x86.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include "kvm.h"
  17. #include "x86.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/fs.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/module.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/msr.h>
  27. #define MAX_IO_MSRS 256
  28. #define CR0_RESERVED_BITS \
  29. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  30. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  31. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  32. #define CR4_RESERVED_BITS \
  33. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  34. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  35. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  36. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  37. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  38. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  39. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  40. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  41. struct kvm_x86_ops *kvm_x86_ops;
  42. struct kvm_stats_debugfs_item debugfs_entries[] = {
  43. { "pf_fixed", VCPU_STAT(pf_fixed) },
  44. { "pf_guest", VCPU_STAT(pf_guest) },
  45. { "tlb_flush", VCPU_STAT(tlb_flush) },
  46. { "invlpg", VCPU_STAT(invlpg) },
  47. { "exits", VCPU_STAT(exits) },
  48. { "io_exits", VCPU_STAT(io_exits) },
  49. { "mmio_exits", VCPU_STAT(mmio_exits) },
  50. { "signal_exits", VCPU_STAT(signal_exits) },
  51. { "irq_window", VCPU_STAT(irq_window_exits) },
  52. { "halt_exits", VCPU_STAT(halt_exits) },
  53. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  54. { "request_irq", VCPU_STAT(request_irq_exits) },
  55. { "irq_exits", VCPU_STAT(irq_exits) },
  56. { "host_state_reload", VCPU_STAT(host_state_reload) },
  57. { "efer_reload", VCPU_STAT(efer_reload) },
  58. { "fpu_reload", VCPU_STAT(fpu_reload) },
  59. { "insn_emulation", VCPU_STAT(insn_emulation) },
  60. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  61. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  62. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  63. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  64. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  65. { "mmu_flooded", VM_STAT(mmu_flooded) },
  66. { "mmu_recycled", VM_STAT(mmu_recycled) },
  67. { NULL }
  68. };
  69. unsigned long segment_base(u16 selector)
  70. {
  71. struct descriptor_table gdt;
  72. struct segment_descriptor *d;
  73. unsigned long table_base;
  74. unsigned long v;
  75. if (selector == 0)
  76. return 0;
  77. asm("sgdt %0" : "=m"(gdt));
  78. table_base = gdt.base;
  79. if (selector & 4) { /* from ldt */
  80. u16 ldt_selector;
  81. asm("sldt %0" : "=g"(ldt_selector));
  82. table_base = segment_base(ldt_selector);
  83. }
  84. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  85. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  86. ((unsigned long)d->base_high << 24);
  87. #ifdef CONFIG_X86_64
  88. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  89. v |= ((unsigned long) \
  90. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  91. #endif
  92. return v;
  93. }
  94. EXPORT_SYMBOL_GPL(segment_base);
  95. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  96. {
  97. if (irqchip_in_kernel(vcpu->kvm))
  98. return vcpu->apic_base;
  99. else
  100. return vcpu->apic_base;
  101. }
  102. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  103. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  104. {
  105. /* TODO: reserve bits check */
  106. if (irqchip_in_kernel(vcpu->kvm))
  107. kvm_lapic_set_base(vcpu, data);
  108. else
  109. vcpu->apic_base = data;
  110. }
  111. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  112. static void inject_gp(struct kvm_vcpu *vcpu)
  113. {
  114. kvm_x86_ops->inject_gp(vcpu, 0);
  115. }
  116. /*
  117. * Load the pae pdptrs. Return true is they are all valid.
  118. */
  119. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  120. {
  121. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  122. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  123. int i;
  124. int ret;
  125. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  126. mutex_lock(&vcpu->kvm->lock);
  127. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  128. offset * sizeof(u64), sizeof(pdpte));
  129. if (ret < 0) {
  130. ret = 0;
  131. goto out;
  132. }
  133. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  134. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  135. ret = 0;
  136. goto out;
  137. }
  138. }
  139. ret = 1;
  140. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  141. out:
  142. mutex_unlock(&vcpu->kvm->lock);
  143. return ret;
  144. }
  145. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  146. {
  147. if (cr0 & CR0_RESERVED_BITS) {
  148. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  149. cr0, vcpu->cr0);
  150. inject_gp(vcpu);
  151. return;
  152. }
  153. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  154. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  155. inject_gp(vcpu);
  156. return;
  157. }
  158. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  159. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  160. "and a clear PE flag\n");
  161. inject_gp(vcpu);
  162. return;
  163. }
  164. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  165. #ifdef CONFIG_X86_64
  166. if ((vcpu->shadow_efer & EFER_LME)) {
  167. int cs_db, cs_l;
  168. if (!is_pae(vcpu)) {
  169. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  170. "in long mode while PAE is disabled\n");
  171. inject_gp(vcpu);
  172. return;
  173. }
  174. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  175. if (cs_l) {
  176. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  177. "in long mode while CS.L == 1\n");
  178. inject_gp(vcpu);
  179. return;
  180. }
  181. } else
  182. #endif
  183. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  184. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  185. "reserved bits\n");
  186. inject_gp(vcpu);
  187. return;
  188. }
  189. }
  190. kvm_x86_ops->set_cr0(vcpu, cr0);
  191. vcpu->cr0 = cr0;
  192. mutex_lock(&vcpu->kvm->lock);
  193. kvm_mmu_reset_context(vcpu);
  194. mutex_unlock(&vcpu->kvm->lock);
  195. return;
  196. }
  197. EXPORT_SYMBOL_GPL(set_cr0);
  198. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  199. {
  200. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  201. }
  202. EXPORT_SYMBOL_GPL(lmsw);
  203. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  204. {
  205. if (cr4 & CR4_RESERVED_BITS) {
  206. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  207. inject_gp(vcpu);
  208. return;
  209. }
  210. if (is_long_mode(vcpu)) {
  211. if (!(cr4 & X86_CR4_PAE)) {
  212. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  213. "in long mode\n");
  214. inject_gp(vcpu);
  215. return;
  216. }
  217. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  218. && !load_pdptrs(vcpu, vcpu->cr3)) {
  219. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  220. inject_gp(vcpu);
  221. return;
  222. }
  223. if (cr4 & X86_CR4_VMXE) {
  224. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  225. inject_gp(vcpu);
  226. return;
  227. }
  228. kvm_x86_ops->set_cr4(vcpu, cr4);
  229. vcpu->cr4 = cr4;
  230. mutex_lock(&vcpu->kvm->lock);
  231. kvm_mmu_reset_context(vcpu);
  232. mutex_unlock(&vcpu->kvm->lock);
  233. }
  234. EXPORT_SYMBOL_GPL(set_cr4);
  235. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  236. {
  237. if (is_long_mode(vcpu)) {
  238. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  239. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  240. inject_gp(vcpu);
  241. return;
  242. }
  243. } else {
  244. if (is_pae(vcpu)) {
  245. if (cr3 & CR3_PAE_RESERVED_BITS) {
  246. printk(KERN_DEBUG
  247. "set_cr3: #GP, reserved bits\n");
  248. inject_gp(vcpu);
  249. return;
  250. }
  251. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  252. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  253. "reserved bits\n");
  254. inject_gp(vcpu);
  255. return;
  256. }
  257. }
  258. /*
  259. * We don't check reserved bits in nonpae mode, because
  260. * this isn't enforced, and VMware depends on this.
  261. */
  262. }
  263. mutex_lock(&vcpu->kvm->lock);
  264. /*
  265. * Does the new cr3 value map to physical memory? (Note, we
  266. * catch an invalid cr3 even in real-mode, because it would
  267. * cause trouble later on when we turn on paging anyway.)
  268. *
  269. * A real CPU would silently accept an invalid cr3 and would
  270. * attempt to use it - with largely undefined (and often hard
  271. * to debug) behavior on the guest side.
  272. */
  273. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  274. inject_gp(vcpu);
  275. else {
  276. vcpu->cr3 = cr3;
  277. vcpu->mmu.new_cr3(vcpu);
  278. }
  279. mutex_unlock(&vcpu->kvm->lock);
  280. }
  281. EXPORT_SYMBOL_GPL(set_cr3);
  282. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  283. {
  284. if (cr8 & CR8_RESERVED_BITS) {
  285. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  286. inject_gp(vcpu);
  287. return;
  288. }
  289. if (irqchip_in_kernel(vcpu->kvm))
  290. kvm_lapic_set_tpr(vcpu, cr8);
  291. else
  292. vcpu->cr8 = cr8;
  293. }
  294. EXPORT_SYMBOL_GPL(set_cr8);
  295. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  296. {
  297. if (irqchip_in_kernel(vcpu->kvm))
  298. return kvm_lapic_get_cr8(vcpu);
  299. else
  300. return vcpu->cr8;
  301. }
  302. EXPORT_SYMBOL_GPL(get_cr8);
  303. /*
  304. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  305. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  306. *
  307. * This list is modified at module load time to reflect the
  308. * capabilities of the host cpu.
