mcp251x.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .model = CAN_MCP251X_MCP2510,
  42. * .power_enable = mcp251x_power_enable,
  43. * .transceiver_enable = NULL,
  44. * };
  45. *
  46. * static struct spi_board_info spi_board_info[] = {
  47. * {
  48. * .modalias = "mcp251x",
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can/core.h>
  61. #include <linux/can/dev.h>
  62. #include <linux/can/platform/mcp251x.h>
  63. #include <linux/completion.h>
  64. #include <linux/delay.h>
  65. #include <linux/device.h>
  66. #include <linux/dma-mapping.h>
  67. #include <linux/freezer.h>
  68. #include <linux/interrupt.h>
  69. #include <linux/io.h>
  70. #include <linux/kernel.h>
  71. #include <linux/module.h>
  72. #include <linux/netdevice.h>
  73. #include <linux/platform_device.h>
  74. #include <linux/slab.h>
  75. #include <linux/spi/spi.h>
  76. #include <linux/uaccess.h>
  77. /* SPI interface instruction set */
  78. #define INSTRUCTION_WRITE 0x02
  79. #define INSTRUCTION_READ 0x03
  80. #define INSTRUCTION_BIT_MODIFY 0x05
  81. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  82. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  83. #define INSTRUCTION_RESET 0xC0
  84. /* MPC251x registers */
  85. #define CANSTAT 0x0e
  86. #define CANCTRL 0x0f
  87. # define CANCTRL_REQOP_MASK 0xe0
  88. # define CANCTRL_REQOP_CONF 0x80
  89. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  90. # define CANCTRL_REQOP_LOOPBACK 0x40
  91. # define CANCTRL_REQOP_SLEEP 0x20
  92. # define CANCTRL_REQOP_NORMAL 0x00
  93. # define CANCTRL_OSM 0x08
  94. # define CANCTRL_ABAT 0x10
  95. #define TEC 0x1c
  96. #define REC 0x1d
  97. #define CNF1 0x2a
  98. # define CNF1_SJW_SHIFT 6
  99. #define CNF2 0x29
  100. # define CNF2_BTLMODE 0x80
  101. # define CNF2_SAM 0x40
  102. # define CNF2_PS1_SHIFT 3
  103. #define CNF3 0x28
  104. # define CNF3_SOF 0x08
  105. # define CNF3_WAKFIL 0x04
  106. # define CNF3_PHSEG2_MASK 0x07
  107. #define CANINTE 0x2b
  108. # define CANINTE_MERRE 0x80
  109. # define CANINTE_WAKIE 0x40
  110. # define CANINTE_ERRIE 0x20
  111. # define CANINTE_TX2IE 0x10
  112. # define CANINTE_TX1IE 0x08
  113. # define CANINTE_TX0IE 0x04
  114. # define CANINTE_RX1IE 0x02
  115. # define CANINTE_RX0IE 0x01
  116. #define CANINTF 0x2c
  117. # define CANINTF_MERRF 0x80
  118. # define CANINTF_WAKIF 0x40
  119. # define CANINTF_ERRIF 0x20
  120. # define CANINTF_TX2IF 0x10
  121. # define CANINTF_TX1IF 0x08
  122. # define CANINTF_TX0IF 0x04
  123. # define CANINTF_RX1IF 0x02
  124. # define CANINTF_RX0IF 0x01
  125. # define CANINTF_ERR_TX \
  126. (CANINTF_ERRIF | CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
  127. #define EFLG 0x2d
  128. # define EFLG_EWARN 0x01
  129. # define EFLG_RXWAR 0x02
  130. # define EFLG_TXWAR 0x04
  131. # define EFLG_RXEP 0x08
  132. # define EFLG_TXEP 0x10
  133. # define EFLG_TXBO 0x20
  134. # define EFLG_RX0OVR 0x40
  135. # define EFLG_RX1OVR 0x80
  136. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  137. # define TXBCTRL_ABTF 0x40
  138. # define TXBCTRL_MLOA 0x20
  139. # define TXBCTRL_TXERR 0x10
  140. # define TXBCTRL_TXREQ 0x08
  141. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  142. # define SIDH_SHIFT 3
  143. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  144. # define SIDL_SID_MASK 7
  145. # define SIDL_SID_SHIFT 5
  146. # define SIDL_EXIDE_SHIFT 3
  147. # define SIDL_EID_SHIFT 16
  148. # define SIDL_EID_MASK 3
  149. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  150. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  151. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  152. # define DLC_RTR_SHIFT 6
  153. #define TXBCTRL_OFF 0
  154. #define TXBSIDH_OFF 1
  155. #define TXBSIDL_OFF 2
  156. #define TXBEID8_OFF 3
  157. #define TXBEID0_OFF 4
  158. #define TXBDLC_OFF 5
  159. #define TXBDAT_OFF 6
