slub.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemtrace.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #ifdef CONFIG_SLUB_DEBUG
  108. #define SLABDEBUG 1
  109. #else
  110. #define SLABDEBUG 0
  111. #endif
  112. /*
  113. * Issues still to be resolved:
  114. *
  115. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  116. *
  117. * - Variable sizing of the per node arrays
  118. */
  119. /* Enable to test recovery from slab corruption on boot */
  120. #undef SLUB_RESILIENCY_TEST
  121. /*
  122. * Mininum number of partial slabs. These will be left on the partial
  123. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  124. */
  125. #define MIN_PARTIAL 5
  126. /*
  127. * Maximum number of desirable partial slabs.
  128. * The existence of more partial slabs makes kmem_cache_shrink
  129. * sort the partial list by the number of objects in the.
  130. */
  131. #define MAX_PARTIAL 10
  132. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  133. SLAB_POISON | SLAB_STORE_USER)
  134. /*
  135. * Debugging flags that require metadata to be stored in the slab. These get
  136. * disabled when slub_debug=O is used and a cache's min order increases with
  137. * metadata.
  138. */
  139. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  140. /*
  141. * Set of flags that will prevent slab merging
  142. */
  143. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  144. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  145. SLAB_FAILSLAB)
  146. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  147. SLAB_CACHE_DMA | SLAB_NOTRACK)
  148. #ifndef ARCH_KMALLOC_MINALIGN
  149. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  150. #endif
  151. #ifndef ARCH_SLAB_MINALIGN
  152. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  153. #endif
  154. #define OO_SHIFT 16
  155. #define OO_MASK ((1 << OO_SHIFT) - 1)
  156. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  157. /* Internal SLUB flags */
  158. #define __OBJECT_POISON 0x80000000 /* Poison object */
  159. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  160. static int kmem_size = sizeof(struct kmem_cache);
  161. #ifdef CONFIG_SMP
  162. static struct notifier_block slab_notifier;
  163. #endif
  164. static enum {
  165. DOWN, /* No slab functionality available */
  166. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  167. UP, /* Everything works but does not show up in sysfs */
  168. SYSFS /* Sysfs up */
  169. } slab_state = DOWN;
  170. /* A list of all slab caches on the system */
  171. static DECLARE_RWSEM(slub_lock);
  172. static LIST_HEAD(slab_caches);
  173. /*
  174. * Tracking user of a slab.
  175. */
  176. struct track {
  177. unsigned long addr; /* Called from address */
  178. int cpu; /* Was running on cpu */
  179. int pid; /* Pid context */
  180. unsigned long when; /* When did the operation occur */
  181. };
  182. enum track_item { TRACK_ALLOC, TRACK_FREE };
  183. #ifdef CONFIG_SLUB_DEBUG
  184. static int sysfs_slab_add(struct kmem_cache *);
  185. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  186. static void sysfs_slab_remove(struct kmem_cache *);
  187. #else
  188. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  189. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  190. { return 0; }
  191. static inline void sysfs_slab_remove(struct kmem_cache *s)
  192. {
  193. kfree(s);
  194. }
  195. #endif
  196. static inline void stat(struct kmem_cache *s, enum stat_item si)
  197. {
  198. #ifdef CONFIG_SLUB_STATS
  199. __this_cpu_inc(s->cpu_slab->stat[si]);
  200. #endif
  201. }
  202. /********************************************************************
  203. * Core slab cache functions
  204. *******************************************************************/
  205. int slab_is_available(void)
  206. {
  207. return slab_state >= UP;
  208. }
  209. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  210. {
  211. #ifdef CONFIG_NUMA
  212. return s->node[node];
  213. #else
  214. return &s->local_node;
  215. #endif
  216. }
  217. /* Verify that a pointer has an address that is valid within a slab page */
  218. static inline int check_valid_pointer(struct kmem_cache *s,
  219. struct page *page, const void *object)
  220. {
  221. void *base;
  222. if (!object)
  223. return 1;
  224. base = page_address(page);
  225. if (object < base || object >= base + page->objects * s->size ||
  226. (object - base) % s->size) {
  227. return 0;
  228. }
  229. return 1;
  230. }
  231. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  232. {
  233. return *(void **)(object + s->offset);
  234. }
  235. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  236. {
  237. *(void **)(object + s->offset) = fp;
  238. }
  239. /* Loop over all objects in a slab */
  240. #define for_each_object(__p, __s, __addr, __objects) \
  241. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  242. __p += (__s)->size)
  243. /* Scan freelist */
  244. #define for_each_free_object(__p, __s, __free) \
  245. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  246. /* Determine object index from a given position */
  247. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  248. {
  249. return (p - addr) / s->size;
  250. }
  251. static inline struct kmem_cache_order_objects oo_make(int order,
  252. unsigned long size)
  253. {
  254. struct kmem_cache_order_objects x = {
  255. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  256. };
  257. return x;
  258. }
  259. static inline int oo_order(struct kmem_cache_order_objects x)
  260. {
  261. return x.x >> OO_SHIFT;
  262. }
  263. static inline int oo_objects(struct kmem_cache_order_objects x)
  264. {
  265. return x.x & OO_MASK;
  266. }
  267. #ifdef CONFIG_SLUB_DEBUG
  268. /*
  269. * Debug settings:
  270. */
  271. #ifdef CONFIG_SLUB_DEBUG_ON
  272. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  273. #else
  274. static int slub_debug;
  275. #endif
  276. static char *slub_debug_slabs;
  277. static int disable_higher_order_debug;
  278. /*
  279. * Object debugging
  280. */
  281. static void print_section(char *text, u8 *addr, unsigned int length)
  282. {
  283. int i, offset;
  284. int newline = 1;
  285. char ascii[17];
  286. ascii[16] = 0;
  287. for (i = 0; i < length; i++) {
  288. if (newline) {
  289. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  290. newline = 0;
  291. }
  292. printk(KERN_CONT " %02x", addr[i]);
  293. offset = i % 16;
  294. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  295. if (offset == 15) {
  296. printk(KERN_CONT " %s\n", ascii);
  297. newline = 1;
  298. }
  299. }
  300. if (!newline) {
  301. i %= 16;
  302. while (i < 16) {
  303. printk(KERN_CONT " ");
  304. ascii[i] = ' ';
  305. i++;
  306. }
  307. printk(KERN_CONT " %s\n", ascii);
  308. }
  309. }
  310. static struct track *get_track(struct kmem_cache *s, void *object,
  311. enum track_item alloc)
  312. {
  313. struct track *p;
  314. if (s->offset)
  315. p = object + s->offset + sizeof(void *);
  316. else
  317. p = object + s->inuse;
  318. return p + alloc;
  319. }
  320. static void set_track(struct kmem_cache *s, void *object,
  321. enum track_item alloc, unsigned long addr)
  322. {
  323. struct track *p = get_track(s, object, alloc);
  324. if (addr) {
  325. p->addr = addr;
  326. p->cpu = smp_processor_id();
  327. p->pid = current->pid;
  328. p->when = jiffies;
  329. } else
  330. memset(p, 0, sizeof(struct track));
  331. }
  332. static void init_tracking(struct kmem_cache *s, void *object)
  333. {
  334. if (!(s->flags & SLAB_STORE_USER))
  335. return;
  336. set_track(s, object, TRACK_FREE, 0UL);
  337. set_track(s, object, TRACK_ALLOC, 0UL);
  338. }
  339. static void print_track(const char *s, struct track *t)
  340. {
  341. if (!t->addr)
  342. return;
  343. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  344. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  345. }
  346. static void print_tracking(struct kmem_cache *s, void *object)
  347. {
  348. if (!(s->flags & SLAB_STORE_USER))
  349. return;
  350. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  351. print_track("Freed", get_track(s, object, TRACK_FREE));
  352. }
  353. static void print_page_info(struct page *page)
  354. {
  355. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  356. page, page->objects, page->inuse, page->freelist, page->flags);
  357. }
  358. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  359. {
  360. va_list args;
  361. char buf[100];
  362. va_start(args, fmt);
  363. vsnprintf(buf, sizeof(buf), fmt, args);
  364. va_end(args);
  365. printk(KERN_ERR "========================================"
  366. "=====================================\n");
  367. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  368. printk(KERN_ERR "----------------------------------------"
  369. "-------------------------------------\n\n");
  370. }
  371. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  372. {
  373. va_list args;
  374. char buf[100];
  375. va_start(args, fmt);
  376. vsnprintf(buf, sizeof(buf), fmt, args);
  377. va_end(args);
  378. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  379. }
  380. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  381. {
  382. unsigned int off; /* Offset of last byte */
  383. u8 *addr = page_address(page);
  384. print_tracking(s, p);
  385. print_page_info(page);
  386. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  387. p, p - addr, get_freepointer(s, p));
  388. if (p > addr + 16)
  389. print_section("Bytes b4", p - 16, 16);
  390. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  391. if (s->flags & SLAB_RED_ZONE)
  392. print_section("Redzone", p + s->objsize,
  393. s->inuse - s->objsize);
  394. if (s->offset)
  395. off = s->offset + sizeof(void *);
  396. else
  397. off = s->inuse;
  398. if (s->flags & SLAB_STORE_USER)
  399. off += 2 * sizeof(struct track);
  400. if (off != s->size)
  401. /* Beginning of the filler is the free pointer */
  402. print_section("Padding", p + off, s->size - off);
  403. dump_stack();
  404. }
  405. static void object_err(struct kmem_cache *s, struct page *page,
  406. u8 *object, char *reason)
  407. {
  408. slab_bug(s, "%s", reason);
  409. print_trailer(s, page, object);
  410. }
  411. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  412. {
  413. va_list args;
  414. char buf[100];
  415. va_start(args, fmt);
  416. vsnprintf(buf, sizeof(buf), fmt, args);
  417. va_end(args);
  418. slab_bug(s, "%s", buf);
  419. print_page_info(page);
  420. dump_stack();
  421. }
  422. static void init_object(struct kmem_cache *s, void *object, int active)
  423. {
  424. u8 *p = object;
  425. if (s->flags & __OBJECT_POISON) {
  426. memset(p, POISON_FREE, s->objsize - 1);
  427. p[s->objsize - 1] = POISON_END;
  428. }
  429. if (s->flags & SLAB_RED_ZONE)
  430. memset(p + s->objsize,
  431. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  432. s->inuse - s->objsize);
  433. }
  434. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  435. {
  436. while (bytes) {
  437. if (*start != (u8)value)
  438. return start;
  439. start++;
  440. bytes--;
  441. }
  442. return NULL;
  443. }
  444. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  445. void *from, void *to)
  446. {
  447. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  448. memset(from, data, to - from);
  449. }
  450. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  451. u8 *object, char *what,
  452. u8 *start, unsigned int value, unsigned int bytes)
  453. {
  454. u8 *fault;
  455. u8 *end;
  456. fault = check_bytes(start, value, bytes);
  457. if (!fault)
  458. return 1;
  459. end = start + bytes;
  460. while (end > fault && end[-1] == value)
  461. end--;
  462. slab_bug(s, "%s overwritten", what);
  463. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  464. fault, end - 1, fault[0], value);
  465. print_trailer(s, page, object);
  466. restore_bytes(s, what, value, fault, end);
  467. return 0;
  468. }
  469. /*
  470. * Object layout:
  471. *
  472. * object address
  473. * Bytes of the object to be managed.
  474. * If the freepointer may overlay the object then the free
  475. * pointer is the first word of the object.
  476. *
  477. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  478. * 0xa5 (POISON_END)
  479. *
  480. * object + s->objsize
  481. * Padding to reach word boundary. This is also used for Redzoning.
  482. * Padding is extended by another word if Redzoning is enabled and
  483. * objsize == inuse.
  484. *
  485. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  486. * 0xcc (RED_ACTIVE) for objects in use.
  487. *
  488. * object + s->inuse
  489. * Meta data starts here.
  490. *
  491. * A. Free pointer (if we cannot overwrite object on free)
  492. * B. Tracking data for SLAB_STORE_USER
  493. * C. Padding to reach required alignment boundary or at mininum
  494. * one word if debugging is on to be able to detect writes
  495. * before the word boundary.
  496. *
  497. * Padding is done using 0x5a (POISON_INUSE)
  498. *
  499. * object + s->size
  500. * Nothing is used beyond s->size.
  501. *
  502. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  503. * ignored. And therefore no slab options that rely on these boundaries
  504. * may be used with merged slabcaches.
  505. */
  506. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  507. {
  508. unsigned long off = s->inuse; /* The end of info */
  509. if (s->offset)
  510. /* Freepointer is placed after the object. */
  511. off += sizeof(void *);
  512. if (s->flags & SLAB_STORE_USER)
  513. /* We also have user information there */
  514. off += 2 * sizeof(struct track);
  515. if (s->size == off)
  516. return 1;
  517. return check_bytes_and_report(s, page, p, "Object padding",
  518. p + off, POISON_INUSE, s->size - off);
  519. }
  520. /* Check the pad bytes at the end of a slab page */
  521. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  522. {
  523. u8 *start;
  524. u8 *fault;
  525. u8 *end;
  526. int length;
  527. int remainder;
  528. if (!(s->flags & SLAB_POISON))
  529. return 1;
  530. start = page_address(page);
  531. length = (PAGE_SIZE << compound_order(page));
  532. end = start + length;
  533. remainder = length % s->size;
  534. if (!remainder)
  535. return 1;
  536. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  537. if (!fault)
  538. return 1;
  539. while (end > fault && end[-1] == POISON_INUSE)
  540. end--;
  541. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  542. print_section("Padding", end - remainder, remainder);
  543. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  544. return 0;
  545. }
  546. static int check_object(struct kmem_cache *s, struct page *page,
  547. void *object, int active)
  548. {
  549. u8 *p = object;
  550. u8 *endobject = object + s->objsize;
  551. if (s->flags & SLAB_RED_ZONE) {
  552. unsigned int red =
  553. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  554. if (!check_bytes_and_report(s, page, object, "Redzone",
  555. endobject, red, s->inuse - s->objsize))
  556. return 0;
  557. } else {
  558. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  559. check_bytes_and_report(s, page, p, "Alignment padding",
  560. endobject, POISON_INUSE, s->inuse - s->objsize);
  561. }
  562. }
  563. if (s->flags & SLAB_POISON) {
  564. if (!active && (s->flags & __OBJECT_POISON) &&
  565. (!check_bytes_and_report(s, page, p, "Poison", p,
  566. POISON_FREE, s->objsize - 1) ||
  567. !check_bytes_and_report(s, page, p, "Poison",
  568. p + s->objsize - 1, POISON_END, 1)))
  569. return 0;
  570. /*
  571. * check_pad_bytes cleans up on its own.
  572. */
  573. check_pad_bytes(s, page, p);
  574. }
  575. if (!s->offset && active)
  576. /*
  577. * Object and freepointer overlap. Cannot check
  578. * freepointer while object is allocated.
  579. */
  580. return 1;
  581. /* Check free pointer validity */
  582. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  583. object_err(s, page, p, "Freepointer corrupt");
  584. /*
  585. * No choice but to zap it and thus lose the remainder
  586. * of the free objects in this slab. May cause
  587. * another error because the object count is now wrong.
  588. */
  589. set_freepointer(s, p, NULL);
  590. return 0;
  591. }
  592. return 1;
  593. }
  594. static int check_slab(struct kmem_cache *s, struct page *page)
  595. {
  596. int maxobj;
  597. VM_BUG_ON(!irqs_disabled());
  598. if (!PageSlab(page)) {
  599. slab_err(s, page, "Not a valid slab page");
  600. return 0;
  601. }
  602. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  603. if (page->objects > maxobj) {
  604. slab_err(s, page, "objects %u > max %u",
  605. s->name, page->objects, maxobj);
  606. return 0;
  607. }
  608. if (page->inuse > page->objects) {
  609. slab_err(s, page, "inuse %u > max %u",
  610. s->name, page->inuse, page->objects);
  611. return 0;
  612. }
  613. /* Slab_pad_check fixes things up after itself */
  614. slab_pad_check(s, page);
  615. return 1;
  616. }
  617. /*
  618. * Determine if a certain object on a page is on the freelist. Must hold the
  619. * slab lock to guarantee that the chains are in a consistent state.
