tcp_input.c 155 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  13. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  14. * Florian La Roche, <flla@stud.uni-sb.de>
  15. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  16. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  17. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  18. * Matthew Dillon, <dillon@apollo.west.oic.com>
  19. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  20. * Jorge Cwik, <jorge@laser.satlink.net>
  21. */
  22. /*
  23. * Changes:
  24. * Pedro Roque : Fast Retransmit/Recovery.
  25. * Two receive queues.
  26. * Retransmit queue handled by TCP.
  27. * Better retransmit timer handling.
  28. * New congestion avoidance.
  29. * Header prediction.
  30. * Variable renaming.
  31. *
  32. * Eric : Fast Retransmit.
  33. * Randy Scott : MSS option defines.
  34. * Eric Schenk : Fixes to slow start algorithm.
  35. * Eric Schenk : Yet another double ACK bug.
  36. * Eric Schenk : Delayed ACK bug fixes.
  37. * Eric Schenk : Floyd style fast retrans war avoidance.
  38. * David S. Miller : Don't allow zero congestion window.
  39. * Eric Schenk : Fix retransmitter so that it sends
  40. * next packet on ack of previous packet.
  41. * Andi Kleen : Moved open_request checking here
  42. * and process RSTs for open_requests.
  43. * Andi Kleen : Better prune_queue, and other fixes.
  44. * Andrey Savochkin: Fix RTT measurements in the presence of
  45. * timestamps.
  46. * Andrey Savochkin: Check sequence numbers correctly when
  47. * removing SACKs due to in sequence incoming
  48. * data segments.
  49. * Andi Kleen: Make sure we never ack data there is not
  50. * enough room for. Also make this condition
  51. * a fatal error if it might still happen.
  52. * Andi Kleen: Add tcp_measure_rcv_mss to make
  53. * connections with MSS<min(MTU,ann. MSS)
  54. * work without delayed acks.
  55. * Andi Kleen: Process packets with PSH set in the
  56. * fast path.
  57. * J Hadi Salim: ECN support
  58. * Andrei Gurtov,
  59. * Pasi Sarolahti,
  60. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  61. * engine. Lots of bugs are found.
  62. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  63. */
  64. #include <linux/mm.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <net/tcp.h>
  68. #include <net/inet_common.h>
  69. #include <linux/ipsec.h>
  70. #include <asm/unaligned.h>
  71. #include <net/netdma.h>
  72. int sysctl_tcp_timestamps __read_mostly = 1;
  73. int sysctl_tcp_window_scaling __read_mostly = 1;
  74. int sysctl_tcp_sack __read_mostly = 1;
  75. int sysctl_tcp_fack __read_mostly = 1;
  76. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  77. int sysctl_tcp_ecn __read_mostly;
  78. int sysctl_tcp_dsack __read_mostly = 1;
  79. int sysctl_tcp_app_win __read_mostly = 31;
  80. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  81. int sysctl_tcp_stdurg __read_mostly;
  82. int sysctl_tcp_rfc1337 __read_mostly;
  83. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  84. int sysctl_tcp_frto __read_mostly = 2;
  85. int sysctl_tcp_frto_response __read_mostly;
  86. int sysctl_tcp_nometrics_save __read_mostly;
  87. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  88. int sysctl_tcp_abc __read_mostly;
  89. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  90. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  91. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  92. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  93. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  94. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  95. #define FLAG_ECE 0x40 /* ECE in this ACK */
  96. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  97. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  98. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  99. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  100. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  101. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  102. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  103. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  104. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  105. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  106. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  107. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  108. #define IsSackFrto() (sysctl_tcp_frto == 0x2)
  109. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  110. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  111. /* Adapt the MSS value used to make delayed ack decision to the
  112. * real world.
  113. */
  114. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  115. {
  116. struct inet_connection_sock *icsk = inet_csk(sk);
  117. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  118. unsigned int len;
  119. icsk->icsk_ack.last_seg_size = 0;
  120. /* skb->len may jitter because of SACKs, even if peer
  121. * sends good full-sized frames.
  122. */
  123. len = skb_shinfo(skb)->gso_size ? : skb->len;
  124. if (len >= icsk->icsk_ack.rcv_mss) {
  125. icsk->icsk_ack.rcv_mss = len;
  126. } else {
  127. /* Otherwise, we make more careful check taking into account,
  128. * that SACKs block is variable.
  129. *
  130. * "len" is invariant segment length, including TCP header.
  131. */
  132. len += skb->data - skb_transport_header(skb);
  133. if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
  134. /* If PSH is not set, packet should be
  135. * full sized, provided peer TCP is not badly broken.
  136. * This observation (if it is correct 8)) allows
  137. * to handle super-low mtu links fairly.
  138. */
  139. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  140. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  141. /* Subtract also invariant (if peer is RFC compliant),
  142. * tcp header plus fixed timestamp option length.
  143. * Resulting "len" is MSS free of SACK jitter.
  144. */
  145. len -= tcp_sk(sk)->tcp_header_len;
  146. icsk->icsk_ack.last_seg_size = len;
  147. if (len == lss) {
  148. icsk->icsk_ack.rcv_mss = len;
  149. return;
  150. }
  151. }
  152. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  153. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  154. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  155. }
  156. }
  157. static void tcp_incr_quickack(struct sock *sk)
  158. {
  159. struct inet_connection_sock *icsk = inet_csk(sk);
  160. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  161. if (quickacks == 0)
  162. quickacks = 2;
  163. if (quickacks > icsk->icsk_ack.quick)
  164. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  165. }
  166. void tcp_enter_quickack_mode(struct sock *sk)
  167. {
  168. struct inet_connection_sock *icsk = inet_csk(sk);
  169. tcp_incr_quickack(sk);
  170. icsk->icsk_ack.pingpong = 0;
  171. icsk->icsk_ack.ato = TCP_ATO_MIN;
  172. }
  173. /* Send ACKs quickly, if "quick" count is not exhausted
  174. * and the session is not interactive.
  175. */
  176. static inline int tcp_in_quickack_mode(const struct sock *sk)
  177. {
  178. const struct inet_connection_sock *icsk = inet_csk(sk);
  179. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  180. }
  181. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  182. {
  183. if (tp->ecn_flags & TCP_ECN_OK)
  184. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  185. }
  186. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  187. {
  188. if (tcp_hdr(skb)->cwr)
  189. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  190. }
  191. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  192. {
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  196. {
  197. if (tp->ecn_flags & TCP_ECN_OK) {
  198. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  199. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  200. /* Funny extension: if ECT is not set on a segment,
  201. * it is surely retransmit. It is not in ECN RFC,
  202. * but Linux follows this rule. */
  203. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  204. tcp_enter_quickack_mode((struct sock *)tp);
  205. }
  206. }
  207. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  208. {
  209. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  210. tp->ecn_flags &= ~TCP_ECN_OK;
  211. }
  212. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  213. {
  214. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  215. tp->ecn_flags &= ~TCP_ECN_OK;
  216. }
  217. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  218. {
  219. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  220. return 1;
  221. return 0;
  222. }
  223. /* Buffer size and advertised window tuning.
  224. *
  225. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  226. */
  227. static void tcp_fixup_sndbuf(struct sock *sk)
  228. {
  229. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  230. sizeof(struct sk_buff);
  231. if (sk->sk_sndbuf < 3 * sndmem)
  232. sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
  233. }
  234. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  235. *
  236. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  237. * forward and advertised in receiver window (tp->rcv_wnd) and
  238. * "application buffer", required to isolate scheduling/application
  239. * latencies from network.
  240. * window_clamp is maximal advertised window. It can be less than
  241. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  242. * is reserved for "application" buffer. The less window_clamp is
  243. * the smoother our behaviour from viewpoint of network, but the lower
  244. * throughput and the higher sensitivity of the connection to losses. 8)
  245. *
  246. * rcv_ssthresh is more strict window_clamp used at "slow start"
  247. * phase to predict further behaviour of this connection.
  248. * It is used for two goals:
  249. * - to enforce header prediction at sender, even when application
  250. * requires some significant "application buffer". It is check #1.
  251. * - to prevent pruning of receive queue because of misprediction
  252. * of receiver window. Check #2.
  253. *
  254. * The scheme does not work when sender sends good segments opening
  255. * window and then starts to feed us spaghetti. But it should work
  256. * in common situations. Otherwise, we have to rely on queue collapsing.
  257. */
  258. /* Slow part of check#2. */
  259. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  260. {
  261. struct tcp_sock *tp = tcp_sk(sk);
  262. /* Optimize this! */
  263. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  264. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  265. while (tp->rcv_ssthresh <= window) {
  266. if (truesize <= skb->len)
  267. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  268. truesize >>= 1;
  269. window >>= 1;
  270. }
  271. return 0;
  272. }
  273. static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
  274. {
  275. struct tcp_sock *tp = tcp_sk(sk);
  276. /* Check #1 */
  277. if (tp->rcv_ssthresh < tp->window_clamp &&
  278. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  279. !tcp_memory_pressure) {
  280. int incr;
  281. /* Check #2. Increase window, if skb with such overhead
  282. * will fit to rcvbuf in future.
  283. */
  284. if (tcp_win_from_space(skb->truesize) <= skb->len)
  285. incr = 2 * tp->advmss;
  286. else
  287. incr = __tcp_grow_window(sk, skb);
  288. if (incr) {
  289. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  290. tp->window_clamp);
  291. inet_csk(sk)->icsk_ack.quick |= 1;
  292. }
  293. }
  294. }
  295. /* 3. Tuning rcvbuf, when connection enters established state. */
  296. static void tcp_fixup_rcvbuf(struct sock *sk)
  297. {
  298. struct tcp_sock *tp = tcp_sk(sk);
  299. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  300. /* Try to select rcvbuf so that 4 mss-sized segments
  301. * will fit to window and corresponding skbs will fit to our rcvbuf.
  302. * (was 3; 4 is minimum to allow fast retransmit to work.)
  303. */
  304. while (tcp_win_from_space(rcvmem) < tp->advmss)
  305. rcvmem += 128;
  306. if (sk->sk_rcvbuf < 4 * rcvmem)
  307. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  308. }
  309. /* 4. Try to fixup all. It is made immediately after connection enters
  310. * established state.
  311. */
  312. static void tcp_init_buffer_space(struct sock *sk)
  313. {
  314. struct tcp_sock *tp = tcp_sk(sk);
  315. int maxwin;
  316. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  317. tcp_fixup_rcvbuf(sk);
  318. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  319. tcp_fixup_sndbuf(sk);
  320. tp->rcvq_space.space = tp->rcv_wnd;
  321. maxwin = tcp_full_space(sk);
  322. if (tp->window_clamp >= maxwin) {
  323. tp->window_clamp = maxwin;
  324. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  325. tp->window_clamp = max(maxwin -
  326. (maxwin >> sysctl_tcp_app_win),
  327. 4 * tp->advmss);
  328. }
  329. /* Force reservation of one segment. */
  330. if (sysctl_tcp_app_win &&
  331. tp->window_clamp > 2 * tp->advmss &&
  332. tp->window_clamp + tp->advmss > maxwin)
  333. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  334. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  335. tp->snd_cwnd_stamp = tcp_time_stamp;
  336. }
  337. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  338. static void tcp_clamp_window(struct sock *sk)
  339. {
  340. struct tcp_sock *tp = tcp_sk(sk);
  341. struct inet_connection_sock *icsk = inet_csk(sk);
  342. icsk->icsk_ack.quick = 0;
  343. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  344. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  345. !tcp_memory_pressure &&
  346. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  347. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  348. sysctl_tcp_rmem[2]);
  349. }
  350. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  351. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  352. }
  353. /* Initialize RCV_MSS value.
  354. * RCV_MSS is an our guess about MSS used by the peer.
  355. * We haven't any direct information about the MSS.
  356. * It's better to underestimate the RCV_MSS rather than overestimate.
  357. * Overestimations make us ACKing less frequently than needed.
  358. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  359. */
  360. void tcp_initialize_rcv_mss(struct sock *sk)
  361. {
  362. struct tcp_sock *tp = tcp_sk(sk);
  363. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  364. hint = min(hint, tp->rcv_wnd / 2);
  365. hint = min(hint, TCP_MIN_RCVMSS);
  366. hint = max(hint, TCP_MIN_MSS);
  367. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  368. }
  369. /* Receiver "autotuning" code.
  370. *
  371. * The algorithm for RTT estimation w/o timestamps is based on
  372. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  373. * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
  374. *
  375. * More detail on this code can be found at
  376. * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
  377. * though this reference is out of date. A new paper
  378. * is pending.
  379. */
  380. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  381. {
  382. u32 new_sample = tp->rcv_rtt_est.rtt;
  383. long m = sample;
  384. if (m == 0)
  385. m = 1;
  386. if (new_sample != 0) {
  387. /* If we sample in larger samples in the non-timestamp
  388. * case, we could grossly overestimate the RTT especially
  389. * with chatty applications or bulk transfer apps which
  390. * are stalled on filesystem I/O.
  391. *
  392. * Also, since we are only going for a minimum in the
  393. * non-timestamp case, we do not smooth things out
  394. * else with timestamps disabled convergence takes too
  395. * long.
  396. */
  397. if (!win_dep) {
  398. m -= (new_sample >> 3);
  399. new_sample += m;
  400. } else if (m < new_sample)
  401. new_sample = m << 3;
  402. } else {
  403. /* No previous measure. */
  404. new_sample = m << 3;
  405. }
  406. if (tp->rcv_rtt_est.rtt != new_sample)
  407. tp->rcv_rtt_est.rtt = new_sample;
  408. }
  409. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  410. {
  411. if (tp->rcv_rtt_est.time == 0)
  412. goto new_measure;
  413. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  414. return;
  415. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  416. new_measure:
  417. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  418. tp->rcv_rtt_est.time = tcp_time_stamp;
  419. }
  420. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  421. const struct sk_buff *skb)
  422. {
  423. struct tcp_sock *tp = tcp_sk(sk);
  424. if (tp->rx_opt.rcv_tsecr &&
  425. (TCP_SKB_CB(skb)->end_seq -
  426. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  427. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  428. }
  429. /*
  430. * This function should be called every time data is copied to user space.
  431. * It calculates the appropriate TCP receive buffer space.
  432. */
  433. void tcp_rcv_space_adjust(struct sock *sk)
  434. {
  435. struct tcp_sock *tp = tcp_sk(sk);
  436. int time;
  437. int space;
  438. if (tp->rcvq_space.time == 0)
  439. goto new_measure;
  440. time = tcp_time_stamp - tp->rcvq_space.time;
  441. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  442. return;
  443. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  444. space = max(tp->rcvq_space.space, space);
  445. if (tp->rcvq_space.space != space) {
  446. int rcvmem;
  447. tp->rcvq_space.space = space;
  448. if (sysctl_tcp_moderate_rcvbuf &&
  449. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  450. int new_clamp = space;
  451. /* Receive space grows, normalize in order to
  452. * take into account packet headers and sk_buff
  453. * structure overhead.
  454. */
  455. space /= tp->advmss;
  456. if (!space)
  457. space = 1;
  458. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  459. 16 + sizeof(struct sk_buff));
  460. while (tcp_win_from_space(rcvmem) < tp->advmss)
  461. rcvmem += 128;
  462. space *= rcvmem;
  463. space = min(space, sysctl_tcp_rmem[2]);
  464. if (space > sk->sk_rcvbuf) {
  465. sk->sk_rcvbuf = space;
  466. /* Make the window clamp follow along. */
  467. tp->window_clamp = new_clamp;
  468. }
  469. }
  470. }
  471. new_measure:
  472. tp->rcvq_space.seq = tp->copied_seq;
  473. tp->rcvq_space.time = tcp_time_stamp;
  474. }
  475. /* There is something which you must keep in mind when you analyze the
  476. * behavior of the tp->ato delayed ack timeout interval. When a
  477. * connection starts up, we want to ack as quickly as possible. The
  478. * problem is that "good" TCP's do slow start at the beginning of data
  479. * transmission. The means that until we send the first few ACK's the
  480. * sender will sit on his end and only queue most of his data, because
  481. * he can only send snd_cwnd unacked packets at any given time. For
  482. * each ACK we send, he increments snd_cwnd and transmits more of his
  483. * queue. -DaveM
  484. */
  485. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  486. {
  487. struct tcp_sock *tp = tcp_sk(sk);
  488. struct inet_connection_sock *icsk = inet_csk(sk);
  489. u32 now;
  490. inet_csk_schedule_ack(sk);
  491. tcp_measure_rcv_mss(sk, skb);
  492. tcp_rcv_rtt_measure(tp);
  493. now = tcp_time_stamp;
  494. if (!icsk->icsk_ack.ato) {
  495. /* The _first_ data packet received, initialize
  496. * delayed ACK engine.
  497. */
  498. tcp_incr_quickack(sk);
  499. icsk->icsk_ack.ato = TCP_ATO_MIN;
  500. } else {
  501. int m = now - icsk->icsk_ack.lrcvtime;
  502. if (m <= TCP_ATO_MIN / 2) {
  503. /* The fastest case is the first. */
  504. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  505. } else if (m < icsk->icsk_ack.ato) {
  506. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  507. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  508. icsk->icsk_ack.ato = icsk->icsk_rto;
  509. } else if (m > icsk->icsk_rto) {
  510. /* Too long gap. Apparently sender failed to
  511. * restart window, so that we send ACKs quickly.
  512. */
  513. tcp_incr_quickack(sk);
  514. sk_mem_reclaim(sk);
  515. }
  516. }
  517. icsk->icsk_ack.lrcvtime = now;
  518. TCP_ECN_check_ce(tp, skb);
  519. if (skb->len >= 128)
  520. tcp_grow_window(sk, skb);
  521. }
  522. static u32 tcp_rto_min(struct sock *sk)
  523. {
  524. struct dst_entry *dst = __sk_dst_get(sk);
  525. u32 rto_min = TCP_RTO_MIN;
  526. if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
  527. rto_min = dst->metrics[RTAX_RTO_MIN - 1];
  528. return rto_min;
  529. }
  530. /* Called to compute a smoothed rtt estimate. The data fed to this
  531. * routine either comes from timestamps, or from segments that were
  532. * known _not_ to have been retransmitted [see Karn/Partridge
  533. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  534. * piece by Van Jacobson.
  535. * NOTE: the next three routines used to be one big routine.
  536. * To save cycles in the RFC 1323 implementation it was better to break
  537. * it up into three procedures. -- erics
  538. */
  539. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  540. {
  541. struct tcp_sock *tp = tcp_sk(sk);
  542. long m = mrtt; /* RTT */
  543. /* The following amusing code comes from Jacobson's
  544. * article in SIGCOMM '88. Note that rtt and mdev
  545. * are scaled versions of rtt and mean deviation.
  546. * This is designed to be as fast as possible
  547. * m stands for "measurement".
  548. *
  549. * On a 1990 paper the rto value is changed to:
  550. * RTO = rtt + 4 * mdev
  551. *
  552. * Funny. This algorithm seems to be very broken.
  553. * These formulae increase RTO, when it should be decreased, increase
  554. * too slowly, when it should be increased quickly, decrease too quickly
  555. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  556. * does not matter how to _calculate_ it. Seems, it was trap
  557. * that VJ failed to avoid. 8)
  558. */
  559. if (m == 0)
  560. m = 1;
  561. if (tp->srtt != 0) {
  562. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  563. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  564. if (m < 0) {
  565. m = -m; /* m is now abs(error) */
  566. m -= (tp->mdev >> 2); /* similar update on mdev */
  567. /* This is similar to one of Eifel findings.
  568. * Eifel blocks mdev updates when rtt decreases.
  569. * This solution is a bit different: we use finer gain
  570. * for mdev in this case (alpha*beta).
  571. * Like Eifel it also prevents growth of rto,
  572. * but also it limits too fast rto decreases,
  573. * happening in pure Eifel.
  574. */
  575. if (m > 0)
  576. m >>= 3;
  577. } else {
  578. m -= (tp->mdev >> 2); /* similar update on mdev */
  579. }
  580. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  581. if (tp->mdev > tp->mdev_max) {
  582. tp->mdev_max = tp->mdev;
  583. if (tp->mdev_max > tp->rttvar)
  584. tp->rttvar = tp->mdev_max;
  585. }
  586. if (after(tp->snd_una, tp->rtt_seq)) {
  587. if (tp->mdev_max < tp->rttvar)
  588. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  589. tp->rtt_seq = tp->snd_nxt;
  590. tp->mdev_max = tcp_rto_min(sk);
  591. }
  592. } else {
  593. /* no previous measure. */
  594. tp->srtt = m << 3; /* take the measured time to be rtt */
  595. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  596. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  597. tp->rtt_seq = tp->snd_nxt;
  598. }
  599. }
  600. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  601. * routine referred to above.
  602. */
  603. static inline void tcp_set_rto(struct sock *sk)
  604. {
  605. const struct tcp_sock *tp = tcp_sk(sk);
  606. /* Old crap is replaced with new one. 8)
  607. *
  608. * More seriously:
  609. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  610. * It cannot be less due to utterly erratic ACK generation made
  611. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  612. * to do with delayed acks, because at cwnd>2 true delack timeout
  613. * is invisible. Actually, Linux-2.4 also generates erratic
  614. * ACKs in some circumstances.
