spi_bfin5xx.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. struct master_data;
  40. struct transfer_ops {
  41. void (*write) (struct master_data *);
  42. void (*read) (struct master_data *);
  43. void (*duplex) (struct master_data *);
  44. };
  45. struct master_data {
  46. /* Driver model hookup */
  47. struct platform_device *pdev;
  48. /* SPI framework hookup */
  49. struct spi_master *master;
  50. /* Regs base of SPI controller */
  51. void __iomem *regs_base;
  52. /* Pin request list */
  53. u16 *pin_req;
  54. /* BFIN hookup */
  55. struct bfin5xx_spi_master *master_info;
  56. /* Driver message queue */
  57. struct workqueue_struct *workqueue;
  58. struct work_struct pump_messages;
  59. spinlock_t lock;
  60. struct list_head queue;
  61. int busy;
  62. bool running;
  63. /* Message Transfer pump */
  64. struct tasklet_struct pump_transfers;
  65. /* Current message transfer state info */
  66. struct spi_message *cur_msg;
  67. struct spi_transfer *cur_transfer;
  68. struct slave_data *cur_chip;
  69. size_t len_in_bytes;
  70. size_t len;
  71. void *tx;
  72. void *tx_end;
  73. void *rx;
  74. void *rx_end;
  75. /* DMA stuffs */
  76. int dma_channel;
  77. int dma_mapped;
  78. int dma_requested;
  79. dma_addr_t rx_dma;
  80. dma_addr_t tx_dma;
  81. int irq_requested;
  82. int spi_irq;
  83. size_t rx_map_len;
  84. size_t tx_map_len;
  85. u8 n_bytes;
  86. int cs_change;
  87. const struct transfer_ops *ops;
  88. };
  89. struct slave_data {
  90. u16 ctl_reg;
  91. u16 baud;
  92. u16 flag;
  93. u8 chip_select_num;
  94. u8 n_bytes;
  95. u8 width; /* 0 or 1 */
  96. u8 enable_dma;
  97. u8 bits_per_word; /* 8 or 16 */
  98. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  99. u32 cs_gpio;
  100. u16 idle_tx_val;
  101. u8 pio_interrupt; /* use spi data irq */
  102. const struct transfer_ops *ops;
  103. };
  104. #define DEFINE_SPI_REG(reg, off) \
  105. static inline u16 read_##reg(struct master_data *drv_data) \
  106. { return bfin_read16(drv_data->regs_base + off); } \
  107. static inline void write_##reg(struct master_data *drv_data, u16 v) \
  108. { bfin_write16(drv_data->regs_base + off, v); }
  109. DEFINE_SPI_REG(CTRL, 0x00)
  110. DEFINE_SPI_REG(FLAG, 0x04)
  111. DEFINE_SPI_REG(STAT, 0x08)
  112. DEFINE_SPI_REG(TDBR, 0x0C)
  113. DEFINE_SPI_REG(RDBR, 0x10)
  114. DEFINE_SPI_REG(BAUD, 0x14)
  115. DEFINE_SPI_REG(SHAW, 0x18)
  116. static void bfin_spi_enable(struct master_data *drv_data)
  117. {
  118. u16 cr;
  119. cr = read_CTRL(drv_data);
  120. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  121. }
  122. static void bfin_spi_disable(struct master_data *drv_data)
  123. {
  124. u16 cr;
  125. cr = read_CTRL(drv_data);
  126. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  127. }
  128. /* Caculate the SPI_BAUD register value based on input HZ */
  129. static u16 hz_to_spi_baud(u32 speed_hz)
  130. {
  131. u_long sclk = get_sclk();
  132. u16 spi_baud = (sclk / (2 * speed_hz));
  133. if ((sclk % (2 * speed_hz)) > 0)
  134. spi_baud++;
  135. if (spi_baud < MIN_SPI_BAUD_VAL)
  136. spi_baud = MIN_SPI_BAUD_VAL;
  137. return spi_baud;
  138. }
  139. static int bfin_spi_flush(struct master_data *drv_data)
  140. {
  141. unsigned long limit = loops_per_jiffy << 1;
  142. /* wait for stop and clear stat */
  143. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  144. cpu_relax();
  145. write_STAT(drv_data, BIT_STAT_CLR);
  146. return limit;
  147. }
  148. /* Chip select operation functions for cs_change flag */
  149. static void bfin_spi_cs_active(struct master_data *drv_data, struct slave_data *chip)
  150. {
  151. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  152. u16 flag = read_FLAG(drv_data);
  153. flag &= ~chip->flag;
  154. write_FLAG(drv_data, flag);
  155. } else {
  156. gpio_set_value(chip->cs_gpio, 0);
  157. }
  158. }
  159. static void bfin_spi_cs_deactive(struct master_data *drv_data, struct slave_data *chip)
  160. {
  161. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  162. u16 flag = read_FLAG(drv_data);
  163. flag |= chip->flag;
  164. write_FLAG(drv_data, flag);
  165. } else {
  166. gpio_set_value(chip->cs_gpio, 1);
  167. }
  168. /* Move delay here for consistency */
  169. if (chip->cs_chg_udelay)
  170. udelay(chip->cs_chg_udelay);
  171. }
  172. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  173. static inline void bfin_spi_cs_enable(struct master_data *drv_data, struct slave_data *chip)
  174. {
  175. if (chip->chip_select_num < MAX_CTRL_CS) {
  176. u16 flag = read_FLAG(drv_data);
  177. flag |= (chip->flag >> 8);
  178. write_FLAG(drv_data, flag);
  179. }
  180. }
  181. static inline void bfin_spi_cs_disable(struct master_data *drv_data, struct slave_data *chip)
  182. {
  183. if (chip->chip_select_num < MAX_CTRL_CS) {
  184. u16 flag = read_FLAG(drv_data);
  185. flag &= ~(chip->flag >> 8);
  186. write_FLAG(drv_data, flag);
  187. }
  188. }
