paging_tmpl.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define shadow_walker shadow_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  30. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define shadow_walker shadow_walker32
  44. #define FNAME(name) paging##32_##name
  45. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  46. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  49. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  50. #define PT_MAX_FULL_LEVELS 2
  51. #define CMPXCHG cmpxchg
  52. #else
  53. #error Invalid PTTYPE value
  54. #endif
  55. #define gpte_to_gfn FNAME(gpte_to_gfn)
  56. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  57. /*
  58. * The guest_walker structure emulates the behavior of the hardware page
  59. * table walker.
  60. */
  61. struct guest_walker {
  62. int level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. u32 error_code;
  70. };
  71. struct shadow_walker {
  72. struct kvm_shadow_walk walker;
  73. struct guest_walker *guest_walker;
  74. int user_fault;
  75. int write_fault;
  76. int largepage;
  77. int *ptwrite;
  78. pfn_t pfn;
  79. u64 *sptep;
  80. };
  81. static gfn_t gpte_to_gfn(pt_element_t gpte)
  82. {
  83. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  84. }
  85. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  86. {
  87. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  88. }
  89. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  90. gfn_t table_gfn, unsigned index,
  91. pt_element_t orig_pte, pt_element_t new_pte)
  92. {
  93. pt_element_t ret;
  94. pt_element_t *table;
  95. struct page *page;
  96. down_read(&current->mm->mmap_sem);
  97. page = gfn_to_page(kvm, table_gfn);
  98. up_read(&current->mm->mmap_sem);
  99. table = kmap_atomic(page, KM_USER0);
  100. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  101. kunmap_atomic(table, KM_USER0);
  102. kvm_release_page_dirty(page);
  103. return (ret != orig_pte);
  104. }
  105. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  106. {
  107. unsigned access;
  108. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  109. #if PTTYPE == 64
  110. if (is_nx(vcpu))
  111. access &= ~(gpte >> PT64_NX_SHIFT);
  112. #endif
  113. return access;
  114. }
  115. /*
  116. * Fetch a guest pte for a guest virtual address
  117. */
  118. static int FNAME(walk_addr)(struct guest_walker *walker,
  119. struct kvm_vcpu *vcpu, gva_t addr,
  120. int write_fault, int user_fault, int fetch_fault)
  121. {
  122. pt_element_t pte;
  123. gfn_t table_gfn;
  124. unsigned index, pt_access, pte_access;
  125. gpa_t pte_gpa;
  126. pgprintk("%s: addr %lx\n", __func__, addr);
  127. walk:
  128. walker->level = vcpu->arch.mmu.root_level;
  129. pte = vcpu->arch.cr3;
  130. #if PTTYPE == 64
  131. if (!is_long_mode(vcpu)) {
  132. pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
  133. if (!is_present_pte(pte))
  134. goto not_present;
  135. --walker->level;
  136. }
  137. #endif
  138. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  139. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  140. pt_access = ACC_ALL;
  141. for (;;) {
  142. index = PT_INDEX(addr, walker->level);
  143. table_gfn = gpte_to_gfn(pte);
  144. pte_gpa = gfn_to_gpa(table_gfn);
  145. pte_gpa += index * sizeof(pt_element_t);
  146. walker->table_gfn[walker->level - 1] = table_gfn;
  147. walker->pte_gpa[walker->level - 1] = pte_gpa;
  148. pgprintk("%s: table_gfn[%d] %lx\n", __func__,
  149. walker->level - 1, table_gfn);
  150. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  151. if (!is_present_pte(pte))
  152. goto not_present;
  153. if (write_fault && !is_writeble_pte(pte))
  154. if (user_fault || is_write_protection(vcpu))
  155. goto access_error;
  156. if (user_fault && !(pte & PT_USER_MASK))
  157. goto access_error;
  158. #if PTTYPE == 64
  159. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  160. goto access_error;
  161. #endif
  162. if (!(pte & PT_ACCESSED_MASK)) {
  163. mark_page_dirty(vcpu->kvm, table_gfn);
  164. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  165. index, pte, pte|PT_ACCESSED_MASK))
  166. goto walk;
  167. pte |= PT_ACCESSED_MASK;
  168. }
  169. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  170. walker->ptes[walker->level - 1] = pte;
  171. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  172. walker->gfn = gpte_to_gfn(pte);
  173. break;
  174. }
  175. if (walker->level == PT_DIRECTORY_LEVEL
  176. && (pte & PT_PAGE_SIZE_MASK)
  177. && (PTTYPE == 64 || is_pse(vcpu))) {
  178. walker->gfn = gpte_to_gfn_pde(pte);
  179. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  180. if (PTTYPE == 32 && is_cpuid_PSE36())
  181. walker->gfn += pse36_gfn_delta(pte);
  182. break;
  183. }
  184. pt_access = pte_access;
  185. --walker->level;
  186. }
  187. if (write_fault && !is_dirty_pte(pte)) {
  188. bool ret;
  189. mark_page_dirty(vcpu->kvm, table_gfn);
  190. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  191. pte|PT_DIRTY_MASK);
  192. if (ret)