  160. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  161. # define RXBCTRL_BUKT 0x04
  162. # define RXBCTRL_RXM0 0x20
  163. # define RXBCTRL_RXM1 0x40
  164. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  165. # define RXBSIDH_SHIFT 3
  166. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  167. # define RXBSIDL_IDE 0x08
  168. # define RXBSIDL_EID 3
  169. # define RXBSIDL_SHIFT 5
  170. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  171. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  172. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  173. # define RXBDLC_LEN_MASK 0x0f
  174. # define RXBDLC_RTR 0x40
  175. #define RXBCTRL_OFF 0
  176. #define RXBSIDH_OFF 1
  177. #define RXBSIDL_OFF 2
  178. #define RXBEID8_OFF 3
  179. #define RXBEID0_OFF 4
  180. #define RXBDLC_OFF 5
  181. #define RXBDAT_OFF 6
  182. #define RXFSIDH(n) ((n) * 4)
  183. #define RXFSIDL(n) ((n) * 4 + 1)
  184. #define RXFEID8(n) ((n) * 4 + 2)
  185. #define RXFEID0(n) ((n) * 4 + 3)
  186. #define RXMSIDH(n) ((n) * 4 + 0x20)
  187. #define RXMSIDL(n) ((n) * 4 + 0x21)
  188. #define RXMEID8(n) ((n) * 4 + 0x22)
  189. #define RXMEID0(n) ((n) * 4 + 0x23)
  190. #define GET_BYTE(val, byte) \
  191. (((val) >> ((byte) * 8)) & 0xff)
  192. #define SET_BYTE(val, byte) \
  193. (((val) & 0xff) << ((byte) * 8))
  194. /*
  195. * Buffer size required for the largest SPI transfer (i.e., reading a
  196. * frame)
  197. */
  198. #define CAN_FRAME_MAX_DATA_LEN 8
  199. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  200. #define CAN_FRAME_MAX_BITS 128
  201. #define TX_ECHO_SKB_MAX 1
  202. #define DEVICE_NAME "mcp251x"
  203. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  204. module_param(mcp251x_enable_dma, int, S_IRUGO);
  205. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  206. static struct can_bittiming_const mcp251x_bittiming_const = {
  207. .name = DEVICE_NAME,
  208. .tseg1_min = 3,
  209. .tseg1_max = 16,
  210. .tseg2_min = 2,
  211. .tseg2_max = 8,
  212. .sjw_max = 4,
  213. .brp_min = 1,
  214. .brp_max = 64,
  215. .brp_inc = 1,
  216. };
  217. struct mcp251x_priv {
  218. struct can_priv can;
  219. struct net_device *net;
  220. struct spi_device *spi;
  221. struct mutex mcp_lock; /* SPI device lock */
  222. u8 *spi_tx_buf;
  223. u8 *spi_rx_buf;
  224. dma_addr_t spi_tx_dma;
  225. dma_addr_t spi_rx_dma;
  226. struct sk_buff *tx_skb;
  227. int tx_len;
  228. struct workqueue_struct *wq;
  229. struct work_struct tx_work;
  230. struct work_struct restart_work;
  231. int force_quit;
  232. int after_suspend;
  233. #define AFTER_SUSPEND_UP 1
  234. #define AFTER_SUSPEND_DOWN 2
  235. #define AFTER_SUSPEND_POWER 4
  236. #define AFTER_SUSPEND_RESTART 8
  237. int restart_tx;
  238. };
  239. static void mcp251x_clean(struct net_device *net)
  240. {
  241. struct mcp251x_priv *priv = netdev_priv(net);
  242. if (priv->tx_skb || priv->tx_len)
  243. net->stats.tx_errors++;
  244. if (priv->tx_skb)
  245. dev_kfree_skb(priv->tx_skb);
  246. if (priv->tx_len)
  247. can_free_echo_skb(priv->net, 0);
  248. priv->tx_skb = NULL;
  249. priv->tx_len = 0;
  250. }
  251. /*
  252. * Note about handling of error return of mcp251x_spi_trans: accessing
  253. * registers via SPI is not really different conceptually than using
  254. * normal I/O assembler instructions, although it's much more
  255. * complicated from a practical POV. So it's not advisable to always
  256. * check the return value of this function. Imagine that every
  257. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  258. * error();", it would be a great mess (well there are some situation
  259. * when exception handling C++ like could be useful after all). So we
  260. * just check that transfers are OK at the beginning of our
  261. * conversation with the chip and to avoid doing really nasty things
  262. * (like injecting bogus packets in the network stack).