  189. /* stop controller and re-config current chip*/
  190. static void bfin_spi_restore_state(struct master_data *drv_data)
  191. {
  192. struct slave_data *chip = drv_data->cur_chip;
  193. /* Clear status and disable clock */
  194. write_STAT(drv_data, BIT_STAT_CLR);
  195. bfin_spi_disable(drv_data);
  196. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  197. /* Load the registers */
  198. write_CTRL(drv_data, chip->ctl_reg);
  199. write_BAUD(drv_data, chip->baud);
  200. bfin_spi_enable(drv_data);
  201. bfin_spi_cs_active(drv_data, chip);
  202. }
  203. /* used to kick off transfer in rx mode and read unwanted RX data */
  204. static inline void bfin_spi_dummy_read(struct master_data *drv_data)
  205. {
  206. (void) read_RDBR(drv_data);
  207. }
  208. static void bfin_spi_u8_writer(struct master_data *drv_data)
  209. {
  210. /* clear RXS (we check for RXS inside the loop) */
  211. bfin_spi_dummy_read(drv_data);
  212. while (drv_data->tx < drv_data->tx_end) {
  213. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  214. /* wait until transfer finished.
  215. checking SPIF or TXS may not guarantee transfer completion */
  216. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  217. cpu_relax();
  218. /* discard RX data and clear RXS */
  219. bfin_spi_dummy_read(drv_data);
  220. }
  221. }
  222. static void bfin_spi_u8_reader(struct master_data *drv_data)
  223. {
  224. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  225. /* discard old RX data and clear RXS */
  226. bfin_spi_dummy_read(drv_data);
  227. while (drv_data->rx < drv_data->rx_end) {
  228. write_TDBR(drv_data, tx_val);
  229. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  230. cpu_relax();
  231. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  232. }
  233. }
  234. static void bfin_spi_u8_duplex(struct master_data *drv_data)
  235. {
  236. /* discard old RX data and clear RXS */
  237. bfin_spi_dummy_read(drv_data);
  238. while (drv_data->rx < drv_data->rx_end) {
  239. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  240. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  241. cpu_relax();
  242. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  243. }
  244. }
  245. static const struct transfer_ops bfin_transfer_ops_u8 = {
  246. .write = bfin_spi_u8_writer,
  247. .read = bfin_spi_u8_reader,
  248. .duplex = bfin_spi_u8_duplex,
  249. };
  250. static void bfin_spi_u16_writer(struct master_data *drv_data)
  251. {
  252. /* clear RXS (we check for RXS inside the loop) */
  253. bfin_spi_dummy_read(drv_data);
  254. while (drv_data->tx < drv_data->tx_end) {
  255. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  256. drv_data->tx += 2;
  257. /* wait until transfer finished.
  258. checking SPIF or TXS may not guarantee transfer completion */
  259. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  260. cpu_relax();
  261. /* discard RX data and clear RXS */
  262. bfin_spi_dummy_read(drv_data);
  263. }
  264. }
  265. static void bfin_spi_u16_reader(struct master_data *drv_data)
  266. {
  267. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  268. /* discard old RX data and clear RXS */
  269. bfin_spi_dummy_read(drv_data);
  270. while (drv_data->rx < drv_data->rx_end) {
  271. write_TDBR(drv_data, tx_val);
  272. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  273. cpu_relax();
  274. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  275. drv_data->rx += 2;
  276. }
  277. }
  278. static void bfin_spi_u16_duplex(struct master_data *drv_data)
  279. {
  280. /* discard old RX data and clear RXS */
  281. bfin_spi_dummy_read(drv_data);
  282. while (drv_data->rx < drv_data->rx_end) {
  283. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  284. drv_data->tx += 2;
  285. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  286. cpu_relax();
  287. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  288. drv_data->rx += 2;
  289. }
  290. }
  291. static const struct transfer_ops bfin_transfer_ops_u16 = {
  292. .write = bfin_spi_u16_writer,
  293. .read = bfin_spi_u16_reader,
  294. .duplex = bfin_spi_u16_duplex,
  295. };
  296. /* test if ther is more transfer to be done */
  297. static void *bfin_spi_next_transfer(struct master_data *drv_data)
  298. {
  299. struct spi_message *msg = drv_data->cur_msg;
  300. struct spi_transfer *trans = drv_data->cur_transfer;
  301. /* Move to next transfer */
  302. if (trans->transfer_list.next != &msg->transfers) {
  303. drv_data->cur_transfer =
  304. list_entry(trans->transfer_list.next,
  305. struct spi_transfer, transfer_list);
  306. return RUNNING_STATE;
  307. } else
  308. return DONE_STATE;
  309. }
  310. /*
  311. * caller already set message->status;
  312. * dma and pio irqs are blocked give finished message back
  313. */
  314. static void bfin_spi_giveback(struct master_data *drv_data)
  315. {
  316. struct slave_data *chip = drv_data->cur_chip;
  317. struct spi_transfer *last_transfer;
  318. unsigned long flags;