  615. */
  616. inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
  617. /* 2. Fixups made earlier cannot be right.
  618. * If we do not estimate RTO correctly without them,
  619. * all the algo is pure shit and should be replaced
  620. * with correct one. It is exactly, which we pretend to do.
  621. */
  622. }
  623. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  624. * guarantees that rto is higher.
  625. */
  626. static inline void tcp_bound_rto(struct sock *sk)
  627. {
  628. if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
  629. inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
  630. }
  631. /* Save metrics learned by this TCP session.
  632. This function is called only, when TCP finishes successfully
  633. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  634. */
  635. void tcp_update_metrics(struct sock *sk)
  636. {
  637. struct tcp_sock *tp = tcp_sk(sk);
  638. struct dst_entry *dst = __sk_dst_get(sk);
  639. if (sysctl_tcp_nometrics_save)
  640. return;
  641. dst_confirm(dst);
  642. if (dst && (dst->flags & DST_HOST)) {
  643. const struct inet_connection_sock *icsk = inet_csk(sk);
  644. int m;
  645. if (icsk->icsk_backoff || !tp->srtt) {
  646. /* This session failed to estimate rtt. Why?
  647. * Probably, no packets returned in time.
  648. * Reset our results.
  649. */
  650. if (!(dst_metric_locked(dst, RTAX_RTT)))
  651. dst->metrics[RTAX_RTT - 1] = 0;
  652. return;
  653. }
  654. m = dst_metric(dst, RTAX_RTT) - tp->srtt;
  655. /* If newly calculated rtt larger than stored one,
  656. * store new one. Otherwise, use EWMA. Remember,
  657. * rtt overestimation is always better than underestimation.
  658. */
  659. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  660. if (m <= 0)
  661. dst->metrics[RTAX_RTT - 1] = tp->srtt;
  662. else
  663. dst->metrics[RTAX_RTT - 1] -= (m >> 3);
  664. }
  665. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  666. if (m < 0)
  667. m = -m;
  668. /* Scale deviation to rttvar fixed point */
  669. m >>= 1;
  670. if (m < tp->mdev)
  671. m = tp->mdev;
  672. if (m >= dst_metric(dst, RTAX_RTTVAR))
  673. dst->metrics[RTAX_RTTVAR - 1] = m;
  674. else
  675. dst->metrics[RTAX_RTTVAR-1] -=
  676. (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
  677. }
  678. if (tp->snd_ssthresh >= 0xFFFF) {
  679. /* Slow start still did not finish. */
  680. if (dst_metric(dst, RTAX_SSTHRESH) &&
  681. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  682. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  683. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
  684. if (!dst_metric_locked(dst, RTAX_CWND) &&
  685. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  686. dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
  687. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  688. icsk->icsk_ca_state == TCP_CA_Open) {
  689. /* Cong. avoidance phase, cwnd is reliable. */
  690. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  691. dst->metrics[RTAX_SSTHRESH-1] =
  692. max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
  693. if (!dst_metric_locked(dst, RTAX_CWND))
  694. dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
  695. } else {
  696. /* Else slow start did not finish, cwnd is non-sense,
  697. ssthresh may be also invalid.
  698. */
  699. if (!dst_metric_locked(dst, RTAX_CWND))
  700. dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
  701. if (dst->metrics[RTAX_SSTHRESH-1] &&
  702. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  703. tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
  704. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
  705. }
  706. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  707. if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
  708. tp->reordering != sysctl_tcp_reordering)
  709. dst->metrics[RTAX_REORDERING-1] = tp->reordering;
  710. }
  711. }
  712. }
  713. /* Numbers are taken from RFC3390.
  714. *
  715. * John Heffner states:
  716. *
  717. * The RFC specifies a window of no more than 4380 bytes
  718. * unless 2*MSS > 4380. Reading the pseudocode in the RFC
  719. * is a bit misleading because they use a clamp at 4380 bytes
  720. * rather than use a multiplier in the relevant range.
  721. */
  722. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  723. {
  724. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  725. if (!cwnd) {
  726. if (tp->mss_cache > 1460)
  727. cwnd = 2;
  728. else
  729. cwnd = (tp->mss_cache > 1095) ? 3 : 4;
  730. }
  731. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  732. }
  733. /* Set slow start threshold and cwnd not falling to slow start */
  734. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  735. {
  736. struct tcp_sock *tp = tcp_sk(sk);
  737. const struct inet_connection_sock *icsk = inet_csk(sk);
  738. tp->prior_ssthresh = 0;
  739. tp->bytes_acked = 0;
  740. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  741. tp->undo_marker = 0;
  742. if (set_ssthresh)
  743. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  744. tp->snd_cwnd = min(tp->snd_cwnd,
  745. tcp_packets_in_flight(tp) + 1U);
  746. tp->snd_cwnd_cnt = 0;
  747. tp->high_seq = tp->snd_nxt;
  748. tp->snd_cwnd_stamp = tcp_time_stamp;
  749. TCP_ECN_queue_cwr(tp);
  750. tcp_set_ca_state(sk, TCP_CA_CWR);
  751. }
  752. }
  753. /*
  754. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  755. * disables it when reordering is detected
  756. */
  757. static void tcp_disable_fack(struct tcp_sock *tp)
  758. {
  759. /* RFC3517 uses different metric in lost marker => reset on change */
  760. if (tcp_is_fack(tp))
  761. tp->lost_skb_hint = NULL;
  762. tp->rx_opt.sack_ok &= ~2;
  763. }
  764. /* Take a notice that peer is sending D-SACKs */
  765. static void tcp_dsack_seen(struct tcp_sock *tp)
  766. {
  767. tp->rx_opt.sack_ok |= 4;
  768. }
  769. /* Initialize metrics on socket. */
  770. static void tcp_init_metrics(struct sock *sk)
  771. {
  772. struct tcp_sock *tp = tcp_sk(sk);
  773. struct dst_entry *dst = __sk_dst_get(sk);
  774. if (dst == NULL)
  775. goto reset;
  776. dst_confirm(dst);
  777. if (dst_metric_locked(dst, RTAX_CWND))
  778. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  779. if (dst_metric(dst, RTAX_SSTHRESH)) {
  780. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  781. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  782. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  783. }
  784. if (dst_metric(dst, RTAX_REORDERING) &&
  785. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  786. tcp_disable_fack(tp);
  787. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  788. }
  789. if (dst_metric(dst, RTAX_RTT) == 0)
  790. goto reset;
  791. if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  792. goto reset;
  793. /* Initial rtt is determined from SYN,SYN-ACK.
  794. * The segment is small and rtt may appear much
  795. * less than real one. Use per-dst memory
  796. * to make it more realistic.
  797. *
  798. * A bit of theory. RTT is time passed after "normal" sized packet
  799. * is sent until it is ACKed. In normal circumstances sending small
  800. * packets force peer to delay ACKs and calculation is correct too.
  801. * The algorithm is adaptive and, provided we follow specs, it
  802. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  803. * tricks sort of "quick acks" for time long enough to decrease RTT
  804. * to low value, and then abruptly stops to do it and starts to delay
  805. * ACKs, wait for troubles.
  806. */
  807. if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
  808. tp->srtt = dst_metric(dst, RTAX_RTT);
  809. tp->rtt_seq = tp->snd_nxt;
  810. }
  811. if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
  812. tp->mdev = dst_metric(dst, RTAX_RTTVAR);
  813. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  814. }
  815. tcp_set_rto(sk);
  816. tcp_bound_rto(sk);
  817. if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
  818. goto reset;
  819. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  820. tp->snd_cwnd_stamp = tcp_time_stamp;
  821. return;
  822. reset:
  823. /* Play conservative. If timestamps are not
  824. * supported, TCP will fail to recalculate correct
  825. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  826. */
  827. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  828. tp->srtt = 0;
  829. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  830. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  831. }
  832. }
  833. static void tcp_update_reordering(struct sock *sk, const int metric,
  834. const int ts)
  835. {
  836. struct tcp_sock *tp = tcp_sk(sk);
  837. if (metric > tp->reordering) {
  838. tp->reordering = min(TCP_MAX_REORDERING, metric);
  839. /* This exciting event is worth to be remembered. 8) */
  840. if (ts)
  841. NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
  842. else if (tcp_is_reno(tp))
  843. NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
  844. else if (tcp_is_fack(tp))
  845. NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
  846. else
  847. NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
  848. #if FASTRETRANS_DEBUG > 1
  849. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  850. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  851. tp->reordering,
  852. tp->fackets_out,
  853. tp->sacked_out,
  854. tp->undo_marker ? tp->undo_retrans : 0);
  855. #endif
  856. tcp_disable_fack(tp);
  857. }
  858. }
  859. /* This procedure tags the retransmission queue when SACKs arrive.
  860. *
  861. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  862. * Packets in queue with these bits set are counted in variables
  863. * sacked_out, retrans_out and lost_out, correspondingly.
  864. *
  865. * Valid combinations are:
  866. * Tag InFlight Description
  867. * 0 1 - orig segment is in flight.
  868. * S 0 - nothing flies, orig reached receiver.
  869. * L 0 - nothing flies, orig lost by net.
  870. * R 2 - both orig and retransmit are in flight.
  871. * L|R 1 - orig is lost, retransmit is in flight.
  872. * S|R 1 - orig reached receiver, retrans is still in flight.
  873. * (L|S|R is logically valid, it could occur when L|R is sacked,
  874. * but it is equivalent to plain S and code short-curcuits it to S.
  875. * L|S is logically invalid, it would mean -1 packet in flight 8))
  876. *
  877. * These 6 states form finite state machine, controlled by the following events:
  878. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  879. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  880. * 3. Loss detection event of one of three flavors:
  881. * A. Scoreboard estimator decided the packet is lost.
  882. * A'. Reno "three dupacks" marks head of queue lost.
  883. * A''. Its FACK modfication, head until snd.fack is lost.
  884. * B. SACK arrives sacking data transmitted after never retransmitted
  885. * hole was sent out.
  886. * C. SACK arrives sacking SND.NXT at the moment, when the
  887. * segment was retransmitted.
  888. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  889. *
  890. * It is pleasant to note, that state diagram turns out to be commutative,
  891. * so that we are allowed not to be bothered by order of our actions,
  892. * when multiple events arrive simultaneously. (see the function below).
  893. *
  894. * Reordering detection.
  895. * --------------------
  896. * Reordering metric is maximal distance, which a packet can be displaced
  897. * in packet stream. With SACKs we can estimate it:
  898. *
  899. * 1. SACK fills old hole and the corresponding segment was not
  900. * ever retransmitted -> reordering. Alas, we cannot use it
  901. * when segment was retransmitted.
  902. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  903. * for retransmitted and already SACKed segment -> reordering..
  904. * Both of these heuristics are not used in Loss state, when we cannot
  905. * account for retransmits accurately.
  906. *
  907. * SACK block validation.
  908. * ----------------------
  909. *
  910. * SACK block range validation checks that the received SACK block fits to
  911. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  912. * Note that SND.UNA is not included to the range though being valid because
  913. * it means that the receiver is rather inconsistent with itself reporting
  914. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  915. * perfectly valid, however, in light of RFC2018 which explicitly states
  916. * that "SACK block MUST reflect the newest segment. Even if the newest
  917. * segment is going to be discarded ...", not that it looks very clever
  918. * in case of head skb. Due to potentional receiver driven attacks, we
  919. * choose to avoid immediate execution of a walk in write queue due to
  920. * reneging and defer head skb's loss recovery to standard loss recovery
  921. * procedure that will eventually trigger (nothing forbids us doing this).
  922. *
  923. * Implements also blockage to start_seq wrap-around. Problem lies in the
  924. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  925. * there's no guarantee that it will be before snd_nxt (n). The problem
  926. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  927. * wrap (s_w):
  928. *
  929. * <- outs wnd -> <- wrapzone ->
  930. * u e n u_w e_w s n_w
  931. * | | | | | | |
  932. * |<------------+------+----- TCP seqno space --------------+---------->|
  933. * ...-- <2^31 ->| |<--------...
  934. * ...---- >2^31 ------>| |<--------...
  935. *
  936. * Current code wouldn't be vulnerable but it's better still to discard such
  937. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  938. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  939. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  940. * equal to the ideal case (infinite seqno space without wrap caused issues).
  941. *
  942. * With D-SACK the lower bound is extended to cover sequence space below
  943. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  944. * again, D-SACK block must not to go across snd_una (for the same reason as
  945. * for the normal SACK blocks, explained above). But there all simplicity
  946. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  947. * fully below undo_marker they do not affect behavior in anyway and can
  948. * therefore be safely ignored. In rare cases (which are more or less
  949. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  950. * fragmentation and packet reordering past skb's retransmission. To consider
  951. * them correctly, the acceptable range must be extended even more though
  952. * the exact amount is rather hard to quantify. However, tp->max_window can
  953. * be used as an exaggerated estimate.
  954. */
  955. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  956. u32 start_seq, u32 end_seq)
  957. {
  958. /* Too far in future, or reversed (interpretation is ambiguous) */
  959. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  960. return 0;
  961. /* Nasty start_seq wrap-around check (see comments above) */
  962. if (!before(start_seq, tp->snd_nxt))
  963. return 0;
  964. /* In outstanding window? ...This is valid exit for D-SACKs too.
  965. * start_seq == snd_una is non-sensical (see comments above)
  966. */
  967. if (after(start_seq, tp->snd_una))
  968. return 1;
  969. if (!is_dsack || !tp->undo_marker)
  970. return 0;
  971. /* ...Then it's D-SACK, and must reside below snd_una completely */
  972. if (!after(end_seq, tp->snd_una))
  973. return 0;
  974. if (!before(start_seq, tp->undo_marker))
  975. return 1;
  976. /* Too old */
  977. if (!after(end_seq, tp->undo_marker))
  978. return 0;
  979. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  980. * start_seq < undo_marker and end_seq >= undo_marker.
  981. */
  982. return !before(start_seq, end_seq - tp->max_window);
  983. }
  984. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  985. * Event "C". Later note: FACK people cheated me again 8), we have to account
  986. * for reordering! Ugly, but should help.
  987. *
  988. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  989. * less than what is now known to be received by the other end (derived from
  990. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  991. * retransmitted skbs to avoid some costly processing per ACKs.
  992. */
  993. static void tcp_mark_lost_retrans(struct sock *sk)
  994. {
  995. const struct inet_connection_sock *icsk = inet_csk(sk);
  996. struct tcp_sock *tp = tcp_sk(sk);
  997. struct sk_buff *skb;
  998. int cnt = 0;
  999. u32 new_low_seq = tp->snd_nxt;
  1000. u32 received_upto = tcp_highest_sack_seq(tp);
  1001. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1002. !after(received_upto, tp->lost_retrans_low) ||
  1003. icsk->icsk_ca_state != TCP_CA_Recovery)
  1004. return;
  1005. tcp_for_write_queue(skb, sk) {
  1006. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1007. if (skb == tcp_send_head(sk))
  1008. break;
  1009. if (cnt == tp->retrans_out)
  1010. break;
  1011. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1012. continue;
  1013. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1014. continue;
  1015. if (after(received_upto, ack_seq) &&
  1016. (tcp_is_fack(tp) ||
  1017. !before(received_upto,
  1018. ack_seq + tp->reordering * tp->mss_cache))) {
  1019. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1020. tp->retrans_out -= tcp_skb_pcount(skb);
  1021. /* clear lost hint */
  1022. tp->retransmit_skb_hint = NULL;
  1023. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  1024. tp->lost_out += tcp_skb_pcount(skb);
  1025. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1026. }
  1027. NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
  1028. } else {
  1029. if (before(ack_seq, new_low_seq))
  1030. new_low_seq = ack_seq;
  1031. cnt += tcp_skb_pcount(skb);
  1032. }
  1033. }
  1034. if (tp->retrans_out)
  1035. tp->lost_retrans_low = new_low_seq;
  1036. }
  1037. static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
  1038. struct tcp_sack_block_wire *sp, int num_sacks,
  1039. u32 prior_snd_una)
  1040. {
  1041. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1042. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1043. int dup_sack = 0;
  1044. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1045. dup_sack = 1;
  1046. tcp_dsack_seen(tp);
  1047. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
  1048. } else if (num_sacks > 1) {
  1049. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1050. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1051. if (!after(end_seq_0, end_seq_1) &&
  1052. !before(start_seq_0, start_seq_1)) {
  1053. dup_sack = 1;
  1054. tcp_dsack_seen(tp);
  1055. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
  1056. }
  1057. }
  1058. /* D-SACK for already forgotten data... Do dumb counting. */
  1059. if (dup_sack &&
  1060. !after(end_seq_0, prior_snd_una) &&
  1061. after(end_seq_0, tp->undo_marker))
  1062. tp->undo_retrans--;
  1063. return dup_sack;
  1064. }
  1065. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1066. * the incoming SACK may not exactly match but we can find smaller MSS
  1067. * aligned portion of it that matches. Therefore we might need to fragment
  1068. * which may fail and creates some hassle (caller must handle error case
  1069. * returns).
  1070. */
  1071. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1072. u32 start_seq, u32 end_seq)
  1073. {
  1074. int in_sack, err;
  1075. unsigned int pkt_len;
  1076. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1077. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1078. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1079. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1080. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1081. if (!in_sack)
  1082. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1083. else
  1084. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1085. err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
  1086. if (err < 0)
  1087. return err;
  1088. }
  1089. return in_sack;
  1090. }
  1091. static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
  1092. int *reord, int dup_sack, int fack_count)
  1093. {
  1094. struct tcp_sock *tp = tcp_sk(sk);
  1095. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1096. int flag = 0;
  1097. /* Account D-SACK for retransmitted packet. */
  1098. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1099. if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1100. tp->undo_retrans--;
  1101. if (sacked & TCPCB_SACKED_ACKED)
  1102. *reord = min(fack_count, *reord);
  1103. }
  1104. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1105. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1106. return flag;
  1107. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1108. if (sacked & TCPCB_SACKED_RETRANS) {
  1109. /* If the segment is not tagged as lost,
  1110. * we do not clear RETRANS, believing
  1111. * that retransmission is still in flight.
  1112. */
  1113. if (sacked & TCPCB_LOST) {
  1114. TCP_SKB_CB(skb)->sacked &=
  1115. ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1116. tp->lost_out -= tcp_skb_pcount(skb);
  1117. tp->retrans_out -= tcp_skb_pcount(skb);
  1118. /* clear lost hint */
  1119. tp->retransmit_skb_hint = NULL;
  1120. }
  1121. } else {
  1122. if (!(sacked & TCPCB_RETRANS)) {
  1123. /* New sack for not retransmitted frame,
  1124. * which was in hole. It is reordering.
  1125. */
  1126. if (before(TCP_SKB_CB(skb)->seq,
  1127. tcp_highest_sack_seq(tp)))
  1128. *reord = min(fack_count, *reord);
  1129. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1130. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1131. flag |= FLAG_ONLY_ORIG_SACKED;
  1132. }
  1133. if (sacked & TCPCB_LOST) {
  1134. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1135. tp->lost_out -= tcp_skb_pcount(skb);
  1136. /* clear lost hint */
  1137. tp->retransmit_skb_hint = NULL;
  1138. }
  1139. }
  1140. TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
  1141. flag |= FLAG_DATA_SACKED;
  1142. tp->sacked_out += tcp_skb_pcount(skb);
  1143. fack_count += tcp_skb_pcount(skb);
  1144. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1145. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1146. before(TCP_SKB_CB(skb)->seq,
  1147. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1148. tp->lost_cnt_hint += tcp_skb_pcount(skb);
  1149. if (fack_count > tp->fackets_out)
  1150. tp->fackets_out = fack_count;
  1151. if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
  1152. tcp_advance_highest_sack(sk, skb);
  1153. }
  1154. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1155. * frames and clear it. undo_retrans is decreased above, L|R frames
  1156. * are accounted above as well.