  309. */
  310. static u32 msrs_to_save[] = {
  311. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  312. MSR_K6_STAR,
  313. #ifdef CONFIG_X86_64
  314. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  315. #endif
  316. MSR_IA32_TIME_STAMP_COUNTER,
  317. };
  318. static unsigned num_msrs_to_save;
  319. static u32 emulated_msrs[] = {
  320. MSR_IA32_MISC_ENABLE,
  321. };
  322. #ifdef CONFIG_X86_64
  323. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  324. {
  325. if (efer & EFER_RESERVED_BITS) {
  326. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  327. efer);
  328. inject_gp(vcpu);
  329. return;
  330. }
  331. if (is_paging(vcpu)
  332. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  333. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  334. inject_gp(vcpu);
  335. return;
  336. }
  337. kvm_x86_ops->set_efer(vcpu, efer);
  338. efer &= ~EFER_LMA;
  339. efer |= vcpu->shadow_efer & EFER_LMA;
  340. vcpu->shadow_efer = efer;
  341. }
  342. #endif
  343. /*
  344. * Writes msr value into into the appropriate "register".
  345. * Returns 0 on success, non-0 otherwise.
  346. * Assumes vcpu_load() was already called.
  347. */
  348. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  349. {
  350. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  351. }
  352. /*
  353. * Adapt set_msr() to msr_io()'s calling convention
  354. */
  355. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  356. {
  357. return kvm_set_msr(vcpu, index, *data);
  358. }
  359. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  360. {
  361. switch (msr) {
  362. #ifdef CONFIG_X86_64
  363. case MSR_EFER:
  364. set_efer(vcpu, data);
  365. break;
  366. #endif
  367. case MSR_IA32_MC0_STATUS:
  368. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  369. __FUNCTION__, data);
  370. break;
  371. case MSR_IA32_MCG_STATUS:
  372. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  373. __FUNCTION__, data);
  374. break;
  375. case MSR_IA32_UCODE_REV:
  376. case MSR_IA32_UCODE_WRITE:
  377. case 0x200 ... 0x2ff: /* MTRRs */
  378. break;
  379. case MSR_IA32_APICBASE:
  380. kvm_set_apic_base(vcpu, data);
  381. break;
  382. case MSR_IA32_MISC_ENABLE:
  383. vcpu->ia32_misc_enable_msr = data;
  384. break;
  385. default:
  386. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  387. return 1;
  388. }
  389. return 0;
  390. }
  391. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  392. /*
  393. * Reads an msr value (of 'msr_index') into 'pdata'.
  394. * Returns 0 on success, non-0 otherwise.
  395. * Assumes vcpu_load() was already called.
  396. */
  397. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  398. {
  399. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  400. }
  401. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  402. {
  403. u64 data;
  404. switch (msr) {
  405. case 0xc0010010: /* SYSCFG */
  406. case 0xc0010015: /* HWCR */
  407. case MSR_IA32_PLATFORM_ID:
  408. case MSR_IA32_P5_MC_ADDR:
  409. case MSR_IA32_P5_MC_TYPE:
  410. case MSR_IA32_MC0_CTL:
  411. case MSR_IA32_MCG_STATUS:
  412. case MSR_IA32_MCG_CAP:
  413. case MSR_IA32_MC0_MISC:
  414. case MSR_IA32_MC0_MISC+4:
  415. case MSR_IA32_MC0_MISC+8:
  416. case MSR_IA32_MC0_MISC+12:
  417. case MSR_IA32_MC0_MISC+16:
  418. case MSR_IA32_UCODE_REV:
  419. case MSR_IA32_PERF_STATUS:
  420. case MSR_IA32_EBL_CR_POWERON:
  421. /* MTRR registers */
  422. case 0xfe:
  423. case 0x200 ... 0x2ff:
  424. data = 0;
  425. break;
  426. case 0xcd: /* fsb frequency */
  427. data = 3;
  428. break;
  429. case MSR_IA32_APICBASE:
  430. data = kvm_get_apic_base(vcpu);
  431. break;
  432. case MSR_IA32_MISC_ENABLE:
  433. data = vcpu->ia32_misc_enable_msr;
  434. break;
  435. #ifdef CONFIG_X86_64
  436. case MSR_EFER:
  437. data = vcpu->shadow_efer;
  438. break;
  439. #endif
  440. default:
  441. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  442. return 1;
  443. }
  444. *pdata = data;
  445. return 0;
  446. }
  447. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  448. /*
  449. * Read or write a bunch of msrs. All parameters are kernel addresses.
  450. *
  451. * @return number of msrs set successfully.
  452. */
  453. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  454. struct kvm_msr_entry *entries,
  455. int (*do_msr)(struct kvm_vcpu *vcpu,
  456. unsigned index, u64 *data))
  457. {
  458. int i;
  459. vcpu_load(vcpu);
  460. for (i = 0; i < msrs->nmsrs; ++i)
  461. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  462. break;
  463. vcpu_put(vcpu);
  464. return i;
  465. }
  466. /*
  467. * Read or write a bunch of msrs. Parameters are user addresses.
  468. *
  469. * @return number of msrs set successfully.
  470. */
  471. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  472. int (*do_msr)(struct kvm_vcpu *vcpu,
  473. unsigned index, u64 *data),
  474. int writeback)
  475. {
  476. struct kvm_msrs msrs;
  477. struct kvm_msr_entry *entries;
  478. int r, n;
  479. unsigned size;
  480. r = -EFAULT;
  481. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  482. goto out;
  483. r = -E2BIG;
  484. if (msrs.nmsrs >= MAX_IO_MSRS)
  485. goto out;
  486. r = -ENOMEM;
  487. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  488. entries = vmalloc(size);
  489. if (!entries)
  490. goto out;
  491. r = -EFAULT;
  492. if (copy_from_user(entries, user_msrs->entries, size))
  493. goto out_free;
  494. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  495. if (r < 0)
  496. goto out_free;
  497. r = -EFAULT;
  498. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  499. goto out_free;
  500. r = n;
  501. out_free:
  502. vfree(entries);
  503. out:
  504. return r;
  505. }
  506. /*
  507. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  508. * cached on it.
  509. */
  510. void decache_vcpus_on_cpu(int cpu)
  511. {
  512. struct kvm *vm;
  513. struct kvm_vcpu *vcpu;
  514. int i;
  515. spin_lock(&kvm_lock);
  516. list_for_each_entry(vm, &vm_list, vm_list)
  517. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  518. vcpu = vm->vcpus[i];
  519. if (!vcpu)
  520. continue;
  521. /*
  522. * If the vcpu is locked, then it is running on some
  523. * other cpu and therefore it is not cached on the
  524. * cpu in question.
  525. *
  526. * If it's not locked, check the last cpu it executed
  527. * on.