  193. goto walk;
  194. pte |= PT_DIRTY_MASK;
  195. kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
  196. walker->ptes[walker->level - 1] = pte;
  197. }
  198. walker->pt_access = pt_access;
  199. walker->pte_access = pte_access;
  200. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  201. __func__, (u64)pte, pt_access, pte_access);
  202. return 1;
  203. not_present:
  204. walker->error_code = 0;
  205. goto err;
  206. access_error:
  207. walker->error_code = PFERR_PRESENT_MASK;
  208. err:
  209. if (write_fault)
  210. walker->error_code |= PFERR_WRITE_MASK;
  211. if (user_fault)
  212. walker->error_code |= PFERR_USER_MASK;
  213. if (fetch_fault)
  214. walker->error_code |= PFERR_FETCH_MASK;
  215. return 0;
  216. }
  217. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  218. u64 *spte, const void *pte)
  219. {
  220. pt_element_t gpte;
  221. unsigned pte_access;
  222. pfn_t pfn;
  223. int largepage = vcpu->arch.update_pte.largepage;
  224. gpte = *(const pt_element_t *)pte;
  225. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  226. if (!is_present_pte(gpte))
  227. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  228. return;
  229. }
  230. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  231. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  232. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  233. return;
  234. pfn = vcpu->arch.update_pte.pfn;
  235. if (is_error_pfn(pfn))
  236. return;
  237. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  238. return;
  239. kvm_get_pfn(pfn);
  240. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  241. gpte & PT_DIRTY_MASK, NULL, largepage, gpte_to_gfn(gpte),
  242. pfn, true);
  243. }
  244. /*
  245. * Fetch a shadow pte for a specific level in the paging hierarchy.
  246. */
  247. static int FNAME(shadow_walk_entry)(struct kvm_shadow_walk *_sw,
  248. struct kvm_vcpu *vcpu, u64 addr,
  249. u64 *sptep, int level)
  250. {
  251. struct shadow_walker *sw =
  252. container_of(_sw, struct shadow_walker, walker);
  253. struct guest_walker *gw = sw->guest_walker;
  254. unsigned access = gw->pt_access;
  255. struct kvm_mmu_page *shadow_page;
  256. u64 spte;
  257. int metaphysical;
  258. gfn_t table_gfn;
  259. int r;
  260. pt_element_t curr_pte;
  261. if (level == PT_PAGE_TABLE_LEVEL
  262. || (sw->largepage && level == PT_DIRECTORY_LEVEL)) {
  263. mmu_set_spte(vcpu, sptep, access, gw->pte_access & access,
  264. sw->user_fault, sw->write_fault,
  265. gw->ptes[gw->level-1] & PT_DIRTY_MASK,
  266. sw->ptwrite, sw->largepage, gw->gfn, sw->pfn,
  267. false);
  268. sw->sptep = sptep;
  269. return 1;
  270. }
  271. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
  272. return 0;
  273. if (is_large_pte(*sptep))
  274. rmap_remove(vcpu->kvm, sptep);
  275. if (level == PT_DIRECTORY_LEVEL && gw->level == PT_DIRECTORY_LEVEL) {
  276. metaphysical = 1;
  277. if (!is_dirty_pte(gw->ptes[level - 1]))
  278. access &= ~ACC_WRITE_MASK;
  279. table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
  280. } else {
  281. metaphysical = 0;
  282. table_gfn = gw->table_gfn[level - 2];
  283. }
  284. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, (gva_t)addr, level-1,
  285. metaphysical, access, sptep);
  286. if (!metaphysical) {
  287. r = kvm_read_guest_atomic(vcpu->kvm, gw->pte_gpa[level - 2],
  288. &curr_pte, sizeof(curr_pte));
  289. if (r || curr_pte != gw->ptes[level - 2]) {
  290. kvm_release_pfn_clean(sw->pfn);
  291. sw->sptep = NULL;
  292. return 1;
  293. }
  294. }
  295. spte = __pa(shadow_page->spt) | PT_PRESENT_MASK | PT_ACCESSED_MASK
  296. | PT_WRITABLE_MASK | PT_USER_MASK;
  297. *sptep = spte;
  298. return 0;
  299. }
  300. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  301. struct guest_walker *guest_walker,
  302. int user_fault, int write_fault, int largepage,
  303. int *ptwrite, pfn_t pfn)
  304. {
  305. struct shadow_walker walker = {
  306. .walker = { .entry = FNAME(shadow_walk_entry), },
  307. .guest_walker = guest_walker,
  308. .user_fault = user_fault,
  309. .write_fault = write_fault,
  310. .largepage = largepage,
  311. .ptwrite = ptwrite,
  312. .pfn = pfn,
  313. };
  314. if (!is_present_pte(guest_walker->ptes[guest_walker->level - 1]))
  315. return NULL;
  316. walk_shadow(&walker.walker, vcpu, addr);
  317. return walker.sptep;
  318. }
  319. /*
  320. * Page fault handler. There are several causes for a page fault:
  321. * - there is no shadow pte for the guest pte
  322. * - write access through a shadow pte marked read only so that we can set
  323. * the dirty bit
  324. * - write access to a shadow pte marked read only so we can update the page
  325. * dirty bitmap, when userspace requests it
  326. * - mmio access; in this case we will never install a present shadow pte
  327. * - normal guest page fault due to the guest pte marked not present, not
  328. * writable, or not executable
  329. *
  330. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  331. * a negative value on error.