  620. */
  621. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  622. {
  623. int nr = 0;
  624. void *fp = page->freelist;
  625. void *object = NULL;
  626. unsigned long max_objects;
  627. while (fp && nr <= page->objects) {
  628. if (fp == search)
  629. return 1;
  630. if (!check_valid_pointer(s, page, fp)) {
  631. if (object) {
  632. object_err(s, page, object,
  633. "Freechain corrupt");
  634. set_freepointer(s, object, NULL);
  635. break;
  636. } else {
  637. slab_err(s, page, "Freepointer corrupt");
  638. page->freelist = NULL;
  639. page->inuse = page->objects;
  640. slab_fix(s, "Freelist cleared");
  641. return 0;
  642. }
  643. break;
  644. }
  645. object = fp;
  646. fp = get_freepointer(s, object);
  647. nr++;
  648. }
  649. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  650. if (max_objects > MAX_OBJS_PER_PAGE)
  651. max_objects = MAX_OBJS_PER_PAGE;
  652. if (page->objects != max_objects) {
  653. slab_err(s, page, "Wrong number of objects. Found %d but "
  654. "should be %d", page->objects, max_objects);
  655. page->objects = max_objects;
  656. slab_fix(s, "Number of objects adjusted.");
  657. }
  658. if (page->inuse != page->objects - nr) {
  659. slab_err(s, page, "Wrong object count. Counter is %d but "
  660. "counted were %d", page->inuse, page->objects - nr);
  661. page->inuse = page->objects - nr;
  662. slab_fix(s, "Object count adjusted.");
  663. }
  664. return search == NULL;
  665. }
  666. static void trace(struct kmem_cache *s, struct page *page, void *object,
  667. int alloc)
  668. {
  669. if (s->flags & SLAB_TRACE) {
  670. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  671. s->name,
  672. alloc ? "alloc" : "free",
  673. object, page->inuse,
  674. page->freelist);
  675. if (!alloc)
  676. print_section("Object", (void *)object, s->objsize);
  677. dump_stack();
  678. }
  679. }
  680. /*
  681. * Tracking of fully allocated slabs for debugging purposes.
  682. */
  683. static void add_full(struct kmem_cache_node *n, struct page *page)
  684. {
  685. spin_lock(&n->list_lock);
  686. list_add(&page->lru, &n->full);
  687. spin_unlock(&n->list_lock);
  688. }
  689. static void remove_full(struct kmem_cache *s, struct page *page)
  690. {
  691. struct kmem_cache_node *n;
  692. if (!(s->flags & SLAB_STORE_USER))
  693. return;
  694. n = get_node(s, page_to_nid(page));
  695. spin_lock(&n->list_lock);
  696. list_del(&page->lru);
  697. spin_unlock(&n->list_lock);
  698. }
  699. /* Tracking of the number of slabs for debugging purposes */
  700. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  701. {
  702. struct kmem_cache_node *n = get_node(s, node);
  703. return atomic_long_read(&n->nr_slabs);
  704. }
  705. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  706. {
  707. return atomic_long_read(&n->nr_slabs);
  708. }
  709. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  710. {
  711. struct kmem_cache_node *n = get_node(s, node);
  712. /*
  713. * May be called early in order to allocate a slab for the
  714. * kmem_cache_node structure. Solve the chicken-egg
  715. * dilemma by deferring the increment of the count during
  716. * bootstrap (see early_kmem_cache_node_alloc).
  717. */
  718. if (!NUMA_BUILD || n) {
  719. atomic_long_inc(&n->nr_slabs);
  720. atomic_long_add(objects, &n->total_objects);
  721. }
  722. }
  723. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  724. {
  725. struct kmem_cache_node *n = get_node(s, node);
  726. atomic_long_dec(&n->nr_slabs);
  727. atomic_long_sub(objects, &n->total_objects);
  728. }
  729. /* Object debug checks for alloc/free paths */
  730. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  731. void *object)
  732. {
  733. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  734. return;
  735. init_object(s, object, 0);
  736. init_tracking(s, object);
  737. }
  738. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  739. void *object, unsigned long addr)
  740. {
  741. if (!check_slab(s, page))
  742. goto bad;
  743. if (!on_freelist(s, page, object)) {
  744. object_err(s, page, object, "Object already allocated");
  745. goto bad;
  746. }
  747. if (!check_valid_pointer(s, page, object)) {
  748. object_err(s, page, object, "Freelist Pointer check fails");
  749. goto bad;
  750. }
  751. if (!check_object(s, page, object, 0))
  752. goto bad;
  753. /* Success perform special debug activities for allocs */
  754. if (s->flags & SLAB_STORE_USER)
  755. set_track(s, object, TRACK_ALLOC, addr);
  756. trace(s, page, object, 1);
  757. init_object(s, object, 1);
  758. return 1;
  759. bad:
  760. if (PageSlab(page)) {
  761. /*
  762. * If this is a slab page then lets do the best we can
  763. * to avoid issues in the future. Marking all objects
  764. * as used avoids touching the remaining objects.
  765. */
  766. slab_fix(s, "Marking all objects used");
  767. page->inuse = page->objects;
  768. page->freelist = NULL;
  769. }
  770. return 0;
  771. }
  772. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  773. void *object, unsigned long addr)
  774. {
  775. if (!check_slab(s, page))
  776. goto fail;
  777. if (!check_valid_pointer(s, page, object)) {
  778. slab_err(s, page, "Invalid object pointer 0x%p", object);
  779. goto fail;
  780. }
  781. if (on_freelist(s, page, object)) {
  782. object_err(s, page, object, "Object already free");
  783. goto fail;
  784. }
  785. if (!check_object(s, page, object, 1))
  786. return 0;
  787. if (unlikely(s != page->slab)) {
  788. if (!PageSlab(page)) {
  789. slab_err(s, page, "Attempt to free object(0x%p) "
  790. "outside of slab", object);
  791. } else if (!page->slab) {
  792. printk(KERN_ERR
  793. "SLUB <none>: no slab for object 0x%p.\n",
  794. object);
  795. dump_stack();
  796. } else
  797. object_err(s, page, object,
  798. "page slab pointer corrupt.");
  799. goto fail;
  800. }
  801. /* Special debug activities for freeing objects */
  802. if (!PageSlubFrozen(page) && !page->freelist)
  803. remove_full(s, page);
  804. if (s->flags & SLAB_STORE_USER)
  805. set_track(s, object, TRACK_FREE, addr);
  806. trace(s, page, object, 0);
  807. init_object(s, object, 0);
  808. return 1;
  809. fail:
  810. slab_fix(s, "Object at 0x%p not freed", object);
  811. return 0;
  812. }
  813. static int __init setup_slub_debug(char *str)
  814. {
  815. slub_debug = DEBUG_DEFAULT_FLAGS;
  816. if (*str++ != '=' || !*str)
  817. /*
  818. * No options specified. Switch on full debugging.
  819. */
  820. goto out;
  821. if (*str == ',')
  822. /*
  823. * No options but restriction on slabs. This means full
  824. * debugging for slabs matching a pattern.
  825. */
  826. goto check_slabs;
  827. if (tolower(*str) == 'o') {
  828. /*
  829. * Avoid enabling debugging on caches if its minimum order
  830. * would increase as a result.
  831. */
  832. disable_higher_order_debug = 1;
  833. goto out;
  834. }
  835. slub_debug = 0;
  836. if (*str == '-')
  837. /*
  838. * Switch off all debugging measures.
  839. */
  840. goto out;
  841. /*
  842. * Determine which debug features should be switched on
  843. */
  844. for (; *str && *str != ','; str++) {
  845. switch (tolower(*str)) {
  846. case 'f':
  847. slub_debug |= SLAB_DEBUG_FREE;
  848. break;
  849. case 'z':
  850. slub_debug |= SLAB_RED_ZONE;
  851. break;
  852. case 'p':
  853. slub_debug |= SLAB_POISON;
  854. break;
  855. case 'u':
  856. slub_debug |= SLAB_STORE_USER;
  857. break;
  858. case 't':
  859. slub_debug |= SLAB_TRACE;
  860. break;
  861. case 'a':
  862. slub_debug |= SLAB_FAILSLAB;
  863. break;
  864. default:
  865. printk(KERN_ERR "slub_debug option '%c' "
  866. "unknown. skipped\n", *str);
  867. }
  868. }
  869. check_slabs:
  870. if (*str == ',')
  871. slub_debug_slabs = str + 1;
  872. out:
  873. return 1;
  874. }
  875. __setup("slub_debug", setup_slub_debug);
  876. static unsigned long kmem_cache_flags(unsigned long objsize,
  877. unsigned long flags, const char *name,
  878. void (*ctor)(void *))
  879. {
  880. /*
  881. * Enable debugging if selected on the kernel commandline.
  882. */
  883. if (slub_debug && (!slub_debug_slabs ||
  884. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  885. flags |= slub_debug;
  886. return flags;
  887. }
  888. #else
  889. static inline void setup_object_debug(struct kmem_cache *s,
  890. struct page *page, void *object) {}
  891. static inline int alloc_debug_processing(struct kmem_cache *s,
  892. struct page *page, void *object, unsigned long addr) { return 0; }
  893. static inline int free_debug_processing(struct kmem_cache *s,
  894. struct page *page, void *object, unsigned long addr) { return 0; }
  895. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  896. { return 1; }
  897. static inline int check_object(struct kmem_cache *s, struct page *page,
  898. void *object, int active) { return 1; }
  899. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  900. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  901. unsigned long flags, const char *name,
  902. void (*ctor)(void *))
  903. {
  904. return flags;
  905. }
  906. #define slub_debug 0
  907. #define disable_higher_order_debug 0
  908. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  909. { return 0; }
  910. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  911. { return 0; }
  912. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  913. int objects) {}
  914. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  915. int objects) {}
  916. #endif
  917. /*
  918. * Slab allocation and freeing
  919. */
  920. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  921. struct kmem_cache_order_objects oo)
  922. {
  923. int order = oo_order(oo);
  924. flags |= __GFP_NOTRACK;
  925. if (node == -1)
  926. return alloc_pages(flags, order);
  927. else
  928. return alloc_pages_node(node, flags, order);
  929. }
  930. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  931. {
  932. struct page *page;
  933. struct kmem_cache_order_objects oo = s->oo;
  934. gfp_t alloc_gfp;
  935. flags |= s->allocflags;
  936. /*
  937. * Let the initial higher-order allocation fail under memory pressure
  938. * so we fall-back to the minimum order allocation.
  939. */
  940. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  941. page = alloc_slab_page(alloc_gfp, node, oo);
  942. if (unlikely(!page)) {
  943. oo = s->min;
  944. /*
  945. * Allocation may have failed due to fragmentation.
  946. * Try a lower order alloc if possible
  947. */
  948. page = alloc_slab_page(flags, node, oo);
  949. if (!page)
  950. return NULL;
  951. stat(s, ORDER_FALLBACK);
  952. }
  953. if (kmemcheck_enabled
  954. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  955. int pages = 1 << oo_order(oo);
  956. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  957. /*
  958. * Objects from caches that have a constructor don't get
  959. * cleared when they're allocated, so we need to do it here.
  960. */
  961. if (s->ctor)
  962. kmemcheck_mark_uninitialized_pages(page, pages);
  963. else
  964. kmemcheck_mark_unallocated_pages(page, pages);
  965. }
  966. page->objects = oo_objects(oo);
  967. mod_zone_page_state(page_zone(page),
  968. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  969. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  970. 1 << oo_order(oo));
  971. return page;
  972. }
  973. static void setup_object(struct kmem_cache *s, struct page *page,
  974. void *object)
  975. {
  976. setup_object_debug(s, page, object);
  977. if (unlikely(s->ctor))
  978. s->ctor(object);
  979. }
  980. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  981. {
  982. struct page *page;
  983. void *start;
  984. void *last;
  985. void *p;
  986. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  987. page = allocate_slab(s,
  988. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  989. if (!page)
  990. goto out;
  991. inc_slabs_node(s, page_to_nid(page), page->objects);
  992. page->slab = s;
  993. page->flags |= 1 << PG_slab;
  994. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  995. SLAB_STORE_USER | SLAB_TRACE))
  996. __SetPageSlubDebug(page);
  997. start = page_address(page);
  998. if (unlikely(s->flags & SLAB_POISON))
  999. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1000. last = start;
  1001. for_each_object(p, s, start, page->objects) {
  1002. setup_object(s, page, last);
  1003. set_freepointer(s, last, p);
  1004. last = p;
  1005. }
  1006. setup_object(s, page, last);
  1007. set_freepointer(s, last, NULL);
  1008. page->freelist = start;
  1009. page->inuse = 0;
  1010. out:
  1011. return page;
  1012. }
  1013. static void __free_slab(struct kmem_cache *s, struct page *page)
  1014. {
  1015. int order = compound_order(page);
  1016. int pages = 1 << order;
  1017. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  1018. void *p;
  1019. slab_pad_check(s, page);
  1020. for_each_object(p, s, page_address(page),
  1021. page->objects)
  1022. check_object(s, page, p, 0);
  1023. __ClearPageSlubDebug(page);
  1024. }
  1025. kmemcheck_free_shadow(page, compound_order(page));
  1026. mod_zone_page_state(page_zone(page),
  1027. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1028. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1029. -pages);
  1030. __ClearPageSlab(page);
  1031. reset_page_mapcount(page);
  1032. if (current->reclaim_state)
  1033. current->reclaim_state->reclaimed_slab += pages;
  1034. __free_pages(page, order);
  1035. }
  1036. static void rcu_free_slab(struct rcu_head *h)
  1037. {
  1038. struct page *page;
  1039. page = container_of((struct list_head *)h, struct page, lru);
  1040. __free_slab(page->slab, page);
  1041. }
  1042. static void free_slab(struct kmem_cache *s, struct page *page)
  1043. {
  1044. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1045. /*
  1046. * RCU free overloads the RCU head over the LRU
  1047. */
  1048. struct rcu_head *head = (void *)&page->lru;
  1049. call_rcu(head, rcu_free_slab);
  1050. } else
  1051. __free_slab(s, page);
  1052. }
  1053. static void discard_slab(struct kmem_cache *s, struct page *page)
  1054. {
  1055. dec_slabs_node(s, page_to_nid(page), page->objects);
  1056. free_slab(s, page);
  1057. }
  1058. /*
  1059. * Per slab locking using the pagelock
  1060. */
  1061. static __always_inline void slab_lock(struct page *page)
  1062. {
  1063. bit_spin_lock(PG_locked, &page->flags);
  1064. }
  1065. static __always_inline void slab_unlock(struct page *page)
  1066. {
  1067. __bit_spin_unlock(PG_locked, &page->flags);
  1068. }
  1069. static __always_inline int slab_trylock(struct page *page)
  1070. {
  1071. int rc = 1;
  1072. rc = bit_spin_trylock(PG_locked, &page->flags);
  1073. return rc;
  1074. }
  1075. /*
  1076. * Management of partially allocated slabs
  1077. */
  1078. static void add_partial(struct kmem_cache_node *n,
  1079. struct page *page, int tail)
  1080. {
  1081. spin_lock(&n->list_lock);
  1082. n->nr_partial++;
  1083. if (tail)
  1084. list_add_tail(&page->lru, &n->partial);
  1085. else
  1086. list_add(&page->lru, &n->partial);
  1087. spin_unlock(&n->list_lock);
  1088. }
  1089. static void remove_partial(struct kmem_cache *s, struct page *page)
  1090. {
  1091. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1092. spin_lock(&n->list_lock);
  1093. list_del(&page->lru);
  1094. n->nr_partial--;
  1095. spin_unlock(&n->list_lock);
  1096. }
  1097. /*
  1098. * Lock slab and remove from the partial list.
  1099. *
  1100. * Must hold list_lock.
  1101. */
  1102. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1103. struct page *page)
  1104. {
  1105. if (slab_trylock(page)) {
  1106. list_del(&page->lru);
  1107. n->nr_partial--;
  1108. __SetPageSlubFrozen(page);
  1109. return 1;
  1110. }
  1111. return 0;
  1112. }
  1113. /*
  1114. * Try to allocate a partial slab from a specific node.
  1115. */
  1116. static struct page *get_partial_node(struct kmem_cache_node *n)
  1117. {
  1118. struct page *page;
  1119. /*
  1120. * Racy check. If we mistakenly see no partial slabs then we
  1121. * just allocate an empty slab. If we mistakenly try to get a
  1122. * partial slab and there is none available then get_partials()
  1123. * will return NULL.