  263. */
  264. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  265. {
  266. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  267. struct spi_transfer t = {
  268. .tx_buf = priv->spi_tx_buf,
  269. .rx_buf = priv->spi_rx_buf,
  270. .len = len,
  271. .cs_change = 0,
  272. };
  273. struct spi_message m;
  274. int ret;
  275. spi_message_init(&m);
  276. if (mcp251x_enable_dma) {
  277. t.tx_dma = priv->spi_tx_dma;
  278. t.rx_dma = priv->spi_rx_dma;
  279. m.is_dma_mapped = 1;
  280. }
  281. spi_message_add_tail(&t, &m);
  282. ret = spi_sync(spi, &m);
  283. if (ret)
  284. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  285. return ret;
  286. }
  287. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  288. {
  289. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  290. u8 val = 0;
  291. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  292. priv->spi_tx_buf[1] = reg;
  293. mcp251x_spi_trans(spi, 3);
  294. val = priv->spi_rx_buf[2];
  295. return val;
  296. }
  297. static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
  298. uint8_t *v1, uint8_t *v2)
  299. {
  300. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  301. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  302. priv->spi_tx_buf[1] = reg;
  303. mcp251x_spi_trans(spi, 4);
  304. *v1 = priv->spi_rx_buf[2];
  305. *v2 = priv->spi_rx_buf[3];
  306. }
  307. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  308. {
  309. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  310. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  311. priv->spi_tx_buf[1] = reg;
  312. priv->spi_tx_buf[2] = val;
  313. mcp251x_spi_trans(spi, 3);
  314. }
  315. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  316. u8 mask, uint8_t val)
  317. {
  318. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  319. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  320. priv->spi_tx_buf[1] = reg;
  321. priv->spi_tx_buf[2] = mask;
  322. priv->spi_tx_buf[3] = val;
  323. mcp251x_spi_trans(spi, 4);
  324. }
  325. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  326. int len, int tx_buf_idx)
  327. {
  328. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  329. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  330. if (pdata->model == CAN_MCP251X_MCP2510) {
  331. int i;
  332. for (i = 1; i < TXBDAT_OFF + len; i++)
  333. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  334. buf[i]);
  335. } else {
  336. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  337. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  338. }
  339. }
  340. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  341. int tx_buf_idx)
  342. {
  343. u32 sid, eid, exide, rtr;
  344. u8 buf[SPI_TRANSFER_BUF_LEN];
  345. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  346. if (exide)
  347. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  348. else
  349. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  350. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  351. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  352. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  353. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  354. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  355. (exide << SIDL_EXIDE_SHIFT) |
  356. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  357. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  358. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  359. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  360. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  361. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  362. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
  363. }
  364. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  365. int buf_idx)
  366. {
  367. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  368. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  369. if (pdata->model == CAN_MCP251X_MCP2510) {
  370. int i, len;
  371. for (i = 1; i < RXBDAT_OFF; i++)
  372. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  373. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  374. for (; i < (RXBDAT_OFF + len); i++)
  375. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  376. } else {
  377. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  378. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  379. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  380. }
  381. }