  332. */
  333. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  334. u32 error_code)
  335. {
  336. int write_fault = error_code & PFERR_WRITE_MASK;
  337. int user_fault = error_code & PFERR_USER_MASK;
  338. int fetch_fault = error_code & PFERR_FETCH_MASK;
  339. struct guest_walker walker;
  340. u64 *shadow_pte;
  341. int write_pt = 0;
  342. int r;
  343. pfn_t pfn;
  344. int largepage = 0;
  345. unsigned long mmu_seq;
  346. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  347. kvm_mmu_audit(vcpu, "pre page fault");
  348. r = mmu_topup_memory_caches(vcpu);
  349. if (r)
  350. return r;
  351. /*
  352. * Look up the shadow pte for the faulting address.
  353. */
  354. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  355. fetch_fault);
  356. /*
  357. * The page is not mapped by the guest. Let the guest handle it.
  358. */
  359. if (!r) {
  360. pgprintk("%s: guest page fault\n", __func__);
  361. inject_page_fault(vcpu, addr, walker.error_code);
  362. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  363. return 0;
  364. }
  365. down_read(&current->mm->mmap_sem);
  366. if (walker.level == PT_DIRECTORY_LEVEL) {
  367. gfn_t large_gfn;
  368. large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
  369. if (is_largepage_backed(vcpu, large_gfn)) {
  370. walker.gfn = large_gfn;
  371. largepage = 1;
  372. }
  373. }
  374. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  375. /* implicit mb(), we'll read before PT lock is unlocked */
  376. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  377. up_read(&current->mm->mmap_sem);
  378. /* mmio */
  379. if (is_error_pfn(pfn)) {
  380. pgprintk("gfn %lx is mmio\n", walker.gfn);
  381. kvm_release_pfn_clean(pfn);
  382. return 1;
  383. }
  384. spin_lock(&vcpu->kvm->mmu_lock);
  385. if (mmu_notifier_retry(vcpu, mmu_seq))
  386. goto out_unlock;
  387. kvm_mmu_free_some_pages(vcpu);
  388. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  389. largepage, &write_pt, pfn);
  390. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  391. shadow_pte, *shadow_pte, write_pt);
  392. if (!write_pt)
  393. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  394. ++vcpu->stat.pf_fixed;
  395. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  396. spin_unlock(&vcpu->kvm->mmu_lock);
  397. return write_pt;
  398. out_unlock:
  399. spin_unlock(&vcpu->kvm->mmu_lock);
  400. kvm_release_pfn_clean(pfn);
  401. return 0;
  402. }
  403. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  404. {
  405. struct guest_walker walker;
  406. gpa_t gpa = UNMAPPED_GVA;
  407. int r;
  408. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  409. if (r) {
  410. gpa = gfn_to_gpa(walker.gfn);
  411. gpa |= vaddr & ~PAGE_MASK;
  412. }
  413. return gpa;
  414. }
  415. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  416. struct kvm_mmu_page *sp)
  417. {
  418. int i, j, offset, r;
  419. pt_element_t pt[256 / sizeof(pt_element_t)];
  420. gpa_t pte_gpa;
  421. if (sp->role.metaphysical
  422. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  423. nonpaging_prefetch_page(vcpu, sp);
  424. return;
  425. }
  426. pte_gpa = gfn_to_gpa(sp->gfn);
  427. if (PTTYPE == 32) {
  428. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  429. pte_gpa += offset * sizeof(pt_element_t);
  430. }
  431. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  432. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  433. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  434. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  435. if (r || is_present_pte(pt[j]))
  436. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  437. else
  438. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  439. }
  440. }
  441. #undef pt_element_t
  442. #undef guest_walker
  443. #undef shadow_walker
  444. #undef FNAME
  445. #undef PT_BASE_ADDR_MASK
  446. #undef PT_INDEX
  447. #undef PT_LEVEL_MASK
  448. #undef PT_DIR_BASE_ADDR_MASK
  449. #undef PT_LEVEL_BITS
  450. #undef PT_MAX_FULL_LEVELS
  451. #undef gpte_to_gfn
  452. #undef gpte_to_gfn_pde
  453. #undef CMPXCHG