  319. struct spi_message *msg;
  320. spin_lock_irqsave(&drv_data->lock, flags);
  321. msg = drv_data->cur_msg;
  322. drv_data->cur_msg = NULL;
  323. drv_data->cur_transfer = NULL;
  324. drv_data->cur_chip = NULL;
  325. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  326. spin_unlock_irqrestore(&drv_data->lock, flags);
  327. last_transfer = list_entry(msg->transfers.prev,
  328. struct spi_transfer, transfer_list);
  329. msg->state = NULL;
  330. if (!drv_data->cs_change)
  331. bfin_spi_cs_deactive(drv_data, chip);
  332. /* Not stop spi in autobuffer mode */
  333. if (drv_data->tx_dma != 0xFFFF)
  334. bfin_spi_disable(drv_data);
  335. if (msg->complete)
  336. msg->complete(msg->context);
  337. }
  338. /* spi data irq handler */
  339. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  340. {
  341. struct master_data *drv_data = dev_id;
  342. struct slave_data *chip = drv_data->cur_chip;
  343. struct spi_message *msg = drv_data->cur_msg;
  344. int n_bytes = drv_data->n_bytes;
  345. /* wait until transfer finished. */
  346. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  347. cpu_relax();
  348. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  349. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  350. /* last read */
  351. if (drv_data->rx) {
  352. dev_dbg(&drv_data->pdev->dev, "last read\n");
  353. if (n_bytes == 2)
  354. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  355. else if (n_bytes == 1)
  356. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  357. drv_data->rx += n_bytes;
  358. }
  359. msg->actual_length += drv_data->len_in_bytes;
  360. if (drv_data->cs_change)
  361. bfin_spi_cs_deactive(drv_data, chip);
  362. /* Move to next transfer */
  363. msg->state = bfin_spi_next_transfer(drv_data);
  364. disable_irq(drv_data->spi_irq);
  365. /* Schedule transfer tasklet */
  366. tasklet_schedule(&drv_data->pump_transfers);
  367. return IRQ_HANDLED;
  368. }
  369. if (drv_data->rx && drv_data->tx) {
  370. /* duplex */
  371. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  372. if (drv_data->n_bytes == 2) {
  373. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  374. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  375. } else if (drv_data->n_bytes == 1) {
  376. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  377. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  378. }
  379. } else if (drv_data->rx) {
  380. /* read */
  381. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  382. if (drv_data->n_bytes == 2)
  383. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  384. else if (drv_data->n_bytes == 1)
  385. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  386. write_TDBR(drv_data, chip->idle_tx_val);
  387. } else if (drv_data->tx) {
  388. /* write */
  389. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  390. bfin_spi_dummy_read(drv_data);
  391. if (drv_data->n_bytes == 2)
  392. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  393. else if (drv_data->n_bytes == 1)
  394. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  395. }
  396. if (drv_data->tx)
  397. drv_data->tx += n_bytes;
  398. if (drv_data->rx)
  399. drv_data->rx += n_bytes;
  400. return IRQ_HANDLED;
  401. }
  402. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  403. {
  404. struct master_data *drv_data = dev_id;
  405. struct slave_data *chip = drv_data->cur_chip;
  406. struct spi_message *msg = drv_data->cur_msg;
  407. unsigned long timeout;
  408. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  409. u16 spistat = read_STAT(drv_data);
  410. dev_dbg(&drv_data->pdev->dev,
  411. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  412. dmastat, spistat);
  413. clear_dma_irqstat(drv_data->dma_channel);
  414. /*
  415. * wait for the last transaction shifted out. HRM states:
  416. * at this point there may still be data in the SPI DMA FIFO waiting
  417. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  418. * register until it goes low for 2 successive reads
  419. */
  420. if (drv_data->tx != NULL) {
  421. while ((read_STAT(drv_data) & BIT_STAT_TXS) ||
  422. (read_STAT(drv_data) & BIT_STAT_TXS))
  423. cpu_relax();
  424. }
  425. dev_dbg(&drv_data->pdev->dev,
  426. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  427. dmastat, read_STAT(drv_data));
  428. timeout = jiffies + HZ;
  429. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  430. if (!time_before(jiffies, timeout)) {
  431. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  432. break;
  433. } else
  434. cpu_relax();
  435. if ((dmastat & DMA_ERR) && (spistat & BIT_STAT_RBSY)) {
  436. msg->state = ERROR_STATE;
  437. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  438. } else {
  439. msg->actual_length += drv_data->len_in_bytes;
  440. if (drv_data->cs_change)
  441. bfin_spi_cs_deactive(drv_data, chip);
  442. /* Move to next transfer */
  443. msg->state = bfin_spi_next_transfer(drv_data);
  444. }