  1124. */
  1125. if (!n || !n->nr_partial)
  1126. return NULL;
  1127. spin_lock(&n->list_lock);
  1128. list_for_each_entry(page, &n->partial, lru)
  1129. if (lock_and_freeze_slab(n, page))
  1130. goto out;
  1131. page = NULL;
  1132. out:
  1133. spin_unlock(&n->list_lock);
  1134. return page;
  1135. }
  1136. /*
  1137. * Get a page from somewhere. Search in increasing NUMA distances.
  1138. */
  1139. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1140. {
  1141. #ifdef CONFIG_NUMA
  1142. struct zonelist *zonelist;
  1143. struct zoneref *z;
  1144. struct zone *zone;
  1145. enum zone_type high_zoneidx = gfp_zone(flags);
  1146. struct page *page;
  1147. /*
  1148. * The defrag ratio allows a configuration of the tradeoffs between
  1149. * inter node defragmentation and node local allocations. A lower
  1150. * defrag_ratio increases the tendency to do local allocations
  1151. * instead of attempting to obtain partial slabs from other nodes.
  1152. *
  1153. * If the defrag_ratio is set to 0 then kmalloc() always
  1154. * returns node local objects. If the ratio is higher then kmalloc()
  1155. * may return off node objects because partial slabs are obtained
  1156. * from other nodes and filled up.
  1157. *
  1158. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1159. * defrag_ratio = 1000) then every (well almost) allocation will
  1160. * first attempt to defrag slab caches on other nodes. This means
  1161. * scanning over all nodes to look for partial slabs which may be
  1162. * expensive if we do it every time we are trying to find a slab
  1163. * with available objects.
  1164. */
  1165. if (!s->remote_node_defrag_ratio ||
  1166. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1167. return NULL;
  1168. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1169. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1170. struct kmem_cache_node *n;
  1171. n = get_node(s, zone_to_nid(zone));
  1172. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1173. n->nr_partial > s->min_partial) {
  1174. page = get_partial_node(n);
  1175. if (page)
  1176. return page;
  1177. }
  1178. }
  1179. #endif
  1180. return NULL;
  1181. }
  1182. /*
  1183. * Get a partial page, lock it and return it.
  1184. */
  1185. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1186. {
  1187. struct page *page;
  1188. int searchnode = (node == -1) ? numa_node_id() : node;
  1189. page = get_partial_node(get_node(s, searchnode));
  1190. if (page || (flags & __GFP_THISNODE))
  1191. return page;
  1192. return get_any_partial(s, flags);
  1193. }
  1194. /*
  1195. * Move a page back to the lists.
  1196. *
  1197. * Must be called with the slab lock held.
  1198. *
  1199. * On exit the slab lock will have been dropped.
  1200. */
  1201. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1202. {
  1203. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1204. __ClearPageSlubFrozen(page);
  1205. if (page->inuse) {
  1206. if (page->freelist) {
  1207. add_partial(n, page, tail);
  1208. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1209. } else {
  1210. stat(s, DEACTIVATE_FULL);
  1211. if (SLABDEBUG && PageSlubDebug(page) &&
  1212. (s->flags & SLAB_STORE_USER))
  1213. add_full(n, page);
  1214. }
  1215. slab_unlock(page);
  1216. } else {
  1217. stat(s, DEACTIVATE_EMPTY);
  1218. if (n->nr_partial < s->min_partial) {
  1219. /*
  1220. * Adding an empty slab to the partial slabs in order
  1221. * to avoid page allocator overhead. This slab needs
  1222. * to come after the other slabs with objects in
  1223. * so that the others get filled first. That way the
  1224. * size of the partial list stays small.
  1225. *
  1226. * kmem_cache_shrink can reclaim any empty slabs from
  1227. * the partial list.
  1228. */
  1229. add_partial(n, page, 1);
  1230. slab_unlock(page);
  1231. } else {
  1232. slab_unlock(page);
  1233. stat(s, FREE_SLAB);
  1234. discard_slab(s, page);
  1235. }
  1236. }
  1237. }
  1238. /*
  1239. * Remove the cpu slab
  1240. */
  1241. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1242. {
  1243. struct page *page = c->page;
  1244. int tail = 1;
  1245. if (page->freelist)
  1246. stat(s, DEACTIVATE_REMOTE_FREES);
  1247. /*
  1248. * Merge cpu freelist into slab freelist. Typically we get here
  1249. * because both freelists are empty. So this is unlikely
  1250. * to occur.
  1251. */
  1252. while (unlikely(c->freelist)) {
  1253. void **object;
  1254. tail = 0; /* Hot objects. Put the slab first */
  1255. /* Retrieve object from cpu_freelist */
  1256. object = c->freelist;
  1257. c->freelist = get_freepointer(s, c->freelist);
  1258. /* And put onto the regular freelist */
  1259. set_freepointer(s, object, page->freelist);
  1260. page->freelist = object;
  1261. page->inuse--;
  1262. }
  1263. c->page = NULL;
  1264. unfreeze_slab(s, page, tail);
  1265. }
  1266. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1267. {
  1268. stat(s, CPUSLAB_FLUSH);
  1269. slab_lock(c->page);
  1270. deactivate_slab(s, c);
  1271. }
  1272. /*
  1273. * Flush cpu slab.
  1274. *
  1275. * Called from IPI handler with interrupts disabled.
  1276. */
  1277. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1278. {
  1279. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1280. if (likely(c && c->page))
  1281. flush_slab(s, c);
  1282. }
  1283. static void flush_cpu_slab(void *d)
  1284. {
  1285. struct kmem_cache *s = d;
  1286. __flush_cpu_slab(s, smp_processor_id());
  1287. }
  1288. static void flush_all(struct kmem_cache *s)
  1289. {
  1290. on_each_cpu(flush_cpu_slab, s, 1);
  1291. }
  1292. /*
  1293. * Check if the objects in a per cpu structure fit numa
  1294. * locality expectations.
  1295. */
  1296. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1297. {
  1298. #ifdef CONFIG_NUMA
  1299. if (node != -1 && c->node != node)
  1300. return 0;
  1301. #endif
  1302. return 1;
  1303. }
  1304. static int count_free(struct page *page)
  1305. {
  1306. return page->objects - page->inuse;
  1307. }
  1308. static unsigned long count_partial(struct kmem_cache_node *n,
  1309. int (*get_count)(struct page *))
  1310. {
  1311. unsigned long flags;
  1312. unsigned long x = 0;
  1313. struct page *page;
  1314. spin_lock_irqsave(&n->list_lock, flags);
  1315. list_for_each_entry(page, &n->partial, lru)
  1316. x += get_count(page);
  1317. spin_unlock_irqrestore(&n->list_lock, flags);
  1318. return x;
  1319. }
  1320. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1321. {
  1322. #ifdef CONFIG_SLUB_DEBUG
  1323. return atomic_long_read(&n->total_objects);
  1324. #else
  1325. return 0;
  1326. #endif
  1327. }
  1328. static noinline void
  1329. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1330. {
  1331. int node;
  1332. printk(KERN_WARNING
  1333. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1334. nid, gfpflags);
  1335. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1336. "default order: %d, min order: %d\n", s->name, s->objsize,
  1337. s->size, oo_order(s->oo), oo_order(s->min));
  1338. if (oo_order(s->min) > get_order(s->objsize))
  1339. printk(KERN_WARNING " %s debugging increased min order, use "
  1340. "slub_debug=O to disable.\n", s->name);
  1341. for_each_online_node(node) {
  1342. struct kmem_cache_node *n = get_node(s, node);
  1343. unsigned long nr_slabs;
  1344. unsigned long nr_objs;
  1345. unsigned long nr_free;
  1346. if (!n)
  1347. continue;
  1348. nr_free = count_partial(n, count_free);
  1349. nr_slabs = node_nr_slabs(n);
  1350. nr_objs = node_nr_objs(n);
  1351. printk(KERN_WARNING
  1352. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1353. node, nr_slabs, nr_objs, nr_free);
  1354. }
  1355. }
  1356. /*
  1357. * Slow path. The lockless freelist is empty or we need to perform
  1358. * debugging duties.
  1359. *
  1360. * Interrupts are disabled.
  1361. *
  1362. * Processing is still very fast if new objects have been freed to the
  1363. * regular freelist. In that case we simply take over the regular freelist
  1364. * as the lockless freelist and zap the regular freelist.
  1365. *
  1366. * If that is not working then we fall back to the partial lists. We take the
  1367. * first element of the freelist as the object to allocate now and move the
  1368. * rest of the freelist to the lockless freelist.
  1369. *
  1370. * And if we were unable to get a new slab from the partial slab lists then
  1371. * we need to allocate a new slab. This is the slowest path since it involves
  1372. * a call to the page allocator and the setup of a new slab.
  1373. */
  1374. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1375. unsigned long addr, struct kmem_cache_cpu *c)
  1376. {
  1377. void **object;
  1378. struct page *new;
  1379. /* We handle __GFP_ZERO in the caller */
  1380. gfpflags &= ~__GFP_ZERO;
  1381. if (!c->page)
  1382. goto new_slab;
  1383. slab_lock(c->page);
  1384. if (unlikely(!node_match(c, node)))
  1385. goto another_slab;
  1386. stat(s, ALLOC_REFILL);
  1387. load_freelist:
  1388. object = c->page->freelist;
  1389. if (unlikely(!object))
  1390. goto another_slab;
  1391. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1392. goto debug;
  1393. c->freelist = get_freepointer(s, object);
  1394. c->page->inuse = c->page->objects;
  1395. c->page->freelist = NULL;
  1396. c->node = page_to_nid(c->page);
  1397. unlock_out:
  1398. slab_unlock(c->page);
  1399. stat(s, ALLOC_SLOWPATH);
  1400. return object;
  1401. another_slab:
  1402. deactivate_slab(s, c);
  1403. new_slab:
  1404. new = get_partial(s, gfpflags, node);
  1405. if (new) {
  1406. c->page = new;
  1407. stat(s, ALLOC_FROM_PARTIAL);
  1408. goto load_freelist;
  1409. }
  1410. if (gfpflags & __GFP_WAIT)
  1411. local_irq_enable();
  1412. new = new_slab(s, gfpflags, node);
  1413. if (gfpflags & __GFP_WAIT)
  1414. local_irq_disable();
  1415. if (new) {
  1416. c = __this_cpu_ptr(s->cpu_slab);
  1417. stat(s, ALLOC_SLAB);
  1418. if (c->page)
  1419. flush_slab(s, c);
  1420. slab_lock(new);
  1421. __SetPageSlubFrozen(new);
  1422. c->page = new;
  1423. goto load_freelist;
  1424. }
  1425. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1426. slab_out_of_memory(s, gfpflags, node);
  1427. return NULL;
  1428. debug:
  1429. if (!alloc_debug_processing(s, c->page, object, addr))
  1430. goto another_slab;
  1431. c->page->inuse++;
  1432. c->page->freelist = get_freepointer(s, object);
  1433. c->node = -1;
  1434. goto unlock_out;
  1435. }
  1436. /*
  1437. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1438. * have the fastpath folded into their functions. So no function call
  1439. * overhead for requests that can be satisfied on the fastpath.
  1440. *
  1441. * The fastpath works by first checking if the lockless freelist can be used.
  1442. * If not then __slab_alloc is called for slow processing.
  1443. *
  1444. * Otherwise we can simply pick the next object from the lockless free list.
  1445. */
  1446. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1447. gfp_t gfpflags, int node, unsigned long addr)
  1448. {
  1449. void **object;
  1450. struct kmem_cache_cpu *c;
  1451. unsigned long flags;
  1452. gfpflags &= gfp_allowed_mask;
  1453. lockdep_trace_alloc(gfpflags);
  1454. might_sleep_if(gfpflags & __GFP_WAIT);
  1455. if (should_failslab(s->objsize, gfpflags, s->flags))
  1456. return NULL;
  1457. local_irq_save(flags);
  1458. c = __this_cpu_ptr(s->cpu_slab);
  1459. object = c->freelist;
  1460. if (unlikely(!object || !node_match(c, node)))
  1461. object = __slab_alloc(s, gfpflags, node, addr, c);
  1462. else {
  1463. c->freelist = get_freepointer(s, object);
  1464. stat(s, ALLOC_FASTPATH);
  1465. }
  1466. local_irq_restore(flags);
  1467. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1468. memset(object, 0, s->objsize);
  1469. kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
  1470. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
  1471. return object;
  1472. }
  1473. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1474. {
  1475. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1476. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1477. return ret;
  1478. }
  1479. EXPORT_SYMBOL(kmem_cache_alloc);
  1480. #ifdef CONFIG_TRACING
  1481. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1482. {
  1483. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1484. }
  1485. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1486. #endif
  1487. #ifdef CONFIG_NUMA
  1488. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1489. {
  1490. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1491. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1492. s->objsize, s->size, gfpflags, node);
  1493. return ret;
  1494. }
  1495. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1496. #endif
  1497. #ifdef CONFIG_TRACING
  1498. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1499. gfp_t gfpflags,
  1500. int node)
  1501. {
  1502. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1503. }
  1504. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1505. #endif
  1506. /*
  1507. * Slow patch handling. This may still be called frequently since objects
  1508. * have a longer lifetime than the cpu slabs in most processing loads.
  1509. *
  1510. * So we still attempt to reduce cache line usage. Just take the slab
  1511. * lock and free the item. If there is no additional partial page
  1512. * handling required then we can return immediately.
  1513. */
  1514. static void __slab_free(struct kmem_cache *s, struct page *page,
  1515. void *x, unsigned long addr)
  1516. {
  1517. void *prior;
  1518. void **object = (void *)x;
  1519. stat(s, FREE_SLOWPATH);
  1520. slab_lock(page);
  1521. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1522. goto debug;
  1523. checks_ok:
  1524. prior = page->freelist;
  1525. set_freepointer(s, object, prior);
  1526. page->freelist = object;
  1527. page->inuse--;
  1528. if (unlikely(PageSlubFrozen(page))) {
  1529. stat(s, FREE_FROZEN);
  1530. goto out_unlock;
  1531. }
  1532. if (unlikely(!page->inuse))
  1533. goto slab_empty;
  1534. /*
  1535. * Objects left in the slab. If it was not on the partial list before
  1536. * then add it.
  1537. */
  1538. if (unlikely(!prior)) {
  1539. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1540. stat(s, FREE_ADD_PARTIAL);
  1541. }
  1542. out_unlock:
  1543. slab_unlock(page);
  1544. return;
  1545. slab_empty:
  1546. if (prior) {
  1547. /*
  1548. * Slab still on the partial list.
  1549. */
  1550. remove_partial(s, page);
  1551. stat(s, FREE_REMOVE_PARTIAL);
  1552. }
  1553. slab_unlock(page);
  1554. stat(s, FREE_SLAB);
  1555. discard_slab(s, page);
  1556. return;
  1557. debug:
  1558. if (!free_debug_processing(s, page, x, addr))
  1559. goto out_unlock;
  1560. goto checks_ok;
  1561. }
  1562. /*
  1563. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1564. * can perform fastpath freeing without additional function calls.
  1565. *
  1566. * The fastpath is only possible if we are freeing to the current cpu slab
  1567. * of this processor. This typically the case if we have just allocated
  1568. * the item before.
  1569. *
  1570. * If fastpath is not possible then fall back to __slab_free where we deal
  1571. * with all sorts of special processing.