  528. */
  529. if (mutex_trylock(&vcpu->mutex)) {
  530. if (vcpu->cpu == cpu) {
  531. kvm_x86_ops->vcpu_decache(vcpu);
  532. vcpu->cpu = -1;
  533. }
  534. mutex_unlock(&vcpu->mutex);
  535. }
  536. }
  537. spin_unlock(&kvm_lock);
  538. }
  539. int kvm_dev_ioctl_check_extension(long ext)
  540. {
  541. int r;
  542. switch (ext) {
  543. case KVM_CAP_IRQCHIP:
  544. case KVM_CAP_HLT:
  545. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  546. case KVM_CAP_USER_MEMORY:
  547. case KVM_CAP_SET_TSS_ADDR:
  548. r = 1;
  549. break;
  550. default:
  551. r = 0;
  552. break;
  553. }
  554. return r;
  555. }
  556. long kvm_arch_dev_ioctl(struct file *filp,
  557. unsigned int ioctl, unsigned long arg)
  558. {
  559. void __user *argp = (void __user *)arg;
  560. long r;
  561. switch (ioctl) {
  562. case KVM_GET_MSR_INDEX_LIST: {
  563. struct kvm_msr_list __user *user_msr_list = argp;
  564. struct kvm_msr_list msr_list;
  565. unsigned n;
  566. r = -EFAULT;
  567. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  568. goto out;
  569. n = msr_list.nmsrs;
  570. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  571. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  572. goto out;
  573. r = -E2BIG;
  574. if (n < num_msrs_to_save)
  575. goto out;
  576. r = -EFAULT;
  577. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  578. num_msrs_to_save * sizeof(u32)))
  579. goto out;
  580. if (copy_to_user(user_msr_list->indices
  581. + num_msrs_to_save * sizeof(u32),
  582. &emulated_msrs,
  583. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  584. goto out;
  585. r = 0;
  586. break;
  587. }
  588. default:
  589. r = -EINVAL;
  590. }
  591. out:
  592. return r;
  593. }
  594. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  595. {
  596. kvm_x86_ops->vcpu_load(vcpu, cpu);
  597. }
  598. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  599. {
  600. kvm_x86_ops->vcpu_put(vcpu);
  601. kvm_put_guest_fpu(vcpu);
  602. }
  603. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  604. {
  605. u64 efer;
  606. int i;
  607. struct kvm_cpuid_entry *e, *entry;
  608. rdmsrl(MSR_EFER, efer);
  609. entry = NULL;
  610. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  611. e = &vcpu->cpuid_entries[i];
  612. if (e->function == 0x80000001) {
  613. entry = e;
  614. break;
  615. }
  616. }
  617. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  618. entry->edx &= ~(1 << 20);
  619. printk(KERN_INFO "kvm: guest NX capability removed\n");
  620. }
  621. }
  622. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  623. struct kvm_cpuid *cpuid,
  624. struct kvm_cpuid_entry __user *entries)
  625. {
  626. int r;
  627. r = -E2BIG;
  628. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  629. goto out;
  630. r = -EFAULT;
  631. if (copy_from_user(&vcpu->cpuid_entries, entries,
  632. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  633. goto out;
  634. vcpu->cpuid_nent = cpuid->nent;
  635. cpuid_fix_nx_cap(vcpu);
  636. return 0;
  637. out:
  638. return r;
  639. }
  640. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  641. struct kvm_lapic_state *s)
  642. {
  643. vcpu_load(vcpu);
  644. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  645. vcpu_put(vcpu);
  646. return 0;
  647. }
  648. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  649. struct kvm_lapic_state *s)
  650. {
  651. vcpu_load(vcpu);
  652. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  653. kvm_apic_post_state_restore(vcpu);
  654. vcpu_put(vcpu);
  655. return 0;
  656. }
  657. long kvm_arch_vcpu_ioctl(struct file *filp,
  658. unsigned int ioctl, unsigned long arg)
  659. {
  660. struct kvm_vcpu *vcpu = filp->private_data;
  661. void __user *argp = (void __user *)arg;
  662. int r;
  663. switch (ioctl) {
  664. case KVM_GET_LAPIC: {
  665. struct kvm_lapic_state lapic;
  666. memset(&lapic, 0, sizeof lapic);
  667. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  668. if (r)
  669. goto out;
  670. r = -EFAULT;
  671. if (copy_to_user(argp, &lapic, sizeof lapic))
  672. goto out;
  673. r = 0;
  674. break;
  675. }
  676. case KVM_SET_LAPIC: {
  677. struct kvm_lapic_state lapic;
  678. r = -EFAULT;
  679. if (copy_from_user(&lapic, argp, sizeof lapic))
  680. goto out;
  681. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  682. if (r)
  683. goto out;
  684. r = 0;
  685. break;
  686. }
  687. case KVM_SET_CPUID: {
  688. struct kvm_cpuid __user *cpuid_arg = argp;
  689. struct kvm_cpuid cpuid;
  690. r = -EFAULT;
  691. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  692. goto out;
  693. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  694. if (r)
  695. goto out;
  696. break;
  697. }
  698. case KVM_GET_MSRS:
  699. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  700. break;
  701. case KVM_SET_MSRS:
  702. r = msr_io(vcpu, argp, do_set_msr, 0);
  703. break;
  704. default:
  705. r = -EINVAL;
  706. }
  707. out:
  708. return r;
  709. }
  710. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  711. {
  712. int ret;
  713. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  714. return -1;
  715. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  716. return ret;
  717. }
  718. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  719. u32 kvm_nr_mmu_pages)
  720. {
  721. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  722. return -EINVAL;
  723. mutex_lock(&kvm->lock);
  724. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  725. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  726. mutex_unlock(&kvm->lock);
  727. return 0;
  728. }
  729. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  730. {
  731. return kvm->n_alloc_mmu_pages;
  732. }
  733. /*
  734. * Set a new alias region. Aliases map a portion of physical memory into
  735. * another portion. This is useful for memory windows, for example the PC
  736. * VGA region.
  737. */
  738. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  739. struct kvm_memory_alias *alias)
  740. {
  741. int r, n;
  742. struct kvm_mem_alias *p;
  743. r = -EINVAL;
  744. /* General sanity checks */
  745. if (alias->memory_size & (PAGE_SIZE - 1))
  746. goto out;
  747. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  748. goto out;
  749. if (alias->slot >= KVM_ALIAS_SLOTS)
  750. goto out;
  751. if (alias->guest_phys_addr + alias->memory_size
  752. < alias->guest_phys_addr)
  753. goto out;
  754. if (alias->target_phys_addr + alias->memory_size
  755. < alias->target_phys_addr)
  756. goto out;
  757. mutex_lock(&kvm->lock);
  758. p = &kvm->aliases[alias->slot];
  759. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  760. p->npages = alias->memory_size >> PAGE_SHIFT;
  761. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  762. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  763. if (kvm->aliases[n - 1].npages)
  764. break;
  765. kvm->naliases = n;
  766. kvm_mmu_zap_all(kvm);
  767. mutex_unlock(&kvm->lock);
  768. return 0;
  769. out:
  770. return r;
  771. }
  772. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  773. {
  774. int r;
  775. r = 0;
  776. switch (chip->chip_id) {
  777. case KVM_IRQCHIP_PIC_MASTER:
  778. memcpy(&chip->chip.pic,
  779. &pic_irqchip(kvm)->pics[0],
  780. sizeof(struct kvm_pic_state));
  781. break;
  782. case KVM_IRQCHIP_PIC_SLAVE:
  783. memcpy(&chip->chip.pic,
  784. &pic_irqchip(kvm)->pics[1],
  785. sizeof(struct kvm_pic_state));
  786. break;
  787. case KVM_IRQCHIP_IOAPIC:
  788. memcpy(&chip->chip.ioapic,
  789. ioapic_irqchip(kvm),
  790. sizeof(struct kvm_ioapic_state));
  791. break;
  792. default:
  793. r = -EINVAL;
  794. break;
  795. }
  796. return r;
  797. }
  798. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  799. {
  800. int r;
  801. r = 0;
  802. switch (chip->chip_id) {
  803. case KVM_IRQCHIP_PIC_MASTER:
  804. memcpy(&pic_irqchip(kvm)->pics[0],
  805. &chip->chip.pic,
  806. sizeof(struct kvm_pic_state));
  807. break;
  808. case KVM_IRQCHIP_PIC_SLAVE:
  809. memcpy(&pic_irqchip(kvm)->pics[1],
  810. &chip->chip.pic,
  811. sizeof(struct kvm_pic_state));
  812. break;
  813. case KVM_IRQCHIP_IOAPIC:
  814. memcpy(ioapic_irqchip(kvm),
  815. &chip->chip.ioapic,
  816. sizeof(struct kvm_ioapic_state));
  817. break;
  818. default:
  819. r = -EINVAL;
  820. break;
  821. }
  822. kvm_pic_update_irq(pic_irqchip(kvm));
  823. return r;
  824. }
  825. /*
  826. * Get (and clear) the dirty memory log for a memory slot.