  1157. */
  1158. if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
  1159. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1160. tp->retrans_out -= tcp_skb_pcount(skb);
  1161. tp->retransmit_skb_hint = NULL;
  1162. }
  1163. return flag;
  1164. }
  1165. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1166. struct tcp_sack_block *next_dup,
  1167. u32 start_seq, u32 end_seq,
  1168. int dup_sack_in, int *fack_count,
  1169. int *reord, int *flag)
  1170. {
  1171. tcp_for_write_queue_from(skb, sk) {
  1172. int in_sack = 0;
  1173. int dup_sack = dup_sack_in;
  1174. if (skb == tcp_send_head(sk))
  1175. break;
  1176. /* queue is in-order => we can short-circuit the walk early */
  1177. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1178. break;
  1179. if ((next_dup != NULL) &&
  1180. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1181. in_sack = tcp_match_skb_to_sack(sk, skb,
  1182. next_dup->start_seq,
  1183. next_dup->end_seq);
  1184. if (in_sack > 0)
  1185. dup_sack = 1;
  1186. }
  1187. if (in_sack <= 0)
  1188. in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
  1189. end_seq);
  1190. if (unlikely(in_sack < 0))
  1191. break;
  1192. if (in_sack)
  1193. *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
  1194. *fack_count);
  1195. *fack_count += tcp_skb_pcount(skb);
  1196. }
  1197. return skb;
  1198. }
  1199. /* Avoid all extra work that is being done by sacktag while walking in
  1200. * a normal way
  1201. */
  1202. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1203. u32 skip_to_seq, int *fack_count)
  1204. {
  1205. tcp_for_write_queue_from(skb, sk) {
  1206. if (skb == tcp_send_head(sk))
  1207. break;
  1208. if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1209. break;
  1210. *fack_count += tcp_skb_pcount(skb);
  1211. }
  1212. return skb;
  1213. }
  1214. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1215. struct sock *sk,
  1216. struct tcp_sack_block *next_dup,
  1217. u32 skip_to_seq,
  1218. int *fack_count, int *reord,
  1219. int *flag)
  1220. {
  1221. if (next_dup == NULL)
  1222. return skb;
  1223. if (before(next_dup->start_seq, skip_to_seq)) {
  1224. skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
  1225. tcp_sacktag_walk(skb, sk, NULL,
  1226. next_dup->start_seq, next_dup->end_seq,
  1227. 1, fack_count, reord, flag);
  1228. }
  1229. return skb;
  1230. }
  1231. static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
  1232. {
  1233. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1234. }
  1235. static int
  1236. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
  1237. u32 prior_snd_una)
  1238. {
  1239. const struct inet_connection_sock *icsk = inet_csk(sk);
  1240. struct tcp_sock *tp = tcp_sk(sk);
  1241. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1242. TCP_SKB_CB(ack_skb)->sacked);
  1243. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1244. struct tcp_sack_block sp[4];
  1245. struct tcp_sack_block *cache;
  1246. struct sk_buff *skb;
  1247. int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
  1248. int used_sacks;
  1249. int reord = tp->packets_out;
  1250. int flag = 0;
  1251. int found_dup_sack = 0;
  1252. int fack_count;
  1253. int i, j;
  1254. int first_sack_index;
  1255. if (!tp->sacked_out) {
  1256. if (WARN_ON(tp->fackets_out))
  1257. tp->fackets_out = 0;
  1258. tcp_highest_sack_reset(sk);
  1259. }
  1260. found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
  1261. num_sacks, prior_snd_una);
  1262. if (found_dup_sack)
  1263. flag |= FLAG_DSACKING_ACK;
  1264. /* Eliminate too old ACKs, but take into
  1265. * account more or less fresh ones, they can
  1266. * contain valid SACK info.
  1267. */
  1268. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1269. return 0;
  1270. if (!tp->packets_out)
  1271. goto out;
  1272. used_sacks = 0;
  1273. first_sack_index = 0;
  1274. for (i = 0; i < num_sacks; i++) {
  1275. int dup_sack = !i && found_dup_sack;
  1276. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1277. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1278. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1279. sp[used_sacks].start_seq,
  1280. sp[used_sacks].end_seq)) {
  1281. if (dup_sack) {
  1282. if (!tp->undo_marker)
  1283. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
  1284. else
  1285. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
  1286. } else {
  1287. /* Don't count olds caused by ACK reordering */
  1288. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1289. !after(sp[used_sacks].end_seq, tp->snd_una))
  1290. continue;
  1291. NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
  1292. }
  1293. if (i == 0)
  1294. first_sack_index = -1;
  1295. continue;
  1296. }
  1297. /* Ignore very old stuff early */
  1298. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1299. continue;
  1300. used_sacks++;
  1301. }
  1302. /* order SACK blocks to allow in order walk of the retrans queue */
  1303. for (i = used_sacks - 1; i > 0; i--) {
  1304. for (j = 0; j < i; j++) {
  1305. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1306. struct tcp_sack_block tmp;
  1307. tmp = sp[j];
  1308. sp[j] = sp[j + 1];
  1309. sp[j + 1] = tmp;
  1310. /* Track where the first SACK block goes to */
  1311. if (j == first_sack_index)
  1312. first_sack_index = j + 1;
  1313. }
  1314. }
  1315. }
  1316. skb = tcp_write_queue_head(sk);
  1317. fack_count = 0;
  1318. i = 0;
  1319. if (!tp->sacked_out) {
  1320. /* It's already past, so skip checking against it */
  1321. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1322. } else {
  1323. cache = tp->recv_sack_cache;
  1324. /* Skip empty blocks in at head of the cache */
  1325. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1326. !cache->end_seq)
  1327. cache++;
  1328. }
  1329. while (i < used_sacks) {
  1330. u32 start_seq = sp[i].start_seq;
  1331. u32 end_seq = sp[i].end_seq;
  1332. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1333. struct tcp_sack_block *next_dup = NULL;
  1334. if (found_dup_sack && ((i + 1) == first_sack_index))
  1335. next_dup = &sp[i + 1];
  1336. /* Event "B" in the comment above. */
  1337. if (after(end_seq, tp->high_seq))
  1338. flag |= FLAG_DATA_LOST;
  1339. /* Skip too early cached blocks */
  1340. while (tcp_sack_cache_ok(tp, cache) &&
  1341. !before(start_seq, cache->end_seq))
  1342. cache++;
  1343. /* Can skip some work by looking recv_sack_cache? */
  1344. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1345. after(end_seq, cache->start_seq)) {
  1346. /* Head todo? */
  1347. if (before(start_seq, cache->start_seq)) {
  1348. skb = tcp_sacktag_skip(skb, sk, start_seq,
  1349. &fack_count);
  1350. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1351. start_seq,
  1352. cache->start_seq,
  1353. dup_sack, &fack_count,
  1354. &reord, &flag);
  1355. }
  1356. /* Rest of the block already fully processed? */
  1357. if (!after(end_seq, cache->end_seq))
  1358. goto advance_sp;
  1359. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1360. cache->end_seq,
  1361. &fack_count, &reord,
  1362. &flag);
  1363. /* ...tail remains todo... */
  1364. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1365. /* ...but better entrypoint exists! */
  1366. skb = tcp_highest_sack(sk);
  1367. if (skb == NULL)
  1368. break;
  1369. fack_count = tp->fackets_out;
  1370. cache++;
  1371. goto walk;
  1372. }
  1373. skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
  1374. &fack_count);
  1375. /* Check overlap against next cached too (past this one already) */
  1376. cache++;
  1377. continue;
  1378. }
  1379. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1380. skb = tcp_highest_sack(sk);
  1381. if (skb == NULL)
  1382. break;
  1383. fack_count = tp->fackets_out;
  1384. }
  1385. skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
  1386. walk:
  1387. skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
  1388. dup_sack, &fack_count, &reord, &flag);
  1389. advance_sp:
  1390. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1391. * due to in-order walk
  1392. */
  1393. if (after(end_seq, tp->frto_highmark))
  1394. flag &= ~FLAG_ONLY_ORIG_SACKED;
  1395. i++;
  1396. }
  1397. /* Clear the head of the cache sack blocks so we can skip it next time */
  1398. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1399. tp->recv_sack_cache[i].start_seq = 0;
  1400. tp->recv_sack_cache[i].end_seq = 0;
  1401. }
  1402. for (j = 0; j < used_sacks; j++)
  1403. tp->recv_sack_cache[i++] = sp[j];
  1404. tcp_mark_lost_retrans(sk);
  1405. tcp_verify_left_out(tp);
  1406. if ((reord < tp->fackets_out) &&
  1407. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1408. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1409. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  1410. out:
  1411. #if FASTRETRANS_DEBUG > 0
  1412. BUG_TRAP((int)tp->sacked_out >= 0);
  1413. BUG_TRAP((int)tp->lost_out >= 0);
  1414. BUG_TRAP((int)tp->retrans_out >= 0);
  1415. BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
  1416. #endif
  1417. return flag;
  1418. }
  1419. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1420. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1421. */
  1422. int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1423. {
  1424. u32 holes;
  1425. holes = max(tp->lost_out, 1U);
  1426. holes = min(holes, tp->packets_out);
  1427. if ((tp->sacked_out + holes) > tp->packets_out) {
  1428. tp->sacked_out = tp->packets_out - holes;
  1429. return 1;
  1430. }
  1431. return 0;
  1432. }
  1433. /* If we receive more dupacks than we expected counting segments
  1434. * in assumption of absent reordering, interpret this as reordering.
  1435. * The only another reason could be bug in receiver TCP.
  1436. */
  1437. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1438. {
  1439. struct tcp_sock *tp = tcp_sk(sk);
  1440. if (tcp_limit_reno_sacked(tp))
  1441. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1442. }
  1443. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1444. static void tcp_add_reno_sack(struct sock *sk)
  1445. {
  1446. struct tcp_sock *tp = tcp_sk(sk);
  1447. tp->sacked_out++;
  1448. tcp_check_reno_reordering(sk, 0);
  1449. tcp_verify_left_out(tp);
  1450. }
  1451. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1452. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1453. {
  1454. struct tcp_sock *tp = tcp_sk(sk);
  1455. if (acked > 0) {
  1456. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1457. if (acked - 1 >= tp->sacked_out)
  1458. tp->sacked_out = 0;
  1459. else
  1460. tp->sacked_out -= acked - 1;
  1461. }
  1462. tcp_check_reno_reordering(sk, acked);
  1463. tcp_verify_left_out(tp);
  1464. }
  1465. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1466. {
  1467. tp->sacked_out = 0;
  1468. }
  1469. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1470. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1471. */
  1472. int tcp_use_frto(struct sock *sk)
  1473. {
  1474. const struct tcp_sock *tp = tcp_sk(sk);
  1475. const struct inet_connection_sock *icsk = inet_csk(sk);
  1476. struct sk_buff *skb;
  1477. if (!sysctl_tcp_frto)
  1478. return 0;
  1479. /* MTU probe and F-RTO won't really play nicely along currently */
  1480. if (icsk->icsk_mtup.probe_size)
  1481. return 0;
  1482. if (IsSackFrto())
  1483. return 1;
  1484. /* Avoid expensive walking of rexmit queue if possible */
  1485. if (tp->retrans_out > 1)
  1486. return 0;
  1487. skb = tcp_write_queue_head(sk);
  1488. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1489. tcp_for_write_queue_from(skb, sk) {
  1490. if (skb == tcp_send_head(sk))
  1491. break;
  1492. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1493. return 0;
  1494. /* Short-circuit when first non-SACKed skb has been checked */
  1495. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1496. break;
  1497. }
  1498. return 1;
  1499. }
  1500. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1501. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1502. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1503. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1504. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1505. * bits are handled if the Loss state is really to be entered (in
  1506. * tcp_enter_frto_loss).
  1507. *
  1508. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1509. * does:
  1510. * "Reduce ssthresh if it has not yet been made inside this window."
  1511. */
  1512. void tcp_enter_frto(struct sock *sk)
  1513. {
  1514. const struct inet_connection_sock *icsk = inet_csk(sk);
  1515. struct tcp_sock *tp = tcp_sk(sk);
  1516. struct sk_buff *skb;
  1517. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1518. tp->snd_una == tp->high_seq ||
  1519. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1520. !icsk->icsk_retransmits)) {
  1521. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1522. /* Our state is too optimistic in ssthresh() call because cwnd
  1523. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1524. * recovery has not yet completed. Pattern would be this: RTO,
  1525. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1526. * up here twice).
  1527. * RFC4138 should be more specific on what to do, even though
  1528. * RTO is quite unlikely to occur after the first Cumulative ACK
  1529. * due to back-off and complexity of triggering events ...
  1530. */
  1531. if (tp->frto_counter) {
  1532. u32 stored_cwnd;
  1533. stored_cwnd = tp->snd_cwnd;
  1534. tp->snd_cwnd = 2;
  1535. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1536. tp->snd_cwnd = stored_cwnd;
  1537. } else {
  1538. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1539. }
  1540. /* ... in theory, cong.control module could do "any tricks" in
  1541. * ssthresh(), which means that ca_state, lost bits and lost_out
  1542. * counter would have to be faked before the call occurs. We
  1543. * consider that too expensive, unlikely and hacky, so modules
  1544. * using these in ssthresh() must deal these incompatibility
  1545. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1546. */
  1547. tcp_ca_event(sk, CA_EVENT_FRTO);
  1548. }
  1549. tp->undo_marker = tp->snd_una;
  1550. tp->undo_retrans = 0;
  1551. skb = tcp_write_queue_head(sk);
  1552. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1553. tp->undo_marker = 0;
  1554. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1555. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1556. tp->retrans_out -= tcp_skb_pcount(skb);
  1557. }
  1558. tcp_verify_left_out(tp);
  1559. /* Too bad if TCP was application limited */
  1560. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1561. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1562. * The last condition is necessary at least in tp->frto_counter case.
  1563. */
  1564. if (IsSackFrto() && (tp->frto_counter ||
  1565. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1566. after(tp->high_seq, tp->snd_una)) {
  1567. tp->frto_highmark = tp->high_seq;
  1568. } else {
  1569. tp->frto_highmark = tp->snd_nxt;
  1570. }
  1571. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1572. tp->high_seq = tp->snd_nxt;
  1573. tp->frto_counter = 1;
  1574. }
  1575. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1576. * which indicates that we should follow the traditional RTO recovery,
  1577. * i.e. mark everything lost and do go-back-N retransmission.
  1578. */
  1579. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1580. {
  1581. struct tcp_sock *tp = tcp_sk(sk);
  1582. struct sk_buff *skb;
  1583. tp->lost_out = 0;
  1584. tp->retrans_out = 0;
  1585. if (tcp_is_reno(tp))
  1586. tcp_reset_reno_sack(tp);
  1587. tcp_for_write_queue(skb, sk) {
  1588. if (skb == tcp_send_head(sk))
  1589. break;
  1590. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1591. /*
  1592. * Count the retransmission made on RTO correctly (only when
  1593. * waiting for the first ACK and did not get it)...
  1594. */
  1595. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1596. /* For some reason this R-bit might get cleared? */
  1597. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1598. tp->retrans_out += tcp_skb_pcount(skb);
  1599. /* ...enter this if branch just for the first segment */
  1600. flag |= FLAG_DATA_ACKED;
  1601. } else {
  1602. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1603. tp->undo_marker = 0;
  1604. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1605. }
  1606. /* Don't lost mark skbs that were fwd transmitted after RTO */
  1607. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
  1608. !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
  1609. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1610. tp->lost_out += tcp_skb_pcount(skb);
  1611. }
  1612. }
  1613. tcp_verify_left_out(tp);
  1614. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1615. tp->snd_cwnd_cnt = 0;
  1616. tp->snd_cwnd_stamp = tcp_time_stamp;
  1617. tp->frto_counter = 0;
  1618. tp->bytes_acked = 0;
  1619. tp->reordering = min_t(unsigned int, tp->reordering,
  1620. sysctl_tcp_reordering);
  1621. tcp_set_ca_state(sk, TCP_CA_Loss);
  1622. tp->high_seq = tp->frto_highmark;
  1623. TCP_ECN_queue_cwr(tp);
  1624. tcp_clear_retrans_hints_partial(tp);
  1625. }
  1626. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1627. {
  1628. tp->retrans_out = 0;
  1629. tp->lost_out = 0;
  1630. tp->undo_marker = 0;
  1631. tp->undo_retrans = 0;
  1632. }
  1633. void tcp_clear_retrans(struct tcp_sock *tp)
  1634. {
  1635. tcp_clear_retrans_partial(tp);
  1636. tp->fackets_out = 0;
  1637. tp->sacked_out = 0;
  1638. }
  1639. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1640. * and reset tags completely, otherwise preserve SACKs. If receiver
  1641. * dropped its ofo queue, we will know this due to reneging detection.
  1642. */
  1643. void tcp_enter_loss(struct sock *sk, int how)
  1644. {
  1645. const struct inet_connection_sock *icsk = inet_csk(sk);
  1646. struct tcp_sock *tp = tcp_sk(sk);
  1647. struct sk_buff *skb;
  1648. /* Reduce ssthresh if it has not yet been made inside this window. */
  1649. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1650. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1651. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1652. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1653. tcp_ca_event(sk, CA_EVENT_LOSS);
  1654. }
  1655. tp->snd_cwnd = 1;
  1656. tp->snd_cwnd_cnt = 0;
  1657. tp->snd_cwnd_stamp = tcp_time_stamp;
  1658. tp->bytes_acked = 0;
  1659. tcp_clear_retrans_partial(tp);
  1660. if (tcp_is_reno(tp))
  1661. tcp_reset_reno_sack(tp);
  1662. if (!how) {
  1663. /* Push undo marker, if it was plain RTO and nothing
  1664. * was retransmitted. */
  1665. tp->undo_marker = tp->snd_una;
  1666. tcp_clear_retrans_hints_partial(tp);
  1667. } else {
  1668. tp->sacked_out = 0;
  1669. tp->fackets_out = 0;
  1670. tcp_clear_all_retrans_hints(tp);
  1671. }
  1672. tcp_for_write_queue(skb, sk) {
  1673. if (skb == tcp_send_head(sk))
  1674. break;
  1675. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1676. tp->undo_marker = 0;
  1677. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1678. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1679. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1680. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1681. tp->lost_out += tcp_skb_pcount(skb);
  1682. }
  1683. }
  1684. tcp_verify_left_out(tp);
  1685. tp->reordering = min_t(unsigned int, tp->reordering,
  1686. sysctl_tcp_reordering);
  1687. tcp_set_ca_state(sk, TCP_CA_Loss);
  1688. tp->high_seq = tp->snd_nxt;
  1689. TCP_ECN_queue_cwr(tp);
  1690. /* Abort F-RTO algorithm if one is in progress */
  1691. tp->frto_counter = 0;
  1692. }
  1693. /* If ACK arrived pointing to a remembered SACK, it means that our
  1694. * remembered SACKs do not reflect real state of receiver i.e.
  1695. * receiver _host_ is heavily congested (or buggy).
  1696. *
  1697. * Do processing similar to RTO timeout.
  1698. */
  1699. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1700. {
  1701. if (flag & FLAG_SACK_RENEGING) {
  1702. struct inet_connection_sock *icsk = inet_csk(sk);
  1703. NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
  1704. tcp_enter_loss(sk, 1);
  1705. icsk->icsk_retransmits++;
  1706. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1707. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1708. icsk->icsk_rto, TCP_RTO_MAX);
  1709. return 1;
  1710. }
  1711. return 0;
  1712. }
  1713. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1714. {
  1715. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1716. }
  1717. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1718. * counter when SACK is enabled (without SACK, sacked_out is used for
  1719. * that purpose).
  1720. *
  1721. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1722. * segments up to the highest received SACK block so far and holes in
  1723. * between them.
  1724. *
  1725. * With reordering, holes may still be in flight, so RFC3517 recovery
  1726. * uses pure sacked_out (total number of SACKed segments) even though
  1727. * it violates the RFC that uses duplicate ACKs, often these are equal
  1728. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1729. * they differ. Since neither occurs due to loss, TCP should really
  1730. * ignore them.
  1731. */
  1732. static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
  1733. {
  1734. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1735. }
  1736. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  1737. {
  1738. return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
  1739. }
  1740. static inline int tcp_head_timedout(struct sock *sk)
  1741. {
  1742. struct tcp_sock *tp = tcp_sk(sk);
  1743. return tp->packets_out &&
  1744. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1745. }
  1746. /* Linux NewReno/SACK/FACK/ECN state machine.
  1747. * --------------------------------------
  1748. *
  1749. * "Open" Normal state, no dubious events, fast path.
  1750. * "Disorder" In all the respects it is "Open",
  1751. * but requires a bit more attention. It is entered when
  1752. * we see some SACKs or dupacks. It is split of "Open"
  1753. * mainly to move some processing from fast path to slow one.
  1754. * "CWR" CWND was reduced due to some Congestion Notification event.
  1755. * It can be ECN, ICMP source quench, local device congestion.
  1756. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1757. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1758. *
  1759. * tcp_fastretrans_alert() is entered:
  1760. * - each incoming ACK, if state is not "Open"
  1761. * - when arrived ACK is unusual, namely:
  1762. * * SACK
  1763. * * Duplicate ACK.
  1764. * * ECN ECE.
  1765. *
  1766. * Counting packets in flight is pretty simple.
  1767. *
  1768. * in_flight = packets_out - left_out + retrans_out
  1769. *
  1770. * packets_out is SND.NXT-SND.UNA counted in packets.
  1771. *
  1772. * retrans_out is number of retransmitted segments.
  1773. *
  1774. * left_out is number of segments left network, but not ACKed yet.
  1775. *
  1776. * left_out = sacked_out + lost_out
  1777. *
  1778. * sacked_out: Packets, which arrived to receiver out of order
  1779. * and hence not ACKed. With SACKs this number is simply
  1780. * amount of SACKed data. Even without SACKs
  1781. * it is easy to give pretty reliable estimate of this number,
  1782. * counting duplicate ACKs.
  1783. *
  1784. * lost_out: Packets lost by network. TCP has no explicit
  1785. * "loss notification" feedback from network (for now).
  1786. * It means that this number can be only _guessed_.
  1787. * Actually, it is the heuristics to predict lossage that
  1788. * distinguishes different algorithms.
  1789. *
  1790. * F.e. after RTO, when all the queue is considered as lost,
  1791. * lost_out = packets_out and in_flight = retrans_out.
  1792. *
  1793. * Essentially, we have now two algorithms counting
  1794. * lost packets.
  1795. *
  1796. * FACK: It is the simplest heuristics. As soon as we decided
  1797. * that something is lost, we decide that _all_ not SACKed
  1798. * packets until the most forward SACK are lost. I.e.