  1572. */
  1573. static __always_inline void slab_free(struct kmem_cache *s,
  1574. struct page *page, void *x, unsigned long addr)
  1575. {
  1576. void **object = (void *)x;
  1577. struct kmem_cache_cpu *c;
  1578. unsigned long flags;
  1579. kmemleak_free_recursive(x, s->flags);
  1580. local_irq_save(flags);
  1581. c = __this_cpu_ptr(s->cpu_slab);
  1582. kmemcheck_slab_free(s, object, s->objsize);
  1583. debug_check_no_locks_freed(object, s->objsize);
  1584. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1585. debug_check_no_obj_freed(object, s->objsize);
  1586. if (likely(page == c->page && c->node >= 0)) {
  1587. set_freepointer(s, object, c->freelist);
  1588. c->freelist = object;
  1589. stat(s, FREE_FASTPATH);
  1590. } else
  1591. __slab_free(s, page, x, addr);
  1592. local_irq_restore(flags);
  1593. }
  1594. void kmem_cache_free(struct kmem_cache *s, void *x)
  1595. {
  1596. struct page *page;
  1597. page = virt_to_head_page(x);
  1598. slab_free(s, page, x, _RET_IP_);
  1599. trace_kmem_cache_free(_RET_IP_, x);
  1600. }
  1601. EXPORT_SYMBOL(kmem_cache_free);
  1602. /* Figure out on which slab page the object resides */
  1603. static struct page *get_object_page(const void *x)
  1604. {
  1605. struct page *page = virt_to_head_page(x);
  1606. if (!PageSlab(page))
  1607. return NULL;
  1608. return page;
  1609. }
  1610. /*
  1611. * Object placement in a slab is made very easy because we always start at
  1612. * offset 0. If we tune the size of the object to the alignment then we can
  1613. * get the required alignment by putting one properly sized object after
  1614. * another.
  1615. *
  1616. * Notice that the allocation order determines the sizes of the per cpu
  1617. * caches. Each processor has always one slab available for allocations.
  1618. * Increasing the allocation order reduces the number of times that slabs
  1619. * must be moved on and off the partial lists and is therefore a factor in
  1620. * locking overhead.
  1621. */
  1622. /*
  1623. * Mininum / Maximum order of slab pages. This influences locking overhead
  1624. * and slab fragmentation. A higher order reduces the number of partial slabs
  1625. * and increases the number of allocations possible without having to
  1626. * take the list_lock.
  1627. */
  1628. static int slub_min_order;
  1629. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1630. static int slub_min_objects;
  1631. /*
  1632. * Merge control. If this is set then no merging of slab caches will occur.
  1633. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1634. */
  1635. static int slub_nomerge;
  1636. /*
  1637. * Calculate the order of allocation given an slab object size.
  1638. *
  1639. * The order of allocation has significant impact on performance and other
  1640. * system components. Generally order 0 allocations should be preferred since
  1641. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1642. * be problematic to put into order 0 slabs because there may be too much
  1643. * unused space left. We go to a higher order if more than 1/16th of the slab
  1644. * would be wasted.
  1645. *
  1646. * In order to reach satisfactory performance we must ensure that a minimum
  1647. * number of objects is in one slab. Otherwise we may generate too much
  1648. * activity on the partial lists which requires taking the list_lock. This is
  1649. * less a concern for large slabs though which are rarely used.
  1650. *
  1651. * slub_max_order specifies the order where we begin to stop considering the
  1652. * number of objects in a slab as critical. If we reach slub_max_order then
  1653. * we try to keep the page order as low as possible. So we accept more waste
  1654. * of space in favor of a small page order.
  1655. *
  1656. * Higher order allocations also allow the placement of more objects in a
  1657. * slab and thereby reduce object handling overhead. If the user has
  1658. * requested a higher mininum order then we start with that one instead of
  1659. * the smallest order which will fit the object.
  1660. */
  1661. static inline int slab_order(int size, int min_objects,
  1662. int max_order, int fract_leftover)
  1663. {
  1664. int order;
  1665. int rem;
  1666. int min_order = slub_min_order;
  1667. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1668. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1669. for (order = max(min_order,
  1670. fls(min_objects * size - 1) - PAGE_SHIFT);
  1671. order <= max_order; order++) {
  1672. unsigned long slab_size = PAGE_SIZE << order;
  1673. if (slab_size < min_objects * size)
  1674. continue;
  1675. rem = slab_size % size;
  1676. if (rem <= slab_size / fract_leftover)
  1677. break;
  1678. }
  1679. return order;
  1680. }
  1681. static inline int calculate_order(int size)
  1682. {
  1683. int order;
  1684. int min_objects;
  1685. int fraction;
  1686. int max_objects;
  1687. /*
  1688. * Attempt to find best configuration for a slab. This
  1689. * works by first attempting to generate a layout with
  1690. * the best configuration and backing off gradually.
  1691. *
  1692. * First we reduce the acceptable waste in a slab. Then
  1693. * we reduce the minimum objects required in a slab.
  1694. */
  1695. min_objects = slub_min_objects;
  1696. if (!min_objects)
  1697. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1698. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1699. min_objects = min(min_objects, max_objects);
  1700. while (min_objects > 1) {
  1701. fraction = 16;
  1702. while (fraction >= 4) {
  1703. order = slab_order(size, min_objects,
  1704. slub_max_order, fraction);
  1705. if (order <= slub_max_order)
  1706. return order;
  1707. fraction /= 2;
  1708. }
  1709. min_objects--;
  1710. }
  1711. /*
  1712. * We were unable to place multiple objects in a slab. Now
  1713. * lets see if we can place a single object there.
  1714. */
  1715. order = slab_order(size, 1, slub_max_order, 1);
  1716. if (order <= slub_max_order)
  1717. return order;
  1718. /*
  1719. * Doh this slab cannot be placed using slub_max_order.
  1720. */
  1721. order = slab_order(size, 1, MAX_ORDER, 1);
  1722. if (order < MAX_ORDER)
  1723. return order;
  1724. return -ENOSYS;
  1725. }
  1726. /*
  1727. * Figure out what the alignment of the objects will be.
  1728. */
  1729. static unsigned long calculate_alignment(unsigned long flags,
  1730. unsigned long align, unsigned long size)
  1731. {
  1732. /*
  1733. * If the user wants hardware cache aligned objects then follow that
  1734. * suggestion if the object is sufficiently large.
  1735. *
  1736. * The hardware cache alignment cannot override the specified
  1737. * alignment though. If that is greater then use it.
  1738. */
  1739. if (flags & SLAB_HWCACHE_ALIGN) {
  1740. unsigned long ralign = cache_line_size();
  1741. while (size <= ralign / 2)
  1742. ralign /= 2;
  1743. align = max(align, ralign);
  1744. }
  1745. if (align < ARCH_SLAB_MINALIGN)
  1746. align = ARCH_SLAB_MINALIGN;
  1747. return ALIGN(align, sizeof(void *));
  1748. }
  1749. static void
  1750. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1751. {
  1752. n->nr_partial = 0;
  1753. spin_lock_init(&n->list_lock);
  1754. INIT_LIST_HEAD(&n->partial);
  1755. #ifdef CONFIG_SLUB_DEBUG
  1756. atomic_long_set(&n->nr_slabs, 0);
  1757. atomic_long_set(&n->total_objects, 0);
  1758. INIT_LIST_HEAD(&n->full);
  1759. #endif
  1760. }
  1761. static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
  1762. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1763. {
  1764. if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
  1765. /*
  1766. * Boot time creation of the kmalloc array. Use static per cpu data
  1767. * since the per cpu allocator is not available yet.
  1768. */
  1769. s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
  1770. else
  1771. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1772. if (!s->cpu_slab)
  1773. return 0;
  1774. return 1;
  1775. }
  1776. #ifdef CONFIG_NUMA
  1777. /*
  1778. * No kmalloc_node yet so do it by hand. We know that this is the first
  1779. * slab on the node for this slabcache. There are no concurrent accesses
  1780. * possible.
  1781. *
  1782. * Note that this function only works on the kmalloc_node_cache
  1783. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1784. * memory on a fresh node that has no slab structures yet.
  1785. */
  1786. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1787. {
  1788. struct page *page;
  1789. struct kmem_cache_node *n;
  1790. unsigned long flags;
  1791. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1792. page = new_slab(kmalloc_caches, gfpflags, node);
  1793. BUG_ON(!page);
  1794. if (page_to_nid(page) != node) {
  1795. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1796. "node %d\n", node);
  1797. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1798. "in order to be able to continue\n");
  1799. }
  1800. n = page->freelist;
  1801. BUG_ON(!n);
  1802. page->freelist = get_freepointer(kmalloc_caches, n);
  1803. page->inuse++;
  1804. kmalloc_caches->node[node] = n;
  1805. #ifdef CONFIG_SLUB_DEBUG
  1806. init_object(kmalloc_caches, n, 1);
  1807. init_tracking(kmalloc_caches, n);
  1808. #endif
  1809. init_kmem_cache_node(n, kmalloc_caches);
  1810. inc_slabs_node(kmalloc_caches, node, page->objects);
  1811. /*
  1812. * lockdep requires consistent irq usage for each lock
  1813. * so even though there cannot be a race this early in
  1814. * the boot sequence, we still disable irqs.
  1815. */
  1816. local_irq_save(flags);
  1817. add_partial(n, page, 0);
  1818. local_irq_restore(flags);
  1819. }
  1820. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1821. {
  1822. int node;
  1823. for_each_node_state(node, N_NORMAL_MEMORY) {
  1824. struct kmem_cache_node *n = s->node[node];
  1825. if (n && n != &s->local_node)
  1826. kmem_cache_free(kmalloc_caches, n);
  1827. s->node[node] = NULL;
  1828. }
  1829. }
  1830. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1831. {
  1832. int node;
  1833. int local_node;
  1834. if (slab_state >= UP && (s < kmalloc_caches ||
  1835. s >= kmalloc_caches + KMALLOC_CACHES))
  1836. local_node = page_to_nid(virt_to_page(s));
  1837. else
  1838. local_node = 0;
  1839. for_each_node_state(node, N_NORMAL_MEMORY) {
  1840. struct kmem_cache_node *n;
  1841. if (local_node == node)
  1842. n = &s->local_node;
  1843. else {
  1844. if (slab_state == DOWN) {
  1845. early_kmem_cache_node_alloc(gfpflags, node);
  1846. continue;
  1847. }
  1848. n = kmem_cache_alloc_node(kmalloc_caches,
  1849. gfpflags, node);
  1850. if (!n) {
  1851. free_kmem_cache_nodes(s);
  1852. return 0;
  1853. }
  1854. }
  1855. s->node[node] = n;
  1856. init_kmem_cache_node(n, s);
  1857. }
  1858. return 1;
  1859. }
  1860. #else
  1861. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1862. {
  1863. }
  1864. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1865. {
  1866. init_kmem_cache_node(&s->local_node, s);
  1867. return 1;
  1868. }
  1869. #endif
  1870. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1871. {
  1872. if (min < MIN_PARTIAL)
  1873. min = MIN_PARTIAL;
  1874. else if (min > MAX_PARTIAL)
  1875. min = MAX_PARTIAL;
  1876. s->min_partial = min;
  1877. }
  1878. /*
  1879. * calculate_sizes() determines the order and the distribution of data within
  1880. * a slab object.
  1881. */
  1882. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1883. {
  1884. unsigned long flags = s->flags;
  1885. unsigned long size = s->objsize;
  1886. unsigned long align = s->align;
  1887. int order;
  1888. /*
  1889. * Round up object size to the next word boundary. We can only
  1890. * place the free pointer at word boundaries and this determines
  1891. * the possible location of the free pointer.
  1892. */
  1893. size = ALIGN(size, sizeof(void *));
  1894. #ifdef CONFIG_SLUB_DEBUG
  1895. /*
  1896. * Determine if we can poison the object itself. If the user of
  1897. * the slab may touch the object after free or before allocation
  1898. * then we should never poison the object itself.
  1899. */
  1900. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1901. !s->ctor)
  1902. s->flags |= __OBJECT_POISON;
  1903. else
  1904. s->flags &= ~__OBJECT_POISON;
  1905. /*
  1906. * If we are Redzoning then check if there is some space between the
  1907. * end of the object and the free pointer. If not then add an
  1908. * additional word to have some bytes to store Redzone information.
  1909. */
  1910. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1911. size += sizeof(void *);
  1912. #endif
  1913. /*
  1914. * With that we have determined the number of bytes in actual use
  1915. * by the object. This is the potential offset to the free pointer.
  1916. */
  1917. s->inuse = size;
  1918. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1919. s->ctor)) {
  1920. /*
  1921. * Relocate free pointer after the object if it is not
  1922. * permitted to overwrite the first word of the object on
  1923. * kmem_cache_free.
  1924. *
  1925. * This is the case if we do RCU, have a constructor or
  1926. * destructor or are poisoning the objects.
  1927. */
  1928. s->offset = size;
  1929. size += sizeof(void *);
  1930. }
  1931. #ifdef CONFIG_SLUB_DEBUG
  1932. if (flags & SLAB_STORE_USER)
  1933. /*
  1934. * Need to store information about allocs and frees after
  1935. * the object.
  1936. */
  1937. size += 2 * sizeof(struct track);
  1938. if (flags & SLAB_RED_ZONE)
  1939. /*
  1940. * Add some empty padding so that we can catch
  1941. * overwrites from earlier objects rather than let
  1942. * tracking information or the free pointer be
  1943. * corrupted if a user writes before the start
  1944. * of the object.
  1945. */
  1946. size += sizeof(void *);
  1947. #endif
  1948. /*
  1949. * Determine the alignment based on various parameters that the
  1950. * user specified and the dynamic determination of cache line size
  1951. * on bootup.
  1952. */
  1953. align = calculate_alignment(flags, align, s->objsize);
  1954. s->align = align;
  1955. /*
  1956. * SLUB stores one object immediately after another beginning from
  1957. * offset 0. In order to align the objects we have to simply size
  1958. * each object to conform to the alignment.
  1959. */
  1960. size = ALIGN(size, align);
  1961. s->size = size;
  1962. if (forced_order >= 0)
  1963. order = forced_order;
  1964. else
  1965. order = calculate_order(size);
  1966. if (order < 0)
  1967. return 0;
  1968. s->allocflags = 0;
  1969. if (order)
  1970. s->allocflags |= __GFP_COMP;
  1971. if (s->flags & SLAB_CACHE_DMA)
  1972. s->allocflags |= SLUB_DMA;
  1973. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1974. s->allocflags |= __GFP_RECLAIMABLE;
  1975. /*
  1976. * Determine the number of objects per slab
  1977. */
  1978. s->oo = oo_make(order, size);
  1979. s->min = oo_make(get_order(size), size);
  1980. if (oo_objects(s->oo) > oo_objects(s->max))
  1981. s->max = s->oo;
  1982. return !!oo_objects(s->oo);
  1983. }
  1984. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1985. const char *name, size_t size,
  1986. size_t align, unsigned long flags,
  1987. void (*ctor)(void *))
  1988. {
  1989. memset(s, 0, kmem_size);
  1990. s->name = name;
  1991. s->ctor = ctor;
  1992. s->objsize = size;
  1993. s->align = align;
  1994. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1995. if (!calculate_sizes(s, -1))
  1996. goto error;
  1997. if (disable_higher_order_debug) {
  1998. /*
  1999. * Disable debugging flags that store metadata if the min slab
  2000. * order increased.
  2001. */
  2002. if (get_order(s->size) > get_order(s->objsize)) {
  2003. s->flags &= ~DEBUG_METADATA_FLAGS;
  2004. s->offset = 0;
  2005. if (!calculate_sizes(s, -1))
  2006. goto error;
  2007. }
  2008. }
  2009. /*
  2010. * The larger the object size is, the more pages we want on the partial
  2011. * list to avoid pounding the page allocator excessively.
  2012. */
  2013. set_min_partial(s, ilog2(s->size));
  2014. s->refcount = 1;
  2015. #ifdef CONFIG_NUMA
  2016. s->remote_node_defrag_ratio = 1000;
  2017. #endif
  2018. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2019. goto error;
  2020. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2021. return 1;
  2022. free_kmem_cache_nodes(s);
  2023. error:
  2024. if (flags & SLAB_PANIC)
  2025. panic("Cannot create slab %s size=%lu realsize=%u "
  2026. "order=%u offset=%u flags=%lx\n",
  2027. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2028. s->offset, flags);
  2029. return 0;
  2030. }
  2031. /*
  2032. * Check if a given pointer is valid
  2033. */
  2034. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2035. {
  2036. struct page *page;
  2037. if (!kern_ptr_validate(object, s->size))
  2038. return 0;
  2039. page = get_object_page(object);
  2040. if (!page || s != page->slab)
  2041. /* No slab or wrong slab */
  2042. return 0;
  2043. if (!check_valid_pointer(s, page, object))
  2044. return 0;
  2045. /*
  2046. * We could also check if the object is on the slabs freelist.
  2047. * But this would be too expensive and it seems that the main
  2048. * purpose of kmem_ptr_valid() is to check if the object belongs
  2049. * to a certain slab.