  827. */
  828. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  829. struct kvm_dirty_log *log)
  830. {
  831. int r;
  832. int n;
  833. struct kvm_memory_slot *memslot;
  834. int is_dirty = 0;
  835. mutex_lock(&kvm->lock);
  836. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  837. if (r)
  838. goto out;
  839. /* If nothing is dirty, don't bother messing with page tables. */
  840. if (is_dirty) {
  841. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  842. kvm_flush_remote_tlbs(kvm);
  843. memslot = &kvm->memslots[log->slot];
  844. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  845. memset(memslot->dirty_bitmap, 0, n);
  846. }
  847. r = 0;
  848. out:
  849. mutex_unlock(&kvm->lock);
  850. return r;
  851. }
  852. long kvm_arch_vm_ioctl(struct file *filp,
  853. unsigned int ioctl, unsigned long arg)
  854. {
  855. struct kvm *kvm = filp->private_data;
  856. void __user *argp = (void __user *)arg;
  857. int r = -EINVAL;
  858. switch (ioctl) {
  859. case KVM_SET_TSS_ADDR:
  860. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  861. if (r < 0)
  862. goto out;
  863. break;
  864. case KVM_SET_MEMORY_REGION: {
  865. struct kvm_memory_region kvm_mem;
  866. struct kvm_userspace_memory_region kvm_userspace_mem;
  867. r = -EFAULT;
  868. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  869. goto out;
  870. kvm_userspace_mem.slot = kvm_mem.slot;
  871. kvm_userspace_mem.flags = kvm_mem.flags;
  872. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  873. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  874. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  875. if (r)
  876. goto out;
  877. break;
  878. }
  879. case KVM_SET_NR_MMU_PAGES:
  880. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  881. if (r)
  882. goto out;
  883. break;
  884. case KVM_GET_NR_MMU_PAGES:
  885. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  886. break;
  887. case KVM_SET_MEMORY_ALIAS: {
  888. struct kvm_memory_alias alias;
  889. r = -EFAULT;
  890. if (copy_from_user(&alias, argp, sizeof alias))
  891. goto out;
  892. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  893. if (r)
  894. goto out;
  895. break;
  896. }
  897. case KVM_CREATE_IRQCHIP:
  898. r = -ENOMEM;
  899. kvm->vpic = kvm_create_pic(kvm);
  900. if (kvm->vpic) {
  901. r = kvm_ioapic_init(kvm);
  902. if (r) {
  903. kfree(kvm->vpic);
  904. kvm->vpic = NULL;
  905. goto out;
  906. }
  907. } else
  908. goto out;
  909. break;
  910. case KVM_IRQ_LINE: {
  911. struct kvm_irq_level irq_event;
  912. r = -EFAULT;
  913. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  914. goto out;
  915. if (irqchip_in_kernel(kvm)) {
  916. mutex_lock(&kvm->lock);
  917. if (irq_event.irq < 16)
  918. kvm_pic_set_irq(pic_irqchip(kvm),
  919. irq_event.irq,
  920. irq_event.level);
  921. kvm_ioapic_set_irq(kvm->vioapic,
  922. irq_event.irq,
  923. irq_event.level);
  924. mutex_unlock(&kvm->lock);
  925. r = 0;
  926. }
  927. break;
  928. }
  929. case KVM_GET_IRQCHIP: {
  930. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  931. struct kvm_irqchip chip;
  932. r = -EFAULT;
  933. if (copy_from_user(&chip, argp, sizeof chip))
  934. goto out;
  935. r = -ENXIO;
  936. if (!irqchip_in_kernel(kvm))
  937. goto out;
  938. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  939. if (r)
  940. goto out;
  941. r = -EFAULT;
  942. if (copy_to_user(argp, &chip, sizeof chip))
  943. goto out;
  944. r = 0;
  945. break;
  946. }
  947. case KVM_SET_IRQCHIP: {
  948. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  949. struct kvm_irqchip chip;
  950. r = -EFAULT;
  951. if (copy_from_user(&chip, argp, sizeof chip))
  952. goto out;
  953. r = -ENXIO;
  954. if (!irqchip_in_kernel(kvm))
  955. goto out;
  956. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  957. if (r)
  958. goto out;
  959. r = 0;
  960. break;
  961. }
  962. default:
  963. ;
  964. }
  965. out:
  966. return r;
  967. }
  968. static void kvm_init_msr_list(void)
  969. {
  970. u32 dummy[2];
  971. unsigned i, j;
  972. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  973. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  974. continue;
  975. if (j < i)
  976. msrs_to_save[j] = msrs_to_save[i];
  977. j++;
  978. }
  979. num_msrs_to_save = j;
  980. }
  981. /*
  982. * Only apic need an MMIO device hook, so shortcut now..
  983. */
  984. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  985. gpa_t addr)
  986. {
  987. struct kvm_io_device *dev;
  988. if (vcpu->apic) {
  989. dev = &vcpu->apic->dev;
  990. if (dev->in_range(dev, addr))
  991. return dev;
  992. }
  993. return NULL;
  994. }
  995. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  996. gpa_t addr)
  997. {
  998. struct kvm_io_device *dev;
  999. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1000. if (dev == NULL)
  1001. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1002. return dev;
  1003. }
  1004. int emulator_read_std(unsigned long addr,
  1005. void *val,
  1006. unsigned int bytes,
  1007. struct kvm_vcpu *vcpu)
  1008. {
  1009. void *data = val;
  1010. while (bytes) {
  1011. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1012. unsigned offset = addr & (PAGE_SIZE-1);
  1013. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1014. int ret;
  1015. if (gpa == UNMAPPED_GVA)
  1016. return X86EMUL_PROPAGATE_FAULT;
  1017. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1018. if (ret < 0)
  1019. return X86EMUL_UNHANDLEABLE;
  1020. bytes -= tocopy;
  1021. data += tocopy;
  1022. addr += tocopy;
  1023. }
  1024. return X86EMUL_CONTINUE;
  1025. }
  1026. EXPORT_SYMBOL_GPL(emulator_read_std);
  1027. static int emulator_write_std(unsigned long addr,
  1028. const void *val,
  1029. unsigned int bytes,
  1030. struct kvm_vcpu *vcpu)
  1031. {
  1032. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  1033. return X86EMUL_UNHANDLEABLE;
  1034. }
  1035. static int emulator_read_emulated(unsigned long addr,
  1036. void *val,
  1037. unsigned int bytes,
  1038. struct kvm_vcpu *vcpu)
  1039. {
  1040. struct kvm_io_device *mmio_dev;
  1041. gpa_t gpa;
  1042. if (vcpu->mmio_read_completed) {
  1043. memcpy(val, vcpu->mmio_data, bytes);
  1044. vcpu->mmio_read_completed = 0;
  1045. return X86EMUL_CONTINUE;
  1046. }
  1047. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1048. /* For APIC access vmexit */
  1049. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1050. goto mmio;
  1051. if (emulator_read_std(addr, val, bytes, vcpu)
  1052. == X86EMUL_CONTINUE)
  1053. return X86EMUL_CONTINUE;
  1054. if (gpa == UNMAPPED_GVA)
  1055. return X86EMUL_PROPAGATE_FAULT;
  1056. mmio:
  1057. /*
  1058. * Is this MMIO handled locally?
  1059. */
  1060. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1061. if (mmio_dev) {
  1062. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1063. return X86EMUL_CONTINUE;
  1064. }
  1065. vcpu->mmio_needed = 1;
  1066. vcpu->mmio_phys_addr = gpa;
  1067. vcpu->mmio_size = bytes;
  1068. vcpu->mmio_is_write = 0;
  1069. return X86EMUL_UNHANDLEABLE;
  1070. }
  1071. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1072. const void *val, int bytes)
  1073. {
  1074. int ret;
  1075. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1076. if (ret < 0)
  1077. return 0;
  1078. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1079. return 1;
  1080. }
  1081. static int emulator_write_emulated_onepage(unsigned long addr,
  1082. const void *val,
  1083. unsigned int bytes,
  1084. struct kvm_vcpu *vcpu)
  1085. {
  1086. struct kvm_io_device *mmio_dev;
  1087. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1088. if (gpa == UNMAPPED_GVA) {
  1089. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1090. return X86EMUL_PROPAGATE_FAULT;
  1091. }
  1092. /* For APIC access vmexit */
  1093. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1094. goto mmio;
  1095. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1096. return X86EMUL_CONTINUE;
  1097. mmio:
  1098. /*
  1099. * Is this MMIO handled locally?
  1100. */
  1101. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1102. if (mmio_dev) {
  1103. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1104. return X86EMUL_CONTINUE;
  1105. }
  1106. vcpu->mmio_needed = 1;
  1107. vcpu->mmio_phys_addr = gpa;
  1108. vcpu->mmio_size = bytes;
  1109. vcpu->mmio_is_write = 1;
  1110. memcpy(vcpu->mmio_data, val, bytes);
  1111. return X86EMUL_CONTINUE;
  1112. }
  1113. int emulator_write_emulated(unsigned long addr,
  1114. const void *val,
  1115. unsigned int bytes,
  1116. struct kvm_vcpu *vcpu)
  1117. {
  1118. /* Crossing a page boundary? */
  1119. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1120. int rc, now;
  1121. now = -addr & ~PAGE_MASK;
  1122. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1123. if (rc != X86EMUL_CONTINUE)
  1124. return rc;
  1125. addr += now;
  1126. val += now;
  1127. bytes -= now;
  1128. }
  1129. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1130. }
  1131. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1132. static int emulator_cmpxchg_emulated(unsigned long addr,
  1133. const void *old,
  1134. const void *new,
  1135. unsigned int bytes,
  1136. struct kvm_vcpu *vcpu)
  1137. {
  1138. static int reported;
  1139. if (!reported) {
  1140. reported = 1;
  1141. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1142. }
  1143. return emulator_write_emulated(addr, new, bytes, vcpu);
  1144. }
  1145. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1146. {
  1147. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1148. }
  1149. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1150. {
  1151. return X86EMUL_CONTINUE;
  1152. }
  1153. int emulate_clts(struct kvm_vcpu *vcpu)
  1154. {
  1155. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1156. return X86EMUL_CONTINUE;
  1157. }