  445. /* Schedule transfer tasklet */
  446. tasklet_schedule(&drv_data->pump_transfers);
  447. /* free the irq handler before next transfer */
  448. dev_dbg(&drv_data->pdev->dev,
  449. "disable dma channel irq%d\n",
  450. drv_data->dma_channel);
  451. dma_disable_irq(drv_data->dma_channel);
  452. return IRQ_HANDLED;
  453. }
  454. static void bfin_spi_pump_transfers(unsigned long data)
  455. {
  456. struct master_data *drv_data = (struct master_data *)data;
  457. struct spi_message *message = NULL;
  458. struct spi_transfer *transfer = NULL;
  459. struct spi_transfer *previous = NULL;
  460. struct slave_data *chip = NULL;
  461. u8 width;
  462. u16 cr, dma_width, dma_config;
  463. u32 tranf_success = 1;
  464. u8 full_duplex = 0;
  465. /* Get current state information */
  466. message = drv_data->cur_msg;
  467. transfer = drv_data->cur_transfer;
  468. chip = drv_data->cur_chip;
  469. /*
  470. * if msg is error or done, report it back using complete() callback
  471. */
  472. /* Handle for abort */
  473. if (message->state == ERROR_STATE) {
  474. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  475. message->status = -EIO;
  476. bfin_spi_giveback(drv_data);
  477. return;
  478. }
  479. /* Handle end of message */
  480. if (message->state == DONE_STATE) {
  481. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  482. message->status = 0;
  483. bfin_spi_giveback(drv_data);
  484. return;
  485. }
  486. /* Delay if requested at end of transfer */
  487. if (message->state == RUNNING_STATE) {
  488. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  489. previous = list_entry(transfer->transfer_list.prev,
  490. struct spi_transfer, transfer_list);
  491. if (previous->delay_usecs)
  492. udelay(previous->delay_usecs);
  493. }
  494. /* Flush any existing transfers that may be sitting in the hardware */
  495. if (bfin_spi_flush(drv_data) == 0) {
  496. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  497. message->status = -EIO;
  498. bfin_spi_giveback(drv_data);
  499. return;
  500. }
  501. if (transfer->len == 0) {
  502. /* Move to next transfer of this msg */
  503. message->state = bfin_spi_next_transfer(drv_data);
  504. /* Schedule next transfer tasklet */
  505. tasklet_schedule(&drv_data->pump_transfers);
  506. }
  507. if (transfer->tx_buf != NULL) {
  508. drv_data->tx = (void *)transfer->tx_buf;
  509. drv_data->tx_end = drv_data->tx + transfer->len;
  510. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  511. transfer->tx_buf, drv_data->tx_end);
  512. } else {
  513. drv_data->tx = NULL;
  514. }
  515. if (transfer->rx_buf != NULL) {
  516. full_duplex = transfer->tx_buf != NULL;
  517. drv_data->rx = transfer->rx_buf;
  518. drv_data->rx_end = drv_data->rx + transfer->len;
  519. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  520. transfer->rx_buf, drv_data->rx_end);
  521. } else {
  522. drv_data->rx = NULL;
  523. }
  524. drv_data->rx_dma = transfer->rx_dma;
  525. drv_data->tx_dma = transfer->tx_dma;
  526. drv_data->len_in_bytes = transfer->len;
  527. drv_data->cs_change = transfer->cs_change;
  528. /* Bits per word setup */
  529. switch (transfer->bits_per_word) {
  530. case 8:
  531. drv_data->n_bytes = 1;
  532. width = CFG_SPI_WORDSIZE8;
  533. drv_data->ops = &bfin_transfer_ops_u8;
  534. break;
  535. case 16:
  536. drv_data->n_bytes = 2;
  537. width = CFG_SPI_WORDSIZE16;
  538. drv_data->ops = &bfin_transfer_ops_u16;
  539. break;
  540. default:
  541. /* No change, the same as default setting */
  542. transfer->bits_per_word = chip->bits_per_word;
  543. drv_data->n_bytes = chip->n_bytes;
  544. width = chip->width;
  545. drv_data->ops = chip->ops;
  546. break;
  547. }
  548. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  549. cr |= (width << 8);
  550. write_CTRL(drv_data, cr);
  551. if (width == CFG_SPI_WORDSIZE16) {
  552. drv_data->len = (transfer->len) >> 1;
  553. } else {
  554. drv_data->len = transfer->len;
  555. }
  556. dev_dbg(&drv_data->pdev->dev,
  557. "transfer: drv_data->ops is %p, chip->ops is %p, u8_ops is %p\n",
  558. drv_data->ops, chip->ops, &bfin_transfer_ops_u8);
  559. message->state = RUNNING_STATE;
  560. dma_config = 0;
  561. /* Speed setup (surely valid because already checked) */
  562. if (transfer->speed_hz)
  563. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  564. else
  565. write_BAUD(drv_data, chip->baud);
  566. write_STAT(drv_data, BIT_STAT_CLR);
  567. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  568. if (drv_data->cs_change)
  569. bfin_spi_cs_active(drv_data, chip);
  570. dev_dbg(&drv_data->pdev->dev,
  571. "now pumping a transfer: width is %d, len is %d\n",
  572. width, transfer->len);
  573. /*
  574. * Try to map dma buffer and do a dma transfer. If successful use,
  575. * different way to r/w according to the enable_dma settings and if
  576. * we are not doing a full duplex transfer (since the hardware does
  577. * not support full duplex DMA transfers).