  382. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  383. {
  384. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  385. struct sk_buff *skb;
  386. struct can_frame *frame;
  387. u8 buf[SPI_TRANSFER_BUF_LEN];
  388. skb = alloc_can_skb(priv->net, &frame);
  389. if (!skb) {
  390. dev_err(&spi->dev, "cannot allocate RX skb\n");
  391. priv->net->stats.rx_dropped++;
  392. return;
  393. }
  394. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  395. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  396. /* Extended ID format */
  397. frame->can_id = CAN_EFF_FLAG;
  398. frame->can_id |=
  399. /* Extended ID part */
  400. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  401. SET_BYTE(buf[RXBEID8_OFF], 1) |
  402. SET_BYTE(buf[RXBEID0_OFF], 0) |
  403. /* Standard ID part */
  404. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  405. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  406. /* Remote transmission request */
  407. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  408. frame->can_id |= CAN_RTR_FLAG;
  409. } else {
  410. /* Standard ID format */
  411. frame->can_id =
  412. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  413. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  414. }
  415. /* Data length */
  416. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  417. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  418. priv->net->stats.rx_packets++;
  419. priv->net->stats.rx_bytes += frame->can_dlc;
  420. netif_rx_ni(skb);
  421. }
  422. static void mcp251x_hw_sleep(struct spi_device *spi)
  423. {
  424. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  425. }
  426. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  427. struct net_device *net)
  428. {
  429. struct mcp251x_priv *priv = netdev_priv(net);
  430. struct spi_device *spi = priv->spi;
  431. if (priv->tx_skb || priv->tx_len) {
  432. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  433. return NETDEV_TX_BUSY;
  434. }
  435. if (can_dropped_invalid_skb(net, skb))
  436. return NETDEV_TX_OK;
  437. netif_stop_queue(net);
  438. priv->tx_skb = skb;
  439. queue_work(priv->wq, &priv->tx_work);
  440. return NETDEV_TX_OK;
  441. }
  442. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  443. {
  444. struct mcp251x_priv *priv = netdev_priv(net);
  445. switch (mode) {
  446. case CAN_MODE_START:
  447. mcp251x_clean(net);
  448. /* We have to delay work since SPI I/O may sleep */
  449. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  450. priv->restart_tx = 1;
  451. if (priv->can.restart_ms == 0)
  452. priv->after_suspend = AFTER_SUSPEND_RESTART;
  453. queue_work(priv->wq, &priv->restart_work);
  454. break;
  455. default:
  456. return -EOPNOTSUPP;
  457. }
  458. return 0;
  459. }
  460. static int mcp251x_set_normal_mode(struct spi_device *spi)
  461. {
  462. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  463. unsigned long timeout;
  464. /* Enable interrupts */
  465. mcp251x_write_reg(spi, CANINTE,
  466. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  467. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
  468. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  469. /* Put device into loopback mode */
  470. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  471. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  472. /* Put device into listen-only mode */
  473. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  474. } else {
  475. /* Put device into normal mode */
  476. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  477. /* Wait for the device to enter normal mode */
  478. timeout = jiffies + HZ;
  479. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  480. schedule();
  481. if (time_after(jiffies, timeout)) {
  482. dev_err(&spi->dev, "MCP251x didn't"
  483. " enter in normal mode\n");
  484. return -EBUSY;
  485. }
  486. }
  487. }
  488. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  489. return 0;
  490. }
  491. static int mcp251x_do_set_bittiming(struct net_device *net)
  492. {
  493. struct mcp251x_priv *priv = netdev_priv(net);
  494. struct can_bittiming *bt = &priv->can.bittiming;
  495. struct spi_device *spi = priv->spi;
  496. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  497. (bt->brp - 1));
  498. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  499. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  500. CNF2_SAM : 0) |
  501. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  502. (bt->prop_seg - 1));
