function_data;
  397. void (*func)(void *info) = data->func;
  398. void *info = data->info;
  399. int wait = data->wait;
  400. cpu_clear(cpu, data->pending);
  401. func(info);
  402. if (wait)
  403. cpu_clear(cpu, data->unfinished);
  404. }
  405. static DEFINE_SPINLOCK(stop_lock);
  406. /*
  407. * ipi_cpu_stop - handle IPI from smp_send_stop()
  408. */
  409. static void ipi_cpu_stop(unsigned int cpu)
  410. {
  411. spin_lock(&stop_lock);
  412. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  413. dump_stack();
  414. spin_unlock(&stop_lock);
  415. cpu_clear(cpu, cpu_online_map);
  416. local_fiq_disable();
  417. local_irq_disable();
  418. while (1)
  419. cpu_relax();
  420. }
  421. /*
  422. * Main handler for inter-processor interrupts
  423. *
  424. * For ARM, the ipimask now only identifies a single
  425. * category of IPI (Bit 1 IPIs have been replaced by a
  426. * different mechanism):
  427. *
  428. * Bit 0 - Inter-processor function call
  429. */
  430. void do_IPI(struct pt_regs *regs)
  431. {
  432. unsigned int cpu = smp_processor_id();
  433. struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
  434. ipi->ipi_count++;
  435. for (;;) {
  436. unsigned long msgs;
  437. spin_lock(&ipi->lock);
  438. msgs = ipi->bits;
  439. ipi->bits = 0;
  440. spin_unlock(&ipi->lock);
  441. if (!msgs)
  442. break;
  443. do {
  444. unsigned nextmsg;
  445. nextmsg = msgs & -msgs;
  446. msgs &= ~nextmsg;
  447. nextmsg = ffz(~nextmsg);
  448. switch (nextmsg) {
  449. case IPI_TIMER:
  450. ipi_timer(regs);
  451. break;
  452. case IPI_RESCHEDULE:
  453. /*
  454. * nothing more to do - eveything is
  455. * done on the interrupt return path
  456. */
  457. break;
  458. case IPI_CALL_FUNC:
  459. ipi_call_function(cpu);
  460. break;
  461. case IPI_CPU_STOP:
  462. ipi_cpu_stop(cpu);
  463. break;
  464. default:
  465. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  466. cpu, nextmsg);
  467. break;
  468. }
  469. } while (msgs);
  470. }
  471. }
  472. void smp_send_reschedule(int cpu)
  473. {
  474. send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
  475. }
  476. void smp_send_timer(void)
  477. {
  478. cpumask_t mask = cpu_online_map;
  479. cpu_clear(smp_processor_id(), mask);
  480. send_ipi_message(mask, IPI_TIMER);
  481. }
  482. void smp_send_stop(void)
  483. {
  484. cpumask_t mask = cpu_online_map;
  485. cpu_clear(smp_processor_id(), mask);
  486. send_ipi_message(mask, IPI_CPU_STOP);
  487. }
  488. /*
  489. * not supported here
  490. */
  491. int __init setup_profiling_timer(unsigned int multiplier)
  492. {
  493. return -EINVAL;
  494. }
  495. static int
  496. on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
  497. cpumask_t mask)
  498. {
  499. int ret = 0;
  500. preempt_disable();
  501. ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
  502. if (cpu_isset(smp_processor_id(), mask))
  503. func(info);
  504. preempt_enable();
  505. return ret;
  506. }
  507. /**********************************************************************/
  508. /*
  509. * TLB operations
  510. */
  511. struct tlb_args {
  512. struct vm_area_struct *ta_vma;
  513. unsigned long ta_start;
  514. unsigned long ta_end;
  515. };
  516. static inline void ipi_flush_tlb_all(void *ignored)
  517. {
  518. local_flush_tlb_all();
  519. }
  520. static inline void ipi_flush_tlb_mm(void *arg)
  521. {
  522. struct mm_struct *mm = (struct mm_struct *)arg;
  523. local_flush_tlb_mm(mm);
  524. }
  525. static inline void ipi_flush_tlb_page(void *arg)
  526. {
  527. struct tlb_args *ta = (struct tlb_args *)arg;
  528. local_flush_tlb_page(ta->ta_vma, ta->ta_start);
  529. }
  530. static inline void ipi_flush_tlb_kernel_page(void *arg)
  531. {
  532. struct tlb_args *ta = (struct tlb_args *)arg;
  533. local_flush_tlb_kernel_page(ta->ta_start);
  534. }
  535. static inline void ipi_flush_tlb_range(void *arg)
  536. {
  537. struct tlb_args *ta = (struct tlb_args *)arg;
  538. local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
  539. }
  540. static inline void ipi_flush_tlb_kernel_range(void *arg)
  541. {
  542. struct tlb_args *ta = (struct tlb_args *)arg;
  543. local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
  544. }
  545. void flush_tlb_all(void)
  546. {
  547. on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
  548. }
  549. void flush_tlb_mm(struct mm_struct *mm)
  550. {
  551. cpumask_t mask = mm->cpu_vm_mask;
  552. on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
  553. }
  554. void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
  555. {
  556. cpumask_t mask = vma->vm_mm->cpu_vm_mask;
  557. struct tlb_args ta;
  558. ta.ta_vma = vma;
  559. ta.ta_start = uaddr;
  560. on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
  561. }
  562. void flush_tlb_kernel_page(unsigned long kaddr)
  563. {
  564. struct tlb_args ta;
  565. ta.ta_start = kaddr;
  566. on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
  567. }
  568. void flush_tlb_range(struct vm_area_struct *vma,
  569. unsigned long start, unsigned long end)
  570. {
  571. cpumask_t mask = vma->vm_mm->cpu_vm_mask;
  572. struct tlb_args ta;
  573. ta.ta_vma = vma;
  574. ta.ta_start = start;
  575. ta.ta_end = end;
  576. on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
  577. }
  578. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  579. {
  580. struct tlb_args ta;
  581. ta.ta_start = start;
  582. ta.ta_end = end;
  583. on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
  584. }