  1799. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1800. * It is absolutely correct estimate, if network does not reorder
  1801. * packets. And it loses any connection to reality when reordering
  1802. * takes place. We use FACK by default until reordering
  1803. * is suspected on the path to this destination.
  1804. *
  1805. * NewReno: when Recovery is entered, we assume that one segment
  1806. * is lost (classic Reno). While we are in Recovery and
  1807. * a partial ACK arrives, we assume that one more packet
  1808. * is lost (NewReno). This heuristics are the same in NewReno
  1809. * and SACK.
  1810. *
  1811. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1812. * deflation etc. CWND is real congestion window, never inflated, changes
  1813. * only according to classic VJ rules.
  1814. *
  1815. * Really tricky (and requiring careful tuning) part of algorithm
  1816. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1817. * The first determines the moment _when_ we should reduce CWND and,
  1818. * hence, slow down forward transmission. In fact, it determines the moment
  1819. * when we decide that hole is caused by loss, rather than by a reorder.
  1820. *
  1821. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1822. * holes, caused by lost packets.
  1823. *
  1824. * And the most logically complicated part of algorithm is undo
  1825. * heuristics. We detect false retransmits due to both too early
  1826. * fast retransmit (reordering) and underestimated RTO, analyzing
  1827. * timestamps and D-SACKs. When we detect that some segments were
  1828. * retransmitted by mistake and CWND reduction was wrong, we undo
  1829. * window reduction and abort recovery phase. This logic is hidden
  1830. * inside several functions named tcp_try_undo_<something>.
  1831. */
  1832. /* This function decides, when we should leave Disordered state
  1833. * and enter Recovery phase, reducing congestion window.
  1834. *
  1835. * Main question: may we further continue forward transmission
  1836. * with the same cwnd?
  1837. */
  1838. static int tcp_time_to_recover(struct sock *sk)
  1839. {
  1840. struct tcp_sock *tp = tcp_sk(sk);
  1841. __u32 packets_out;
  1842. /* Do not perform any recovery during F-RTO algorithm */
  1843. if (tp->frto_counter)
  1844. return 0;
  1845. /* Trick#1: The loss is proven. */
  1846. if (tp->lost_out)
  1847. return 1;
  1848. /* Not-A-Trick#2 : Classic rule... */
  1849. if (tcp_dupack_heurestics(tp) > tp->reordering)
  1850. return 1;
  1851. /* Trick#3 : when we use RFC2988 timer restart, fast
  1852. * retransmit can be triggered by timeout of queue head.
  1853. */
  1854. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1855. return 1;
  1856. /* Trick#4: It is still not OK... But will it be useful to delay
  1857. * recovery more?
  1858. */
  1859. packets_out = tp->packets_out;
  1860. if (packets_out <= tp->reordering &&
  1861. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1862. !tcp_may_send_now(sk)) {
  1863. /* We have nothing to send. This connection is limited
  1864. * either by receiver window or by application.
  1865. */
  1866. return 1;
  1867. }
  1868. return 0;
  1869. }
  1870. /* RFC: This is from the original, I doubt that this is necessary at all:
  1871. * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
  1872. * retransmitted past LOST markings in the first place? I'm not fully sure
  1873. * about undo and end of connection cases, which can cause R without L?
  1874. */
  1875. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  1876. {
  1877. if ((tp->retransmit_skb_hint != NULL) &&
  1878. before(TCP_SKB_CB(skb)->seq,
  1879. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  1880. tp->retransmit_skb_hint = NULL;
  1881. }
  1882. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  1883. * is against sacked "cnt", otherwise it's against facked "cnt"
  1884. */
  1885. static void tcp_mark_head_lost(struct sock *sk, int packets)
  1886. {
  1887. struct tcp_sock *tp = tcp_sk(sk);
  1888. struct sk_buff *skb;
  1889. int cnt, oldcnt;
  1890. int err;
  1891. unsigned int mss;
  1892. BUG_TRAP(packets <= tp->packets_out);
  1893. if (tp->lost_skb_hint) {
  1894. skb = tp->lost_skb_hint;
  1895. cnt = tp->lost_cnt_hint;
  1896. } else {
  1897. skb = tcp_write_queue_head(sk);
  1898. cnt = 0;
  1899. }
  1900. tcp_for_write_queue_from(skb, sk) {
  1901. if (skb == tcp_send_head(sk))
  1902. break;
  1903. /* TODO: do this better */
  1904. /* this is not the most efficient way to do this... */
  1905. tp->lost_skb_hint = skb;
  1906. tp->lost_cnt_hint = cnt;
  1907. if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  1908. break;
  1909. oldcnt = cnt;
  1910. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1911. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1912. cnt += tcp_skb_pcount(skb);
  1913. if (cnt > packets) {
  1914. if (tcp_is_sack(tp) || (oldcnt >= packets))
  1915. break;
  1916. mss = skb_shinfo(skb)->gso_size;
  1917. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1918. if (err < 0)
  1919. break;
  1920. cnt = packets;
  1921. }
  1922. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
  1923. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1924. tp->lost_out += tcp_skb_pcount(skb);
  1925. tcp_verify_retransmit_hint(tp, skb);
  1926. }
  1927. }
  1928. tcp_verify_left_out(tp);
  1929. }
  1930. /* Account newly detected lost packet(s) */
  1931. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1932. {
  1933. struct tcp_sock *tp = tcp_sk(sk);
  1934. if (tcp_is_reno(tp)) {
  1935. tcp_mark_head_lost(sk, 1);
  1936. } else if (tcp_is_fack(tp)) {
  1937. int lost = tp->fackets_out - tp->reordering;
  1938. if (lost <= 0)
  1939. lost = 1;
  1940. tcp_mark_head_lost(sk, lost);
  1941. } else {
  1942. int sacked_upto = tp->sacked_out - tp->reordering;
  1943. if (sacked_upto < fast_rexmit)
  1944. sacked_upto = fast_rexmit;
  1945. tcp_mark_head_lost(sk, sacked_upto);
  1946. }
  1947. /* New heuristics: it is possible only after we switched
  1948. * to restart timer each time when something is ACKed.
  1949. * Hence, we can detect timed out packets during fast
  1950. * retransmit without falling to slow start.
  1951. */
  1952. if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
  1953. struct sk_buff *skb;
  1954. skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
  1955. : tcp_write_queue_head(sk);
  1956. tcp_for_write_queue_from(skb, sk) {
  1957. if (skb == tcp_send_head(sk))
  1958. break;
  1959. if (!tcp_skb_timedout(sk, skb))
  1960. break;
  1961. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
  1962. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1963. tp->lost_out += tcp_skb_pcount(skb);
  1964. tcp_verify_retransmit_hint(tp, skb);
  1965. }
  1966. }
  1967. tp->scoreboard_skb_hint = skb;
  1968. tcp_verify_left_out(tp);
  1969. }
  1970. }
  1971. /* CWND moderation, preventing bursts due to too big ACKs
  1972. * in dubious situations.
  1973. */
  1974. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1975. {
  1976. tp->snd_cwnd = min(tp->snd_cwnd,
  1977. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1978. tp->snd_cwnd_stamp = tcp_time_stamp;
  1979. }
  1980. /* Lower bound on congestion window is slow start threshold
  1981. * unless congestion avoidance choice decides to overide it.
  1982. */
  1983. static inline u32 tcp_cwnd_min(const struct sock *sk)
  1984. {
  1985. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1986. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  1987. }
  1988. /* Decrease cwnd each second ack. */
  1989. static void tcp_cwnd_down(struct sock *sk, int flag)
  1990. {
  1991. struct tcp_sock *tp = tcp_sk(sk);
  1992. int decr = tp->snd_cwnd_cnt + 1;
  1993. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  1994. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  1995. tp->snd_cwnd_cnt = decr & 1;
  1996. decr >>= 1;
  1997. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  1998. tp->snd_cwnd -= decr;
  1999. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2000. tp->snd_cwnd_stamp = tcp_time_stamp;
  2001. }
  2002. }
  2003. /* Nothing was retransmitted or returned timestamp is less
  2004. * than timestamp of the first retransmission.
  2005. */
  2006. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  2007. {
  2008. return !tp->retrans_stamp ||
  2009. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2010. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2011. }
  2012. /* Undo procedures. */
  2013. #if FASTRETRANS_DEBUG > 1
  2014. static void DBGUNDO(struct sock *sk, const char *msg)
  2015. {
  2016. struct tcp_sock *tp = tcp_sk(sk);
  2017. struct inet_sock *inet = inet_sk(sk);
  2018. if (sk->sk_family == AF_INET) {
  2019. printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
  2020. msg,
  2021. NIPQUAD(inet->daddr), ntohs(inet->dport),
  2022. tp->snd_cwnd, tcp_left_out(tp),
  2023. tp->snd_ssthresh, tp->prior_ssthresh,
  2024. tp->packets_out);
  2025. }
  2026. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2027. else if (sk->sk_family == AF_INET6) {
  2028. struct ipv6_pinfo *np = inet6_sk(sk);
  2029. printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
  2030. msg,
  2031. NIP6(np->daddr), ntohs(inet->dport),
  2032. tp->snd_cwnd, tcp_left_out(tp),
  2033. tp->snd_ssthresh, tp->prior_ssthresh,
  2034. tp->packets_out);
  2035. }
  2036. #endif
  2037. }
  2038. #else
  2039. #define DBGUNDO(x...) do { } while (0)
  2040. #endif
  2041. static void tcp_undo_cwr(struct sock *sk, const int undo)
  2042. {
  2043. struct tcp_sock *tp = tcp_sk(sk);
  2044. if (tp->prior_ssthresh) {
  2045. const struct inet_connection_sock *icsk = inet_csk(sk);
  2046. if (icsk->icsk_ca_ops->undo_cwnd)
  2047. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2048. else
  2049. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2050. if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
  2051. tp->snd_ssthresh = tp->prior_ssthresh;
  2052. TCP_ECN_withdraw_cwr(tp);
  2053. }
  2054. } else {
  2055. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2056. }
  2057. tcp_moderate_cwnd(tp);
  2058. tp->snd_cwnd_stamp = tcp_time_stamp;
  2059. /* There is something screwy going on with the retrans hints after
  2060. an undo */
  2061. tcp_clear_all_retrans_hints(tp);
  2062. }
  2063. static inline int tcp_may_undo(struct tcp_sock *tp)
  2064. {
  2065. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2066. }
  2067. /* People celebrate: "We love our President!" */
  2068. static int tcp_try_undo_recovery(struct sock *sk)
  2069. {
  2070. struct tcp_sock *tp = tcp_sk(sk);
  2071. if (tcp_may_undo(tp)) {
  2072. /* Happy end! We did not retransmit anything
  2073. * or our original transmission succeeded.
  2074. */
  2075. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2076. tcp_undo_cwr(sk, 1);
  2077. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2078. NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
  2079. else
  2080. NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
  2081. tp->undo_marker = 0;
  2082. }
  2083. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2084. /* Hold old state until something *above* high_seq
  2085. * is ACKed. For Reno it is MUST to prevent false
  2086. * fast retransmits (RFC2582). SACK TCP is safe. */
  2087. tcp_moderate_cwnd(tp);
  2088. return 1;
  2089. }
  2090. tcp_set_ca_state(sk, TCP_CA_Open);
  2091. return 0;
  2092. }
  2093. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2094. static void tcp_try_undo_dsack(struct sock *sk)
  2095. {
  2096. struct tcp_sock *tp = tcp_sk(sk);
  2097. if (tp->undo_marker && !tp->undo_retrans) {
  2098. DBGUNDO(sk, "D-SACK");
  2099. tcp_undo_cwr(sk, 1);
  2100. tp->undo_marker = 0;
  2101. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
  2102. }
  2103. }
  2104. /* Undo during fast recovery after partial ACK. */
  2105. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2106. {
  2107. struct tcp_sock *tp = tcp_sk(sk);
  2108. /* Partial ACK arrived. Force Hoe's retransmit. */
  2109. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2110. if (tcp_may_undo(tp)) {
  2111. /* Plain luck! Hole if filled with delayed
  2112. * packet, rather than with a retransmit.
  2113. */
  2114. if (tp->retrans_out == 0)
  2115. tp->retrans_stamp = 0;
  2116. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2117. DBGUNDO(sk, "Hoe");
  2118. tcp_undo_cwr(sk, 0);
  2119. NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
  2120. /* So... Do not make Hoe's retransmit yet.
  2121. * If the first packet was delayed, the rest
  2122. * ones are most probably delayed as well.
  2123. */
  2124. failed = 0;
  2125. }
  2126. return failed;
  2127. }
  2128. /* Undo during loss recovery after partial ACK. */
  2129. static int tcp_try_undo_loss(struct sock *sk)
  2130. {
  2131. struct tcp_sock *tp = tcp_sk(sk);
  2132. if (tcp_may_undo(tp)) {
  2133. struct sk_buff *skb;
  2134. tcp_for_write_queue(skb, sk) {
  2135. if (skb == tcp_send_head(sk))
  2136. break;
  2137. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2138. }
  2139. tcp_clear_all_retrans_hints(tp);
  2140. DBGUNDO(sk, "partial loss");
  2141. tp->lost_out = 0;
  2142. tcp_undo_cwr(sk, 1);
  2143. NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
  2144. inet_csk(sk)->icsk_retransmits = 0;
  2145. tp->undo_marker = 0;
  2146. if (tcp_is_sack(tp))
  2147. tcp_set_ca_state(sk, TCP_CA_Open);
  2148. return 1;
  2149. }
  2150. return 0;
  2151. }
  2152. static inline void tcp_complete_cwr(struct sock *sk)
  2153. {
  2154. struct tcp_sock *tp = tcp_sk(sk);
  2155. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2156. tp->snd_cwnd_stamp = tcp_time_stamp;
  2157. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2158. }
  2159. static void tcp_try_to_open(struct sock *sk, int flag)
  2160. {
  2161. struct tcp_sock *tp = tcp_sk(sk);
  2162. tcp_verify_left_out(tp);
  2163. if (tp->retrans_out == 0)
  2164. tp->retrans_stamp = 0;
  2165. if (flag & FLAG_ECE)
  2166. tcp_enter_cwr(sk, 1);
  2167. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2168. int state = TCP_CA_Open;
  2169. if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
  2170. state = TCP_CA_Disorder;
  2171. if (inet_csk(sk)->icsk_ca_state != state) {
  2172. tcp_set_ca_state(sk, state);
  2173. tp->high_seq = tp->snd_nxt;
  2174. }
  2175. tcp_moderate_cwnd(tp);
  2176. } else {
  2177. tcp_cwnd_down(sk, flag);
  2178. }
  2179. }
  2180. static void tcp_mtup_probe_failed(struct sock *sk)
  2181. {
  2182. struct inet_connection_sock *icsk = inet_csk(sk);
  2183. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2184. icsk->icsk_mtup.probe_size = 0;
  2185. }
  2186. static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
  2187. {
  2188. struct tcp_sock *tp = tcp_sk(sk);
  2189. struct inet_connection_sock *icsk = inet_csk(sk);
  2190. /* FIXME: breaks with very large cwnd */
  2191. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2192. tp->snd_cwnd = tp->snd_cwnd *
  2193. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2194. icsk->icsk_mtup.probe_size;
  2195. tp->snd_cwnd_cnt = 0;
  2196. tp->snd_cwnd_stamp = tcp_time_stamp;
  2197. tp->rcv_ssthresh = tcp_current_ssthresh(sk);
  2198. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2199. icsk->icsk_mtup.probe_size = 0;
  2200. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2201. }
  2202. /* Process an event, which can update packets-in-flight not trivially.
  2203. * Main goal of this function is to calculate new estimate for left_out,
  2204. * taking into account both packets sitting in receiver's buffer and
  2205. * packets lost by network.
  2206. *
  2207. * Besides that it does CWND reduction, when packet loss is detected
  2208. * and changes state of machine.
  2209. *
  2210. * It does _not_ decide what to send, it is made in function
  2211. * tcp_xmit_retransmit_queue().
  2212. */
  2213. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
  2214. {
  2215. struct inet_connection_sock *icsk = inet_csk(sk);
  2216. struct tcp_sock *tp = tcp_sk(sk);
  2217. int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2218. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2219. (tcp_fackets_out(tp) > tp->reordering));
  2220. int fast_rexmit = 0;
  2221. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2222. tp->sacked_out = 0;
  2223. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2224. tp->fackets_out = 0;
  2225. /* Now state machine starts.
  2226. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2227. if (flag & FLAG_ECE)
  2228. tp->prior_ssthresh = 0;
  2229. /* B. In all the states check for reneging SACKs. */
  2230. if (tcp_check_sack_reneging(sk, flag))
  2231. return;
  2232. /* C. Process data loss notification, provided it is valid. */
  2233. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2234. before(tp->snd_una, tp->high_seq) &&
  2235. icsk->icsk_ca_state != TCP_CA_Open &&
  2236. tp->fackets_out > tp->reordering) {
  2237. tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
  2238. NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
  2239. }
  2240. /* D. Check consistency of the current state. */
  2241. tcp_verify_left_out(tp);
  2242. /* E. Check state exit conditions. State can be terminated
  2243. * when high_seq is ACKed. */
  2244. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2245. BUG_TRAP(tp->retrans_out == 0);
  2246. tp->retrans_stamp = 0;
  2247. } else if (!before(tp->snd_una, tp->high_seq)) {
  2248. switch (icsk->icsk_ca_state) {
  2249. case TCP_CA_Loss:
  2250. icsk->icsk_retransmits = 0;
  2251. if (tcp_try_undo_recovery(sk))
  2252. return;
  2253. break;
  2254. case TCP_CA_CWR:
  2255. /* CWR is to be held something *above* high_seq
  2256. * is ACKed for CWR bit to reach receiver. */
  2257. if (tp->snd_una != tp->high_seq) {
  2258. tcp_complete_cwr(sk);
  2259. tcp_set_ca_state(sk, TCP_CA_Open);
  2260. }
  2261. break;
  2262. case TCP_CA_Disorder:
  2263. tcp_try_undo_dsack(sk);
  2264. if (!tp->undo_marker ||
  2265. /* For SACK case do not Open to allow to undo
  2266. * catching for all duplicate ACKs. */
  2267. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2268. tp->undo_marker = 0;
  2269. tcp_set_ca_state(sk, TCP_CA_Open);
  2270. }
  2271. break;
  2272. case TCP_CA_Recovery:
  2273. if (tcp_is_reno(tp))
  2274. tcp_reset_reno_sack(tp);
  2275. if (tcp_try_undo_recovery(sk))
  2276. return;
  2277. tcp_complete_cwr(sk);
  2278. break;
  2279. }
  2280. }
  2281. /* F. Process state. */
  2282. switch (icsk->icsk_ca_state) {
  2283. case TCP_CA_Recovery:
  2284. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2285. if (tcp_is_reno(tp) && is_dupack)
  2286. tcp_add_reno_sack(sk);
  2287. } else
  2288. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2289. break;
  2290. case TCP_CA_Loss:
  2291. if (flag & FLAG_DATA_ACKED)
  2292. icsk->icsk_retransmits = 0;
  2293. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2294. tcp_reset_reno_sack(tp);
  2295. if (!tcp_try_undo_loss(sk)) {
  2296. tcp_moderate_cwnd(tp);
  2297. tcp_xmit_retransmit_queue(sk);
  2298. return;
  2299. }
  2300. if (icsk->icsk_ca_state != TCP_CA_Open)
  2301. return;
  2302. /* Loss is undone; fall through to processing in Open state. */
  2303. default:
  2304. if (tcp_is_reno(tp)) {
  2305. if (flag & FLAG_SND_UNA_ADVANCED)
  2306. tcp_reset_reno_sack(tp);
  2307. if (is_dupack)
  2308. tcp_add_reno_sack(sk);
  2309. }
  2310. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2311. tcp_try_undo_dsack(sk);
  2312. if (!tcp_time_to_recover(sk)) {
  2313. tcp_try_to_open(sk, flag);
  2314. return;
  2315. }
  2316. /* MTU probe failure: don't reduce cwnd */
  2317. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2318. icsk->icsk_mtup.probe_size &&
  2319. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2320. tcp_mtup_probe_failed(sk);
  2321. /* Restores the reduction we did in tcp_mtup_probe() */
  2322. tp->snd_cwnd++;
  2323. tcp_simple_retransmit(sk);
  2324. return;
  2325. }
  2326. /* Otherwise enter Recovery state */
  2327. if (tcp_is_reno(tp))
  2328. NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
  2329. else
  2330. NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
  2331. tp->high_seq = tp->snd_nxt;
  2332. tp->prior_ssthresh = 0;
  2333. tp->undo_marker = tp->snd_una;
  2334. tp->undo_retrans = tp->retrans_out;
  2335. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2336. if (!(flag & FLAG_ECE))
  2337. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2338. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2339. TCP_ECN_queue_cwr(tp);
  2340. }
  2341. tp->bytes_acked = 0;
  2342. tp->snd_cwnd_cnt = 0;
  2343. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2344. fast_rexmit = 1;
  2345. }
  2346. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2347. tcp_update_scoreboard(sk, fast_rexmit);
  2348. tcp_cwnd_down(sk, flag);
  2349. tcp_xmit_retransmit_queue(sk);
  2350. }
  2351. /* Read draft-ietf-tcplw-high-performance before mucking
  2352. * with this code. (Supersedes RFC1323)
  2353. */
  2354. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2355. {
  2356. /* RTTM Rule: A TSecr value received in a segment is used to
  2357. * update the averaged RTT measurement only if the segment
  2358. * acknowledges some new data, i.e., only if it advances the
  2359. * left edge of the send window.