  503. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  504. (bt->phase_seg2 - 1));
  505. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  506. mcp251x_read_reg(spi, CNF1),
  507. mcp251x_read_reg(spi, CNF2),
  508. mcp251x_read_reg(spi, CNF3));
  509. return 0;
  510. }
  511. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  512. struct spi_device *spi)
  513. {
  514. mcp251x_do_set_bittiming(net);
  515. mcp251x_write_reg(spi, RXBCTRL(0),
  516. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  517. mcp251x_write_reg(spi, RXBCTRL(1),
  518. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  519. return 0;
  520. }
  521. static int mcp251x_hw_reset(struct spi_device *spi)
  522. {
  523. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  524. int ret;
  525. unsigned long timeout;
  526. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  527. ret = spi_write(spi, priv->spi_tx_buf, 1);
  528. if (ret) {
  529. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  530. return -EIO;
  531. }
  532. /* Wait for reset to finish */
  533. timeout = jiffies + HZ;
  534. mdelay(10);
  535. while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
  536. != CANCTRL_REQOP_CONF) {
  537. schedule();
  538. if (time_after(jiffies, timeout)) {
  539. dev_err(&spi->dev, "MCP251x didn't"
  540. " enter in conf mode after reset\n");
  541. return -EBUSY;
  542. }
  543. }
  544. return 0;
  545. }
  546. static int mcp251x_hw_probe(struct spi_device *spi)
  547. {
  548. int st1, st2;
  549. mcp251x_hw_reset(spi);
  550. /*
  551. * Please note that these are "magic values" based on after
  552. * reset defaults taken from data sheet which allows us to see
  553. * if we really have a chip on the bus (we avoid common all
  554. * zeroes or all ones situations)
  555. */
  556. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  557. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  558. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  559. /* Check for power up default values */
  560. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  561. }
  562. static void mcp251x_open_clean(struct net_device *net)
  563. {
  564. struct mcp251x_priv *priv = netdev_priv(net);
  565. struct spi_device *spi = priv->spi;
  566. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  567. free_irq(spi->irq, priv);
  568. mcp251x_hw_sleep(spi);
  569. if (pdata->transceiver_enable)
  570. pdata->transceiver_enable(0);
  571. close_candev(net);
  572. }
  573. static int mcp251x_stop(struct net_device *net)
  574. {
  575. struct mcp251x_priv *priv = netdev_priv(net);
  576. struct spi_device *spi = priv->spi;
  577. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  578. close_candev(net);
  579. priv->force_quit = 1;
  580. free_irq(spi->irq, priv);
  581. destroy_workqueue(priv->wq);
  582. priv->wq = NULL;
  583. mutex_lock(&priv->mcp_lock);
  584. /* Disable and clear pending interrupts */
  585. mcp251x_write_reg(spi, CANINTE, 0x00);
  586. mcp251x_write_reg(spi, CANINTF, 0x00);
  587. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  588. mcp251x_clean(net);
  589. mcp251x_hw_sleep(spi);
  590. if (pdata->transceiver_enable)
  591. pdata->transceiver_enable(0);
  592. priv->can.state = CAN_STATE_STOPPED;
  593. mutex_unlock(&priv->mcp_lock);
  594. return 0;
  595. }
  596. static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
  597. {
  598. struct sk_buff *skb;
  599. struct can_frame *frame;
  600. skb = alloc_can_err_skb(net, &frame);
  601. if (skb) {
  602. frame->can_id = can_id;
  603. frame->data[1] = data1;
  604. netif_rx_ni(skb);
  605. } else {
  606. dev_err(&net->dev,
  607. "cannot allocate error skb\n");
  608. }
  609. }
  610. static void mcp251x_tx_work_handler(struct work_struct *ws)
  611. {
  612. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  613. tx_work);
  614. struct spi_device *spi = priv->spi;
  615. struct net_device *net = priv->net;
  616. struct can_frame *frame;
  617. mutex_lock(&priv->mcp_lock);
  618. if (priv->tx_skb) {
  619. if (priv->can.state == CAN_STATE_BUS_OFF) {
  620. mcp251x_clean(net);
  621. } else {
  622. frame = (struct can_frame *)priv->tx_skb->data;
  623. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  624. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  625. mcp251x_hw_tx(spi, frame, 0);
  626. priv->tx_len = 1 + frame->can_dlc;
  627. can_put_echo_skb(priv->tx_skb, net, 0);