  2050. */
  2051. return 1;
  2052. }
  2053. EXPORT_SYMBOL(kmem_ptr_validate);
  2054. /*
  2055. * Determine the size of a slab object
  2056. */
  2057. unsigned int kmem_cache_size(struct kmem_cache *s)
  2058. {
  2059. return s->objsize;
  2060. }
  2061. EXPORT_SYMBOL(kmem_cache_size);
  2062. const char *kmem_cache_name(struct kmem_cache *s)
  2063. {
  2064. return s->name;
  2065. }
  2066. EXPORT_SYMBOL(kmem_cache_name);
  2067. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2068. const char *text)
  2069. {
  2070. #ifdef CONFIG_SLUB_DEBUG
  2071. void *addr = page_address(page);
  2072. void *p;
  2073. long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
  2074. GFP_ATOMIC);
  2075. if (!map)
  2076. return;
  2077. slab_err(s, page, "%s", text);
  2078. slab_lock(page);
  2079. for_each_free_object(p, s, page->freelist)
  2080. set_bit(slab_index(p, s, addr), map);
  2081. for_each_object(p, s, addr, page->objects) {
  2082. if (!test_bit(slab_index(p, s, addr), map)) {
  2083. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2084. p, p - addr);
  2085. print_tracking(s, p);
  2086. }
  2087. }
  2088. slab_unlock(page);
  2089. kfree(map);
  2090. #endif
  2091. }
  2092. /*
  2093. * Attempt to free all partial slabs on a node.
  2094. */
  2095. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2096. {
  2097. unsigned long flags;
  2098. struct page *page, *h;
  2099. spin_lock_irqsave(&n->list_lock, flags);
  2100. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2101. if (!page->inuse) {
  2102. list_del(&page->lru);
  2103. discard_slab(s, page);
  2104. n->nr_partial--;
  2105. } else {
  2106. list_slab_objects(s, page,
  2107. "Objects remaining on kmem_cache_close()");
  2108. }
  2109. }
  2110. spin_unlock_irqrestore(&n->list_lock, flags);
  2111. }
  2112. /*
  2113. * Release all resources used by a slab cache.
  2114. */
  2115. static inline int kmem_cache_close(struct kmem_cache *s)
  2116. {
  2117. int node;
  2118. flush_all(s);
  2119. free_percpu(s->cpu_slab);
  2120. /* Attempt to free all objects */
  2121. for_each_node_state(node, N_NORMAL_MEMORY) {
  2122. struct kmem_cache_node *n = get_node(s, node);
  2123. free_partial(s, n);
  2124. if (n->nr_partial || slabs_node(s, node))
  2125. return 1;
  2126. }
  2127. free_kmem_cache_nodes(s);
  2128. return 0;
  2129. }
  2130. /*
  2131. * Close a cache and release the kmem_cache structure
  2132. * (must be used for caches created using kmem_cache_create)
  2133. */
  2134. void kmem_cache_destroy(struct kmem_cache *s)
  2135. {
  2136. down_write(&slub_lock);
  2137. s->refcount--;
  2138. if (!s->refcount) {
  2139. list_del(&s->list);
  2140. up_write(&slub_lock);
  2141. if (kmem_cache_close(s)) {
  2142. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2143. "still has objects.\n", s->name, __func__);
  2144. dump_stack();
  2145. }
  2146. if (s->flags & SLAB_DESTROY_BY_RCU)
  2147. rcu_barrier();
  2148. sysfs_slab_remove(s);
  2149. } else
  2150. up_write(&slub_lock);
  2151. }
  2152. EXPORT_SYMBOL(kmem_cache_destroy);
  2153. /********************************************************************
  2154. * Kmalloc subsystem
  2155. *******************************************************************/
  2156. struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
  2157. EXPORT_SYMBOL(kmalloc_caches);
  2158. static int __init setup_slub_min_order(char *str)
  2159. {
  2160. get_option(&str, &slub_min_order);
  2161. return 1;
  2162. }
  2163. __setup("slub_min_order=", setup_slub_min_order);
  2164. static int __init setup_slub_max_order(char *str)
  2165. {
  2166. get_option(&str, &slub_max_order);
  2167. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2168. return 1;
  2169. }
  2170. __setup("slub_max_order=", setup_slub_max_order);
  2171. static int __init setup_slub_min_objects(char *str)
  2172. {
  2173. get_option(&str, &slub_min_objects);
  2174. return 1;
  2175. }
  2176. __setup("slub_min_objects=", setup_slub_min_objects);
  2177. static int __init setup_slub_nomerge(char *str)
  2178. {
  2179. slub_nomerge = 1;
  2180. return 1;
  2181. }
  2182. __setup("slub_nomerge", setup_slub_nomerge);
  2183. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2184. const char *name, int size, gfp_t gfp_flags)
  2185. {
  2186. unsigned int flags = 0;
  2187. if (gfp_flags & SLUB_DMA)
  2188. flags = SLAB_CACHE_DMA;
  2189. /*
  2190. * This function is called with IRQs disabled during early-boot on
  2191. * single CPU so there's no need to take slub_lock here.
  2192. */
  2193. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2194. flags, NULL))
  2195. goto panic;
  2196. list_add(&s->list, &slab_caches);
  2197. if (sysfs_slab_add(s))
  2198. goto panic;
  2199. return s;
  2200. panic:
  2201. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2202. }
  2203. #ifdef CONFIG_ZONE_DMA
  2204. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2205. static void sysfs_add_func(struct work_struct *w)
  2206. {
  2207. struct kmem_cache *s;
  2208. down_write(&slub_lock);
  2209. list_for_each_entry(s, &slab_caches, list) {
  2210. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2211. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2212. sysfs_slab_add(s);
  2213. }
  2214. }
  2215. up_write(&slub_lock);
  2216. }
  2217. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2218. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2219. {
  2220. struct kmem_cache *s;
  2221. char *text;
  2222. size_t realsize;
  2223. unsigned long slabflags;
  2224. int i;
  2225. s = kmalloc_caches_dma[index];
  2226. if (s)
  2227. return s;
  2228. /* Dynamically create dma cache */
  2229. if (flags & __GFP_WAIT)
  2230. down_write(&slub_lock);
  2231. else {
  2232. if (!down_write_trylock(&slub_lock))
  2233. goto out;
  2234. }
  2235. if (kmalloc_caches_dma[index])
  2236. goto unlock_out;
  2237. realsize = kmalloc_caches[index].objsize;
  2238. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2239. (unsigned int)realsize);
  2240. s = NULL;
  2241. for (i = 0; i < KMALLOC_CACHES; i++)
  2242. if (!kmalloc_caches[i].size)
  2243. break;
  2244. BUG_ON(i >= KMALLOC_CACHES);
  2245. s = kmalloc_caches + i;
  2246. /*
  2247. * Must defer sysfs creation to a workqueue because we don't know
  2248. * what context we are called from. Before sysfs comes up, we don't
  2249. * need to do anything because our sysfs initcall will start by
  2250. * adding all existing slabs to sysfs.
  2251. */
  2252. slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
  2253. if (slab_state >= SYSFS)
  2254. slabflags |= __SYSFS_ADD_DEFERRED;
  2255. if (!text || !kmem_cache_open(s, flags, text,
  2256. realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
  2257. s->size = 0;
  2258. kfree(text);
  2259. goto unlock_out;
  2260. }
  2261. list_add(&s->list, &slab_caches);
  2262. kmalloc_caches_dma[index] = s;
  2263. if (slab_state >= SYSFS)
  2264. schedule_work(&sysfs_add_work);
  2265. unlock_out:
  2266. up_write(&slub_lock);
  2267. out:
  2268. return kmalloc_caches_dma[index];
  2269. }
  2270. #endif
  2271. /*
  2272. * Conversion table for small slabs sizes / 8 to the index in the
  2273. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2274. * of two cache sizes there. The size of larger slabs can be determined using
  2275. * fls.
  2276. */
  2277. static s8 size_index[24] = {
  2278. 3, /* 8 */
  2279. 4, /* 16 */
  2280. 5, /* 24 */
  2281. 5, /* 32 */
  2282. 6, /* 40 */
  2283. 6, /* 48 */
  2284. 6, /* 56 */
  2285. 6, /* 64 */
  2286. 1, /* 72 */
  2287. 1, /* 80 */
  2288. 1, /* 88 */
  2289. 1, /* 96 */
  2290. 7, /* 104 */
  2291. 7, /* 112 */
  2292. 7, /* 120 */
  2293. 7, /* 128 */
  2294. 2, /* 136 */
  2295. 2, /* 144 */
  2296. 2, /* 152 */
  2297. 2, /* 160 */
  2298. 2, /* 168 */
  2299. 2, /* 176 */
  2300. 2, /* 184 */
  2301. 2 /* 192 */
  2302. };
  2303. static inline int size_index_elem(size_t bytes)
  2304. {
  2305. return (bytes - 1) / 8;
  2306. }
  2307. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2308. {
  2309. int index;
  2310. if (size <= 192) {
  2311. if (!size)
  2312. return ZERO_SIZE_PTR;
  2313. index = size_index[size_index_elem(size)];
  2314. } else
  2315. index = fls(size - 1);
  2316. #ifdef CONFIG_ZONE_DMA
  2317. if (unlikely((flags & SLUB_DMA)))
  2318. return dma_kmalloc_cache(index, flags);
  2319. #endif
  2320. return &kmalloc_caches[index];
  2321. }
  2322. void *__kmalloc(size_t size, gfp_t flags)
  2323. {
  2324. struct kmem_cache *s;
  2325. void *ret;
  2326. if (unlikely(size > SLUB_MAX_SIZE))
  2327. return kmalloc_large(size, flags);
  2328. s = get_slab(size, flags);
  2329. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2330. return s;
  2331. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2332. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2333. return ret;
  2334. }
  2335. EXPORT_SYMBOL(__kmalloc);
  2336. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2337. {
  2338. struct page *page;
  2339. void *ptr = NULL;
  2340. flags |= __GFP_COMP | __GFP_NOTRACK;
  2341. page = alloc_pages_node(node, flags, get_order(size));
  2342. if (page)
  2343. ptr = page_address(page);
  2344. kmemleak_alloc(ptr, size, 1, flags);
  2345. return ptr;
  2346. }
  2347. #ifdef CONFIG_NUMA
  2348. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2349. {
  2350. struct kmem_cache *s;
  2351. void *ret;
  2352. if (unlikely(size > SLUB_MAX_SIZE)) {
  2353. ret = kmalloc_large_node(size, flags, node);
  2354. trace_kmalloc_node(_RET_IP_, ret,
  2355. size, PAGE_SIZE << get_order(size),
  2356. flags, node);
  2357. return ret;
  2358. }
  2359. s = get_slab(size, flags);
  2360. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2361. return s;
  2362. ret = slab_alloc(s, flags, node, _RET_IP_);
  2363. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2364. return ret;
  2365. }
  2366. EXPORT_SYMBOL(__kmalloc_node);
  2367. #endif
  2368. size_t ksize(const void *object)
  2369. {
  2370. struct page *page;
  2371. struct kmem_cache *s;
  2372. if (unlikely(object == ZERO_SIZE_PTR))
  2373. return 0;
  2374. page = virt_to_head_page(object);
  2375. if (unlikely(!PageSlab(page))) {
  2376. WARN_ON(!PageCompound(page));
  2377. return PAGE_SIZE << compound_order(page);
  2378. }
  2379. s = page->slab;
  2380. #ifdef CONFIG_SLUB_DEBUG
  2381. /*
  2382. * Debugging requires use of the padding between object
  2383. * and whatever may come after it.
  2384. */
  2385. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2386. return s->objsize;
  2387. #endif
  2388. /*
  2389. * If we have the need to store the freelist pointer
  2390. * back there or track user information then we can
  2391. * only use the space before that information.
  2392. */
  2393. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2394. return s->inuse;
  2395. /*
  2396. * Else we can use all the padding etc for the allocation
  2397. */
  2398. return s->size;
  2399. }
  2400. EXPORT_SYMBOL(ksize);
  2401. void kfree(const void *x)
  2402. {
  2403. struct page *page;
  2404. void *object = (void *)x;
  2405. trace_kfree(_RET_IP_, x);
  2406. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2407. return;
  2408. page = virt_to_head_page(x);
  2409. if (unlikely(!PageSlab(page))) {
  2410. BUG_ON(!PageCompound(page));
  2411. kmemleak_free(x);
  2412. put_page(page);
  2413. return;
  2414. }
  2415. slab_free(page->slab, page, object, _RET_IP_);
  2416. }
  2417. EXPORT_SYMBOL(kfree);
  2418. /*
  2419. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2420. * the remaining slabs by the number of items in use. The slabs with the
  2421. * most items in use come first. New allocations will then fill those up
  2422. * and thus they can be removed from the partial lists.
  2423. *
  2424. * The slabs with the least items are placed last. This results in them
  2425. * being allocated from last increasing the chance that the last objects
  2426. * are freed in them.
  2427. */
  2428. int kmem_cache_shrink(struct kmem_cache *s)
  2429. {
  2430. int node;
  2431. int i;
  2432. struct kmem_cache_node *n;
  2433. struct page *page;
  2434. struct page *t;
  2435. int objects = oo_objects(s->max);
  2436. struct list_head *slabs_by_inuse =
  2437. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2438. unsigned long flags;
  2439. if (!slabs_by_inuse)
  2440. return -ENOMEM;
  2441. flush_all(s);
  2442. for_each_node_state(node, N_NORMAL_MEMORY) {
  2443. n = get_node(s, node);
  2444. if (!n->nr_partial)
  2445. continue;
  2446. for (i = 0; i < objects; i++)
  2447. INIT_LIST_HEAD(slabs_by_inuse + i);
  2448. spin_lock_irqsave(&n->list_lock, flags);
  2449. /*
  2450. * Build lists indexed by the items in use in each slab.
  2451. *
  2452. * Note that concurrent frees may occur while we hold the
  2453. * list_lock. page->inuse here is the upper limit.
  2454. */
  2455. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2456. if (!page->inuse && slab_trylock(page)) {
  2457. /*
  2458. * Must hold slab lock here because slab_free
  2459. * may have freed the last object and be
  2460. * waiting to release the slab.
  2461. */
  2462. list_del(&page->lru);
  2463. n->nr_partial--;
  2464. slab_unlock(page);
  2465. discard_slab(s, page);
  2466. } else {
  2467. list_move(&page->lru,
  2468. slabs_by_inuse + page->inuse);
  2469. }
  2470. }
  2471. /*
  2472. * Rebuild the partial list with the slabs filled up most
  2473. * first and the least used slabs at the end.
  2474. */
  2475. for (i = objects - 1; i >= 0; i--)
  2476. list_splice(slabs_by_inuse + i, n->partial.prev);
  2477. spin_unlock_irqrestore(&n->list_lock, flags);
  2478. }
  2479. kfree(slabs_by_inuse);
  2480. return 0;
  2481. }
  2482. EXPORT_SYMBOL(kmem_cache_shrink);
  2483. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2484. static int slab_mem_going_offline_callback(void *arg)
  2485. {
  2486. struct kmem_cache *s;
  2487. down_read(&slub_lock);
  2488. list_for_each_entry(s, &slab_caches, list)
  2489. kmem_cache_shrink(s);
  2490. up_read(&slub_lock);
  2491. return 0;
  2492. }
  2493. static void slab_mem_offline_callback(void *arg)
  2494. {
  2495. struct kmem_cache_node *n;
  2496. struct kmem_cache *s;
  2497. struct memory_notify *marg = arg;
  2498. int offline_node;
  2499. offline_node = marg->status_change_nid;
  2500. /*
  2501. * If the node still has available memory. we need kmem_cache_node
  2502. * for it yet.
  2503. */
  2504. if (offline_node < 0)
  2505. return;
  2506. down_read(&slub_lock);
  2507. list_for_each_entry(s, &slab_caches, list) {
  2508. n = get_node(s, offline_node);
  2509. if (n) {
  2510. /*
  2511. * if n->nr_slabs > 0, slabs still exist on the node
  2512. * that is going down. We were unable to free them,
  2513. * and offline_pages() function shouldn't call this
  2514. * callback. So, we must fail.