  2360. *
  2361. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2362. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2363. *
  2364. * Changed: reset backoff as soon as we see the first valid sample.
  2365. * If we do not, we get strongly overestimated rto. With timestamps
  2366. * samples are accepted even from very old segments: f.e., when rtt=1
  2367. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2368. * answer arrives rto becomes 120 seconds! If at least one of segments
  2369. * in window is lost... Voila. --ANK (010210)
  2370. */
  2371. struct tcp_sock *tp = tcp_sk(sk);
  2372. const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
  2373. tcp_rtt_estimator(sk, seq_rtt);
  2374. tcp_set_rto(sk);
  2375. inet_csk(sk)->icsk_backoff = 0;
  2376. tcp_bound_rto(sk);
  2377. }
  2378. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2379. {
  2380. /* We don't have a timestamp. Can only use
  2381. * packets that are not retransmitted to determine
  2382. * rtt estimates. Also, we must not reset the
  2383. * backoff for rto until we get a non-retransmitted
  2384. * packet. This allows us to deal with a situation
  2385. * where the network delay has increased suddenly.
  2386. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2387. */
  2388. if (flag & FLAG_RETRANS_DATA_ACKED)
  2389. return;
  2390. tcp_rtt_estimator(sk, seq_rtt);
  2391. tcp_set_rto(sk);
  2392. inet_csk(sk)->icsk_backoff = 0;
  2393. tcp_bound_rto(sk);
  2394. }
  2395. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2396. const s32 seq_rtt)
  2397. {
  2398. const struct tcp_sock *tp = tcp_sk(sk);
  2399. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2400. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2401. tcp_ack_saw_tstamp(sk, flag);
  2402. else if (seq_rtt >= 0)
  2403. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2404. }
  2405. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2406. {
  2407. const struct inet_connection_sock *icsk = inet_csk(sk);
  2408. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2409. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2410. }
  2411. /* Restart timer after forward progress on connection.
  2412. * RFC2988 recommends to restart timer to now+rto.
  2413. */
  2414. static void tcp_rearm_rto(struct sock *sk)
  2415. {
  2416. struct tcp_sock *tp = tcp_sk(sk);
  2417. if (!tp->packets_out) {
  2418. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2419. } else {
  2420. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2421. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2422. }
  2423. }
  2424. /* If we get here, the whole TSO packet has not been acked. */
  2425. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2426. {
  2427. struct tcp_sock *tp = tcp_sk(sk);
  2428. u32 packets_acked;
  2429. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2430. packets_acked = tcp_skb_pcount(skb);
  2431. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2432. return 0;
  2433. packets_acked -= tcp_skb_pcount(skb);
  2434. if (packets_acked) {
  2435. BUG_ON(tcp_skb_pcount(skb) == 0);
  2436. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2437. }
  2438. return packets_acked;
  2439. }
  2440. /* Remove acknowledged frames from the retransmission queue. If our packet
  2441. * is before the ack sequence we can discard it as it's confirmed to have
  2442. * arrived at the other end.
  2443. */
  2444. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
  2445. {
  2446. struct tcp_sock *tp = tcp_sk(sk);
  2447. const struct inet_connection_sock *icsk = inet_csk(sk);
  2448. struct sk_buff *skb;
  2449. u32 now = tcp_time_stamp;
  2450. int fully_acked = 1;
  2451. int flag = 0;
  2452. u32 pkts_acked = 0;
  2453. u32 reord = tp->packets_out;
  2454. s32 seq_rtt = -1;
  2455. s32 ca_seq_rtt = -1;
  2456. ktime_t last_ackt = net_invalid_timestamp();
  2457. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2458. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2459. u32 end_seq;
  2460. u32 acked_pcount;
  2461. u8 sacked = scb->sacked;
  2462. /* Determine how many packets and what bytes were acked, tso and else */
  2463. if (after(scb->end_seq, tp->snd_una)) {
  2464. if (tcp_skb_pcount(skb) == 1 ||
  2465. !after(tp->snd_una, scb->seq))
  2466. break;
  2467. acked_pcount = tcp_tso_acked(sk, skb);
  2468. if (!acked_pcount)
  2469. break;
  2470. fully_acked = 0;
  2471. end_seq = tp->snd_una;
  2472. } else {
  2473. acked_pcount = tcp_skb_pcount(skb);
  2474. end_seq = scb->end_seq;
  2475. }
  2476. /* MTU probing checks */
  2477. if (fully_acked && icsk->icsk_mtup.probe_size &&
  2478. !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
  2479. tcp_mtup_probe_success(sk, skb);
  2480. }
  2481. if (sacked & TCPCB_RETRANS) {
  2482. if (sacked & TCPCB_SACKED_RETRANS)
  2483. tp->retrans_out -= acked_pcount;
  2484. flag |= FLAG_RETRANS_DATA_ACKED;
  2485. ca_seq_rtt = -1;
  2486. seq_rtt = -1;
  2487. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2488. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2489. } else {
  2490. ca_seq_rtt = now - scb->when;
  2491. last_ackt = skb->tstamp;
  2492. if (seq_rtt < 0) {
  2493. seq_rtt = ca_seq_rtt;
  2494. }
  2495. if (!(sacked & TCPCB_SACKED_ACKED))
  2496. reord = min(pkts_acked, reord);
  2497. }
  2498. if (sacked & TCPCB_SACKED_ACKED)
  2499. tp->sacked_out -= acked_pcount;
  2500. if (sacked & TCPCB_LOST)
  2501. tp->lost_out -= acked_pcount;
  2502. if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
  2503. tp->urg_mode = 0;
  2504. tp->packets_out -= acked_pcount;
  2505. pkts_acked += acked_pcount;
  2506. /* Initial outgoing SYN's get put onto the write_queue
  2507. * just like anything else we transmit. It is not
  2508. * true data, and if we misinform our callers that
  2509. * this ACK acks real data, we will erroneously exit
  2510. * connection startup slow start one packet too
  2511. * quickly. This is severely frowned upon behavior.
  2512. */
  2513. if (!(scb->flags & TCPCB_FLAG_SYN)) {
  2514. flag |= FLAG_DATA_ACKED;
  2515. } else {
  2516. flag |= FLAG_SYN_ACKED;
  2517. tp->retrans_stamp = 0;
  2518. }
  2519. if (!fully_acked)
  2520. break;
  2521. tcp_unlink_write_queue(skb, sk);
  2522. sk_wmem_free_skb(sk, skb);
  2523. tcp_clear_all_retrans_hints(tp);
  2524. }
  2525. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2526. flag |= FLAG_SACK_RENEGING;
  2527. if (flag & FLAG_ACKED) {
  2528. const struct tcp_congestion_ops *ca_ops
  2529. = inet_csk(sk)->icsk_ca_ops;
  2530. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2531. tcp_rearm_rto(sk);
  2532. if (tcp_is_reno(tp)) {
  2533. tcp_remove_reno_sacks(sk, pkts_acked);
  2534. } else {
  2535. /* Non-retransmitted hole got filled? That's reordering */
  2536. if (reord < prior_fackets)
  2537. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2538. }
  2539. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2540. if (ca_ops->pkts_acked) {
  2541. s32 rtt_us = -1;
  2542. /* Is the ACK triggering packet unambiguous? */
  2543. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2544. /* High resolution needed and available? */
  2545. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2546. !ktime_equal(last_ackt,
  2547. net_invalid_timestamp()))
  2548. rtt_us = ktime_us_delta(ktime_get_real(),
  2549. last_ackt);
  2550. else if (ca_seq_rtt > 0)
  2551. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2552. }
  2553. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2554. }
  2555. }
  2556. #if FASTRETRANS_DEBUG > 0
  2557. BUG_TRAP((int)tp->sacked_out >= 0);
  2558. BUG_TRAP((int)tp->lost_out >= 0);
  2559. BUG_TRAP((int)tp->retrans_out >= 0);
  2560. if (!tp->packets_out && tcp_is_sack(tp)) {
  2561. icsk = inet_csk(sk);
  2562. if (tp->lost_out) {
  2563. printk(KERN_DEBUG "Leak l=%u %d\n",
  2564. tp->lost_out, icsk->icsk_ca_state);
  2565. tp->lost_out = 0;
  2566. }
  2567. if (tp->sacked_out) {
  2568. printk(KERN_DEBUG "Leak s=%u %d\n",
  2569. tp->sacked_out, icsk->icsk_ca_state);
  2570. tp->sacked_out = 0;
  2571. }
  2572. if (tp->retrans_out) {
  2573. printk(KERN_DEBUG "Leak r=%u %d\n",
  2574. tp->retrans_out, icsk->icsk_ca_state);
  2575. tp->retrans_out = 0;
  2576. }
  2577. }
  2578. #endif
  2579. return flag;
  2580. }
  2581. static void tcp_ack_probe(struct sock *sk)
  2582. {
  2583. const struct tcp_sock *tp = tcp_sk(sk);
  2584. struct inet_connection_sock *icsk = inet_csk(sk);
  2585. /* Was it a usable window open? */
  2586. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2587. icsk->icsk_backoff = 0;
  2588. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2589. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2590. * This function is not for random using!
  2591. */
  2592. } else {
  2593. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2594. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2595. TCP_RTO_MAX);
  2596. }
  2597. }
  2598. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2599. {
  2600. return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2601. inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
  2602. }
  2603. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2604. {
  2605. const struct tcp_sock *tp = tcp_sk(sk);
  2606. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2607. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2608. }
  2609. /* Check that window update is acceptable.
  2610. * The function assumes that snd_una<=ack<=snd_next.
  2611. */
  2612. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  2613. const u32 ack, const u32 ack_seq,
  2614. const u32 nwin)
  2615. {
  2616. return (after(ack, tp->snd_una) ||
  2617. after(ack_seq, tp->snd_wl1) ||
  2618. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
  2619. }
  2620. /* Update our send window.
  2621. *
  2622. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2623. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2624. */
  2625. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  2626. u32 ack_seq)
  2627. {
  2628. struct tcp_sock *tp = tcp_sk(sk);
  2629. int flag = 0;
  2630. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2631. if (likely(!tcp_hdr(skb)->syn))
  2632. nwin <<= tp->rx_opt.snd_wscale;
  2633. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2634. flag |= FLAG_WIN_UPDATE;
  2635. tcp_update_wl(tp, ack, ack_seq);
  2636. if (tp->snd_wnd != nwin) {
  2637. tp->snd_wnd = nwin;
  2638. /* Note, it is the only place, where
  2639. * fast path is recovered for sending TCP.
  2640. */
  2641. tp->pred_flags = 0;
  2642. tcp_fast_path_check(sk);
  2643. if (nwin > tp->max_window) {
  2644. tp->max_window = nwin;
  2645. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2646. }
  2647. }
  2648. }
  2649. tp->snd_una = ack;
  2650. return flag;
  2651. }
  2652. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2653. * continue in congestion avoidance.
  2654. */
  2655. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2656. {
  2657. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2658. tp->snd_cwnd_cnt = 0;
  2659. tp->bytes_acked = 0;
  2660. TCP_ECN_queue_cwr(tp);
  2661. tcp_moderate_cwnd(tp);
  2662. }
  2663. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2664. * rate halving and continue in congestion avoidance.
  2665. */
  2666. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  2667. {
  2668. tcp_enter_cwr(sk, 0);
  2669. }
  2670. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2671. {
  2672. if (flag & FLAG_ECE)
  2673. tcp_ratehalving_spur_to_response(sk);
  2674. else
  2675. tcp_undo_cwr(sk, 1);
  2676. }
  2677. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2678. *
  2679. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2680. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2681. * window (but not to or beyond highest sequence sent before RTO):
  2682. * On First ACK, send two new segments out.
  2683. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2684. * algorithm is not part of the F-RTO detection algorithm
  2685. * given in RFC4138 but can be selected separately).
  2686. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2687. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2688. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2689. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2690. *
  2691. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2692. * original window even after we transmit two new data segments.
  2693. *
  2694. * SACK version:
  2695. * on first step, wait until first cumulative ACK arrives, then move to
  2696. * the second step. In second step, the next ACK decides.
  2697. *
  2698. * F-RTO is implemented (mainly) in four functions:
  2699. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  2700. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  2701. * called when tcp_use_frto() showed green light
  2702. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  2703. * - tcp_enter_frto_loss() is called if there is not enough evidence
  2704. * to prove that the RTO is indeed spurious. It transfers the control
  2705. * from F-RTO to the conventional RTO recovery
  2706. */
  2707. static int tcp_process_frto(struct sock *sk, int flag)
  2708. {
  2709. struct tcp_sock *tp = tcp_sk(sk);
  2710. tcp_verify_left_out(tp);
  2711. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  2712. if (flag & FLAG_DATA_ACKED)
  2713. inet_csk(sk)->icsk_retransmits = 0;
  2714. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  2715. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  2716. tp->undo_marker = 0;
  2717. if (!before(tp->snd_una, tp->frto_highmark)) {
  2718. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  2719. return 1;
  2720. }
  2721. if (!IsSackFrto() || tcp_is_reno(tp)) {
  2722. /* RFC4138 shortcoming in step 2; should also have case c):
  2723. * ACK isn't duplicate nor advances window, e.g., opposite dir
  2724. * data, winupdate
  2725. */
  2726. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  2727. return 1;
  2728. if (!(flag & FLAG_DATA_ACKED)) {
  2729. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  2730. flag);
  2731. return 1;
  2732. }
  2733. } else {
  2734. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  2735. /* Prevent sending of new data. */
  2736. tp->snd_cwnd = min(tp->snd_cwnd,
  2737. tcp_packets_in_flight(tp));
  2738. return 1;
  2739. }
  2740. if ((tp->frto_counter >= 2) &&
  2741. (!(flag & FLAG_FORWARD_PROGRESS) ||
  2742. ((flag & FLAG_DATA_SACKED) &&
  2743. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  2744. /* RFC4138 shortcoming (see comment above) */
  2745. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  2746. (flag & FLAG_NOT_DUP))
  2747. return 1;
  2748. tcp_enter_frto_loss(sk, 3, flag);
  2749. return 1;
  2750. }
  2751. }
  2752. if (tp->frto_counter == 1) {
  2753. /* tcp_may_send_now needs to see updated state */
  2754. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  2755. tp->frto_counter = 2;
  2756. if (!tcp_may_send_now(sk))
  2757. tcp_enter_frto_loss(sk, 2, flag);
  2758. return 1;
  2759. } else {
  2760. switch (sysctl_tcp_frto_response) {
  2761. case 2:
  2762. tcp_undo_spur_to_response(sk, flag);
  2763. break;
  2764. case 1:
  2765. tcp_conservative_spur_to_response(tp);
  2766. break;
  2767. default:
  2768. tcp_ratehalving_spur_to_response(sk);
  2769. break;
  2770. }
  2771. tp->frto_counter = 0;
  2772. tp->undo_marker = 0;
  2773. NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
  2774. }
  2775. return 0;
  2776. }
  2777. /* This routine deals with incoming acks, but not outgoing ones. */
  2778. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  2779. {
  2780. struct inet_connection_sock *icsk = inet_csk(sk);
  2781. struct tcp_sock *tp = tcp_sk(sk);
  2782. u32 prior_snd_una = tp->snd_una;
  2783. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2784. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2785. u32 prior_in_flight;
  2786. u32 prior_fackets;
  2787. int prior_packets;
  2788. int frto_cwnd = 0;
  2789. /* If the ack is newer than sent or older than previous acks
  2790. * then we can probably ignore it.
  2791. */
  2792. if (after(ack, tp->snd_nxt))
  2793. goto uninteresting_ack;
  2794. if (before(ack, prior_snd_una))
  2795. goto old_ack;
  2796. if (after(ack, prior_snd_una))
  2797. flag |= FLAG_SND_UNA_ADVANCED;
  2798. if (sysctl_tcp_abc) {
  2799. if (icsk->icsk_ca_state < TCP_CA_CWR)
  2800. tp->bytes_acked += ack - prior_snd_una;
  2801. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  2802. /* we assume just one segment left network */
  2803. tp->bytes_acked += min(ack - prior_snd_una,
  2804. tp->mss_cache);
  2805. }
  2806. prior_fackets = tp->fackets_out;
  2807. prior_in_flight = tcp_packets_in_flight(tp);
  2808. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2809. /* Window is constant, pure forward advance.
  2810. * No more checks are required.
  2811. * Note, we use the fact that SND.UNA>=SND.WL2.
  2812. */
  2813. tcp_update_wl(tp, ack, ack_seq);
  2814. tp->snd_una = ack;
  2815. flag |= FLAG_WIN_UPDATE;
  2816. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2817. NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
  2818. } else {
  2819. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2820. flag |= FLAG_DATA;
  2821. else
  2822. NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
  2823. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2824. if (TCP_SKB_CB(skb)->sacked)
  2825. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2826. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2827. flag |= FLAG_ECE;
  2828. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2829. }
  2830. /* We passed data and got it acked, remove any soft error
  2831. * log. Something worked...
  2832. */
  2833. sk->sk_err_soft = 0;
  2834. tp->rcv_tstamp = tcp_time_stamp;
  2835. prior_packets = tp->packets_out;
  2836. if (!prior_packets)
  2837. goto no_queue;
  2838. /* See if we can take anything off of the retransmit queue. */
  2839. flag |= tcp_clean_rtx_queue(sk, prior_fackets);
  2840. if (tp->frto_counter)
  2841. frto_cwnd = tcp_process_frto(sk, flag);
  2842. /* Guarantee sacktag reordering detection against wrap-arounds */
  2843. if (before(tp->frto_highmark, tp->snd_una))
  2844. tp->frto_highmark = 0;
  2845. if (tcp_ack_is_dubious(sk, flag)) {
  2846. /* Advance CWND, if state allows this. */
  2847. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  2848. tcp_may_raise_cwnd(sk, flag))
  2849. tcp_cong_avoid(sk, ack, prior_in_flight);
  2850. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
  2851. flag);
  2852. } else {
  2853. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  2854. tcp_cong_avoid(sk, ack, prior_in_flight);
  2855. }
  2856. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  2857. dst_confirm(sk->sk_dst_cache);
  2858. return 1;
  2859. no_queue:
  2860. icsk->icsk_probes_out = 0;
  2861. /* If this ack opens up a zero window, clear backoff. It was
  2862. * being used to time the probes, and is probably far higher than
  2863. * it needs to be for normal retransmission.
  2864. */
  2865. if (tcp_send_head(sk))
  2866. tcp_ack_probe(sk);
  2867. return 1;
  2868. old_ack:
  2869. if (TCP_SKB_CB(skb)->sacked)
  2870. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2871. uninteresting_ack:
  2872. SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2873. return 0;
  2874. }
  2875. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2876. * But, this can also be called on packets in the established flow when
  2877. * the fast version below fails.
  2878. */
  2879. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
  2880. int estab)
  2881. {
  2882. unsigned char *ptr;
  2883. struct tcphdr *th = tcp_hdr(skb);
  2884. int length = (th->doff * 4) - sizeof(struct tcphdr);
  2885. ptr = (unsigned char *)(th + 1);
  2886. opt_rx->saw_tstamp = 0;
  2887. while (length > 0) {
  2888. int opcode = *ptr++;
  2889. int opsize;
  2890. switch (opcode) {
  2891. case TCPOPT_EOL:
  2892. return;
  2893. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  2894. length--;
  2895. continue;
  2896. default:
  2897. opsize = *ptr++;
  2898. if (opsize < 2) /* "silly options" */
  2899. return;
  2900. if (opsize > length)
  2901. return; /* don't parse partial options */
  2902. switch (opcode) {
  2903. case TCPOPT_MSS:
  2904. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  2905. u16 in_mss = get_unaligned_be16(ptr);
  2906. if (in_mss) {
  2907. if (opt_rx->user_mss &&
  2908. opt_rx->user_mss < in_mss)
  2909. in_mss = opt_rx->user_mss;
  2910. opt_rx->mss_clamp = in_mss;
  2911. }
  2912. }
  2913. break;
  2914. case TCPOPT_WINDOW:
  2915. if (opsize == TCPOLEN_WINDOW && th->syn &&
  2916. !estab && sysctl_tcp_window_scaling) {
  2917. __u8 snd_wscale = *(__u8 *)ptr;
  2918. opt_rx->wscale_ok = 1;
  2919. if (snd_wscale > 14) {
  2920. if (net_ratelimit())
  2921. printk(KERN_INFO "tcp_parse_options: Illegal window "
  2922. "scaling value %d >14 received.\n",
  2923. snd_wscale);
  2924. snd_wscale = 14;
  2925. }
  2926. opt_rx->snd_wscale = snd_wscale;
  2927. }
  2928. break;
  2929. case TCPOPT_TIMESTAMP:
  2930. if ((opsize == TCPOLEN_TIMESTAMP) &&
  2931. ((estab && opt_rx->tstamp_ok) ||
  2932. (!estab && sysctl_tcp_timestamps))) {
  2933. opt_rx->saw_tstamp = 1;
  2934. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  2935. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  2936. }
  2937. break;
  2938. case TCPOPT_SACK_PERM:
  2939. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  2940. !estab && sysctl_tcp_sack) {
  2941. opt_rx->sack_ok = 1;
  2942. tcp_sack_reset(opt_rx);
  2943. }
  2944. break;
  2945. case TCPOPT_SACK:
  2946. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  2947. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  2948. opt_rx->sack_ok) {
  2949. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  2950. }
  2951. break;
  2952. #ifdef CONFIG_TCP_MD5SIG
  2953. case TCPOPT_MD5SIG:
  2954. /*
  2955. * The MD5 Hash has already been
  2956. * checked (see tcp_v{4,6}_do_rcv()).