  628. priv->tx_skb = NULL;
  629. }
  630. }
  631. mutex_unlock(&priv->mcp_lock);
  632. }
  633. static void mcp251x_restart_work_handler(struct work_struct *ws)
  634. {
  635. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  636. restart_work);
  637. struct spi_device *spi = priv->spi;
  638. struct net_device *net = priv->net;
  639. mutex_lock(&priv->mcp_lock);
  640. if (priv->after_suspend) {
  641. mdelay(10);
  642. mcp251x_hw_reset(spi);
  643. mcp251x_setup(net, priv, spi);
  644. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  645. mcp251x_set_normal_mode(spi);
  646. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  647. netif_device_attach(net);
  648. mcp251x_clean(net);
  649. mcp251x_set_normal_mode(spi);
  650. netif_wake_queue(net);
  651. } else {
  652. mcp251x_hw_sleep(spi);
  653. }
  654. priv->after_suspend = 0;
  655. priv->force_quit = 0;
  656. }
  657. if (priv->restart_tx) {
  658. priv->restart_tx = 0;
  659. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  660. mcp251x_clean(net);
  661. netif_wake_queue(net);
  662. mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
  663. }
  664. mutex_unlock(&priv->mcp_lock);
  665. }
  666. static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
  667. {
  668. struct mcp251x_priv *priv = dev_id;
  669. struct spi_device *spi = priv->spi;
  670. struct net_device *net = priv->net;
  671. mutex_lock(&priv->mcp_lock);
  672. while (!priv->force_quit) {
  673. enum can_state new_state;
  674. u8 intf, eflag;
  675. u8 clear_intf = 0;
  676. int can_id = 0, data1 = 0;
  677. mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
  678. /* receive buffer 0 */
  679. if (intf & CANINTF_RX0IF) {
  680. mcp251x_hw_rx(spi, 0);
  681. /* Free one buffer ASAP */
  682. mcp251x_write_bits(spi, CANINTF, intf & CANINTF_RX0IF,
  683. 0x00);
  684. }
  685. /* receive buffer 1 */
  686. if (intf & CANINTF_RX1IF) {
  687. mcp251x_hw_rx(spi, 1);
  688. clear_intf |= CANINTF_RX1IF;
  689. }
  690. /* any error or tx interrupt we need to clear? */
  691. if (intf & CANINTF_ERR_TX)
  692. clear_intf |= intf & CANINTF_ERR_TX;
  693. if (clear_intf)
  694. mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
  695. if (eflag)
  696. mcp251x_write_bits(spi, EFLG, eflag, 0x00);
  697. /* Update can state */
  698. if (eflag & EFLG_TXBO) {
  699. new_state = CAN_STATE_BUS_OFF;
  700. can_id |= CAN_ERR_BUSOFF;
  701. } else if (eflag & EFLG_TXEP) {
  702. new_state = CAN_STATE_ERROR_PASSIVE;
  703. can_id |= CAN_ERR_CRTL;
  704. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  705. } else if (eflag & EFLG_RXEP) {
  706. new_state = CAN_STATE_ERROR_PASSIVE;
  707. can_id |= CAN_ERR_CRTL;
  708. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  709. } else if (eflag & EFLG_TXWAR) {
  710. new_state = CAN_STATE_ERROR_WARNING;
  711. can_id |= CAN_ERR_CRTL;
  712. data1 |= CAN_ERR_CRTL_TX_WARNING;
  713. } else if (eflag & EFLG_RXWAR) {
  714. new_state = CAN_STATE_ERROR_WARNING;
  715. can_id |= CAN_ERR_CRTL;
  716. data1 |= CAN_ERR_CRTL_RX_WARNING;
  717. } else {
  718. new_state = CAN_STATE_ERROR_ACTIVE;
  719. }
  720. /* Update can state statistics */
  721. switch (priv->can.state) {
  722. case CAN_STATE_ERROR_ACTIVE:
  723. if (new_state >= CAN_STATE_ERROR_WARNING &&
  724. new_state <= CAN_STATE_BUS_OFF)
  725. priv->can.can_stats.error_warning++;
  726. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  727. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  728. new_state <= CAN_STATE_BUS_OFF)
  729. priv->can.can_stats.error_passive++;
  730. break;
  731. default:
  732. break;
  733. }
  734. priv->can.state = new_state;
  735. if (intf & CANINTF_ERRIF) {
  736. /* Handle overflow counters */
  737. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  738. if (eflag & EFLG_RX0OVR) {
  739. net->stats.rx_over_errors++;
  740. net->stats.rx_errors++;
  741. }
  742. if (eflag & EFLG_RX1OVR) {
  743. net->stats.rx_over_errors++;
  744. net->stats.rx_errors++;
  745. }
  746. can_id |= CAN_ERR_CRTL;
  747. data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
  748. }
  749. mcp251x_error_skb(net, can_id, data1);
  750. }
  751. if (priv->can.state == CAN_STATE_BUS_OFF) {
  752. if (priv->can.restart_ms == 0) {
  753. priv->force_quit = 1;
  754. can_bus_off(net);
  755. mcp251x_hw_sleep(spi);
  756. break;
  757. }
  758. }
  759. if (intf == 0)
  760. break;
  761. if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