  578. */
  579. if (!full_duplex && drv_data->cur_chip->enable_dma
  580. && drv_data->len > 6) {
  581. unsigned long dma_start_addr, flags;
  582. disable_dma(drv_data->dma_channel);
  583. clear_dma_irqstat(drv_data->dma_channel);
  584. /* config dma channel */
  585. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  586. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  587. if (width == CFG_SPI_WORDSIZE16) {
  588. set_dma_x_modify(drv_data->dma_channel, 2);
  589. dma_width = WDSIZE_16;
  590. } else {
  591. set_dma_x_modify(drv_data->dma_channel, 1);
  592. dma_width = WDSIZE_8;
  593. }
  594. /* poll for SPI completion before start */
  595. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  596. cpu_relax();
  597. /* dirty hack for autobuffer DMA mode */
  598. if (drv_data->tx_dma == 0xFFFF) {
  599. dev_dbg(&drv_data->pdev->dev,
  600. "doing autobuffer DMA out.\n");
  601. /* no irq in autobuffer mode */
  602. dma_config =
  603. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  604. set_dma_config(drv_data->dma_channel, dma_config);
  605. set_dma_start_addr(drv_data->dma_channel,
  606. (unsigned long)drv_data->tx);
  607. enable_dma(drv_data->dma_channel);
  608. /* start SPI transfer */
  609. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  610. /* just return here, there can only be one transfer
  611. * in this mode
  612. */
  613. message->status = 0;
  614. bfin_spi_giveback(drv_data);
  615. return;
  616. }
  617. /* In dma mode, rx or tx must be NULL in one transfer */
  618. dma_config = (RESTART | dma_width | DI_EN);
  619. if (drv_data->rx != NULL) {
  620. /* set transfer mode, and enable SPI */
  621. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  622. drv_data->rx, drv_data->len_in_bytes);
  623. /* invalidate caches, if needed */
  624. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  625. invalidate_dcache_range((unsigned long) drv_data->rx,
  626. (unsigned long) (drv_data->rx +
  627. drv_data->len_in_bytes));
  628. dma_config |= WNR;
  629. dma_start_addr = (unsigned long)drv_data->rx;
  630. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  631. } else if (drv_data->tx != NULL) {
  632. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  633. /* flush caches, if needed */
  634. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  635. flush_dcache_range((unsigned long) drv_data->tx,
  636. (unsigned long) (drv_data->tx +
  637. drv_data->len_in_bytes));
  638. dma_start_addr = (unsigned long)drv_data->tx;
  639. cr |= BIT_CTL_TIMOD_DMA_TX;
  640. } else
  641. BUG();
  642. /* oh man, here there be monsters ... and i dont mean the
  643. * fluffy cute ones from pixar, i mean the kind that'll eat
  644. * your data, kick your dog, and love it all. do *not* try
  645. * and change these lines unless you (1) heavily test DMA
  646. * with SPI flashes on a loaded system (e.g. ping floods),
  647. * (2) know just how broken the DMA engine interaction with
  648. * the SPI peripheral is, and (3) have someone else to blame
  649. * when you screw it all up anyways.
  650. */
  651. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  652. set_dma_config(drv_data->dma_channel, dma_config);
  653. local_irq_save(flags);
  654. SSYNC();
  655. write_CTRL(drv_data, cr);
  656. enable_dma(drv_data->dma_channel);
  657. dma_enable_irq(drv_data->dma_channel);
  658. local_irq_restore(flags);
  659. return;
  660. }
  661. if (chip->pio_interrupt) {
  662. /* use write mode. spi irq should have been disabled */
  663. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  664. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  665. /* discard old RX data and clear RXS */
  666. bfin_spi_dummy_read(drv_data);
  667. /* start transfer */
  668. if (drv_data->tx == NULL)
  669. write_TDBR(drv_data, chip->idle_tx_val);
  670. else {
  671. if (transfer->bits_per_word == 8)
  672. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  673. else if (transfer->bits_per_word == 16)
  674. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  675. drv_data->tx += drv_data->n_bytes;
  676. }
  677. /* once TDBR is empty, interrupt is triggered */
  678. enable_irq(drv_data->spi_irq);
  679. return;
  680. }
  681. /* IO mode */
  682. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  683. /* we always use SPI_WRITE mode. SPI_READ mode
  684. seems to have problems with setting up the
  685. output value in TDBR prior to the transfer. */
  686. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  687. if (full_duplex) {
  688. /* full duplex mode */
  689. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  690. (drv_data->rx_end - drv_data->rx));
  691. dev_dbg(&drv_data->pdev->dev,
  692. "IO duplex: cr is 0x%x\n", cr);
  693. drv_data->ops->duplex(drv_data);
  694. if (drv_data->tx != drv_data->tx_end)
  695. tranf_success = 0;
  696. } else if (drv_data->tx != NULL) {
  697. /* write only half duplex */
  698. dev_dbg(&drv_data->pdev->dev,
  699. "IO write: cr is 0x%x\n", cr);
  700. drv_data->ops->write(drv_data);
  701. if (drv_data->tx != drv_data->tx_end)
  702. tranf_success = 0;