  1158. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1159. {
  1160. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1161. switch (dr) {
  1162. case 0 ... 3:
  1163. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1164. return X86EMUL_CONTINUE;
  1165. default:
  1166. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1167. return X86EMUL_UNHANDLEABLE;
  1168. }
  1169. }
  1170. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1171. {
  1172. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1173. int exception;
  1174. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1175. if (exception) {
  1176. /* FIXME: better handling */
  1177. return X86EMUL_UNHANDLEABLE;
  1178. }
  1179. return X86EMUL_CONTINUE;
  1180. }
  1181. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1182. {
  1183. static int reported;
  1184. u8 opcodes[4];
  1185. unsigned long rip = vcpu->rip;
  1186. unsigned long rip_linear;
  1187. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1188. if (reported)
  1189. return;
  1190. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1191. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1192. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1193. reported = 1;
  1194. }
  1195. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1196. struct x86_emulate_ops emulate_ops = {
  1197. .read_std = emulator_read_std,
  1198. .write_std = emulator_write_std,
  1199. .read_emulated = emulator_read_emulated,
  1200. .write_emulated = emulator_write_emulated,
  1201. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1202. };
  1203. int emulate_instruction(struct kvm_vcpu *vcpu,
  1204. struct kvm_run *run,
  1205. unsigned long cr2,
  1206. u16 error_code,
  1207. int no_decode)
  1208. {
  1209. int r;
  1210. vcpu->mmio_fault_cr2 = cr2;
  1211. kvm_x86_ops->cache_regs(vcpu);
  1212. vcpu->mmio_is_write = 0;
  1213. vcpu->pio.string = 0;
  1214. if (!no_decode) {
  1215. int cs_db, cs_l;
  1216. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1217. vcpu->emulate_ctxt.vcpu = vcpu;
  1218. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1219. vcpu->emulate_ctxt.cr2 = cr2;
  1220. vcpu->emulate_ctxt.mode =
  1221. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1222. ? X86EMUL_MODE_REAL : cs_l
  1223. ? X86EMUL_MODE_PROT64 : cs_db
  1224. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1225. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1226. vcpu->emulate_ctxt.cs_base = 0;
  1227. vcpu->emulate_ctxt.ds_base = 0;
  1228. vcpu->emulate_ctxt.es_base = 0;
  1229. vcpu->emulate_ctxt.ss_base = 0;
  1230. } else {
  1231. vcpu->emulate_ctxt.cs_base =
  1232. get_segment_base(vcpu, VCPU_SREG_CS);
  1233. vcpu->emulate_ctxt.ds_base =
  1234. get_segment_base(vcpu, VCPU_SREG_DS);
  1235. vcpu->emulate_ctxt.es_base =
  1236. get_segment_base(vcpu, VCPU_SREG_ES);
  1237. vcpu->emulate_ctxt.ss_base =
  1238. get_segment_base(vcpu, VCPU_SREG_SS);
  1239. }
  1240. vcpu->emulate_ctxt.gs_base =
  1241. get_segment_base(vcpu, VCPU_SREG_GS);
  1242. vcpu->emulate_ctxt.fs_base =
  1243. get_segment_base(vcpu, VCPU_SREG_FS);
  1244. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1245. ++vcpu->stat.insn_emulation;
  1246. if (r) {
  1247. ++vcpu->stat.insn_emulation_fail;
  1248. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1249. return EMULATE_DONE;
  1250. return EMULATE_FAIL;
  1251. }
  1252. }
  1253. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1254. if (vcpu->pio.string)
  1255. return EMULATE_DO_MMIO;
  1256. if ((r || vcpu->mmio_is_write) && run) {
  1257. run->exit_reason = KVM_EXIT_MMIO;
  1258. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1259. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1260. run->mmio.len = vcpu->mmio_size;
  1261. run->mmio.is_write = vcpu->mmio_is_write;
  1262. }
  1263. if (r) {
  1264. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1265. return EMULATE_DONE;
  1266. if (!vcpu->mmio_needed) {
  1267. kvm_report_emulation_failure(vcpu, "mmio");
  1268. return EMULATE_FAIL;
  1269. }
  1270. return EMULATE_DO_MMIO;
  1271. }
  1272. kvm_x86_ops->decache_regs(vcpu);
  1273. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1274. if (vcpu->mmio_is_write) {
  1275. vcpu->mmio_needed = 0;
  1276. return EMULATE_DO_MMIO;
  1277. }
  1278. return EMULATE_DONE;
  1279. }
  1280. EXPORT_SYMBOL_GPL(emulate_instruction);
  1281. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1282. {
  1283. int i;
  1284. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  1285. if (vcpu->pio.guest_pages[i]) {
  1286. kvm_release_page(vcpu->pio.guest_pages[i]);
  1287. vcpu->pio.guest_pages[i] = NULL;
  1288. }
  1289. }
  1290. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1291. {
  1292. void *p = vcpu->pio_data;
  1293. void *q;
  1294. unsigned bytes;
  1295. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1296. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1297. PAGE_KERNEL);
  1298. if (!q) {
  1299. free_pio_guest_pages(vcpu);
  1300. return -ENOMEM;
  1301. }
  1302. q += vcpu->pio.guest_page_offset;
  1303. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1304. if (vcpu->pio.in)
  1305. memcpy(q, p, bytes);
  1306. else
  1307. memcpy(p, q, bytes);
  1308. q -= vcpu->pio.guest_page_offset;
  1309. vunmap(q);
  1310. free_pio_guest_pages(vcpu);
  1311. return 0;
  1312. }
  1313. int complete_pio(struct kvm_vcpu *vcpu)
  1314. {
  1315. struct kvm_pio_request *io = &vcpu->pio;
  1316. long delta;
  1317. int r;
  1318. kvm_x86_ops->cache_regs(vcpu);
  1319. if (!io->string) {
  1320. if (io->in)
  1321. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1322. io->size);
  1323. } else {
  1324. if (io->in) {
  1325. r = pio_copy_data(vcpu);
  1326. if (r) {
  1327. kvm_x86_ops->cache_regs(vcpu);
  1328. return r;
  1329. }
  1330. }
  1331. delta = 1;
  1332. if (io->rep) {
  1333. delta *= io->cur_count;
  1334. /*
  1335. * The size of the register should really depend on
  1336. * current address size.
  1337. */
  1338. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1339. }
  1340. if (io->down)
  1341. delta = -delta;
  1342. delta *= io->size;
  1343. if (io->in)
  1344. vcpu->regs[VCPU_REGS_RDI] += delta;
  1345. else
  1346. vcpu->regs[VCPU_REGS_RSI] += delta;
  1347. }
  1348. kvm_x86_ops->decache_regs(vcpu);
  1349. io->count -= io->cur_count;
  1350. io->cur_count = 0;
  1351. return 0;
  1352. }
  1353. static void kernel_pio(struct kvm_io_device *pio_dev,
  1354. struct kvm_vcpu *vcpu,
  1355. void *pd)
  1356. {
  1357. /* TODO: String I/O for in kernel device */
  1358. mutex_lock(&vcpu->kvm->lock);
  1359. if (vcpu->pio.in)
  1360. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1361. vcpu->pio.size,
  1362. pd);
  1363. else
  1364. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1365. vcpu->pio.size,
  1366. pd);
  1367. mutex_unlock(&vcpu->kvm->lock);
  1368. }
  1369. static void pio_string_write(struct kvm_io_device *pio_dev,
  1370. struct kvm_vcpu *vcpu)
  1371. {
  1372. struct kvm_pio_request *io = &vcpu->pio;
  1373. void *pd = vcpu->pio_data;
  1374. int i;
  1375. mutex_lock(&vcpu->kvm->lock);
  1376. for (i = 0; i < io->cur_count; i++) {
  1377. kvm_iodevice_write(pio_dev, io->port,
  1378. io->size,
  1379. pd);
  1380. pd += io->size;
  1381. }
  1382. mutex_unlock(&vcpu->kvm->lock);
  1383. }
  1384. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1385. gpa_t addr)
  1386. {
  1387. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1388. }
  1389. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1390. int size, unsigned port)
  1391. {
  1392. struct kvm_io_device *pio_dev;
  1393. vcpu->run->exit_reason = KVM_EXIT_IO;
  1394. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1395. vcpu->run->io.size = vcpu->pio.size = size;
  1396. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1397. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1398. vcpu->run->io.port = vcpu->pio.port = port;
  1399. vcpu->pio.in = in;
  1400. vcpu->pio.string = 0;
  1401. vcpu->pio.down = 0;
  1402. vcpu->pio.guest_page_offset = 0;
  1403. vcpu->pio.rep = 0;
  1404. kvm_x86_ops->cache_regs(vcpu);
  1405. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1406. kvm_x86_ops->decache_regs(vcpu);
  1407. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1408. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1409. if (pio_dev) {
  1410. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1411. complete_pio(vcpu);
  1412. return 1;
  1413. }
  1414. return 0;
  1415. }
  1416. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1417. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1418. int size, unsigned long count, int down,
  1419. gva_t address, int rep, unsigned port)
  1420. {
  1421. unsigned now, in_page;
  1422. int i, ret = 0;
  1423. int nr_pages = 1;
  1424. struct page *page;
  1425. struct kvm_io_device *pio_dev;
  1426. vcpu->run->exit_reason = KVM_EXIT_IO;
  1427. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1428. vcpu->run->io.size = vcpu->pio.size = size;
  1429. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1430. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1431. vcpu->run->io.port = vcpu->pio.port = port;
  1432. vcpu->pio.in = in;
  1433. vcpu->pio.string = 1;
  1434. vcpu->pio.down = down;
  1435. vcpu->pio.guest_page_offset = offset_in_page(address);
  1436. vcpu->pio.rep = rep;
  1437. if (!count) {
  1438. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1439. return 1;
  1440. }
  1441. if (!down)
  1442. in_page = PAGE_SIZE - offset_in_page(address);
  1443. else
  1444. in_page = offset_in_page(address) + size;
  1445. now = min(count, (unsigned long)in_page / size);
  1446. if (!now) {
  1447. /*
  1448. * String I/O straddles page boundary. Pin two guest pages
  1449. * so that we satisfy atomicity constraints. Do just one
  1450. * transaction to avoid complexity.