  2957. */
  2958. break;
  2959. #endif
  2960. }
  2961. ptr += opsize-2;
  2962. length -= opsize;
  2963. }
  2964. }
  2965. }
  2966. /* Fast parse options. This hopes to only see timestamps.
  2967. * If it is wrong it falls back on tcp_parse_options().
  2968. */
  2969. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  2970. struct tcp_sock *tp)
  2971. {
  2972. if (th->doff == sizeof(struct tcphdr) >> 2) {
  2973. tp->rx_opt.saw_tstamp = 0;
  2974. return 0;
  2975. } else if (tp->rx_opt.tstamp_ok &&
  2976. th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
  2977. __be32 *ptr = (__be32 *)(th + 1);
  2978. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  2979. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  2980. tp->rx_opt.saw_tstamp = 1;
  2981. ++ptr;
  2982. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  2983. ++ptr;
  2984. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  2985. return 1;
  2986. }
  2987. }
  2988. tcp_parse_options(skb, &tp->rx_opt, 1);
  2989. return 1;
  2990. }
  2991. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  2992. {
  2993. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2994. tp->rx_opt.ts_recent_stamp = get_seconds();
  2995. }
  2996. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2997. {
  2998. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2999. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3000. * extra check below makes sure this can only happen
  3001. * for pure ACK frames. -DaveM
  3002. *
  3003. * Not only, also it occurs for expired timestamps.
  3004. */
  3005. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
  3006. get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
  3007. tcp_store_ts_recent(tp);
  3008. }
  3009. }
  3010. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3011. *
  3012. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3013. * it can pass through stack. So, the following predicate verifies that
  3014. * this segment is not used for anything but congestion avoidance or
  3015. * fast retransmit. Moreover, we even are able to eliminate most of such
  3016. * second order effects, if we apply some small "replay" window (~RTO)
  3017. * to timestamp space.
  3018. *
  3019. * All these measures still do not guarantee that we reject wrapped ACKs
  3020. * on networks with high bandwidth, when sequence space is recycled fastly,
  3021. * but it guarantees that such events will be very rare and do not affect
  3022. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3023. * buggy extension.
  3024. *
  3025. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3026. * states that events when retransmit arrives after original data are rare.
  3027. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3028. * the biggest problem on large power networks even with minor reordering.
  3029. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3030. * up to bandwidth of 18Gigabit/sec. 8) ]
  3031. */
  3032. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3033. {
  3034. struct tcp_sock *tp = tcp_sk(sk);
  3035. struct tcphdr *th = tcp_hdr(skb);
  3036. u32 seq = TCP_SKB_CB(skb)->seq;
  3037. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3038. return (/* 1. Pure ACK with correct sequence number. */
  3039. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3040. /* 2. ... and duplicate ACK. */
  3041. ack == tp->snd_una &&
  3042. /* 3. ... and does not update window. */
  3043. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3044. /* 4. ... and sits in replay window. */
  3045. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3046. }
  3047. static inline int tcp_paws_discard(const struct sock *sk,
  3048. const struct sk_buff *skb)
  3049. {
  3050. const struct tcp_sock *tp = tcp_sk(sk);
  3051. return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
  3052. get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
  3053. !tcp_disordered_ack(sk, skb));
  3054. }
  3055. /* Check segment sequence number for validity.
  3056. *
  3057. * Segment controls are considered valid, if the segment
  3058. * fits to the window after truncation to the window. Acceptability
  3059. * of data (and SYN, FIN, of course) is checked separately.
  3060. * See tcp_data_queue(), for example.
  3061. *
  3062. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3063. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3064. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3065. * (borrowed from freebsd)
  3066. */
  3067. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3068. {
  3069. return !before(end_seq, tp->rcv_wup) &&
  3070. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3071. }
  3072. /* When we get a reset we do this. */
  3073. static void tcp_reset(struct sock *sk)
  3074. {
  3075. /* We want the right error as BSD sees it (and indeed as we do). */
  3076. switch (sk->sk_state) {
  3077. case TCP_SYN_SENT:
  3078. sk->sk_err = ECONNREFUSED;
  3079. break;
  3080. case TCP_CLOSE_WAIT:
  3081. sk->sk_err = EPIPE;
  3082. break;
  3083. case TCP_CLOSE:
  3084. return;
  3085. default:
  3086. sk->sk_err = ECONNRESET;
  3087. }
  3088. if (!sock_flag(sk, SOCK_DEAD))
  3089. sk->sk_error_report(sk);
  3090. tcp_done(sk);
  3091. }
  3092. /*
  3093. * Process the FIN bit. This now behaves as it is supposed to work
  3094. * and the FIN takes effect when it is validly part of sequence
  3095. * space. Not before when we get holes.
  3096. *
  3097. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3098. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3099. * TIME-WAIT)
  3100. *
  3101. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3102. * close and we go into CLOSING (and later onto TIME-WAIT)
  3103. *
  3104. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3105. */
  3106. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  3107. {
  3108. struct tcp_sock *tp = tcp_sk(sk);
  3109. inet_csk_schedule_ack(sk);
  3110. sk->sk_shutdown |= RCV_SHUTDOWN;
  3111. sock_set_flag(sk, SOCK_DONE);
  3112. switch (sk->sk_state) {
  3113. case TCP_SYN_RECV:
  3114. case TCP_ESTABLISHED:
  3115. /* Move to CLOSE_WAIT */
  3116. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3117. inet_csk(sk)->icsk_ack.pingpong = 1;
  3118. break;
  3119. case TCP_CLOSE_WAIT:
  3120. case TCP_CLOSING:
  3121. /* Received a retransmission of the FIN, do
  3122. * nothing.
  3123. */
  3124. break;
  3125. case TCP_LAST_ACK:
  3126. /* RFC793: Remain in the LAST-ACK state. */
  3127. break;
  3128. case TCP_FIN_WAIT1:
  3129. /* This case occurs when a simultaneous close
  3130. * happens, we must ack the received FIN and
  3131. * enter the CLOSING state.
  3132. */
  3133. tcp_send_ack(sk);
  3134. tcp_set_state(sk, TCP_CLOSING);
  3135. break;
  3136. case TCP_FIN_WAIT2:
  3137. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3138. tcp_send_ack(sk);
  3139. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3140. break;
  3141. default:
  3142. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3143. * cases we should never reach this piece of code.
  3144. */
  3145. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3146. __func__, sk->sk_state);
  3147. break;
  3148. }
  3149. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3150. * Probably, we should reset in this case. For now drop them.
  3151. */
  3152. __skb_queue_purge(&tp->out_of_order_queue);
  3153. if (tcp_is_sack(tp))
  3154. tcp_sack_reset(&tp->rx_opt);
  3155. sk_mem_reclaim(sk);
  3156. if (!sock_flag(sk, SOCK_DEAD)) {
  3157. sk->sk_state_change(sk);
  3158. /* Do not send POLL_HUP for half duplex close. */
  3159. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3160. sk->sk_state == TCP_CLOSE)
  3161. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3162. else
  3163. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3164. }
  3165. }
  3166. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3167. u32 end_seq)
  3168. {
  3169. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3170. if (before(seq, sp->start_seq))
  3171. sp->start_seq = seq;
  3172. if (after(end_seq, sp->end_seq))
  3173. sp->end_seq = end_seq;
  3174. return 1;
  3175. }
  3176. return 0;
  3177. }
  3178. static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3179. {
  3180. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3181. if (before(seq, tp->rcv_nxt))
  3182. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
  3183. else
  3184. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
  3185. tp->rx_opt.dsack = 1;
  3186. tp->duplicate_sack[0].start_seq = seq;
  3187. tp->duplicate_sack[0].end_seq = end_seq;
  3188. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
  3189. 4 - tp->rx_opt.tstamp_ok);
  3190. }
  3191. }
  3192. static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3193. {
  3194. if (!tp->rx_opt.dsack)
  3195. tcp_dsack_set(tp, seq, end_seq);
  3196. else
  3197. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3198. }
  3199. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  3200. {
  3201. struct tcp_sock *tp = tcp_sk(sk);
  3202. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3203. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3204. NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
  3205. tcp_enter_quickack_mode(sk);
  3206. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3207. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3208. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3209. end_seq = tp->rcv_nxt;
  3210. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
  3211. }
  3212. }
  3213. tcp_send_ack(sk);
  3214. }
  3215. /* These routines update the SACK block as out-of-order packets arrive or
  3216. * in-order packets close up the sequence space.
  3217. */
  3218. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3219. {
  3220. int this_sack;
  3221. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3222. struct tcp_sack_block *swalk = sp + 1;
  3223. /* See if the recent change to the first SACK eats into
  3224. * or hits the sequence space of other SACK blocks, if so coalesce.
  3225. */
  3226. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3227. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3228. int i;
  3229. /* Zap SWALK, by moving every further SACK up by one slot.
  3230. * Decrease num_sacks.
  3231. */
  3232. tp->rx_opt.num_sacks--;
  3233. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
  3234. tp->rx_opt.dsack,
  3235. 4 - tp->rx_opt.tstamp_ok);
  3236. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3237. sp[i] = sp[i + 1];
  3238. continue;
  3239. }
  3240. this_sack++, swalk++;
  3241. }
  3242. }
  3243. static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
  3244. struct tcp_sack_block *sack2)
  3245. {
  3246. __u32 tmp;
  3247. tmp = sack1->start_seq;
  3248. sack1->start_seq = sack2->start_seq;
  3249. sack2->start_seq = tmp;
  3250. tmp = sack1->end_seq;
  3251. sack1->end_seq = sack2->end_seq;
  3252. sack2->end_seq = tmp;
  3253. }
  3254. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3255. {
  3256. struct tcp_sock *tp = tcp_sk(sk);
  3257. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3258. int cur_sacks = tp->rx_opt.num_sacks;
  3259. int this_sack;
  3260. if (!cur_sacks)
  3261. goto new_sack;
  3262. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3263. if (tcp_sack_extend(sp, seq, end_seq)) {
  3264. /* Rotate this_sack to the first one. */
  3265. for (; this_sack > 0; this_sack--, sp--)
  3266. tcp_sack_swap(sp, sp - 1);
  3267. if (cur_sacks > 1)
  3268. tcp_sack_maybe_coalesce(tp);
  3269. return;
  3270. }
  3271. }
  3272. /* Could not find an adjacent existing SACK, build a new one,
  3273. * put it at the front, and shift everyone else down. We
  3274. * always know there is at least one SACK present already here.
  3275. *
  3276. * If the sack array is full, forget about the last one.
  3277. */
  3278. if (this_sack >= 4) {
  3279. this_sack--;
  3280. tp->rx_opt.num_sacks--;
  3281. sp--;
  3282. }
  3283. for (; this_sack > 0; this_sack--, sp--)
  3284. *sp = *(sp - 1);
  3285. new_sack:
  3286. /* Build the new head SACK, and we're done. */
  3287. sp->start_seq = seq;
  3288. sp->end_seq = end_seq;
  3289. tp->rx_opt.num_sacks++;
  3290. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
  3291. 4 - tp->rx_opt.tstamp_ok);
  3292. }
  3293. /* RCV.NXT advances, some SACKs should be eaten. */
  3294. static void tcp_sack_remove(struct tcp_sock *tp)
  3295. {
  3296. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3297. int num_sacks = tp->rx_opt.num_sacks;
  3298. int this_sack;
  3299. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3300. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3301. tp->rx_opt.num_sacks = 0;
  3302. tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
  3303. return;
  3304. }
  3305. for (this_sack = 0; this_sack < num_sacks;) {
  3306. /* Check if the start of the sack is covered by RCV.NXT. */
  3307. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3308. int i;
  3309. /* RCV.NXT must cover all the block! */
  3310. BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
  3311. /* Zap this SACK, by moving forward any other SACKS. */
  3312. for (i=this_sack+1; i < num_sacks; i++)
  3313. tp->selective_acks[i-1] = tp->selective_acks[i];
  3314. num_sacks--;
  3315. continue;
  3316. }
  3317. this_sack++;
  3318. sp++;
  3319. }
  3320. if (num_sacks != tp->rx_opt.num_sacks) {
  3321. tp->rx_opt.num_sacks = num_sacks;
  3322. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
  3323. tp->rx_opt.dsack,
  3324. 4 - tp->rx_opt.tstamp_ok);
  3325. }
  3326. }
  3327. /* This one checks to see if we can put data from the
  3328. * out_of_order queue into the receive_queue.
  3329. */
  3330. static void tcp_ofo_queue(struct sock *sk)
  3331. {
  3332. struct tcp_sock *tp = tcp_sk(sk);
  3333. __u32 dsack_high = tp->rcv_nxt;
  3334. struct sk_buff *skb;
  3335. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3336. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3337. break;
  3338. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3339. __u32 dsack = dsack_high;
  3340. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3341. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3342. tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
  3343. }
  3344. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3345. SOCK_DEBUG(sk, "ofo packet was already received \n");
  3346. __skb_unlink(skb, &tp->out_of_order_queue);
  3347. __kfree_skb(skb);
  3348. continue;
  3349. }
  3350. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3351. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3352. TCP_SKB_CB(skb)->end_seq);
  3353. __skb_unlink(skb, &tp->out_of_order_queue);
  3354. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3355. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3356. if (tcp_hdr(skb)->fin)
  3357. tcp_fin(skb, sk, tcp_hdr(skb));
  3358. }
  3359. }
  3360. static int tcp_prune_ofo_queue(struct sock *sk);
  3361. static int tcp_prune_queue(struct sock *sk);
  3362. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3363. {
  3364. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3365. !sk_rmem_schedule(sk, size)) {
  3366. if (tcp_prune_queue(sk) < 0)
  3367. return -1;
  3368. if (!sk_rmem_schedule(sk, size)) {
  3369. if (!tcp_prune_ofo_queue(sk))
  3370. return -1;
  3371. if (!sk_rmem_schedule(sk, size))
  3372. return -1;
  3373. }
  3374. }
  3375. return 0;
  3376. }
  3377. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3378. {
  3379. struct tcphdr *th = tcp_hdr(skb);
  3380. struct tcp_sock *tp = tcp_sk(sk);
  3381. int eaten = -1;
  3382. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3383. goto drop;
  3384. __skb_pull(skb, th->doff * 4);
  3385. TCP_ECN_accept_cwr(tp, skb);
  3386. if (tp->rx_opt.dsack) {
  3387. tp->rx_opt.dsack = 0;
  3388. tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
  3389. 4 - tp->rx_opt.tstamp_ok);
  3390. }
  3391. /* Queue data for delivery to the user.
  3392. * Packets in sequence go to the receive queue.
  3393. * Out of sequence packets to the out_of_order_queue.
  3394. */
  3395. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3396. if (tcp_receive_window(tp) == 0)
  3397. goto out_of_window;
  3398. /* Ok. In sequence. In window. */
  3399. if (tp->ucopy.task == current &&
  3400. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3401. sock_owned_by_user(sk) && !tp->urg_data) {
  3402. int chunk = min_t(unsigned int, skb->len,
  3403. tp->ucopy.len);
  3404. __set_current_state(TASK_RUNNING);
  3405. local_bh_enable();
  3406. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3407. tp->ucopy.len -= chunk;
  3408. tp->copied_seq += chunk;
  3409. eaten = (chunk == skb->len && !th->fin);
  3410. tcp_rcv_space_adjust(sk);
  3411. }
  3412. local_bh_disable();
  3413. }
  3414. if (eaten <= 0) {
  3415. queue_and_out:
  3416. if (eaten < 0 &&
  3417. tcp_try_rmem_schedule(sk, skb->truesize))
  3418. goto drop;
  3419. skb_set_owner_r(skb, sk);
  3420. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3421. }
  3422. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3423. if (skb->len)
  3424. tcp_event_data_recv(sk, skb);
  3425. if (th->fin)
  3426. tcp_fin(skb, sk, th);
  3427. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3428. tcp_ofo_queue(sk);
  3429. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3430. * gap in queue is filled.
  3431. */
  3432. if (skb_queue_empty(&tp->out_of_order_queue))
  3433. inet_csk(sk)->icsk_ack.pingpong = 0;
  3434. }
  3435. if (tp->rx_opt.num_sacks)
  3436. tcp_sack_remove(tp);
  3437. tcp_fast_path_check(sk);
  3438. if (eaten > 0)
  3439. __kfree_skb(skb);
  3440. else if (!sock_flag(sk, SOCK_DEAD))
  3441. sk->sk_data_ready(sk, 0);
  3442. return;
  3443. }
  3444. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3445. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3446. NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
  3447. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3448. out_of_window:
  3449. tcp_enter_quickack_mode(sk);
  3450. inet_csk_schedule_ack(sk);
  3451. drop:
  3452. __kfree_skb(skb);
  3453. return;
  3454. }
  3455. /* Out of window. F.e. zero window probe. */
  3456. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3457. goto out_of_window;
  3458. tcp_enter_quickack_mode(sk);
  3459. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3460. /* Partial packet, seq < rcv_next < end_seq */
  3461. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3462. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3463. TCP_SKB_CB(skb)->end_seq);
  3464. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3465. /* If window is closed, drop tail of packet. But after
  3466. * remembering D-SACK for its head made in previous line.
  3467. */
  3468. if (!tcp_receive_window(tp))
  3469. goto out_of_window;
  3470. goto queue_and_out;
  3471. }
  3472. TCP_ECN_check_ce(tp, skb);
  3473. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3474. goto drop;
  3475. /* Disable header prediction. */
  3476. tp->pred_flags = 0;
  3477. inet_csk_schedule_ack(sk);
  3478. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3479. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3480. skb_set_owner_r(skb, sk);
  3481. if (!skb_peek(&tp->out_of_order_queue)) {
  3482. /* Initial out of order segment, build 1 SACK. */
  3483. if (tcp_is_sack(tp)) {
  3484. tp->rx_opt.num_sacks = 1;
  3485. tp->rx_opt.dsack = 0;
  3486. tp->rx_opt.eff_sacks = 1;
  3487. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3488. tp->selective_acks[0].end_seq =
  3489. TCP_SKB_CB(skb)->end_seq;
  3490. }
  3491. __skb_queue_head(&tp->out_of_order_queue, skb);
  3492. } else {
  3493. struct sk_buff *skb1 = tp->out_of_order_queue.prev;
  3494. u32 seq = TCP_SKB_CB(skb)->seq;
  3495. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3496. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3497. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3498. if (!tp->rx_opt.num_sacks ||
  3499. tp->selective_acks[0].end_seq != seq)
  3500. goto add_sack;
  3501. /* Common case: data arrive in order after hole. */
  3502. tp->selective_acks[0].end_seq = end_seq;
  3503. return;
  3504. }
  3505. /* Find place to insert this segment. */
  3506. do {
  3507. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3508. break;
  3509. } while ((skb1 = skb1->prev) !=
  3510. (struct sk_buff *)&tp->out_of_order_queue);
  3511. /* Do skb overlap to previous one? */
  3512. if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
  3513. before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3514. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3515. /* All the bits are present. Drop. */
  3516. __kfree_skb(skb);
  3517. tcp_dsack_set(tp, seq, end_seq);
  3518. goto add_sack;
  3519. }
  3520. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3521. /* Partial overlap. */
  3522. tcp_dsack_set(tp, seq,
  3523. TCP_SKB_CB(skb1)->end_seq);
  3524. } else {
  3525. skb1 = skb1->prev;
  3526. }
  3527. }
  3528. __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
  3529. /* And clean segments covered by new one as whole. */
  3530. while ((skb1 = skb->next) !=
  3531. (struct sk_buff *)&tp->out_of_order_queue &&
  3532. after(end_seq, TCP_SKB_CB(skb1)->seq)) {
  3533. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3534. tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
  3535. end_seq);
  3536. break;
  3537. }
  3538. __skb_unlink(skb1, &tp->out_of_order_queue);
  3539. tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
  3540. TCP_SKB_CB(skb1)->end_seq);
  3541. __kfree_skb(skb1);
  3542. }
  3543. add_sack:
  3544. if (tcp_is_sack(tp))
  3545. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3546. }
  3547. }
  3548. /* Collapse contiguous sequence of skbs head..tail with
  3549. * sequence numbers start..end.