  2515. */
  2516. BUG_ON(slabs_node(s, offline_node));
  2517. s->node[offline_node] = NULL;
  2518. kmem_cache_free(kmalloc_caches, n);
  2519. }
  2520. }
  2521. up_read(&slub_lock);
  2522. }
  2523. static int slab_mem_going_online_callback(void *arg)
  2524. {
  2525. struct kmem_cache_node *n;
  2526. struct kmem_cache *s;
  2527. struct memory_notify *marg = arg;
  2528. int nid = marg->status_change_nid;
  2529. int ret = 0;
  2530. /*
  2531. * If the node's memory is already available, then kmem_cache_node is
  2532. * already created. Nothing to do.
  2533. */
  2534. if (nid < 0)
  2535. return 0;
  2536. /*
  2537. * We are bringing a node online. No memory is available yet. We must
  2538. * allocate a kmem_cache_node structure in order to bring the node
  2539. * online.
  2540. */
  2541. down_read(&slub_lock);
  2542. list_for_each_entry(s, &slab_caches, list) {
  2543. /*
  2544. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2545. * since memory is not yet available from the node that
  2546. * is brought up.
  2547. */
  2548. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2549. if (!n) {
  2550. ret = -ENOMEM;
  2551. goto out;
  2552. }
  2553. init_kmem_cache_node(n, s);
  2554. s->node[nid] = n;
  2555. }
  2556. out:
  2557. up_read(&slub_lock);
  2558. return ret;
  2559. }
  2560. static int slab_memory_callback(struct notifier_block *self,
  2561. unsigned long action, void *arg)
  2562. {
  2563. int ret = 0;
  2564. switch (action) {
  2565. case MEM_GOING_ONLINE:
  2566. ret = slab_mem_going_online_callback(arg);
  2567. break;
  2568. case MEM_GOING_OFFLINE:
  2569. ret = slab_mem_going_offline_callback(arg);
  2570. break;
  2571. case MEM_OFFLINE:
  2572. case MEM_CANCEL_ONLINE:
  2573. slab_mem_offline_callback(arg);
  2574. break;
  2575. case MEM_ONLINE:
  2576. case MEM_CANCEL_OFFLINE:
  2577. break;
  2578. }
  2579. if (ret)
  2580. ret = notifier_from_errno(ret);
  2581. else
  2582. ret = NOTIFY_OK;
  2583. return ret;
  2584. }
  2585. #endif /* CONFIG_MEMORY_HOTPLUG */
  2586. /********************************************************************
  2587. * Basic setup of slabs
  2588. *******************************************************************/
  2589. void __init kmem_cache_init(void)
  2590. {
  2591. int i;
  2592. int caches = 0;
  2593. #ifdef CONFIG_NUMA
  2594. /*
  2595. * Must first have the slab cache available for the allocations of the
  2596. * struct kmem_cache_node's. There is special bootstrap code in
  2597. * kmem_cache_open for slab_state == DOWN.
  2598. */
  2599. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2600. sizeof(struct kmem_cache_node), GFP_NOWAIT);
  2601. kmalloc_caches[0].refcount = -1;
  2602. caches++;
  2603. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2604. #endif
  2605. /* Able to allocate the per node structures */
  2606. slab_state = PARTIAL;
  2607. /* Caches that are not of the two-to-the-power-of size */
  2608. if (KMALLOC_MIN_SIZE <= 32) {
  2609. create_kmalloc_cache(&kmalloc_caches[1],
  2610. "kmalloc-96", 96, GFP_NOWAIT);
  2611. caches++;
  2612. }
  2613. if (KMALLOC_MIN_SIZE <= 64) {
  2614. create_kmalloc_cache(&kmalloc_caches[2],
  2615. "kmalloc-192", 192, GFP_NOWAIT);
  2616. caches++;
  2617. }
  2618. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2619. create_kmalloc_cache(&kmalloc_caches[i],
  2620. "kmalloc", 1 << i, GFP_NOWAIT);
  2621. caches++;
  2622. }
  2623. /*
  2624. * Patch up the size_index table if we have strange large alignment
  2625. * requirements for the kmalloc array. This is only the case for
  2626. * MIPS it seems. The standard arches will not generate any code here.
  2627. *
  2628. * Largest permitted alignment is 256 bytes due to the way we
  2629. * handle the index determination for the smaller caches.
  2630. *
  2631. * Make sure that nothing crazy happens if someone starts tinkering
  2632. * around with ARCH_KMALLOC_MINALIGN
  2633. */
  2634. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2635. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2636. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2637. int elem = size_index_elem(i);
  2638. if (elem >= ARRAY_SIZE(size_index))
  2639. break;
  2640. size_index[elem] = KMALLOC_SHIFT_LOW;
  2641. }
  2642. if (KMALLOC_MIN_SIZE == 64) {
  2643. /*
  2644. * The 96 byte size cache is not used if the alignment
  2645. * is 64 byte.
  2646. */
  2647. for (i = 64 + 8; i <= 96; i += 8)
  2648. size_index[size_index_elem(i)] = 7;
  2649. } else if (KMALLOC_MIN_SIZE == 128) {
  2650. /*
  2651. * The 192 byte sized cache is not used if the alignment
  2652. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2653. * instead.
  2654. */
  2655. for (i = 128 + 8; i <= 192; i += 8)
  2656. size_index[size_index_elem(i)] = 8;
  2657. }
  2658. slab_state = UP;
  2659. /* Provide the correct kmalloc names now that the caches are up */
  2660. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2661. kmalloc_caches[i]. name =
  2662. kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2663. #ifdef CONFIG_SMP
  2664. register_cpu_notifier(&slab_notifier);
  2665. #endif
  2666. #ifdef CONFIG_NUMA
  2667. kmem_size = offsetof(struct kmem_cache, node) +
  2668. nr_node_ids * sizeof(struct kmem_cache_node *);
  2669. #else
  2670. kmem_size = sizeof(struct kmem_cache);
  2671. #endif
  2672. printk(KERN_INFO
  2673. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2674. " CPUs=%d, Nodes=%d\n",
  2675. caches, cache_line_size(),
  2676. slub_min_order, slub_max_order, slub_min_objects,
  2677. nr_cpu_ids, nr_node_ids);
  2678. }
  2679. void __init kmem_cache_init_late(void)
  2680. {
  2681. }
  2682. /*
  2683. * Find a mergeable slab cache
  2684. */
  2685. static int slab_unmergeable(struct kmem_cache *s)
  2686. {
  2687. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2688. return 1;
  2689. if (s->ctor)
  2690. return 1;
  2691. /*
  2692. * We may have set a slab to be unmergeable during bootstrap.
  2693. */
  2694. if (s->refcount < 0)
  2695. return 1;
  2696. return 0;
  2697. }
  2698. static struct kmem_cache *find_mergeable(size_t size,
  2699. size_t align, unsigned long flags, const char *name,
  2700. void (*ctor)(void *))
  2701. {
  2702. struct kmem_cache *s;
  2703. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2704. return NULL;
  2705. if (ctor)
  2706. return NULL;
  2707. size = ALIGN(size, sizeof(void *));
  2708. align = calculate_alignment(flags, align, size);
  2709. size = ALIGN(size, align);
  2710. flags = kmem_cache_flags(size, flags, name, NULL);
  2711. list_for_each_entry(s, &slab_caches, list) {
  2712. if (slab_unmergeable(s))
  2713. continue;
  2714. if (size > s->size)
  2715. continue;
  2716. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2717. continue;
  2718. /*
  2719. * Check if alignment is compatible.
  2720. * Courtesy of Adrian Drzewiecki
  2721. */
  2722. if ((s->size & ~(align - 1)) != s->size)
  2723. continue;
  2724. if (s->size - size >= sizeof(void *))
  2725. continue;
  2726. return s;
  2727. }
  2728. return NULL;
  2729. }
  2730. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2731. size_t align, unsigned long flags, void (*ctor)(void *))
  2732. {
  2733. struct kmem_cache *s;
  2734. if (WARN_ON(!name))
  2735. return NULL;
  2736. down_write(&slub_lock);
  2737. s = find_mergeable(size, align, flags, name, ctor);
  2738. if (s) {
  2739. s->refcount++;
  2740. /*
  2741. * Adjust the object sizes so that we clear
  2742. * the complete object on kzalloc.
  2743. */
  2744. s->objsize = max(s->objsize, (int)size);
  2745. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2746. up_write(&slub_lock);
  2747. if (sysfs_slab_alias(s, name)) {
  2748. down_write(&slub_lock);
  2749. s->refcount--;
  2750. up_write(&slub_lock);
  2751. goto err;
  2752. }
  2753. return s;
  2754. }
  2755. s = kmalloc(kmem_size, GFP_KERNEL);
  2756. if (s) {
  2757. if (kmem_cache_open(s, GFP_KERNEL, name,
  2758. size, align, flags, ctor)) {
  2759. list_add(&s->list, &slab_caches);
  2760. up_write(&slub_lock);
  2761. if (sysfs_slab_add(s)) {
  2762. down_write(&slub_lock);
  2763. list_del(&s->list);
  2764. up_write(&slub_lock);
  2765. kfree(s);
  2766. goto err;
  2767. }
  2768. return s;
  2769. }
  2770. kfree(s);
  2771. }
  2772. up_write(&slub_lock);
  2773. err:
  2774. if (flags & SLAB_PANIC)
  2775. panic("Cannot create slabcache %s\n", name);
  2776. else
  2777. s = NULL;
  2778. return s;
  2779. }
  2780. EXPORT_SYMBOL(kmem_cache_create);
  2781. #ifdef CONFIG_SMP
  2782. /*
  2783. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2784. * necessary.
  2785. */
  2786. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2787. unsigned long action, void *hcpu)
  2788. {
  2789. long cpu = (long)hcpu;
  2790. struct kmem_cache *s;
  2791. unsigned long flags;
  2792. switch (action) {
  2793. case CPU_UP_CANCELED:
  2794. case CPU_UP_CANCELED_FROZEN:
  2795. case CPU_DEAD:
  2796. case CPU_DEAD_FROZEN:
  2797. down_read(&slub_lock);
  2798. list_for_each_entry(s, &slab_caches, list) {
  2799. local_irq_save(flags);
  2800. __flush_cpu_slab(s, cpu);
  2801. local_irq_restore(flags);
  2802. }
  2803. up_read(&slub_lock);
  2804. break;
  2805. default:
  2806. break;
  2807. }
  2808. return NOTIFY_OK;
  2809. }
  2810. static struct notifier_block __cpuinitdata slab_notifier = {
  2811. .notifier_call = slab_cpuup_callback
  2812. };
  2813. #endif
  2814. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2815. {
  2816. struct kmem_cache *s;
  2817. void *ret;
  2818. if (unlikely(size > SLUB_MAX_SIZE))
  2819. return kmalloc_large(size, gfpflags);
  2820. s = get_slab(size, gfpflags);
  2821. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2822. return s;
  2823. ret = slab_alloc(s, gfpflags, -1, caller);
  2824. /* Honor the call site pointer we recieved. */
  2825. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2826. return ret;
  2827. }
  2828. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2829. int node, unsigned long caller)
  2830. {
  2831. struct kmem_cache *s;
  2832. void *ret;
  2833. if (unlikely(size > SLUB_MAX_SIZE)) {
  2834. ret = kmalloc_large_node(size, gfpflags, node);
  2835. trace_kmalloc_node(caller, ret,
  2836. size, PAGE_SIZE << get_order(size),
  2837. gfpflags, node);
  2838. return ret;
  2839. }
  2840. s = get_slab(size, gfpflags);
  2841. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2842. return s;
  2843. ret = slab_alloc(s, gfpflags, node, caller);
  2844. /* Honor the call site pointer we recieved. */
  2845. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2846. return ret;
  2847. }
  2848. #ifdef CONFIG_SLUB_DEBUG
  2849. static int count_inuse(struct page *page)
  2850. {
  2851. return page->inuse;
  2852. }
  2853. static int count_total(struct page *page)
  2854. {
  2855. return page->objects;
  2856. }
  2857. static int validate_slab(struct kmem_cache *s, struct page *page,
  2858. unsigned long *map)
  2859. {
  2860. void *p;
  2861. void *addr = page_address(page);
  2862. if (!check_slab(s, page) ||
  2863. !on_freelist(s, page, NULL))
  2864. return 0;
  2865. /* Now we know that a valid freelist exists */
  2866. bitmap_zero(map, page->objects);
  2867. for_each_free_object(p, s, page->freelist) {
  2868. set_bit(slab_index(p, s, addr), map);
  2869. if (!check_object(s, page, p, 0))
  2870. return 0;
  2871. }
  2872. for_each_object(p, s, addr, page->objects)
  2873. if (!test_bit(slab_index(p, s, addr), map))
  2874. if (!check_object(s, page, p, 1))
  2875. return 0;
  2876. return 1;
  2877. }
  2878. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2879. unsigned long *map)
  2880. {
  2881. if (slab_trylock(page)) {
  2882. validate_slab(s, page, map);
  2883. slab_unlock(page);
  2884. } else
  2885. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2886. s->name, page);
  2887. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2888. if (!PageSlubDebug(page))
  2889. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2890. "on slab 0x%p\n", s->name, page);
  2891. } else {
  2892. if (PageSlubDebug(page))
  2893. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2894. "slab 0x%p\n", s->name, page);
  2895. }
  2896. }
  2897. static int validate_slab_node(struct kmem_cache *s,
  2898. struct kmem_cache_node *n, unsigned long *map)
  2899. {
  2900. unsigned long count = 0;
  2901. struct page *page;
  2902. unsigned long flags;
  2903. spin_lock_irqsave(&n->list_lock, flags);
  2904. list_for_each_entry(page, &n->partial, lru) {
  2905. validate_slab_slab(s, page, map);
  2906. count++;
  2907. }
  2908. if (count != n->nr_partial)
  2909. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2910. "counter=%ld\n", s->name, count, n->nr_partial);
  2911. if (!(s->flags & SLAB_STORE_USER))
  2912. goto out;
  2913. list_for_each_entry(page, &n->full, lru) {
  2914. validate_slab_slab(s, page, map);
  2915. count++;
  2916. }
  2917. if (count != atomic_long_read(&n->nr_slabs))
  2918. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2919. "counter=%ld\n", s->name, count,
  2920. atomic_long_read(&n->nr_slabs));
  2921. out:
  2922. spin_unlock_irqrestore(&n->list_lock, flags);
  2923. return count;
  2924. }
  2925. static long validate_slab_cache(struct kmem_cache *s)
  2926. {
  2927. int node;
  2928. unsigned long count = 0;
  2929. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2930. sizeof(unsigned long), GFP_KERNEL);
  2931. if (!map)
  2932. return -ENOMEM;
  2933. flush_all(s);
  2934. for_each_node_state(node, N_NORMAL_MEMORY) {
  2935. struct kmem_cache_node *n = get_node(s, node);
  2936. count += validate_slab_node(s, n, map);
  2937. }
  2938. kfree(map);
  2939. return count;
  2940. }
  2941. #ifdef SLUB_RESILIENCY_TEST
  2942. static void resiliency_test(void)
  2943. {
  2944. u8 *p;
  2945. printk(KERN_ERR "SLUB resiliency testing\n");
  2946. printk(KERN_ERR "-----------------------\n");
  2947. printk(KERN_ERR "A. Corruption after allocation\n");
  2948. p = kzalloc(16, GFP_KERNEL);
  2949. p[16] = 0x12;
  2950. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2951. " 0x12->0x%p\n\n", p + 16);
  2952. validate_slab_cache(kmalloc_caches + 4);
  2953. /* Hmmm... The next two are dangerous */
  2954. p = kzalloc(32, GFP_KERNEL);
  2955. p[32 + sizeof(void *)] = 0x34;
  2956. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2957. " 0x34 -> -0x%p\n", p);
  2958. printk(KERN_ERR
  2959. "If allocated object is overwritten then not detectable\n\n");
  2960. validate_slab_cache(kmalloc_caches + 5);
  2961. p = kzalloc(64, GFP_KERNEL);
  2962. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2963. *p = 0x56;
  2964. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2965. p);
  2966. printk(KERN_ERR
  2967. "If allocated object is overwritten then not detectable\n\n");
  2968. validate_slab_cache(kmalloc_caches + 6);
  2969. printk(KERN_ERR "\nB. Corruption after free\n");
  2970. p = kzalloc(128, GFP_KERNEL);
  2971. kfree(p);
  2972. *p = 0x78;
  2973. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2974. validate_slab_cache(kmalloc_caches + 7);
  2975. p = kzalloc(256, GFP_KERNEL);
  2976. kfree(p);
  2977. p[50] = 0x9a;
  2978. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2979. p);
  2980. validate_slab_cache(kmalloc_caches + 8);
  2981. p = kzalloc(512, GFP_KERNEL);
  2982. kfree(p);
  2983. p[512] = 0xab;
  2984. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2985. validate_slab_cache(kmalloc_caches + 9);
  2986. }
  2987. #else
  2988. static void resiliency_test(void) {};
  2989. #endif
  2990. /*
  2991. * Generate lists of code addresses where slabcache objects are allocated
  2992. * and freed.