  1451. */
  1452. nr_pages = 2;
  1453. now = 1;
  1454. }
  1455. if (down) {
  1456. /*
  1457. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1458. */
  1459. pr_unimpl(vcpu, "guest string pio down\n");
  1460. inject_gp(vcpu);
  1461. return 1;
  1462. }
  1463. vcpu->run->io.count = now;
  1464. vcpu->pio.cur_count = now;
  1465. if (vcpu->pio.cur_count == vcpu->pio.count)
  1466. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1467. for (i = 0; i < nr_pages; ++i) {
  1468. mutex_lock(&vcpu->kvm->lock);
  1469. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1470. vcpu->pio.guest_pages[i] = page;
  1471. mutex_unlock(&vcpu->kvm->lock);
  1472. if (!page) {
  1473. inject_gp(vcpu);
  1474. free_pio_guest_pages(vcpu);
  1475. return 1;
  1476. }
  1477. }
  1478. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1479. if (!vcpu->pio.in) {
  1480. /* string PIO write */
  1481. ret = pio_copy_data(vcpu);
  1482. if (ret >= 0 && pio_dev) {
  1483. pio_string_write(pio_dev, vcpu);
  1484. complete_pio(vcpu);
  1485. if (vcpu->pio.count == 0)
  1486. ret = 1;
  1487. }
  1488. } else if (pio_dev)
  1489. pr_unimpl(vcpu, "no string pio read support yet, "
  1490. "port %x size %d count %ld\n",
  1491. port, size, count);
  1492. return ret;
  1493. }
  1494. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1495. int kvm_arch_init(void *opaque)
  1496. {
  1497. int r;
  1498. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  1499. r = kvm_mmu_module_init();
  1500. if (r)
  1501. goto out_fail;
  1502. kvm_init_msr_list();
  1503. if (kvm_x86_ops) {
  1504. printk(KERN_ERR "kvm: already loaded the other module\n");
  1505. r = -EEXIST;
  1506. goto out;
  1507. }
  1508. if (!ops->cpu_has_kvm_support()) {
  1509. printk(KERN_ERR "kvm: no hardware support\n");
  1510. r = -EOPNOTSUPP;
  1511. goto out;
  1512. }
  1513. if (ops->disabled_by_bios()) {
  1514. printk(KERN_ERR "kvm: disabled by bios\n");
  1515. r = -EOPNOTSUPP;
  1516. goto out;
  1517. }
  1518. kvm_x86_ops = ops;
  1519. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1520. return 0;
  1521. out:
  1522. kvm_mmu_module_exit();
  1523. out_fail:
  1524. return r;
  1525. }
  1526. void kvm_arch_exit(void)
  1527. {
  1528. kvm_x86_ops = NULL;
  1529. kvm_mmu_module_exit();
  1530. }
  1531. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1532. {
  1533. ++vcpu->stat.halt_exits;
  1534. if (irqchip_in_kernel(vcpu->kvm)) {
  1535. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1536. kvm_vcpu_block(vcpu);
  1537. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1538. return -EINTR;
  1539. return 1;
  1540. } else {
  1541. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1542. return 0;
  1543. }
  1544. }
  1545. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1546. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1547. {
  1548. unsigned long nr, a0, a1, a2, a3, ret;
  1549. kvm_x86_ops->cache_regs(vcpu);
  1550. nr = vcpu->regs[VCPU_REGS_RAX];
  1551. a0 = vcpu->regs[VCPU_REGS_RBX];
  1552. a1 = vcpu->regs[VCPU_REGS_RCX];
  1553. a2 = vcpu->regs[VCPU_REGS_RDX];
  1554. a3 = vcpu->regs[VCPU_REGS_RSI];
  1555. if (!is_long_mode(vcpu)) {
  1556. nr &= 0xFFFFFFFF;
  1557. a0 &= 0xFFFFFFFF;
  1558. a1 &= 0xFFFFFFFF;
  1559. a2 &= 0xFFFFFFFF;
  1560. a3 &= 0xFFFFFFFF;
  1561. }
  1562. switch (nr) {
  1563. default:
  1564. ret = -KVM_ENOSYS;
  1565. break;
  1566. }
  1567. vcpu->regs[VCPU_REGS_RAX] = ret;
  1568. kvm_x86_ops->decache_regs(vcpu);
  1569. return 0;
  1570. }
  1571. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1572. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1573. {
  1574. char instruction[3];
  1575. int ret = 0;
  1576. mutex_lock(&vcpu->kvm->lock);
  1577. /*
  1578. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1579. * to ensure that the updated hypercall appears atomically across all
  1580. * VCPUs.
  1581. */
  1582. kvm_mmu_zap_all(vcpu->kvm);
  1583. kvm_x86_ops->cache_regs(vcpu);
  1584. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1585. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1586. != X86EMUL_CONTINUE)
  1587. ret = -EFAULT;
  1588. mutex_unlock(&vcpu->kvm->lock);
  1589. return ret;
  1590. }
  1591. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1592. {
  1593. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1594. }
  1595. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1596. {
  1597. struct descriptor_table dt = { limit, base };
  1598. kvm_x86_ops->set_gdt(vcpu, &dt);
  1599. }
  1600. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1601. {
  1602. struct descriptor_table dt = { limit, base };
  1603. kvm_x86_ops->set_idt(vcpu, &dt);
  1604. }
  1605. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1606. unsigned long *rflags)
  1607. {
  1608. lmsw(vcpu, msw);
  1609. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1610. }
  1611. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1612. {
  1613. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1614. switch (cr) {
  1615. case 0:
  1616. return vcpu->cr0;
  1617. case 2:
  1618. return vcpu->cr2;
  1619. case 3:
  1620. return vcpu->cr3;
  1621. case 4:
  1622. return vcpu->cr4;
  1623. default:
  1624. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1625. return 0;
  1626. }
  1627. }
  1628. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1629. unsigned long *rflags)
  1630. {
  1631. switch (cr) {
  1632. case 0:
  1633. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1634. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1635. break;
  1636. case 2:
  1637. vcpu->cr2 = val;
  1638. break;
  1639. case 3:
  1640. set_cr3(vcpu, val);
  1641. break;
  1642. case 4:
  1643. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1644. break;
  1645. default:
  1646. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1647. }
  1648. }
  1649. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1650. {
  1651. int i;
  1652. u32 function;
  1653. struct kvm_cpuid_entry *e, *best;
  1654. kvm_x86_ops->cache_regs(vcpu);
  1655. function = vcpu->regs[VCPU_REGS_RAX];
  1656. vcpu->regs[VCPU_REGS_RAX] = 0;
  1657. vcpu->regs[VCPU_REGS_RBX] = 0;
  1658. vcpu->regs[VCPU_REGS_RCX] = 0;
  1659. vcpu->regs[VCPU_REGS_RDX] = 0;
  1660. best = NULL;
  1661. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1662. e = &vcpu->cpuid_entries[i];
  1663. if (e->function == function) {
  1664. best = e;
  1665. break;
  1666. }
  1667. /*
  1668. * Both basic or both extended?
  1669. */
  1670. if (((e->function ^ function) & 0x80000000) == 0)
  1671. if (!best || e->function > best->function)
  1672. best = e;
  1673. }
  1674. if (best) {
  1675. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1676. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1677. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1678. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1679. }
  1680. kvm_x86_ops->decache_regs(vcpu);
  1681. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1682. }
  1683. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1684. /*
  1685. * Check if userspace requested an interrupt window, and that the
  1686. * interrupt window is open.
  1687. *
  1688. * No need to exit to userspace if we already have an interrupt queued.