  762. net->stats.tx_packets++;
  763. net->stats.tx_bytes += priv->tx_len - 1;
  764. if (priv->tx_len) {
  765. can_get_echo_skb(net, 0);
  766. priv->tx_len = 0;
  767. }
  768. netif_wake_queue(net);
  769. }
  770. }
  771. mutex_unlock(&priv->mcp_lock);
  772. return IRQ_HANDLED;
  773. }
  774. static int mcp251x_open(struct net_device *net)
  775. {
  776. struct mcp251x_priv *priv = netdev_priv(net);
  777. struct spi_device *spi = priv->spi;
  778. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  779. int ret;
  780. ret = open_candev(net);
  781. if (ret) {
  782. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  783. return ret;
  784. }
  785. mutex_lock(&priv->mcp_lock);
  786. if (pdata->transceiver_enable)
  787. pdata->transceiver_enable(1);
  788. priv->force_quit = 0;
  789. priv->tx_skb = NULL;
  790. priv->tx_len = 0;
  791. ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
  792. IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
  793. if (ret) {
  794. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  795. if (pdata->transceiver_enable)
  796. pdata->transceiver_enable(0);
  797. close_candev(net);
  798. goto open_unlock;
  799. }
  800. priv->wq = create_freezeable_workqueue("mcp251x_wq");
  801. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  802. INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
  803. ret = mcp251x_hw_reset(spi);
  804. if (ret) {
  805. mcp251x_open_clean(net);
  806. goto open_unlock;
  807. }
  808. ret = mcp251x_setup(net, priv, spi);
  809. if (ret) {
  810. mcp251x_open_clean(net);
  811. goto open_unlock;
  812. }
  813. ret = mcp251x_set_normal_mode(spi);
  814. if (ret) {
  815. mcp251x_open_clean(net);
  816. goto open_unlock;
  817. }
  818. netif_wake_queue(net);
  819. open_unlock:
  820. mutex_unlock(&priv->mcp_lock);
  821. return ret;
  822. }
  823. static const struct net_device_ops mcp251x_netdev_ops = {
  824. .ndo_open = mcp251x_open,
  825. .ndo_stop = mcp251x_stop,
  826. .ndo_start_xmit = mcp251x_hard_start_xmit,
  827. };
  828. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  829. {
  830. struct net_device *net;
  831. struct mcp251x_priv *priv;
  832. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  833. int model = spi_get_device_id(spi)->driver_data;
  834. int ret = -ENODEV;
  835. if (!pdata)
  836. /* Platform data is required for osc freq */
  837. goto error_out;
  838. if (model)
  839. pdata->model = model;
  840. /* Allocate can/net device */
  841. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  842. if (!net) {
  843. ret = -ENOMEM;
  844. goto error_alloc;
  845. }
  846. net->netdev_ops = &mcp251x_netdev_ops;
  847. net->flags |= IFF_ECHO;
  848. priv = netdev_priv(net);
  849. priv->can.bittiming_const = &mcp251x_bittiming_const;
  850. priv->can.do_set_mode = mcp251x_do_set_mode;
  851. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  852. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  853. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  854. priv->net = net;
  855. dev_set_drvdata(&spi->dev, priv);
  856. priv->spi = spi;
  857. mutex_init(&priv->mcp_lock);
  858. /* If requested, allocate DMA buffers */
  859. if (mcp251x_enable_dma) {
  860. spi->dev.coherent_dma_mask = ~0;
  861. /*
  862. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  863. * that much and share it between Tx and Rx DMA buffers.
  864. */
  865. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  866. PAGE_SIZE,
  867. &priv->spi_tx_dma,
  868. GFP_DMA);
  869. if (priv->spi_tx_buf) {
  870. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  871. (PAGE_SIZE / 2));
  872. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  873. (PAGE_SIZE / 2));
  874. } else {
  875. /* Fall back to non-DMA */
  876. mcp251x_enable_dma = 0;
  877. }
  878. }
  879. /* Allocate non-DMA buffers */
  880. if (!mcp251x_enable_dma) {
  881. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  882. if (!priv->spi_tx_buf) {
  883. ret = -ENOMEM;
  884. goto error_tx_buf;
  885. }
  886. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  887. if (!priv->spi_rx_buf) {
  888. ret = -ENOMEM;
  889. goto error_rx_buf;
  890. }
  891. }
  892. if (pdata->power_enable)
  893. pdata->power_enable(1);
  894. /* Call out to platform specific setup */
  895. if (pdata->board_specific_setup)
  896. pdata->board_specific_setup(spi);
  897. SET_NETDEV_DEV(net, &spi->dev);
  898. /* Configure the SPI bus */