  2993. */
  2994. struct location {
  2995. unsigned long count;
  2996. unsigned long addr;
  2997. long long sum_time;
  2998. long min_time;
  2999. long max_time;
  3000. long min_pid;
  3001. long max_pid;
  3002. DECLARE_BITMAP(cpus, NR_CPUS);
  3003. nodemask_t nodes;
  3004. };
  3005. struct loc_track {
  3006. unsigned long max;
  3007. unsigned long count;
  3008. struct location *loc;
  3009. };
  3010. static void free_loc_track(struct loc_track *t)
  3011. {
  3012. if (t->max)
  3013. free_pages((unsigned long)t->loc,
  3014. get_order(sizeof(struct location) * t->max));
  3015. }
  3016. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3017. {
  3018. struct location *l;
  3019. int order;
  3020. order = get_order(sizeof(struct location) * max);
  3021. l = (void *)__get_free_pages(flags, order);
  3022. if (!l)
  3023. return 0;
  3024. if (t->count) {
  3025. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3026. free_loc_track(t);
  3027. }
  3028. t->max = max;
  3029. t->loc = l;
  3030. return 1;
  3031. }
  3032. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3033. const struct track *track)
  3034. {
  3035. long start, end, pos;
  3036. struct location *l;
  3037. unsigned long caddr;
  3038. unsigned long age = jiffies - track->when;
  3039. start = -1;
  3040. end = t->count;
  3041. for ( ; ; ) {
  3042. pos = start + (end - start + 1) / 2;
  3043. /*
  3044. * There is nothing at "end". If we end up there
  3045. * we need to add something to before end.
  3046. */
  3047. if (pos == end)
  3048. break;
  3049. caddr = t->loc[pos].addr;
  3050. if (track->addr == caddr) {
  3051. l = &t->loc[pos];
  3052. l->count++;
  3053. if (track->when) {
  3054. l->sum_time += age;
  3055. if (age < l->min_time)
  3056. l->min_time = age;
  3057. if (age > l->max_time)
  3058. l->max_time = age;
  3059. if (track->pid < l->min_pid)
  3060. l->min_pid = track->pid;
  3061. if (track->pid > l->max_pid)
  3062. l->max_pid = track->pid;
  3063. cpumask_set_cpu(track->cpu,
  3064. to_cpumask(l->cpus));
  3065. }
  3066. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3067. return 1;
  3068. }
  3069. if (track->addr < caddr)
  3070. end = pos;
  3071. else
  3072. start = pos;
  3073. }
  3074. /*
  3075. * Not found. Insert new tracking element.
  3076. */
  3077. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3078. return 0;
  3079. l = t->loc + pos;
  3080. if (pos < t->count)
  3081. memmove(l + 1, l,
  3082. (t->count - pos) * sizeof(struct location));
  3083. t->count++;
  3084. l->count = 1;
  3085. l->addr = track->addr;
  3086. l->sum_time = age;
  3087. l->min_time = age;
  3088. l->max_time = age;
  3089. l->min_pid = track->pid;
  3090. l->max_pid = track->pid;
  3091. cpumask_clear(to_cpumask(l->cpus));
  3092. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3093. nodes_clear(l->nodes);
  3094. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3095. return 1;
  3096. }
  3097. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3098. struct page *page, enum track_item alloc,
  3099. long *map)
  3100. {
  3101. void *addr = page_address(page);
  3102. void *p;
  3103. bitmap_zero(map, page->objects);
  3104. for_each_free_object(p, s, page->freelist)
  3105. set_bit(slab_index(p, s, addr), map);
  3106. for_each_object(p, s, addr, page->objects)
  3107. if (!test_bit(slab_index(p, s, addr), map))
  3108. add_location(t, s, get_track(s, p, alloc));
  3109. }
  3110. static int list_locations(struct kmem_cache *s, char *buf,
  3111. enum track_item alloc)
  3112. {
  3113. int len = 0;
  3114. unsigned long i;
  3115. struct loc_track t = { 0, 0, NULL };
  3116. int node;
  3117. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3118. sizeof(unsigned long), GFP_KERNEL);
  3119. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3120. GFP_TEMPORARY)) {
  3121. kfree(map);
  3122. return sprintf(buf, "Out of memory\n");
  3123. }
  3124. /* Push back cpu slabs */
  3125. flush_all(s);
  3126. for_each_node_state(node, N_NORMAL_MEMORY) {
  3127. struct kmem_cache_node *n = get_node(s, node);
  3128. unsigned long flags;
  3129. struct page *page;
  3130. if (!atomic_long_read(&n->nr_slabs))
  3131. continue;
  3132. spin_lock_irqsave(&n->list_lock, flags);
  3133. list_for_each_entry(page, &n->partial, lru)
  3134. process_slab(&t, s, page, alloc, map);
  3135. list_for_each_entry(page, &n->full, lru)
  3136. process_slab(&t, s, page, alloc, map);
  3137. spin_unlock_irqrestore(&n->list_lock, flags);
  3138. }
  3139. for (i = 0; i < t.count; i++) {
  3140. struct location *l = &t.loc[i];
  3141. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3142. break;
  3143. len += sprintf(buf + len, "%7ld ", l->count);
  3144. if (l->addr)
  3145. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3146. else
  3147. len += sprintf(buf + len, "<not-available>");
  3148. if (l->sum_time != l->min_time) {
  3149. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3150. l->min_time,
  3151. (long)div_u64(l->sum_time, l->count),
  3152. l->max_time);
  3153. } else
  3154. len += sprintf(buf + len, " age=%ld",
  3155. l->min_time);
  3156. if (l->min_pid != l->max_pid)
  3157. len += sprintf(buf + len, " pid=%ld-%ld",
  3158. l->min_pid, l->max_pid);
  3159. else
  3160. len += sprintf(buf + len, " pid=%ld",
  3161. l->min_pid);
  3162. if (num_online_cpus() > 1 &&
  3163. !cpumask_empty(to_cpumask(l->cpus)) &&
  3164. len < PAGE_SIZE - 60) {
  3165. len += sprintf(buf + len, " cpus=");
  3166. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3167. to_cpumask(l->cpus));
  3168. }
  3169. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3170. len < PAGE_SIZE - 60) {
  3171. len += sprintf(buf + len, " nodes=");
  3172. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3173. l->nodes);
  3174. }
  3175. len += sprintf(buf + len, "\n");
  3176. }
  3177. free_loc_track(&t);
  3178. kfree(map);
  3179. if (!t.count)
  3180. len += sprintf(buf, "No data\n");
  3181. return len;
  3182. }
  3183. enum slab_stat_type {
  3184. SL_ALL, /* All slabs */
  3185. SL_PARTIAL, /* Only partially allocated slabs */
  3186. SL_CPU, /* Only slabs used for cpu caches */
  3187. SL_OBJECTS, /* Determine allocated objects not slabs */
  3188. SL_TOTAL /* Determine object capacity not slabs */
  3189. };
  3190. #define SO_ALL (1 << SL_ALL)
  3191. #define SO_PARTIAL (1 << SL_PARTIAL)
  3192. #define SO_CPU (1 << SL_CPU)
  3193. #define SO_OBJECTS (1 << SL_OBJECTS)
  3194. #define SO_TOTAL (1 << SL_TOTAL)
  3195. static ssize_t show_slab_objects(struct kmem_cache *s,
  3196. char *buf, unsigned long flags)
  3197. {
  3198. unsigned long total = 0;
  3199. int node;
  3200. int x;
  3201. unsigned long *nodes;
  3202. unsigned long *per_cpu;
  3203. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3204. if (!nodes)
  3205. return -ENOMEM;
  3206. per_cpu = nodes + nr_node_ids;
  3207. if (flags & SO_CPU) {
  3208. int cpu;
  3209. for_each_possible_cpu(cpu) {
  3210. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3211. if (!c || c->node < 0)
  3212. continue;
  3213. if (c->page) {
  3214. if (flags & SO_TOTAL)
  3215. x = c->page->objects;
  3216. else if (flags & SO_OBJECTS)
  3217. x = c->page->inuse;
  3218. else
  3219. x = 1;
  3220. total += x;
  3221. nodes[c->node] += x;
  3222. }
  3223. per_cpu[c->node]++;
  3224. }
  3225. }
  3226. if (flags & SO_ALL) {
  3227. for_each_node_state(node, N_NORMAL_MEMORY) {
  3228. struct kmem_cache_node *n = get_node(s, node);
  3229. if (flags & SO_TOTAL)
  3230. x = atomic_long_read(&n->total_objects);
  3231. else if (flags & SO_OBJECTS)
  3232. x = atomic_long_read(&n->total_objects) -
  3233. count_partial(n, count_free);
  3234. else
  3235. x = atomic_long_read(&n->nr_slabs);
  3236. total += x;
  3237. nodes[node] += x;
  3238. }
  3239. } else if (flags & SO_PARTIAL) {
  3240. for_each_node_state(node, N_NORMAL_MEMORY) {
  3241. struct kmem_cache_node *n = get_node(s, node);
  3242. if (flags & SO_TOTAL)
  3243. x = count_partial(n, count_total);
  3244. else if (flags & SO_OBJECTS)
  3245. x = count_partial(n, count_inuse);
  3246. else
  3247. x = n->nr_partial;
  3248. total += x;
  3249. nodes[node] += x;
  3250. }
  3251. }
  3252. x = sprintf(buf, "%lu", total);
  3253. #ifdef CONFIG_NUMA
  3254. for_each_node_state(node, N_NORMAL_MEMORY)
  3255. if (nodes[node])
  3256. x += sprintf(buf + x, " N%d=%lu",
  3257. node, nodes[node]);
  3258. #endif
  3259. kfree(nodes);
  3260. return x + sprintf(buf + x, "\n");
  3261. }
  3262. static int any_slab_objects(struct kmem_cache *s)
  3263. {
  3264. int node;
  3265. for_each_online_node(node) {
  3266. struct kmem_cache_node *n = get_node(s, node);
  3267. if (!n)
  3268. continue;
  3269. if (atomic_long_read(&n->total_objects))
  3270. return 1;
  3271. }
  3272. return 0;
  3273. }
  3274. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3275. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3276. struct slab_attribute {
  3277. struct attribute attr;
  3278. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3279. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3280. };
  3281. #define SLAB_ATTR_RO(_name) \
  3282. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3283. #define SLAB_ATTR(_name) \
  3284. static struct slab_attribute _name##_attr = \
  3285. __ATTR(_name, 0644, _name##_show, _name##_store)
  3286. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3287. {
  3288. return sprintf(buf, "%d\n", s->size);
  3289. }
  3290. SLAB_ATTR_RO(slab_size);
  3291. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3292. {
  3293. return sprintf(buf, "%d\n", s->align);
  3294. }
  3295. SLAB_ATTR_RO(align);
  3296. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3297. {
  3298. return sprintf(buf, "%d\n", s->objsize);
  3299. }
  3300. SLAB_ATTR_RO(object_size);
  3301. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3302. {
  3303. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3304. }
  3305. SLAB_ATTR_RO(objs_per_slab);
  3306. static ssize_t order_store(struct kmem_cache *s,
  3307. const char *buf, size_t length)
  3308. {
  3309. unsigned long order;
  3310. int err;
  3311. err = strict_strtoul(buf, 10, &order);
  3312. if (err)
  3313. return err;
  3314. if (order > slub_max_order || order < slub_min_order)
  3315. return -EINVAL;
  3316. calculate_sizes(s, order);
  3317. return length;
  3318. }
  3319. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3320. {
  3321. return sprintf(buf, "%d\n", oo_order(s->oo));
  3322. }
  3323. SLAB_ATTR(order);
  3324. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3325. {
  3326. return sprintf(buf, "%lu\n", s->min_partial);
  3327. }
  3328. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3329. size_t length)
  3330. {
  3331. unsigned long min;
  3332. int err;
  3333. err = strict_strtoul(buf, 10, &min);
  3334. if (err)
  3335. return err;
  3336. set_min_partial(s, min);
  3337. return length;
  3338. }
  3339. SLAB_ATTR(min_partial);
  3340. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3341. {
  3342. if (s->ctor) {
  3343. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3344. return n + sprintf(buf + n, "\n");
  3345. }
  3346. return 0;
  3347. }
  3348. SLAB_ATTR_RO(ctor);
  3349. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3350. {
  3351. return sprintf(buf, "%d\n", s->refcount - 1);
  3352. }
  3353. SLAB_ATTR_RO(aliases);
  3354. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3355. {
  3356. return show_slab_objects(s, buf, SO_ALL);
  3357. }
  3358. SLAB_ATTR_RO(slabs);
  3359. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3360. {
  3361. return show_slab_objects(s, buf, SO_PARTIAL);
  3362. }
  3363. SLAB_ATTR_RO(partial);
  3364. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3365. {
  3366. return show_slab_objects(s, buf, SO_CPU);
  3367. }
  3368. SLAB_ATTR_RO(cpu_slabs);
  3369. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3370. {
  3371. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3372. }
  3373. SLAB_ATTR_RO(objects);
  3374. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3375. {
  3376. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3377. }
  3378. SLAB_ATTR_RO(objects_partial);
  3379. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3380. {
  3381. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3382. }
  3383. SLAB_ATTR_RO(total_objects);
  3384. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3385. {
  3386. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3387. }
  3388. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3389. const char *buf, size_t length)
  3390. {
  3391. s->flags &= ~SLAB_DEBUG_FREE;
  3392. if (buf[0] == '1')
  3393. s->flags |= SLAB_DEBUG_FREE;
  3394. return length;
  3395. }
  3396. SLAB_ATTR(sanity_checks);
  3397. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3398. {
  3399. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3400. }
  3401. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3402. size_t length)
  3403. {
  3404. s->flags &= ~SLAB_TRACE;
  3405. if (buf[0] == '1')
  3406. s->flags |= SLAB_TRACE;
  3407. return length;
  3408. }
  3409. SLAB_ATTR(trace);
  3410. #ifdef CONFIG_FAILSLAB
  3411. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3412. {
  3413. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3414. }
  3415. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3416. size_t length)
  3417. {
  3418. s->flags &= ~SLAB_FAILSLAB;
  3419. if (buf[0] == '1')
  3420. s->flags |= SLAB_FAILSLAB;
  3421. return length;
  3422. }
  3423. SLAB_ATTR(failslab);
  3424. #endif
  3425. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3426. {
  3427. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3428. }
  3429. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3430. const char *buf, size_t length)
  3431. {
  3432. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3433. if (buf[0] == '1')
  3434. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3435. return length;
  3436. }
  3437. SLAB_ATTR(reclaim_account);
  3438. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3439. {
  3440. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3441. }
  3442. SLAB_ATTR_RO(hwcache_align);
  3443. #ifdef CONFIG_ZONE_DMA
  3444. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3445. {
  3446. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3447. }
  3448. SLAB_ATTR_RO(cache_dma);
  3449. #endif
  3450. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3451. {
  3452. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3453. }
  3454. SLAB_ATTR_RO(destroy_by_rcu);
  3455. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3456. {
  3457. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3458. }
  3459. static ssize_t red_zone_store(struct kmem_cache *s,
  3460. const char *buf, size_t length)
  3461. {
  3462. if (any_slab_objects(s))
  3463. return -EBUSY;
  3464. s->flags &= ~SLAB_RED_ZONE;
  3465. if (buf[0] == '1')
  3466. s->flags |= SLAB_RED_ZONE;
  3467. calculate_sizes(s, -1);
  3468. return length;
  3469. }
  3470. SLAB_ATTR(red_zone);
  3471. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3472. {
  3473. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3474. }
  3475. static ssize_t poison_store(struct kmem_cache *s,
  3476. const char *buf, size_t length)