  3550. * Segments with FIN/SYN are not collapsed (only because this
  3551. * simplifies code)
  3552. */
  3553. static void
  3554. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3555. struct sk_buff *head, struct sk_buff *tail,
  3556. u32 start, u32 end)
  3557. {
  3558. struct sk_buff *skb;
  3559. /* First, check that queue is collapsible and find
  3560. * the point where collapsing can be useful. */
  3561. for (skb = head; skb != tail;) {
  3562. /* No new bits? It is possible on ofo queue. */
  3563. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3564. struct sk_buff *next = skb->next;
  3565. __skb_unlink(skb, list);
  3566. __kfree_skb(skb);
  3567. NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
  3568. skb = next;
  3569. continue;
  3570. }
  3571. /* The first skb to collapse is:
  3572. * - not SYN/FIN and
  3573. * - bloated or contains data before "start" or
  3574. * overlaps to the next one.
  3575. */
  3576. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3577. (tcp_win_from_space(skb->truesize) > skb->len ||
  3578. before(TCP_SKB_CB(skb)->seq, start) ||
  3579. (skb->next != tail &&
  3580. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
  3581. break;
  3582. /* Decided to skip this, advance start seq. */
  3583. start = TCP_SKB_CB(skb)->end_seq;
  3584. skb = skb->next;
  3585. }
  3586. if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3587. return;
  3588. while (before(start, end)) {
  3589. struct sk_buff *nskb;
  3590. unsigned int header = skb_headroom(skb);
  3591. int copy = SKB_MAX_ORDER(header, 0);
  3592. /* Too big header? This can happen with IPv6. */
  3593. if (copy < 0)
  3594. return;
  3595. if (end - start < copy)
  3596. copy = end - start;
  3597. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3598. if (!nskb)
  3599. return;
  3600. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3601. skb_set_network_header(nskb, (skb_network_header(skb) -
  3602. skb->head));
  3603. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3604. skb->head));
  3605. skb_reserve(nskb, header);
  3606. memcpy(nskb->head, skb->head, header);
  3607. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3608. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3609. __skb_insert(nskb, skb->prev, skb, list);
  3610. skb_set_owner_r(nskb, sk);
  3611. /* Copy data, releasing collapsed skbs. */
  3612. while (copy > 0) {
  3613. int offset = start - TCP_SKB_CB(skb)->seq;
  3614. int size = TCP_SKB_CB(skb)->end_seq - start;
  3615. BUG_ON(offset < 0);
  3616. if (size > 0) {
  3617. size = min(copy, size);
  3618. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3619. BUG();
  3620. TCP_SKB_CB(nskb)->end_seq += size;
  3621. copy -= size;
  3622. start += size;
  3623. }
  3624. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3625. struct sk_buff *next = skb->next;
  3626. __skb_unlink(skb, list);
  3627. __kfree_skb(skb);
  3628. NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
  3629. skb = next;
  3630. if (skb == tail ||
  3631. tcp_hdr(skb)->syn ||
  3632. tcp_hdr(skb)->fin)
  3633. return;
  3634. }
  3635. }
  3636. }
  3637. }
  3638. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3639. * and tcp_collapse() them until all the queue is collapsed.
  3640. */
  3641. static void tcp_collapse_ofo_queue(struct sock *sk)
  3642. {
  3643. struct tcp_sock *tp = tcp_sk(sk);
  3644. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3645. struct sk_buff *head;
  3646. u32 start, end;
  3647. if (skb == NULL)
  3648. return;
  3649. start = TCP_SKB_CB(skb)->seq;
  3650. end = TCP_SKB_CB(skb)->end_seq;
  3651. head = skb;
  3652. for (;;) {
  3653. skb = skb->next;
  3654. /* Segment is terminated when we see gap or when
  3655. * we are at the end of all the queue. */
  3656. if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
  3657. after(TCP_SKB_CB(skb)->seq, end) ||
  3658. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3659. tcp_collapse(sk, &tp->out_of_order_queue,
  3660. head, skb, start, end);
  3661. head = skb;
  3662. if (skb == (struct sk_buff *)&tp->out_of_order_queue)
  3663. break;
  3664. /* Start new segment */
  3665. start = TCP_SKB_CB(skb)->seq;
  3666. end = TCP_SKB_CB(skb)->end_seq;
  3667. } else {
  3668. if (before(TCP_SKB_CB(skb)->seq, start))
  3669. start = TCP_SKB_CB(skb)->seq;
  3670. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3671. end = TCP_SKB_CB(skb)->end_seq;
  3672. }
  3673. }
  3674. }
  3675. /*
  3676. * Purge the out-of-order queue.
  3677. * Return true if queue was pruned.
  3678. */
  3679. static int tcp_prune_ofo_queue(struct sock *sk)
  3680. {
  3681. struct tcp_sock *tp = tcp_sk(sk);
  3682. int res = 0;
  3683. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3684. NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
  3685. __skb_queue_purge(&tp->out_of_order_queue);
  3686. /* Reset SACK state. A conforming SACK implementation will
  3687. * do the same at a timeout based retransmit. When a connection
  3688. * is in a sad state like this, we care only about integrity
  3689. * of the connection not performance.
  3690. */
  3691. if (tp->rx_opt.sack_ok)
  3692. tcp_sack_reset(&tp->rx_opt);
  3693. sk_mem_reclaim(sk);
  3694. res = 1;
  3695. }
  3696. return res;
  3697. }
  3698. /* Reduce allocated memory if we can, trying to get
  3699. * the socket within its memory limits again.
  3700. *
  3701. * Return less than zero if we should start dropping frames
  3702. * until the socket owning process reads some of the data
  3703. * to stabilize the situation.
  3704. */
  3705. static int tcp_prune_queue(struct sock *sk)
  3706. {
  3707. struct tcp_sock *tp = tcp_sk(sk);
  3708. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3709. NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
  3710. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3711. tcp_clamp_window(sk);
  3712. else if (tcp_memory_pressure)
  3713. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3714. tcp_collapse_ofo_queue(sk);
  3715. tcp_collapse(sk, &sk->sk_receive_queue,
  3716. sk->sk_receive_queue.next,
  3717. (struct sk_buff *)&sk->sk_receive_queue,
  3718. tp->copied_seq, tp->rcv_nxt);
  3719. sk_mem_reclaim(sk);
  3720. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3721. return 0;
  3722. /* Collapsing did not help, destructive actions follow.
  3723. * This must not ever occur. */
  3724. tcp_prune_ofo_queue(sk);
  3725. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3726. return 0;
  3727. /* If we are really being abused, tell the caller to silently
  3728. * drop receive data on the floor. It will get retransmitted
  3729. * and hopefully then we'll have sufficient space.
  3730. */
  3731. NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
  3732. /* Massive buffer overcommit. */
  3733. tp->pred_flags = 0;
  3734. return -1;
  3735. }
  3736. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  3737. * As additional protections, we do not touch cwnd in retransmission phases,
  3738. * and if application hit its sndbuf limit recently.
  3739. */
  3740. void tcp_cwnd_application_limited(struct sock *sk)
  3741. {
  3742. struct tcp_sock *tp = tcp_sk(sk);
  3743. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  3744. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  3745. /* Limited by application or receiver window. */
  3746. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  3747. u32 win_used = max(tp->snd_cwnd_used, init_win);
  3748. if (win_used < tp->snd_cwnd) {
  3749. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  3750. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  3751. }
  3752. tp->snd_cwnd_used = 0;
  3753. }
  3754. tp->snd_cwnd_stamp = tcp_time_stamp;
  3755. }
  3756. static int tcp_should_expand_sndbuf(struct sock *sk)
  3757. {
  3758. struct tcp_sock *tp = tcp_sk(sk);
  3759. /* If the user specified a specific send buffer setting, do
  3760. * not modify it.
  3761. */
  3762. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  3763. return 0;
  3764. /* If we are under global TCP memory pressure, do not expand. */
  3765. if (tcp_memory_pressure)
  3766. return 0;
  3767. /* If we are under soft global TCP memory pressure, do not expand. */
  3768. if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  3769. return 0;
  3770. /* If we filled the congestion window, do not expand. */
  3771. if (tp->packets_out >= tp->snd_cwnd)
  3772. return 0;
  3773. return 1;
  3774. }
  3775. /* When incoming ACK allowed to free some skb from write_queue,
  3776. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  3777. * on the exit from tcp input handler.
  3778. *
  3779. * PROBLEM: sndbuf expansion does not work well with largesend.
  3780. */
  3781. static void tcp_new_space(struct sock *sk)
  3782. {
  3783. struct tcp_sock *tp = tcp_sk(sk);
  3784. if (tcp_should_expand_sndbuf(sk)) {
  3785. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  3786. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
  3787. demanded = max_t(unsigned int, tp->snd_cwnd,
  3788. tp->reordering + 1);
  3789. sndmem *= 2 * demanded;
  3790. if (sndmem > sk->sk_sndbuf)
  3791. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  3792. tp->snd_cwnd_stamp = tcp_time_stamp;
  3793. }
  3794. sk->sk_write_space(sk);
  3795. }
  3796. static void tcp_check_space(struct sock *sk)
  3797. {
  3798. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  3799. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  3800. if (sk->sk_socket &&
  3801. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  3802. tcp_new_space(sk);
  3803. }
  3804. }
  3805. static inline void tcp_data_snd_check(struct sock *sk)
  3806. {
  3807. tcp_push_pending_frames(sk);
  3808. tcp_check_space(sk);
  3809. }
  3810. /*
  3811. * Check if sending an ack is needed.
  3812. */
  3813. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  3814. {
  3815. struct tcp_sock *tp = tcp_sk(sk);
  3816. /* More than one full frame received... */
  3817. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
  3818. /* ... and right edge of window advances far enough.
  3819. * (tcp_recvmsg() will send ACK otherwise). Or...
  3820. */
  3821. && __tcp_select_window(sk) >= tp->rcv_wnd) ||
  3822. /* We ACK each frame or... */
  3823. tcp_in_quickack_mode(sk) ||
  3824. /* We have out of order data. */
  3825. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  3826. /* Then ack it now */
  3827. tcp_send_ack(sk);
  3828. } else {
  3829. /* Else, send delayed ack. */
  3830. tcp_send_delayed_ack(sk);
  3831. }
  3832. }
  3833. static inline void tcp_ack_snd_check(struct sock *sk)
  3834. {
  3835. if (!inet_csk_ack_scheduled(sk)) {
  3836. /* We sent a data segment already. */
  3837. return;
  3838. }
  3839. __tcp_ack_snd_check(sk, 1);
  3840. }
  3841. /*
  3842. * This routine is only called when we have urgent data
  3843. * signaled. Its the 'slow' part of tcp_urg. It could be
  3844. * moved inline now as tcp_urg is only called from one
  3845. * place. We handle URGent data wrong. We have to - as
  3846. * BSD still doesn't use the correction from RFC961.
  3847. * For 1003.1g we should support a new option TCP_STDURG to permit
  3848. * either form (or just set the sysctl tcp_stdurg).
  3849. */
  3850. static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
  3851. {
  3852. struct tcp_sock *tp = tcp_sk(sk);
  3853. u32 ptr = ntohs(th->urg_ptr);
  3854. if (ptr && !sysctl_tcp_stdurg)
  3855. ptr--;
  3856. ptr += ntohl(th->seq);
  3857. /* Ignore urgent data that we've already seen and read. */
  3858. if (after(tp->copied_seq, ptr))
  3859. return;
  3860. /* Do not replay urg ptr.
  3861. *
  3862. * NOTE: interesting situation not covered by specs.
  3863. * Misbehaving sender may send urg ptr, pointing to segment,
  3864. * which we already have in ofo queue. We are not able to fetch
  3865. * such data and will stay in TCP_URG_NOTYET until will be eaten
  3866. * by recvmsg(). Seems, we are not obliged to handle such wicked
  3867. * situations. But it is worth to think about possibility of some
  3868. * DoSes using some hypothetical application level deadlock.
  3869. */
  3870. if (before(ptr, tp->rcv_nxt))
  3871. return;
  3872. /* Do we already have a newer (or duplicate) urgent pointer? */
  3873. if (tp->urg_data && !after(ptr, tp->urg_seq))
  3874. return;
  3875. /* Tell the world about our new urgent pointer. */
  3876. sk_send_sigurg(sk);
  3877. /* We may be adding urgent data when the last byte read was
  3878. * urgent. To do this requires some care. We cannot just ignore
  3879. * tp->copied_seq since we would read the last urgent byte again
  3880. * as data, nor can we alter copied_seq until this data arrives
  3881. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  3882. *
  3883. * NOTE. Double Dutch. Rendering to plain English: author of comment
  3884. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  3885. * and expect that both A and B disappear from stream. This is _wrong_.
  3886. * Though this happens in BSD with high probability, this is occasional.
  3887. * Any application relying on this is buggy. Note also, that fix "works"
  3888. * only in this artificial test. Insert some normal data between A and B and we will
  3889. * decline of BSD again. Verdict: it is better to remove to trap
  3890. * buggy users.
  3891. */
  3892. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  3893. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  3894. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  3895. tp->copied_seq++;
  3896. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  3897. __skb_unlink(skb, &sk->sk_receive_queue);
  3898. __kfree_skb(skb);
  3899. }
  3900. }
  3901. tp->urg_data = TCP_URG_NOTYET;
  3902. tp->urg_seq = ptr;
  3903. /* Disable header prediction. */
  3904. tp->pred_flags = 0;
  3905. }
  3906. /* This is the 'fast' part of urgent handling. */
  3907. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  3908. {
  3909. struct tcp_sock *tp = tcp_sk(sk);
  3910. /* Check if we get a new urgent pointer - normally not. */
  3911. if (th->urg)
  3912. tcp_check_urg(sk, th);
  3913. /* Do we wait for any urgent data? - normally not... */
  3914. if (tp->urg_data == TCP_URG_NOTYET) {
  3915. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  3916. th->syn;
  3917. /* Is the urgent pointer pointing into this packet? */
  3918. if (ptr < skb->len) {
  3919. u8 tmp;
  3920. if (skb_copy_bits(skb, ptr, &tmp, 1))
  3921. BUG();
  3922. tp->urg_data = TCP_URG_VALID | tmp;
  3923. if (!sock_flag(sk, SOCK_DEAD))
  3924. sk->sk_data_ready(sk, 0);
  3925. }
  3926. }
  3927. }
  3928. static int tcp_defer_accept_check(struct sock *sk)
  3929. {
  3930. struct tcp_sock *tp = tcp_sk(sk);
  3931. if (tp->defer_tcp_accept.request) {
  3932. int queued_data = tp->rcv_nxt - tp->copied_seq;
  3933. int hasfin = !skb_queue_empty(&sk->sk_receive_queue) ?
  3934. tcp_hdr((struct sk_buff *)
  3935. sk->sk_receive_queue.prev)->fin : 0;
  3936. if (queued_data && hasfin)
  3937. queued_data--;
  3938. if (queued_data &&
  3939. tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
  3940. if (sock_flag(sk, SOCK_KEEPOPEN)) {
  3941. inet_csk_reset_keepalive_timer(sk,
  3942. keepalive_time_when(tp));
  3943. } else {
  3944. inet_csk_delete_keepalive_timer(sk);
  3945. }
  3946. inet_csk_reqsk_queue_add(
  3947. tp->defer_tcp_accept.listen_sk,
  3948. tp->defer_tcp_accept.request,
  3949. sk);
  3950. tp->defer_tcp_accept.listen_sk->sk_data_ready(
  3951. tp->defer_tcp_accept.listen_sk, 0);
  3952. sock_put(tp->defer_tcp_accept.listen_sk);
  3953. sock_put(sk);
  3954. tp->defer_tcp_accept.listen_sk = NULL;
  3955. tp->defer_tcp_accept.request = NULL;
  3956. } else if (hasfin ||
  3957. tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
  3958. tcp_reset(sk);
  3959. return -1;
  3960. }
  3961. }
  3962. return 0;
  3963. }
  3964. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  3965. {
  3966. struct tcp_sock *tp = tcp_sk(sk);
  3967. int chunk = skb->len - hlen;
  3968. int err;
  3969. local_bh_enable();
  3970. if (skb_csum_unnecessary(skb))
  3971. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  3972. else
  3973. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  3974. tp->ucopy.iov);
  3975. if (!err) {
  3976. tp->ucopy.len -= chunk;
  3977. tp->copied_seq += chunk;
  3978. tcp_rcv_space_adjust(sk);
  3979. }
  3980. local_bh_disable();
  3981. return err;
  3982. }
  3983. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  3984. struct sk_buff *skb)
  3985. {
  3986. __sum16 result;
  3987. if (sock_owned_by_user(sk)) {
  3988. local_bh_enable();
  3989. result = __tcp_checksum_complete(skb);
  3990. local_bh_disable();
  3991. } else {
  3992. result = __tcp_checksum_complete(skb);
  3993. }
  3994. return result;
  3995. }
  3996. static inline int tcp_checksum_complete_user(struct sock *sk,
  3997. struct sk_buff *skb)
  3998. {
  3999. return !skb_csum_unnecessary(skb) &&
  4000. __tcp_checksum_complete_user(sk, skb);
  4001. }
  4002. #ifdef CONFIG_NET_DMA
  4003. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4004. int hlen)
  4005. {
  4006. struct tcp_sock *tp = tcp_sk(sk);
  4007. int chunk = skb->len - hlen;
  4008. int dma_cookie;
  4009. int copied_early = 0;
  4010. if (tp->ucopy.wakeup)
  4011. return 0;
  4012. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4013. tp->ucopy.dma_chan = get_softnet_dma();
  4014. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4015. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4016. skb, hlen,
  4017. tp->ucopy.iov, chunk,
  4018. tp->ucopy.pinned_list);
  4019. if (dma_cookie < 0)
  4020. goto out;
  4021. tp->ucopy.dma_cookie = dma_cookie;
  4022. copied_early = 1;
  4023. tp->ucopy.len -= chunk;
  4024. tp->copied_seq += chunk;
  4025. tcp_rcv_space_adjust(sk);
  4026. if ((tp->ucopy.len == 0) ||
  4027. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4028. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4029. tp->ucopy.wakeup = 1;
  4030. sk->sk_data_ready(sk, 0);
  4031. }
  4032. } else if (chunk > 0) {
  4033. tp->ucopy.wakeup = 1;
  4034. sk->sk_data_ready(sk, 0);
  4035. }
  4036. out:
  4037. return copied_early;
  4038. }
  4039. #endif /* CONFIG_NET_DMA */
  4040. /*
  4041. * TCP receive function for the ESTABLISHED state.
  4042. *
  4043. * It is split into a fast path and a slow path. The fast path is
  4044. * disabled when:
  4045. * - A zero window was announced from us - zero window probing
  4046. * is only handled properly in the slow path.
  4047. * - Out of order segments arrived.
  4048. * - Urgent data is expected.
  4049. * - There is no buffer space left
  4050. * - Unexpected TCP flags/window values/header lengths are received
  4051. * (detected by checking the TCP header against pred_flags)
  4052. * - Data is sent in both directions. Fast path only supports pure senders
  4053. * or pure receivers (this means either the sequence number or the ack
  4054. * value must stay constant)
  4055. * - Unexpected TCP option.
  4056. *
  4057. * When these conditions are not satisfied it drops into a standard
  4058. * receive procedure patterned after RFC793 to handle all cases.
  4059. * The first three cases are guaranteed by proper pred_flags setting,
  4060. * the rest is checked inline. Fast processing is turned on in
  4061. * tcp_data_queue when everything is OK.
  4062. */
  4063. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4064. struct tcphdr *th, unsigned len)
  4065. {
  4066. struct tcp_sock *tp = tcp_sk(sk);
  4067. /*
  4068. * Header prediction.
  4069. * The code loosely follows the one in the famous
  4070. * "30 instruction TCP receive" Van Jacobson mail.
  4071. *
  4072. * Van's trick is to deposit buffers into socket queue
  4073. * on a device interrupt, to call tcp_recv function
  4074. * on the receive process context and checksum and copy
  4075. * the buffer to user space. smart...
  4076. *
  4077. * Our current scheme is not silly either but we take the
  4078. * extra cost of the net_bh soft interrupt processing...
  4079. * We do checksum and copy also but from device to kernel.
  4080. */
  4081. tp->rx_opt.saw_tstamp = 0;
  4082. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4083. * if header_prediction is to be made
  4084. * 'S' will always be tp->tcp_header_len >> 2
  4085. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4086. * turn it off (when there are holes in the receive
  4087. * space for instance)
  4088. * PSH flag is ignored.
  4089. */
  4090. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4091. TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4092. int tcp_header_len = tp->tcp_header_len;
  4093. /* Timestamp header prediction: tcp_header_len
  4094. * is automatically equal to th->doff*4 due to pred_flags
  4095. * match.
  4096. */
  4097. /* Check timestamp */
  4098. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4099. __be32 *ptr = (__be32 *)(th + 1);
  4100. /* No? Slow path! */
  4101. if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  4102. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
  4103. goto slow_path;
  4104. tp->rx_opt.saw_tstamp = 1;
  4105. ++ptr;
  4106. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  4107. ++ptr;
  4108. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  4109. /* If PAWS failed, check it more carefully in slow path */
  4110. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4111. goto slow_path;
  4112. /* DO NOT update ts_recent here, if checksum fails
  4113. * and timestamp was corrupted part, it will result
  4114. * in a hung connection since we will drop all
  4115. * future packets due to the PAWS test.