  1689. */
  1690. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1691. struct kvm_run *kvm_run)
  1692. {
  1693. return (!vcpu->irq_summary &&
  1694. kvm_run->request_interrupt_window &&
  1695. vcpu->interrupt_window_open &&
  1696. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1697. }
  1698. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1699. struct kvm_run *kvm_run)
  1700. {
  1701. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1702. kvm_run->cr8 = get_cr8(vcpu);
  1703. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1704. if (irqchip_in_kernel(vcpu->kvm))
  1705. kvm_run->ready_for_interrupt_injection = 1;
  1706. else
  1707. kvm_run->ready_for_interrupt_injection =
  1708. (vcpu->interrupt_window_open &&
  1709. vcpu->irq_summary == 0);
  1710. }
  1711. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1712. {
  1713. int r;
  1714. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1715. pr_debug("vcpu %d received sipi with vector # %x\n",
  1716. vcpu->vcpu_id, vcpu->sipi_vector);
  1717. kvm_lapic_reset(vcpu);
  1718. r = kvm_x86_ops->vcpu_reset(vcpu);
  1719. if (r)
  1720. return r;
  1721. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1722. }
  1723. preempted:
  1724. if (vcpu->guest_debug.enabled)
  1725. kvm_x86_ops->guest_debug_pre(vcpu);
  1726. again:
  1727. r = kvm_mmu_reload(vcpu);
  1728. if (unlikely(r))
  1729. goto out;
  1730. kvm_inject_pending_timer_irqs(vcpu);
  1731. preempt_disable();
  1732. kvm_x86_ops->prepare_guest_switch(vcpu);
  1733. kvm_load_guest_fpu(vcpu);
  1734. local_irq_disable();
  1735. if (signal_pending(current)) {
  1736. local_irq_enable();
  1737. preempt_enable();
  1738. r = -EINTR;
  1739. kvm_run->exit_reason = KVM_EXIT_INTR;
  1740. ++vcpu->stat.signal_exits;
  1741. goto out;
  1742. }
  1743. if (irqchip_in_kernel(vcpu->kvm))
  1744. kvm_x86_ops->inject_pending_irq(vcpu);
  1745. else if (!vcpu->mmio_read_completed)
  1746. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1747. vcpu->guest_mode = 1;
  1748. kvm_guest_enter();
  1749. if (vcpu->requests)
  1750. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1751. kvm_x86_ops->tlb_flush(vcpu);
  1752. kvm_x86_ops->run(vcpu, kvm_run);
  1753. vcpu->guest_mode = 0;
  1754. local_irq_enable();
  1755. ++vcpu->stat.exits;
  1756. /*
  1757. * We must have an instruction between local_irq_enable() and
  1758. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1759. * the interrupt shadow. The stat.exits increment will do nicely.
  1760. * But we need to prevent reordering, hence this barrier():
  1761. */
  1762. barrier();
  1763. kvm_guest_exit();
  1764. preempt_enable();
  1765. /*
  1766. * Profile KVM exit RIPs:
  1767. */
  1768. if (unlikely(prof_on == KVM_PROFILING)) {
  1769. kvm_x86_ops->cache_regs(vcpu);
  1770. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1771. }
  1772. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1773. if (r > 0) {
  1774. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1775. r = -EINTR;
  1776. kvm_run->exit_reason = KVM_EXIT_INTR;
  1777. ++vcpu->stat.request_irq_exits;
  1778. goto out;
  1779. }
  1780. if (!need_resched())
  1781. goto again;
  1782. }
  1783. out:
  1784. if (r > 0) {
  1785. kvm_resched(vcpu);
  1786. goto preempted;
  1787. }
  1788. post_kvm_run_save(vcpu, kvm_run);
  1789. return r;
  1790. }
  1791. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1792. {
  1793. int r;
  1794. sigset_t sigsaved;
  1795. vcpu_load(vcpu);
  1796. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1797. kvm_vcpu_block(vcpu);
  1798. vcpu_put(vcpu);
  1799. return -EAGAIN;
  1800. }
  1801. if (vcpu->sigset_active)
  1802. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1803. /* re-sync apic's tpr */
  1804. if (!irqchip_in_kernel(vcpu->kvm))
  1805. set_cr8(vcpu, kvm_run->cr8);
  1806. if (vcpu->pio.cur_count) {
  1807. r = complete_pio(vcpu);
  1808. if (r)
  1809. goto out;
  1810. }
  1811. #if CONFIG_HAS_IOMEM
  1812. if (vcpu->mmio_needed) {
  1813. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1814. vcpu->mmio_read_completed = 1;
  1815. vcpu->mmio_needed = 0;
  1816. r = emulate_instruction(vcpu, kvm_run,
  1817. vcpu->mmio_fault_cr2, 0, 1);
  1818. if (r == EMULATE_DO_MMIO) {
  1819. /*
  1820. * Read-modify-write. Back to userspace.
  1821. */
  1822. r = 0;
  1823. goto out;
  1824. }
  1825. }
  1826. #endif
  1827. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1828. kvm_x86_ops->cache_regs(vcpu);
  1829. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1830. kvm_x86_ops->decache_regs(vcpu);
  1831. }
  1832. r = __vcpu_run(vcpu, kvm_run);
  1833. out:
  1834. if (vcpu->sigset_active)
  1835. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1836. vcpu_put(vcpu);
  1837. return r;
  1838. }
  1839. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1840. {
  1841. vcpu_load(vcpu);
  1842. kvm_x86_ops->cache_regs(vcpu);
  1843. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1844. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1845. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1846. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1847. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1848. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1849. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1850. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1851. #ifdef CONFIG_X86_64
  1852. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1853. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1854. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1855. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1856. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1857. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1858. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1859. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1860. #endif
  1861. regs->rip = vcpu->rip;
  1862. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1863. /*
  1864. * Don't leak debug flags in case they were set for guest debugging
  1865. */
  1866. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1867. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1868. vcpu_put(vcpu);
  1869. return 0;
  1870. }
  1871. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1872. {
  1873. vcpu_load(vcpu);
  1874. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1875. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1876. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1877. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1878. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1879. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1880. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1881. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1882. #ifdef CONFIG_X86_64
  1883. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1884. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1885. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1886. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1887. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1888. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1889. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1890. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1891. #endif
  1892. vcpu->rip = regs->rip;
  1893. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1894. kvm_x86_ops->decache_regs(vcpu);
  1895. vcpu_put(vcpu);
  1896. return 0;
  1897. }
  1898. static void get_segment(struct kvm_vcpu *vcpu,
  1899. struct kvm_segment *var, int seg)
  1900. {
  1901. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1902. }
  1903. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1904. {
  1905. struct kvm_segment cs;
  1906. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1907. *db = cs.db;
  1908. *l = cs.l;
  1909. }
  1910. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1911. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1912. struct kvm_sregs *sregs)
  1913. {
  1914. struct descriptor_table dt;
  1915. int pending_vec;
  1916. vcpu_load(vcpu);
  1917. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1918. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1919. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1920. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1921. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1922. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1923. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1924. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1925. kvm_x86_ops->get_idt(vcpu, &dt);
  1926. sregs->idt.limit = dt.limit;
  1927. sregs->idt.base = dt.base;
  1928. kvm_x86_ops->get_gdt(vcpu, &dt);
  1929. sregs->gdt.limit = dt.limit;
  1930. sregs->gdt.base = dt.base;
  1931. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1932. sregs->cr0 = vcpu->cr0;
  1933. sregs->cr2 = vcpu->cr2;
  1934. sregs->cr3 = vcpu->cr3;
  1935. sregs->cr4 = vcpu->cr4;
  1936. sregs->cr8 = get_cr8(vcpu);
  1937. sregs->efer = vcpu->shadow_efer;
  1938. sregs->apic_base = kvm_get_apic_base(vcpu);
  1939. if (irqchip_in_kernel(vcpu->kvm)) {
  1940. memset(sregs->interrupt_bitmap, 0,
  1941. sizeof sregs->interrupt_bitmap);
  1942. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1943. if (pending_vec >= 0)
  1944. set_bit(pending_vec,
  1945. (unsigned long *)sregs->interrupt_bitmap);
  1946. } else
  1947. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1948. sizeof sregs->interrupt_bitmap);
  1949. vcpu_put(vcpu);
  1950. return 0;
  1951. }
  1952. static void set_segment(struct kvm_vcpu *vcpu,
  1953. struct kvm_segment *var, int seg)
  1954. {
  1955. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1956. }
  1957. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1958. struct kvm_sregs *sregs)
  1959. {
  1960. int mmu_reset_needed = 0;
  1961. int i, pending_vec, max_bits;
  1962. struct descriptor_table dt;
  1963. vcpu_load(vcpu);
  1964. dt.limit = sregs->idt.limit;
  1965. dt.base = sregs->idt.base;
  1966. kvm_x86_ops->set_idt(vcpu, &dt);
  1967. dt.limit = sregs->gdt.limit;
  1968. dt.base = sregs->gdt.base;
  1969. kvm_x86_ops->set_gdt(vcpu, &dt);
  1970. vcpu->cr2 = sregs->cr2;
  1971. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1972. vcpu->cr3 = sregs->cr3;
  1973. set_cr8(vcpu, sregs->cr8);
  1974. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1975. #ifdef CONFIG_X86_64
  1976. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1977. #endif
  1978. kvm_set_apic_base(vcpu, sregs->apic_base);
  1979. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1980. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1981. vcpu->cr0 = sregs->cr0;
  1982. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1983. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1984. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1985. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1986. load_pdptrs(vcpu, vcpu->cr3);
  1987. if (mmu_reset_needed)
  1988. kvm_mmu_reset_context(vcpu);
  1989. if (!irqchip_in_kernel(vcpu->kvm)) {
  1990. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1991. sizeof vcpu->irq_pending);
  1992. vcpu->irq_summary = 0;
  1993. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1994. if (vcpu->irq_pending[i])
  1995. __set_bit(i, &vcpu->irq_summary);
  1996. } else {
  1997. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1998. pending_vec = find_first_bit(
  1999. (const unsigned long *)sregs->interrupt_bitmap,
  2000. max_bits);
  2001. /* Only pending external irq is handled here */
  2002. if (pending_vec < max_bits) {
  2003. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2004. pr_debug("Set back pending irq %d\n",
  2005. pending_vec);
  2006. }
  2007. }
  2008. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2009. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2010. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2011. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2012. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2013. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2014. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2015. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2016. vcpu_put(vcpu);
  2017. return 0;
  2018. }
  2019. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2020. struct kvm_debug_guest *dbg)
  2021. {
  2022. int r;
  2023. vcpu_load(vcpu);
  2024. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2025. vcpu_put(vcpu);
  2026. return r;
  2027. }
  2028. /*
  2029. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2030. * we have asm/x86/processor.h
  2031. */
  2032. struct fxsave {
  2033. u16 cwd;
  2034. u16 swd;
  2035. u16 twd;
  2036. u16 fop;
  2037. u64 rip;
  2038. u64 rdp;
  2039. u32 mxcsr;
  2040. u32 mxcsr_mask;
  2041. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2042. #ifdef CONFIG_X86_64
  2043. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2044. #else
  2045. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2046. #endif
  2047. };
  2048. /*
  2049. * Translate a guest virtual address to a guest physical address.