  899. spi->mode = SPI_MODE_0;
  900. spi->bits_per_word = 8;
  901. spi_setup(spi);
  902. /* Here is OK to not lock the MCP, no one knows about it yet */
  903. if (!mcp251x_hw_probe(spi)) {
  904. dev_info(&spi->dev, "Probe failed\n");
  905. goto error_probe;
  906. }
  907. mcp251x_hw_sleep(spi);
  908. if (pdata->transceiver_enable)
  909. pdata->transceiver_enable(0);
  910. ret = register_candev(net);
  911. if (!ret) {
  912. dev_info(&spi->dev, "probed\n");
  913. return ret;
  914. }
  915. error_probe:
  916. if (!mcp251x_enable_dma)
  917. kfree(priv->spi_rx_buf);
  918. error_rx_buf:
  919. if (!mcp251x_enable_dma)
  920. kfree(priv->spi_tx_buf);
  921. error_tx_buf:
  922. free_candev(net);
  923. if (mcp251x_enable_dma)
  924. dma_free_coherent(&spi->dev, PAGE_SIZE,
  925. priv->spi_tx_buf, priv->spi_tx_dma);
  926. error_alloc:
  927. if (pdata->power_enable)
  928. pdata->power_enable(0);
  929. dev_err(&spi->dev, "probe failed\n");
  930. error_out:
  931. return ret;
  932. }
  933. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  934. {
  935. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  936. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  937. struct net_device *net = priv->net;
  938. unregister_candev(net);
  939. free_candev(net);
  940. if (mcp251x_enable_dma) {
  941. dma_free_coherent(&spi->dev, PAGE_SIZE,
  942. priv->spi_tx_buf, priv->spi_tx_dma);
  943. } else {
  944. kfree(priv->spi_tx_buf);
  945. kfree(priv->spi_rx_buf);
  946. }
  947. if (pdata->power_enable)
  948. pdata->power_enable(0);
  949. return 0;
  950. }
  951. #ifdef CONFIG_PM
  952. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  953. {
  954. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  955. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  956. struct net_device *net = priv->net;
  957. priv->force_quit = 1;
  958. disable_irq(spi->irq);
  959. /*
  960. * Note: at this point neither IST nor workqueues are running.
  961. * open/stop cannot be called anyway so locking is not needed
  962. */
  963. if (netif_running(net)) {
  964. netif_device_detach(net);
  965. mcp251x_hw_sleep(spi);
  966. if (pdata->transceiver_enable)
  967. pdata->transceiver_enable(0);
  968. priv->after_suspend = AFTER_SUSPEND_UP;
  969. } else {
  970. priv->after_suspend = AFTER_SUSPEND_DOWN;
  971. }
  972. if (pdata->power_enable) {
  973. pdata->power_enable(0);
  974. priv->after_suspend |= AFTER_SUSPEND_POWER;
  975. }
  976. return 0;
  977. }
  978. static int mcp251x_can_resume(struct spi_device *spi)
  979. {
  980. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  981. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  982. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  983. pdata->power_enable(1);
  984. queue_work(priv->wq, &priv->restart_work);
  985. } else {
  986. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  987. if (pdata->transceiver_enable)
  988. pdata->transceiver_enable(1);
  989. queue_work(priv->wq, &priv->restart_work);
  990. } else {
  991. priv->after_suspend = 0;
  992. }
  993. }
  994. priv->force_quit = 0;
  995. enable_irq(spi->irq);
  996. return 0;
  997. }
  998. #else
  999. #define mcp251x_can_suspend NULL
  1000. #define mcp251x_can_resume NULL
  1001. #endif
  1002. static struct spi_device_id mcp251x_id_table[] = {
  1003. { "mcp251x", 0 /* Use pdata.model */ },
  1004. { "mcp2510", CAN_MCP251X_MCP2510 },
  1005. { "mcp2515", CAN_MCP251X_MCP2515 },
  1006. { },
  1007. };
  1008. MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
  1009. static struct spi_driver mcp251x_can_driver = {
  1010. .driver = {
  1011. .name = DEVICE_NAME,
  1012. .bus = &spi_bus_type,
  1013. .owner = THIS_MODULE,
  1014. },
  1015. .id_table = mcp251x_id_table,
  1016. .probe = mcp251x_can_probe,
  1017. .remove = __devexit_p(mcp251x_can_remove),
  1018. .suspend = mcp251x_can_suspend,
  1019. .resume = mcp251x_can_resume,
  1020. };
  1021. static int __init mcp251x_can_init(void)
  1022. {
  1023. return spi_register_driver(&mcp251x_can_driver);
  1024. }
  1025. static void __exit mcp251x_can_exit(void)
  1026. {
  1027. spi_unregister_driver(&mcp251x_can_driver);
  1028. }
  1029. module_init(mcp251x_can_init);
  1030. module_exit(mcp251x_can_exit);
  1031. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  1032. "Christian Pellegrin <chripell@evolware.org>");
  1033. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  1034. MODULE_LICENSE("GPL v2");