  4116. */
  4117. }
  4118. if (len <= tcp_header_len) {
  4119. /* Bulk data transfer: sender */
  4120. if (len == tcp_header_len) {
  4121. /* Predicted packet is in window by definition.
  4122. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4123. * Hence, check seq<=rcv_wup reduces to:
  4124. */
  4125. if (tcp_header_len ==
  4126. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4127. tp->rcv_nxt == tp->rcv_wup)
  4128. tcp_store_ts_recent(tp);
  4129. /* We know that such packets are checksummed
  4130. * on entry.
  4131. */
  4132. tcp_ack(sk, skb, 0);
  4133. __kfree_skb(skb);
  4134. tcp_data_snd_check(sk);
  4135. return 0;
  4136. } else { /* Header too small */
  4137. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  4138. goto discard;
  4139. }
  4140. } else {
  4141. int eaten = 0;
  4142. int copied_early = 0;
  4143. if (tp->copied_seq == tp->rcv_nxt &&
  4144. len - tcp_header_len <= tp->ucopy.len) {
  4145. #ifdef CONFIG_NET_DMA
  4146. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4147. copied_early = 1;
  4148. eaten = 1;
  4149. }
  4150. #endif
  4151. if (tp->ucopy.task == current &&
  4152. sock_owned_by_user(sk) && !copied_early) {
  4153. __set_current_state(TASK_RUNNING);
  4154. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4155. eaten = 1;
  4156. }
  4157. if (eaten) {
  4158. /* Predicted packet is in window by definition.
  4159. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4160. * Hence, check seq<=rcv_wup reduces to:
  4161. */
  4162. if (tcp_header_len ==
  4163. (sizeof(struct tcphdr) +
  4164. TCPOLEN_TSTAMP_ALIGNED) &&
  4165. tp->rcv_nxt == tp->rcv_wup)
  4166. tcp_store_ts_recent(tp);
  4167. tcp_rcv_rtt_measure_ts(sk, skb);
  4168. __skb_pull(skb, tcp_header_len);
  4169. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4170. NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
  4171. }
  4172. if (copied_early)
  4173. tcp_cleanup_rbuf(sk, skb->len);
  4174. }
  4175. if (!eaten) {
  4176. if (tcp_checksum_complete_user(sk, skb))
  4177. goto csum_error;
  4178. /* Predicted packet is in window by definition.
  4179. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4180. * Hence, check seq<=rcv_wup reduces to:
  4181. */
  4182. if (tcp_header_len ==
  4183. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4184. tp->rcv_nxt == tp->rcv_wup)
  4185. tcp_store_ts_recent(tp);
  4186. tcp_rcv_rtt_measure_ts(sk, skb);
  4187. if ((int)skb->truesize > sk->sk_forward_alloc)
  4188. goto step5;
  4189. NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
  4190. /* Bulk data transfer: receiver */
  4191. __skb_pull(skb, tcp_header_len);
  4192. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4193. skb_set_owner_r(skb, sk);
  4194. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4195. }
  4196. tcp_event_data_recv(sk, skb);
  4197. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4198. /* Well, only one small jumplet in fast path... */
  4199. tcp_ack(sk, skb, FLAG_DATA);
  4200. tcp_data_snd_check(sk);
  4201. if (!inet_csk_ack_scheduled(sk))
  4202. goto no_ack;
  4203. }
  4204. __tcp_ack_snd_check(sk, 0);
  4205. no_ack:
  4206. #ifdef CONFIG_NET_DMA
  4207. if (copied_early)
  4208. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4209. else
  4210. #endif
  4211. if (eaten)
  4212. __kfree_skb(skb);
  4213. else
  4214. sk->sk_data_ready(sk, 0);
  4215. return 0;
  4216. }
  4217. }
  4218. slow_path:
  4219. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4220. goto csum_error;
  4221. /*
  4222. * RFC1323: H1. Apply PAWS check first.
  4223. */
  4224. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4225. tcp_paws_discard(sk, skb)) {
  4226. if (!th->rst) {
  4227. NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
  4228. tcp_send_dupack(sk, skb);
  4229. goto discard;
  4230. }
  4231. /* Resets are accepted even if PAWS failed.
  4232. ts_recent update must be made after we are sure
  4233. that the packet is in window.
  4234. */
  4235. }
  4236. /*
  4237. * Standard slow path.
  4238. */
  4239. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4240. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4241. * (RST) segments are validated by checking their SEQ-fields."
  4242. * And page 69: "If an incoming segment is not acceptable,
  4243. * an acknowledgment should be sent in reply (unless the RST bit
  4244. * is set, if so drop the segment and return)".
  4245. */
  4246. if (!th->rst)
  4247. tcp_send_dupack(sk, skb);
  4248. goto discard;
  4249. }
  4250. if (th->rst) {
  4251. tcp_reset(sk);
  4252. goto discard;
  4253. }
  4254. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4255. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4256. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  4257. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
  4258. tcp_reset(sk);
  4259. return 1;
  4260. }
  4261. step5:
  4262. if (th->ack)
  4263. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4264. tcp_rcv_rtt_measure_ts(sk, skb);
  4265. /* Process urgent data. */
  4266. tcp_urg(sk, skb, th);
  4267. /* step 7: process the segment text */
  4268. tcp_data_queue(sk, skb);
  4269. tcp_data_snd_check(sk);
  4270. tcp_ack_snd_check(sk);
  4271. tcp_defer_accept_check(sk);
  4272. return 0;
  4273. csum_error:
  4274. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  4275. discard:
  4276. __kfree_skb(skb);
  4277. return 0;
  4278. }
  4279. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4280. struct tcphdr *th, unsigned len)
  4281. {
  4282. struct tcp_sock *tp = tcp_sk(sk);
  4283. struct inet_connection_sock *icsk = inet_csk(sk);
  4284. int saved_clamp = tp->rx_opt.mss_clamp;
  4285. tcp_parse_options(skb, &tp->rx_opt, 0);
  4286. if (th->ack) {
  4287. /* rfc793:
  4288. * "If the state is SYN-SENT then
  4289. * first check the ACK bit
  4290. * If the ACK bit is set
  4291. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4292. * a reset (unless the RST bit is set, if so drop
  4293. * the segment and return)"
  4294. *
  4295. * We do not send data with SYN, so that RFC-correct
  4296. * test reduces to:
  4297. */
  4298. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4299. goto reset_and_undo;
  4300. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4301. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4302. tcp_time_stamp)) {
  4303. NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
  4304. goto reset_and_undo;
  4305. }
  4306. /* Now ACK is acceptable.
  4307. *
  4308. * "If the RST bit is set
  4309. * If the ACK was acceptable then signal the user "error:
  4310. * connection reset", drop the segment, enter CLOSED state,
  4311. * delete TCB, and return."
  4312. */
  4313. if (th->rst) {
  4314. tcp_reset(sk);
  4315. goto discard;
  4316. }
  4317. /* rfc793:
  4318. * "fifth, if neither of the SYN or RST bits is set then
  4319. * drop the segment and return."
  4320. *
  4321. * See note below!
  4322. * --ANK(990513)
  4323. */
  4324. if (!th->syn)
  4325. goto discard_and_undo;
  4326. /* rfc793:
  4327. * "If the SYN bit is on ...
  4328. * are acceptable then ...
  4329. * (our SYN has been ACKed), change the connection
  4330. * state to ESTABLISHED..."
  4331. */
  4332. TCP_ECN_rcv_synack(tp, th);
  4333. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4334. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4335. /* Ok.. it's good. Set up sequence numbers and
  4336. * move to established.
  4337. */
  4338. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4339. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4340. /* RFC1323: The window in SYN & SYN/ACK segments is
  4341. * never scaled.
  4342. */
  4343. tp->snd_wnd = ntohs(th->window);
  4344. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
  4345. if (!tp->rx_opt.wscale_ok) {
  4346. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4347. tp->window_clamp = min(tp->window_clamp, 65535U);
  4348. }
  4349. if (tp->rx_opt.saw_tstamp) {
  4350. tp->rx_opt.tstamp_ok = 1;
  4351. tp->tcp_header_len =
  4352. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4353. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4354. tcp_store_ts_recent(tp);
  4355. } else {
  4356. tp->tcp_header_len = sizeof(struct tcphdr);
  4357. }
  4358. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4359. tcp_enable_fack(tp);
  4360. tcp_mtup_init(sk);
  4361. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4362. tcp_initialize_rcv_mss(sk);
  4363. /* Remember, tcp_poll() does not lock socket!
  4364. * Change state from SYN-SENT only after copied_seq
  4365. * is initialized. */
  4366. tp->copied_seq = tp->rcv_nxt;
  4367. smp_mb();
  4368. tcp_set_state(sk, TCP_ESTABLISHED);
  4369. security_inet_conn_established(sk, skb);
  4370. /* Make sure socket is routed, for correct metrics. */
  4371. icsk->icsk_af_ops->rebuild_header(sk);
  4372. tcp_init_metrics(sk);
  4373. tcp_init_congestion_control(sk);
  4374. /* Prevent spurious tcp_cwnd_restart() on first data
  4375. * packet.
  4376. */
  4377. tp->lsndtime = tcp_time_stamp;
  4378. tcp_init_buffer_space(sk);
  4379. if (sock_flag(sk, SOCK_KEEPOPEN))
  4380. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4381. if (!tp->rx_opt.snd_wscale)
  4382. __tcp_fast_path_on(tp, tp->snd_wnd);
  4383. else
  4384. tp->pred_flags = 0;
  4385. if (!sock_flag(sk, SOCK_DEAD)) {
  4386. sk->sk_state_change(sk);
  4387. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4388. }
  4389. if (sk->sk_write_pending ||
  4390. icsk->icsk_accept_queue.rskq_defer_accept ||
  4391. icsk->icsk_ack.pingpong) {
  4392. /* Save one ACK. Data will be ready after
  4393. * several ticks, if write_pending is set.
  4394. *
  4395. * It may be deleted, but with this feature tcpdumps
  4396. * look so _wonderfully_ clever, that I was not able
  4397. * to stand against the temptation 8) --ANK
  4398. */
  4399. inet_csk_schedule_ack(sk);
  4400. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4401. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4402. tcp_incr_quickack(sk);
  4403. tcp_enter_quickack_mode(sk);
  4404. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4405. TCP_DELACK_MAX, TCP_RTO_MAX);
  4406. discard:
  4407. __kfree_skb(skb);
  4408. return 0;
  4409. } else {
  4410. tcp_send_ack(sk);
  4411. }
  4412. return -1;
  4413. }
  4414. /* No ACK in the segment */
  4415. if (th->rst) {
  4416. /* rfc793:
  4417. * "If the RST bit is set
  4418. *
  4419. * Otherwise (no ACK) drop the segment and return."
  4420. */
  4421. goto discard_and_undo;
  4422. }
  4423. /* PAWS check. */
  4424. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4425. tcp_paws_check(&tp->rx_opt, 0))
  4426. goto discard_and_undo;
  4427. if (th->syn) {
  4428. /* We see SYN without ACK. It is attempt of
  4429. * simultaneous connect with crossed SYNs.
  4430. * Particularly, it can be connect to self.
  4431. */
  4432. tcp_set_state(sk, TCP_SYN_RECV);
  4433. if (tp->rx_opt.saw_tstamp) {
  4434. tp->rx_opt.tstamp_ok = 1;
  4435. tcp_store_ts_recent(tp);
  4436. tp->tcp_header_len =
  4437. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4438. } else {
  4439. tp->tcp_header_len = sizeof(struct tcphdr);
  4440. }
  4441. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4442. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4443. /* RFC1323: The window in SYN & SYN/ACK segments is
  4444. * never scaled.
  4445. */
  4446. tp->snd_wnd = ntohs(th->window);
  4447. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4448. tp->max_window = tp->snd_wnd;
  4449. TCP_ECN_rcv_syn(tp, th);
  4450. tcp_mtup_init(sk);
  4451. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4452. tcp_initialize_rcv_mss(sk);
  4453. tcp_send_synack(sk);
  4454. #if 0
  4455. /* Note, we could accept data and URG from this segment.
  4456. * There are no obstacles to make this.
  4457. *
  4458. * However, if we ignore data in ACKless segments sometimes,
  4459. * we have no reasons to accept it sometimes.
  4460. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4461. * is not flawless. So, discard packet for sanity.
  4462. * Uncomment this return to process the data.
  4463. */
  4464. return -1;
  4465. #else
  4466. goto discard;
  4467. #endif
  4468. }
  4469. /* "fifth, if neither of the SYN or RST bits is set then
  4470. * drop the segment and return."
  4471. */
  4472. discard_and_undo:
  4473. tcp_clear_options(&tp->rx_opt);
  4474. tp->rx_opt.mss_clamp = saved_clamp;
  4475. goto discard;
  4476. reset_and_undo:
  4477. tcp_clear_options(&tp->rx_opt);
  4478. tp->rx_opt.mss_clamp = saved_clamp;
  4479. return 1;
  4480. }
  4481. /*
  4482. * This function implements the receiving procedure of RFC 793 for
  4483. * all states except ESTABLISHED and TIME_WAIT.
  4484. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4485. * address independent.
  4486. */
  4487. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4488. struct tcphdr *th, unsigned len)
  4489. {
  4490. struct tcp_sock *tp = tcp_sk(sk);
  4491. struct inet_connection_sock *icsk = inet_csk(sk);
  4492. int queued = 0;
  4493. tp->rx_opt.saw_tstamp = 0;
  4494. switch (sk->sk_state) {
  4495. case TCP_CLOSE:
  4496. goto discard;
  4497. case TCP_LISTEN:
  4498. if (th->ack)
  4499. return 1;
  4500. if (th->rst)
  4501. goto discard;
  4502. if (th->syn) {
  4503. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4504. return 1;
  4505. /* Now we have several options: In theory there is
  4506. * nothing else in the frame. KA9Q has an option to
  4507. * send data with the syn, BSD accepts data with the
  4508. * syn up to the [to be] advertised window and
  4509. * Solaris 2.1 gives you a protocol error. For now
  4510. * we just ignore it, that fits the spec precisely
  4511. * and avoids incompatibilities. It would be nice in
  4512. * future to drop through and process the data.
  4513. *
  4514. * Now that TTCP is starting to be used we ought to
  4515. * queue this data.
  4516. * But, this leaves one open to an easy denial of
  4517. * service attack, and SYN cookies can't defend
  4518. * against this problem. So, we drop the data
  4519. * in the interest of security over speed unless
  4520. * it's still in use.
  4521. */
  4522. kfree_skb(skb);
  4523. return 0;
  4524. }
  4525. goto discard;
  4526. case TCP_SYN_SENT:
  4527. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4528. if (queued >= 0)
  4529. return queued;
  4530. /* Do step6 onward by hand. */
  4531. tcp_urg(sk, skb, th);
  4532. __kfree_skb(skb);
  4533. tcp_data_snd_check(sk);
  4534. return 0;
  4535. }
  4536. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4537. tcp_paws_discard(sk, skb)) {
  4538. if (!th->rst) {
  4539. NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
  4540. tcp_send_dupack(sk, skb);
  4541. goto discard;
  4542. }
  4543. /* Reset is accepted even if it did not pass PAWS. */
  4544. }
  4545. /* step 1: check sequence number */
  4546. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4547. if (!th->rst)
  4548. tcp_send_dupack(sk, skb);
  4549. goto discard;
  4550. }
  4551. /* step 2: check RST bit */
  4552. if (th->rst) {
  4553. tcp_reset(sk);
  4554. goto discard;
  4555. }
  4556. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4557. /* step 3: check security and precedence [ignored] */
  4558. /* step 4:
  4559. *
  4560. * Check for a SYN in window.
  4561. */
  4562. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4563. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
  4564. tcp_reset(sk);
  4565. return 1;
  4566. }
  4567. /* step 5: check the ACK field */
  4568. if (th->ack) {
  4569. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
  4570. switch (sk->sk_state) {
  4571. case TCP_SYN_RECV:
  4572. if (acceptable) {
  4573. tp->copied_seq = tp->rcv_nxt;
  4574. smp_mb();
  4575. tcp_set_state(sk, TCP_ESTABLISHED);
  4576. sk->sk_state_change(sk);
  4577. /* Note, that this wakeup is only for marginal
  4578. * crossed SYN case. Passively open sockets
  4579. * are not waked up, because sk->sk_sleep ==
  4580. * NULL and sk->sk_socket == NULL.
  4581. */
  4582. if (sk->sk_socket)
  4583. sk_wake_async(sk,
  4584. SOCK_WAKE_IO, POLL_OUT);
  4585. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4586. tp->snd_wnd = ntohs(th->window) <<
  4587. tp->rx_opt.snd_wscale;
  4588. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
  4589. TCP_SKB_CB(skb)->seq);
  4590. /* tcp_ack considers this ACK as duplicate
  4591. * and does not calculate rtt.
  4592. * Fix it at least with timestamps.
  4593. */
  4594. if (tp->rx_opt.saw_tstamp &&
  4595. tp->rx_opt.rcv_tsecr && !tp->srtt)
  4596. tcp_ack_saw_tstamp(sk, 0);
  4597. if (tp->rx_opt.tstamp_ok)
  4598. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4599. /* Make sure socket is routed, for
  4600. * correct metrics.
  4601. */
  4602. icsk->icsk_af_ops->rebuild_header(sk);
  4603. tcp_init_metrics(sk);
  4604. tcp_init_congestion_control(sk);
  4605. /* Prevent spurious tcp_cwnd_restart() on
  4606. * first data packet.
  4607. */
  4608. tp->lsndtime = tcp_time_stamp;
  4609. tcp_mtup_init(sk);
  4610. tcp_initialize_rcv_mss(sk);
  4611. tcp_init_buffer_space(sk);
  4612. tcp_fast_path_on(tp);
  4613. } else {
  4614. return 1;
  4615. }
  4616. break;
  4617. case TCP_FIN_WAIT1:
  4618. if (tp->snd_una == tp->write_seq) {
  4619. tcp_set_state(sk, TCP_FIN_WAIT2);
  4620. sk->sk_shutdown |= SEND_SHUTDOWN;
  4621. dst_confirm(sk->sk_dst_cache);
  4622. if (!sock_flag(sk, SOCK_DEAD))
  4623. /* Wake up lingering close() */
  4624. sk->sk_state_change(sk);
  4625. else {
  4626. int tmo;
  4627. if (tp->linger2 < 0 ||
  4628. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4629. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4630. tcp_done(sk);
  4631. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
  4632. return 1;
  4633. }
  4634. tmo = tcp_fin_time(sk);
  4635. if (tmo > TCP_TIMEWAIT_LEN) {
  4636. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4637. } else if (th->fin || sock_owned_by_user(sk)) {
  4638. /* Bad case. We could lose such FIN otherwise.
  4639. * It is not a big problem, but it looks confusing
  4640. * and not so rare event. We still can lose it now,
  4641. * if it spins in bh_lock_sock(), but it is really
  4642. * marginal case.
  4643. */
  4644. inet_csk_reset_keepalive_timer(sk, tmo);
  4645. } else {
  4646. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4647. goto discard;
  4648. }
  4649. }
  4650. }
  4651. break;
  4652. case TCP_CLOSING:
  4653. if (tp->snd_una == tp->write_seq) {
  4654. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4655. goto discard;
  4656. }
  4657. break;
  4658. case TCP_LAST_ACK:
  4659. if (tp->snd_una == tp->write_seq) {
  4660. tcp_update_metrics(sk);
  4661. tcp_done(sk);
  4662. goto discard;
  4663. }
  4664. break;
  4665. }
  4666. } else
  4667. goto discard;
  4668. /* step 6: check the URG bit */
  4669. tcp_urg(sk, skb, th);
  4670. /* step 7: process the segment text */
  4671. switch (sk->sk_state) {
  4672. case TCP_CLOSE_WAIT:
  4673. case TCP_CLOSING:
  4674. case TCP_LAST_ACK:
  4675. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4676. break;
  4677. case TCP_FIN_WAIT1:
  4678. case TCP_FIN_WAIT2:
  4679. /* RFC 793 says to queue data in these states,
  4680. * RFC 1122 says we MUST send a reset.
  4681. * BSD 4.4 also does reset.
  4682. */
  4683. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  4684. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4685. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  4686. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
  4687. tcp_reset(sk);
  4688. return 1;
  4689. }
  4690. }
  4691. /* Fall through */
  4692. case TCP_ESTABLISHED:
  4693. tcp_data_queue(sk, skb);
  4694. queued = 1;
  4695. break;
  4696. }
  4697. /* tcp_data could move socket to TIME-WAIT */
  4698. if (sk->sk_state != TCP_CLOSE) {
  4699. tcp_data_snd_check(sk);
  4700. tcp_ack_snd_check(sk);
  4701. }
  4702. if (!queued) {
  4703. discard:
  4704. __kfree_skb(skb);
  4705. }
  4706. return 0;
  4707. }
  4708. EXPORT_SYMBOL(sysctl_tcp_ecn);
  4709. EXPORT_SYMBOL(sysctl_tcp_reordering);
  4710. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  4711. EXPORT_SYMBOL(tcp_parse_options);
  4712. EXPORT_SYMBOL(tcp_rcv_established);
  4713. EXPORT_SYMBOL(tcp_rcv_state_process);
  4714. EXPORT_SYMBOL(tcp_initialize_rcv_mss);