  2050. */
  2051. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2052. struct kvm_translation *tr)
  2053. {
  2054. unsigned long vaddr = tr->linear_address;
  2055. gpa_t gpa;
  2056. vcpu_load(vcpu);
  2057. mutex_lock(&vcpu->kvm->lock);
  2058. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2059. tr->physical_address = gpa;
  2060. tr->valid = gpa != UNMAPPED_GVA;
  2061. tr->writeable = 1;
  2062. tr->usermode = 0;
  2063. mutex_unlock(&vcpu->kvm->lock);
  2064. vcpu_put(vcpu);
  2065. return 0;
  2066. }
  2067. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2068. {
  2069. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2070. vcpu_load(vcpu);
  2071. memcpy(fpu->fpr, fxsave->st_space, 128);
  2072. fpu->fcw = fxsave->cwd;
  2073. fpu->fsw = fxsave->swd;
  2074. fpu->ftwx = fxsave->twd;
  2075. fpu->last_opcode = fxsave->fop;
  2076. fpu->last_ip = fxsave->rip;
  2077. fpu->last_dp = fxsave->rdp;
  2078. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2079. vcpu_put(vcpu);
  2080. return 0;
  2081. }
  2082. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2083. {
  2084. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2085. vcpu_load(vcpu);
  2086. memcpy(fxsave->st_space, fpu->fpr, 128);
  2087. fxsave->cwd = fpu->fcw;
  2088. fxsave->swd = fpu->fsw;
  2089. fxsave->twd = fpu->ftwx;
  2090. fxsave->fop = fpu->last_opcode;
  2091. fxsave->rip = fpu->last_ip;
  2092. fxsave->rdp = fpu->last_dp;
  2093. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2094. vcpu_put(vcpu);
  2095. return 0;
  2096. }
  2097. void fx_init(struct kvm_vcpu *vcpu)
  2098. {
  2099. unsigned after_mxcsr_mask;
  2100. /* Initialize guest FPU by resetting ours and saving into guest's */
  2101. preempt_disable();
  2102. fx_save(&vcpu->host_fx_image);
  2103. fpu_init();
  2104. fx_save(&vcpu->guest_fx_image);
  2105. fx_restore(&vcpu->host_fx_image);
  2106. preempt_enable();
  2107. vcpu->cr0 |= X86_CR0_ET;
  2108. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  2109. vcpu->guest_fx_image.mxcsr = 0x1f80;
  2110. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  2111. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  2112. }
  2113. EXPORT_SYMBOL_GPL(fx_init);
  2114. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  2115. {
  2116. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  2117. return;
  2118. vcpu->guest_fpu_loaded = 1;
  2119. fx_save(&vcpu->host_fx_image);
  2120. fx_restore(&vcpu->guest_fx_image);
  2121. }
  2122. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  2123. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  2124. {
  2125. if (!vcpu->guest_fpu_loaded)
  2126. return;
  2127. vcpu->guest_fpu_loaded = 0;
  2128. fx_save(&vcpu->guest_fx_image);
  2129. fx_restore(&vcpu->host_fx_image);
  2130. ++vcpu->stat.fpu_reload;
  2131. }
  2132. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  2133. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  2134. {
  2135. kvm_x86_ops->vcpu_free(vcpu);
  2136. }
  2137. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  2138. unsigned int id)
  2139. {
  2140. int r;
  2141. struct kvm_vcpu *vcpu = kvm_x86_ops->vcpu_create(kvm, id);
  2142. if (IS_ERR(vcpu)) {
  2143. r = -ENOMEM;
  2144. goto fail;
  2145. }
  2146. /* We do fxsave: this must be aligned. */
  2147. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2148. vcpu_load(vcpu);
  2149. r = kvm_arch_vcpu_reset(vcpu);
  2150. if (r == 0)
  2151. r = kvm_mmu_setup(vcpu);
  2152. vcpu_put(vcpu);
  2153. if (r < 0)
  2154. goto free_vcpu;
  2155. return vcpu;
  2156. free_vcpu:
  2157. kvm_x86_ops->vcpu_free(vcpu);
  2158. fail:
  2159. return ERR_PTR(r);
  2160. }
  2161. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  2162. {
  2163. vcpu_load(vcpu);
  2164. kvm_mmu_unload(vcpu);
  2165. vcpu_put(vcpu);
  2166. kvm_x86_ops->vcpu_free(vcpu);
  2167. }
  2168. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  2169. {
  2170. return kvm_x86_ops->vcpu_reset(vcpu);
  2171. }
  2172. void kvm_arch_hardware_enable(void *garbage)
  2173. {
  2174. kvm_x86_ops->hardware_enable(garbage);
  2175. }
  2176. void kvm_arch_hardware_disable(void *garbage)
  2177. {
  2178. kvm_x86_ops->hardware_disable(garbage);
  2179. }
  2180. int kvm_arch_hardware_setup(void)
  2181. {
  2182. return kvm_x86_ops->hardware_setup();
  2183. }
  2184. void kvm_arch_hardware_unsetup(void)
  2185. {
  2186. kvm_x86_ops->hardware_unsetup();
  2187. }
  2188. void kvm_arch_check_processor_compat(void *rtn)
  2189. {
  2190. kvm_x86_ops->check_processor_compatibility(rtn);
  2191. }
  2192. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  2193. {
  2194. struct page *page;
  2195. struct kvm *kvm;
  2196. int r;
  2197. BUG_ON(vcpu->kvm == NULL);
  2198. kvm = vcpu->kvm;
  2199. vcpu->mmu.root_hpa = INVALID_PAGE;
  2200. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  2201. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  2202. else
  2203. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  2204. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2205. if (!page) {
  2206. r = -ENOMEM;
  2207. goto fail;
  2208. }
  2209. vcpu->pio_data = page_address(page);
  2210. r = kvm_mmu_create(vcpu);
  2211. if (r < 0)
  2212. goto fail_free_pio_data;
  2213. if (irqchip_in_kernel(kvm)) {
  2214. r = kvm_create_lapic(vcpu);
  2215. if (r < 0)
  2216. goto fail_mmu_destroy;
  2217. }
  2218. return 0;
  2219. fail_mmu_destroy:
  2220. kvm_mmu_destroy(vcpu);
  2221. fail_free_pio_data:
  2222. free_page((unsigned long)vcpu->pio_data);
  2223. fail:
  2224. return r;
  2225. }
  2226. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  2227. {
  2228. kvm_free_lapic(vcpu);
  2229. kvm_mmu_destroy(vcpu);
  2230. free_page((unsigned long)vcpu->pio_data);
  2231. }
  2232. struct kvm *kvm_arch_create_vm(void)
  2233. {
  2234. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  2235. if (!kvm)
  2236. return ERR_PTR(-ENOMEM);
  2237. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  2238. return kvm;
  2239. }
  2240. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  2241. {
  2242. vcpu_load(vcpu);
  2243. kvm_mmu_unload(vcpu);
  2244. vcpu_put(vcpu);
  2245. }
  2246. static void kvm_free_vcpus(struct kvm *kvm)
  2247. {
  2248. unsigned int i;
  2249. /*
  2250. * Unpin any mmu pages first.
  2251. */
  2252. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  2253. if (kvm->vcpus[i])
  2254. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  2255. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2256. if (kvm->vcpus[i]) {
  2257. kvm_arch_vcpu_free(kvm->vcpus[i]);
  2258. kvm->vcpus[i] = NULL;
  2259. }
  2260. }
  2261. }
  2262. void kvm_arch_destroy_vm(struct kvm *kvm)
  2263. {
  2264. kfree(kvm->vpic);
  2265. kfree(kvm->vioapic);
  2266. kvm_free_vcpus(kvm);
  2267. kvm_free_physmem(kvm);
  2268. kfree(kvm);
  2269. }