  3477. {
  3478. if (any_slab_objects(s))
  3479. return -EBUSY;
  3480. s->flags &= ~SLAB_POISON;
  3481. if (buf[0] == '1')
  3482. s->flags |= SLAB_POISON;
  3483. calculate_sizes(s, -1);
  3484. return length;
  3485. }
  3486. SLAB_ATTR(poison);
  3487. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3488. {
  3489. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3490. }
  3491. static ssize_t store_user_store(struct kmem_cache *s,
  3492. const char *buf, size_t length)
  3493. {
  3494. if (any_slab_objects(s))
  3495. return -EBUSY;
  3496. s->flags &= ~SLAB_STORE_USER;
  3497. if (buf[0] == '1')
  3498. s->flags |= SLAB_STORE_USER;
  3499. calculate_sizes(s, -1);
  3500. return length;
  3501. }
  3502. SLAB_ATTR(store_user);
  3503. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3504. {
  3505. return 0;
  3506. }
  3507. static ssize_t validate_store(struct kmem_cache *s,
  3508. const char *buf, size_t length)
  3509. {
  3510. int ret = -EINVAL;
  3511. if (buf[0] == '1') {
  3512. ret = validate_slab_cache(s);
  3513. if (ret >= 0)
  3514. ret = length;
  3515. }
  3516. return ret;
  3517. }
  3518. SLAB_ATTR(validate);
  3519. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3520. {
  3521. return 0;
  3522. }
  3523. static ssize_t shrink_store(struct kmem_cache *s,
  3524. const char *buf, size_t length)
  3525. {
  3526. if (buf[0] == '1') {
  3527. int rc = kmem_cache_shrink(s);
  3528. if (rc)
  3529. return rc;
  3530. } else
  3531. return -EINVAL;
  3532. return length;
  3533. }
  3534. SLAB_ATTR(shrink);
  3535. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3536. {
  3537. if (!(s->flags & SLAB_STORE_USER))
  3538. return -ENOSYS;
  3539. return list_locations(s, buf, TRACK_ALLOC);
  3540. }
  3541. SLAB_ATTR_RO(alloc_calls);
  3542. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3543. {
  3544. if (!(s->flags & SLAB_STORE_USER))
  3545. return -ENOSYS;
  3546. return list_locations(s, buf, TRACK_FREE);
  3547. }
  3548. SLAB_ATTR_RO(free_calls);
  3549. #ifdef CONFIG_NUMA
  3550. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3551. {
  3552. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3553. }
  3554. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3555. const char *buf, size_t length)
  3556. {
  3557. unsigned long ratio;
  3558. int err;
  3559. err = strict_strtoul(buf, 10, &ratio);
  3560. if (err)
  3561. return err;
  3562. if (ratio <= 100)
  3563. s->remote_node_defrag_ratio = ratio * 10;
  3564. return length;
  3565. }
  3566. SLAB_ATTR(remote_node_defrag_ratio);
  3567. #endif
  3568. #ifdef CONFIG_SLUB_STATS
  3569. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3570. {
  3571. unsigned long sum = 0;
  3572. int cpu;
  3573. int len;
  3574. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3575. if (!data)
  3576. return -ENOMEM;
  3577. for_each_online_cpu(cpu) {
  3578. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3579. data[cpu] = x;
  3580. sum += x;
  3581. }
  3582. len = sprintf(buf, "%lu", sum);
  3583. #ifdef CONFIG_SMP
  3584. for_each_online_cpu(cpu) {
  3585. if (data[cpu] && len < PAGE_SIZE - 20)
  3586. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3587. }
  3588. #endif
  3589. kfree(data);
  3590. return len + sprintf(buf + len, "\n");
  3591. }
  3592. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3593. {
  3594. int cpu;
  3595. for_each_online_cpu(cpu)
  3596. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3597. }
  3598. #define STAT_ATTR(si, text) \
  3599. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3600. { \
  3601. return show_stat(s, buf, si); \
  3602. } \
  3603. static ssize_t text##_store(struct kmem_cache *s, \
  3604. const char *buf, size_t length) \
  3605. { \
  3606. if (buf[0] != '0') \
  3607. return -EINVAL; \
  3608. clear_stat(s, si); \
  3609. return length; \
  3610. } \
  3611. SLAB_ATTR(text); \
  3612. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3613. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3614. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3615. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3616. STAT_ATTR(FREE_FROZEN, free_frozen);
  3617. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3618. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3619. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3620. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3621. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3622. STAT_ATTR(FREE_SLAB, free_slab);
  3623. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3624. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3625. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3626. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3627. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3628. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3629. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3630. #endif
  3631. static struct attribute *slab_attrs[] = {
  3632. &slab_size_attr.attr,
  3633. &object_size_attr.attr,
  3634. &objs_per_slab_attr.attr,
  3635. &order_attr.attr,
  3636. &min_partial_attr.attr,
  3637. &objects_attr.attr,
  3638. &objects_partial_attr.attr,
  3639. &total_objects_attr.attr,
  3640. &slabs_attr.attr,
  3641. &partial_attr.attr,
  3642. &cpu_slabs_attr.attr,
  3643. &ctor_attr.attr,
  3644. &aliases_attr.attr,
  3645. &align_attr.attr,
  3646. &sanity_checks_attr.attr,
  3647. &trace_attr.attr,
  3648. &hwcache_align_attr.attr,
  3649. &reclaim_account_attr.attr,
  3650. &destroy_by_rcu_attr.attr,
  3651. &red_zone_attr.attr,
  3652. &poison_attr.attr,
  3653. &store_user_attr.attr,
  3654. &validate_attr.attr,
  3655. &shrink_attr.attr,
  3656. &alloc_calls_attr.attr,
  3657. &free_calls_attr.attr,
  3658. #ifdef CONFIG_ZONE_DMA
  3659. &cache_dma_attr.attr,
  3660. #endif
  3661. #ifdef CONFIG_NUMA
  3662. &remote_node_defrag_ratio_attr.attr,
  3663. #endif
  3664. #ifdef CONFIG_SLUB_STATS
  3665. &alloc_fastpath_attr.attr,
  3666. &alloc_slowpath_attr.attr,
  3667. &free_fastpath_attr.attr,
  3668. &free_slowpath_attr.attr,
  3669. &free_frozen_attr.attr,
  3670. &free_add_partial_attr.attr,
  3671. &free_remove_partial_attr.attr,
  3672. &alloc_from_partial_attr.attr,
  3673. &alloc_slab_attr.attr,
  3674. &alloc_refill_attr.attr,
  3675. &free_slab_attr.attr,
  3676. &cpuslab_flush_attr.attr,
  3677. &deactivate_full_attr.attr,
  3678. &deactivate_empty_attr.attr,
  3679. &deactivate_to_head_attr.attr,
  3680. &deactivate_to_tail_attr.attr,
  3681. &deactivate_remote_frees_attr.attr,
  3682. &order_fallback_attr.attr,
  3683. #endif
  3684. #ifdef CONFIG_FAILSLAB
  3685. &failslab_attr.attr,
  3686. #endif
  3687. NULL
  3688. };
  3689. static struct attribute_group slab_attr_group = {
  3690. .attrs = slab_attrs,
  3691. };
  3692. static ssize_t slab_attr_show(struct kobject *kobj,
  3693. struct attribute *attr,
  3694. char *buf)
  3695. {
  3696. struct slab_attribute *attribute;
  3697. struct kmem_cache *s;
  3698. int err;
  3699. attribute = to_slab_attr(attr);
  3700. s = to_slab(kobj);
  3701. if (!attribute->show)
  3702. return -EIO;
  3703. err = attribute->show(s, buf);
  3704. return err;
  3705. }
  3706. static ssize_t slab_attr_store(struct kobject *kobj,
  3707. struct attribute *attr,
  3708. const char *buf, size_t len)
  3709. {
  3710. struct slab_attribute *attribute;
  3711. struct kmem_cache *s;
  3712. int err;
  3713. attribute = to_slab_attr(attr);
  3714. s = to_slab(kobj);
  3715. if (!attribute->store)
  3716. return -EIO;
  3717. err = attribute->store(s, buf, len);
  3718. return err;
  3719. }
  3720. static void kmem_cache_release(struct kobject *kobj)
  3721. {
  3722. struct kmem_cache *s = to_slab(kobj);
  3723. kfree(s);
  3724. }
  3725. static const struct sysfs_ops slab_sysfs_ops = {
  3726. .show = slab_attr_show,
  3727. .store = slab_attr_store,
  3728. };
  3729. static struct kobj_type slab_ktype = {
  3730. .sysfs_ops = &slab_sysfs_ops,
  3731. .release = kmem_cache_release
  3732. };
  3733. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3734. {
  3735. struct kobj_type *ktype = get_ktype(kobj);
  3736. if (ktype == &slab_ktype)
  3737. return 1;
  3738. return 0;
  3739. }
  3740. static const struct kset_uevent_ops slab_uevent_ops = {
  3741. .filter = uevent_filter,
  3742. };
  3743. static struct kset *slab_kset;
  3744. #define ID_STR_LENGTH 64
  3745. /* Create a unique string id for a slab cache:
  3746. *
  3747. * Format :[flags-]size
  3748. */
  3749. static char *create_unique_id(struct kmem_cache *s)
  3750. {
  3751. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3752. char *p = name;
  3753. BUG_ON(!name);
  3754. *p++ = ':';
  3755. /*
  3756. * First flags affecting slabcache operations. We will only
  3757. * get here for aliasable slabs so we do not need to support
  3758. * too many flags. The flags here must cover all flags that
  3759. * are matched during merging to guarantee that the id is
  3760. * unique.
  3761. */
  3762. if (s->flags & SLAB_CACHE_DMA)
  3763. *p++ = 'd';
  3764. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3765. *p++ = 'a';
  3766. if (s->flags & SLAB_DEBUG_FREE)
  3767. *p++ = 'F';
  3768. if (!(s->flags & SLAB_NOTRACK))
  3769. *p++ = 't';
  3770. if (p != name + 1)
  3771. *p++ = '-';
  3772. p += sprintf(p, "%07d", s->size);
  3773. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3774. return name;
  3775. }
  3776. static int sysfs_slab_add(struct kmem_cache *s)
  3777. {
  3778. int err;
  3779. const char *name;
  3780. int unmergeable;
  3781. if (slab_state < SYSFS)
  3782. /* Defer until later */
  3783. return 0;
  3784. unmergeable = slab_unmergeable(s);
  3785. if (unmergeable) {
  3786. /*
  3787. * Slabcache can never be merged so we can use the name proper.
  3788. * This is typically the case for debug situations. In that
  3789. * case we can catch duplicate names easily.
  3790. */
  3791. sysfs_remove_link(&slab_kset->kobj, s->name);
  3792. name = s->name;
  3793. } else {
  3794. /*
  3795. * Create a unique name for the slab as a target
  3796. * for the symlinks.
  3797. */
  3798. name = create_unique_id(s);
  3799. }
  3800. s->kobj.kset = slab_kset;
  3801. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3802. if (err) {
  3803. kobject_put(&s->kobj);
  3804. return err;
  3805. }
  3806. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3807. if (err) {
  3808. kobject_del(&s->kobj);
  3809. kobject_put(&s->kobj);
  3810. return err;
  3811. }
  3812. kobject_uevent(&s->kobj, KOBJ_ADD);
  3813. if (!unmergeable) {
  3814. /* Setup first alias */
  3815. sysfs_slab_alias(s, s->name);
  3816. kfree(name);
  3817. }
  3818. return 0;
  3819. }
  3820. static void sysfs_slab_remove(struct kmem_cache *s)
  3821. {
  3822. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3823. kobject_del(&s->kobj);
  3824. kobject_put(&s->kobj);
  3825. }
  3826. /*
  3827. * Need to buffer aliases during bootup until sysfs becomes
  3828. * available lest we lose that information.
  3829. */
  3830. struct saved_alias {
  3831. struct kmem_cache *s;
  3832. const char *name;
  3833. struct saved_alias *next;
  3834. };
  3835. static struct saved_alias *alias_list;
  3836. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3837. {
  3838. struct saved_alias *al;
  3839. if (slab_state == SYSFS) {
  3840. /*
  3841. * If we have a leftover link then remove it.
  3842. */
  3843. sysfs_remove_link(&slab_kset->kobj, name);
  3844. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3845. }
  3846. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3847. if (!al)
  3848. return -ENOMEM;
  3849. al->s = s;
  3850. al->name = name;
  3851. al->next = alias_list;
  3852. alias_list = al;
  3853. return 0;
  3854. }
  3855. static int __init slab_sysfs_init(void)
  3856. {
  3857. struct kmem_cache *s;
  3858. int err;
  3859. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3860. if (!slab_kset) {
  3861. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3862. return -ENOSYS;
  3863. }
  3864. slab_state = SYSFS;
  3865. list_for_each_entry(s, &slab_caches, list) {
  3866. err = sysfs_slab_add(s);
  3867. if (err)
  3868. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3869. " to sysfs\n", s->name);
  3870. }
  3871. while (alias_list) {
  3872. struct saved_alias *al = alias_list;
  3873. alias_list = alias_list->next;
  3874. err = sysfs_slab_alias(al->s, al->name);
  3875. if (err)
  3876. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3877. " %s to sysfs\n", s->name);
  3878. kfree(al);
  3879. }
  3880. resiliency_test();
  3881. return 0;
  3882. }
  3883. __initcall(slab_sysfs_init);
  3884. #endif
  3885. /*
  3886. * The /proc/slabinfo ABI
  3887. */
  3888. #ifdef CONFIG_SLABINFO
  3889. static void print_slabinfo_header(struct seq_file *m)
  3890. {
  3891. seq_puts(m, "slabinfo - version: 2.1\n");
  3892. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3893. "<objperslab> <pagesperslab>");
  3894. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3895. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3896. seq_putc(m, '\n');
  3897. }
  3898. static void *s_start(struct seq_file *m, loff_t *pos)
  3899. {
  3900. loff_t n = *pos;
  3901. down_read(&slub_lock);
  3902. if (!n)
  3903. print_slabinfo_header(m);
  3904. return seq_list_start(&slab_caches, *pos);
  3905. }
  3906. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3907. {
  3908. return seq_list_next(p, &slab_caches, pos);
  3909. }
  3910. static void s_stop(struct seq_file *m, void *p)
  3911. {
  3912. up_read(&slub_lock);
  3913. }
  3914. static int s_show(struct seq_file *m, void *p)
  3915. {
  3916. unsigned long nr_partials = 0;
  3917. unsigned long nr_slabs = 0;
  3918. unsigned long nr_inuse = 0;
  3919. unsigned long nr_objs = 0;
  3920. unsigned long nr_free = 0;
  3921. struct kmem_cache *s;
  3922. int node;
  3923. s = list_entry(p, struct kmem_cache, list);
  3924. for_each_online_node(node) {
  3925. struct kmem_cache_node *n = get_node(s, node);
  3926. if (!n)
  3927. continue;
  3928. nr_partials += n->nr_partial;
  3929. nr_slabs += atomic_long_read(&n->nr_slabs);
  3930. nr_objs += atomic_long_read(&n->total_objects);
  3931. nr_free += count_partial(n, count_free);
  3932. }
  3933. nr_inuse = nr_objs - nr_free;
  3934. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3935. nr_objs, s->size, oo_objects(s->oo),
  3936. (1 << oo_order(s->oo)));
  3937. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3938. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3939. 0UL);
  3940. seq_putc(m, '\n');
  3941. return 0;
  3942. }
  3943. static const struct seq_operations slabinfo_op = {
  3944. .start = s_start,
  3945. .next = s_next,
  3946. .stop = s_stop,
  3947. .show = s_show,
  3948. };
  3949. static int slabinfo_open(struct inode *inode, struct file *file)
  3950. {
  3951. return seq_open(file, &slabinfo_op);
  3952. }
  3953. static const struct file_operations proc_slabinfo_operations = {
  3954. .open = slabinfo_open,
  3955. .read = seq_read,
  3956. .llseek = seq_lseek,
  3957. .release = seq_release,
  3958. };
  3959. static int __init slab_proc_init(void)
  3960. {
  3961. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3962. return 0;
  3963. }
  3964. module_init(slab_proc_init);
  3965. #endif /* CONFIG_SLABINFO */