  703. } else if (drv_data->rx != NULL) {
  704. /* read only half duplex */
  705. dev_dbg(&drv_data->pdev->dev,
  706. "IO read: cr is 0x%x\n", cr);
  707. drv_data->ops->read(drv_data);
  708. if (drv_data->rx != drv_data->rx_end)
  709. tranf_success = 0;
  710. }
  711. if (!tranf_success) {
  712. dev_dbg(&drv_data->pdev->dev,
  713. "IO write error!\n");
  714. message->state = ERROR_STATE;
  715. } else {
  716. /* Update total byte transfered */
  717. message->actual_length += drv_data->len_in_bytes;
  718. /* Move to next transfer of this msg */
  719. message->state = bfin_spi_next_transfer(drv_data);
  720. if (drv_data->cs_change)
  721. bfin_spi_cs_deactive(drv_data, chip);
  722. }
  723. /* Schedule next transfer tasklet */
  724. tasklet_schedule(&drv_data->pump_transfers);
  725. }
  726. /* pop a msg from queue and kick off real transfer */
  727. static void bfin_spi_pump_messages(struct work_struct *work)
  728. {
  729. struct master_data *drv_data;
  730. unsigned long flags;
  731. drv_data = container_of(work, struct master_data, pump_messages);
  732. /* Lock queue and check for queue work */
  733. spin_lock_irqsave(&drv_data->lock, flags);
  734. if (list_empty(&drv_data->queue) || !drv_data->running) {
  735. /* pumper kicked off but no work to do */
  736. drv_data->busy = 0;
  737. spin_unlock_irqrestore(&drv_data->lock, flags);
  738. return;
  739. }
  740. /* Make sure we are not already running a message */
  741. if (drv_data->cur_msg) {
  742. spin_unlock_irqrestore(&drv_data->lock, flags);
  743. return;
  744. }
  745. /* Extract head of queue */
  746. drv_data->cur_msg = list_entry(drv_data->queue.next,
  747. struct spi_message, queue);
  748. /* Setup the SSP using the per chip configuration */
  749. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  750. bfin_spi_restore_state(drv_data);
  751. list_del_init(&drv_data->cur_msg->queue);
  752. /* Initial message state */
  753. drv_data->cur_msg->state = START_STATE;
  754. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  755. struct spi_transfer, transfer_list);
  756. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  757. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  758. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  759. drv_data->cur_chip->ctl_reg);
  760. dev_dbg(&drv_data->pdev->dev,
  761. "the first transfer len is %d\n",
  762. drv_data->cur_transfer->len);
  763. /* Mark as busy and launch transfers */
  764. tasklet_schedule(&drv_data->pump_transfers);
  765. drv_data->busy = 1;
  766. spin_unlock_irqrestore(&drv_data->lock, flags);
  767. }
  768. /*
  769. * got a msg to transfer, queue it in drv_data->queue.
  770. * And kick off message pumper
  771. */
  772. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  773. {
  774. struct master_data *drv_data = spi_master_get_devdata(spi->master);
  775. unsigned long flags;
  776. spin_lock_irqsave(&drv_data->lock, flags);
  777. if (!drv_data->running) {
  778. spin_unlock_irqrestore(&drv_data->lock, flags);
  779. return -ESHUTDOWN;
  780. }
  781. msg->actual_length = 0;
  782. msg->status = -EINPROGRESS;
  783. msg->state = START_STATE;
  784. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  785. list_add_tail(&msg->queue, &drv_data->queue);
  786. if (drv_data->running && !drv_data->busy)
  787. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  788. spin_unlock_irqrestore(&drv_data->lock, flags);
  789. return 0;
  790. }
  791. #define MAX_SPI_SSEL 7
  792. static u16 ssel[][MAX_SPI_SSEL] = {
  793. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  794. P_SPI0_SSEL4, P_SPI0_SSEL5,
  795. P_SPI0_SSEL6, P_SPI0_SSEL7},
  796. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  797. P_SPI1_SSEL4, P_SPI1_SSEL5,
  798. P_SPI1_SSEL6, P_SPI1_SSEL7},
  799. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  800. P_SPI2_SSEL4, P_SPI2_SSEL5,
  801. P_SPI2_SSEL6, P_SPI2_SSEL7},
  802. };
  803. /* setup for devices (may be called multiple times -- not just first setup) */
  804. static int bfin_spi_setup(struct spi_device *spi)
  805. {
  806. struct bfin5xx_spi_chip *chip_info;
  807. struct slave_data *chip = NULL;
  808. struct master_data *drv_data = spi_master_get_devdata(spi->master);
  809. int ret = -EINVAL;
  810. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  811. goto error;
  812. /* Only alloc (or use chip_info) on first setup */
  813. chip_info = NULL;
  814. chip = spi_get_ctldata(spi);
  815. if (chip == NULL) {
  816. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  817. if (!chip) {
  818. dev_err(&spi->dev, "cannot allocate chip data\n");
  819. ret = -ENOMEM;
  820. goto error;
  821. }
  822. chip->enable_dma = 0;
  823. chip_info = spi->controller_data;
  824. }
  825. /* chip_info isn't always needed */
  826. if (chip_info) {
  827. /* Make sure people stop trying to set fields via ctl_reg
  828. * when they should actually be using common SPI framework.
  829. * Currently we let through: WOM EMISO PSSE GM SZ.
  830. * Not sure if a user actually needs/uses any of these,
  831. * but let's assume (for now) they do.
  832. */
  833. if (chip_info->ctl_reg & ~(BIT_CTL_OPENDRAIN | BIT_CTL_EMISO | \
  834. BIT_CTL_PSSE | BIT_CTL_GM | BIT_CTL_SZ)) {
  835. dev_err(&spi->dev, "do not set bits in ctl_reg "
  836. "that the SPI framework manages\n");
  837. goto error;
  838. }
  839. chip->enable_dma = chip_info->enable_dma != 0
  840. && drv_data->master_info->enable_dma;
  841. chip->ctl_reg = chip_info->ctl_reg;
  842. chip->bits_per_word = chip_info->bits_per_word;
  843. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  844. chip->idle_tx_val = chip_info->idle_tx_val;
  845. chip->pio_interrupt = chip_info->pio_interrupt;
  846. }
  847. /* translate common spi framework into our register */
  848. if (spi->mode & SPI_CPOL)
  849. chip->ctl_reg |= BIT_CTL_CPOL;
  850. if (spi->mode & SPI_CPHA)
  851. chip->ctl_reg |= BIT_CTL_CPHA;
  852. if (spi->mode & SPI_LSB_FIRST)
  853. chip->ctl_reg |= BIT_CTL_LSBF;
  854. /* we dont support running in slave mode (yet?) */
  855. chip->ctl_reg |= BIT_CTL_MASTER;
  856. /*
  857. * Notice: for blackfin, the speed_hz is the value of register
  858. * SPI_BAUD, not the real baudrate
  859. */
  860. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  861. chip->chip_select_num = spi->chip_select;
  862. if (chip->chip_select_num < MAX_CTRL_CS)
  863. chip->flag = (1 << spi->chip_select) << 8;
  864. else
  865. chip->cs_gpio = chip->chip_select_num - MAX_CTRL_CS;
  866. switch (chip->bits_per_word) {
  867. case 8:
  868. chip->n_bytes = 1;
  869. chip->width = CFG_SPI_WORDSIZE8;
  870. chip->ops = &bfin_transfer_ops_u8;
  871. break;
  872. case 16:
  873. chip->n_bytes = 2;
  874. chip->width = CFG_SPI_WORDSIZE16;
  875. chip->ops = &bfin_transfer_ops_u16;
  876. break;
  877. default:
  878. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  879. chip->bits_per_word);
  880. goto error;
  881. }
  882. if (chip->enable_dma && chip->pio_interrupt) {
  883. dev_err(&spi->dev, "enable_dma is set, "
  884. "do not set pio_interrupt\n");
  885. goto error;
  886. }
  887. /*
  888. * if any one SPI chip is registered and wants DMA, request the
  889. * DMA channel for it
  890. */
  891. if (chip->enable_dma && !drv_data->dma_requested) {
  892. /* register dma irq handler */
  893. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  894. if (ret) {
  895. dev_err(&spi->dev,
  896. "Unable to request BlackFin SPI DMA channel\n");
  897. goto error;
  898. }
  899. drv_data->dma_requested = 1;
  900. ret = set_dma_callback(drv_data->dma_channel,
  901. bfin_spi_dma_irq_handler, drv_data);
  902. if (ret) {
  903. dev_err(&spi->dev, "Unable to set dma callback\n");
  904. goto error;
  905. }
  906. dma_disable_irq(drv_data->dma_channel);
  907. }
  908. if (chip->pio_interrupt && !drv_data->irq_requested) {
  909. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  910. IRQF_DISABLED, "BFIN_SPI", drv_data);
  911. if (ret) {
  912. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  913. goto error;
  914. }
  915. drv_data->irq_requested = 1;
  916. /* we use write mode, spi irq has to be disabled here */
  917. disable_irq(drv_data->spi_irq);
  918. }
  919. if (chip->chip_select_num >= MAX_CTRL_CS) {
  920. ret = gpio_request(chip->cs_gpio, spi->modalias);
  921. if (ret) {
  922. dev_err(&spi->dev, "gpio_request() error\n");
  923. goto pin_error;
  924. }
  925. gpio_direction_output(chip->cs_gpio, 1);
  926. }
  927. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  928. spi->modalias, chip->width, chip->enable_dma);
  929. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  930. chip->ctl_reg, chip->flag);
  931. spi_set_ctldata(spi, chip);
  932. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  933. if (chip->chip_select_num < MAX_CTRL_CS) {
  934. ret = peripheral_request(ssel[spi->master->bus_num]
  935. [chip->chip_select_num-1], spi->modalias);
  936. if (ret) {
  937. dev_err(&spi->dev, "peripheral_request() error\n");
  938. goto pin_error;
  939. }
  940. }
  941. bfin_spi_cs_enable(drv_data, chip);
  942. bfin_spi_cs_deactive(drv_data, chip);
  943. return 0;
  944. pin_error:
  945. if (chip->chip_select_num >= MAX_CTRL_CS)
  946. gpio_free(chip->cs_gpio);
  947. else
  948. peripheral_free(ssel[spi->master->bus_num]
  949. [chip->chip_select_num - 1]);
  950. error:
  951. if (chip) {
  952. if (drv_data->dma_requested)
  953. free_dma(drv_data->dma_channel);
  954. drv_data->dma_requested = 0;
  955. kfree(chip);
  956. /* prevent free 'chip' twice */
  957. spi_set_ctldata(spi, NULL);
  958. }
  959. return ret;
  960. }
  961. /*
  962. * callback for spi framework.
  963. * clean driver specific data
  964. */
  965. static void bfin_spi_cleanup(struct spi_device *spi)
  966. {
  967. struct slave_data *chip = spi_get_ctldata(spi);
  968. struct master_data *drv_data = spi_master_get_devdata(spi->master);
  969. if (!chip)
  970. return;
  971. if (chip->chip_select_num < MAX_CTRL_CS) {
  972. peripheral_free(ssel[spi->master->bus_num]
  973. [chip->chip_select_num-1]);
  974. bfin_spi_cs_disable(drv_data, chip);
  975. } else
  976. gpio_free(chip->cs_gpio);
  977. kfree(chip);
  978. /* prevent free 'chip' twice */
  979. spi_set_ctldata(spi, NULL);
  980. }
  981. static inline int bfin_spi_init_queue(struct master_data *drv_data)
  982. {
  983. INIT_LIST_HEAD(&drv_data->queue);
  984. spin_lock_init(&drv_data->lock);
  985. drv_data->running = false;
  986. drv_data->busy = 0;
  987. /* init transfer tasklet */
  988. tasklet_init(&drv_data->pump_transfers,
  989. bfin_spi_pump_transfers, (unsigned long)drv_data);
  990. /* init messages workqueue */
  991. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  992. drv_data->workqueue = create_singlethread_workqueue(
  993. dev_name(drv_data->master->dev.parent));
  994. if (drv_data->workqueue == NULL)
  995. return -EBUSY;
  996. return 0;
  997. }
  998. static inline int bfin_spi_start_queue(struct master_data *drv_data)
  999. {
  1000. unsigned long flags;
  1001. spin_lock_irqsave(&drv_data->lock, flags);
  1002. if (drv_data->running || drv_data->busy) {
  1003. spin_unlock_irqrestore(&drv_data->lock, flags);
  1004. return -EBUSY;
  1005. }
  1006. drv_data->running = true;
  1007. drv_data->cur_msg = NULL;
  1008. drv_data->cur_transfer = NULL;
  1009. drv_data->cur_chip = NULL;
  1010. spin_unlock_irqrestore(&drv_data->lock, flags);
  1011. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1012. return 0;
  1013. }
  1014. static inline int bfin_spi_stop_queue(struct master_data *drv_data)
  1015. {
  1016. unsigned long flags;
  1017. unsigned limit = 500;
  1018. int status = 0;
  1019. spin_lock_irqsave(&drv_data->lock, flags);
  1020. /*
  1021. * This is a bit lame, but is optimized for the common execution path.
  1022. * A wait_queue on the drv_data->busy could be used, but then the common
  1023. * execution path (pump_messages) would be required to call wake_up or
  1024. * friends on every SPI message. Do this instead
  1025. */
  1026. drv_data->running = false;
  1027. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1028. spin_unlock_irqrestore(&drv_data->lock, flags);
  1029. msleep(10);
  1030. spin_lock_irqsave(&drv_data->lock, flags);
  1031. }
  1032. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1033. status = -EBUSY;
  1034. spin_unlock_irqrestore(&drv_data->lock, flags);
  1035. return status;
  1036. }
  1037. static inline int bfin_spi_destroy_queue(struct master_data *drv_data)
  1038. {
  1039. int status;
  1040. status = bfin_spi_stop_queue(drv_data);
  1041. if (status != 0)
  1042. return status;
  1043. destroy_workqueue(drv_data->workqueue);
  1044. return 0;
  1045. }
  1046. static int __init bfin_spi_probe(struct platform_device *pdev)
  1047. {
  1048. struct device *dev = &pdev->dev;
  1049. struct bfin5xx_spi_master *platform_info;
  1050. struct spi_master *master;
  1051. struct master_data *drv_data;
  1052. struct resource *res;
  1053. int status = 0;
  1054. platform_info = dev->platform_data;
  1055. /* Allocate master with space for drv_data */
  1056. master = spi_alloc_master(dev, sizeof(*drv_data));
  1057. if (!master) {
  1058. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1059. return -ENOMEM;
  1060. }
  1061. drv_data = spi_master_get_devdata(master);
  1062. drv_data->master = master;
  1063. drv_data->master_info = platform_info;
  1064. drv_data->pdev = pdev;
  1065. drv_data->pin_req = platform_info->pin_req;
  1066. /* the spi->mode bits supported by this driver: */
  1067. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1068. master->bus_num = pdev->id;
  1069. master->num_chipselect = platform_info->num_chipselect;
  1070. master->cleanup = bfin_spi_cleanup;
  1071. master->setup = bfin_spi_setup;
  1072. master->transfer = bfin_spi_transfer;
  1073. /* Find and map our resources */
  1074. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1075. if (res == NULL) {
  1076. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1077. status = -ENOENT;
  1078. goto out_error_get_res;
  1079. }
  1080. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1081. if (drv_data->regs_base == NULL) {
  1082. dev_err(dev, "Cannot map IO\n");
  1083. status = -ENXIO;
  1084. goto out_error_ioremap;
  1085. }
  1086. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1087. if (res == NULL) {
  1088. dev_err(dev, "No DMA channel specified\n");
  1089. status = -ENOENT;
  1090. goto out_error_free_io;
  1091. }
  1092. drv_data->dma_channel = res->start;
  1093. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1094. if (drv_data->spi_irq < 0) {
  1095. dev_err(dev, "No spi pio irq specified\n");
  1096. status = -ENOENT;
  1097. goto out_error_free_io;
  1098. }
  1099. /* Initial and start queue */
  1100. status = bfin_spi_init_queue(drv_data);
  1101. if (status != 0) {
  1102. dev_err(dev, "problem initializing queue\n");
  1103. goto out_error_queue_alloc;
  1104. }
  1105. status = bfin_spi_start_queue(drv_data);
  1106. if (status != 0) {
  1107. dev_err(dev, "problem starting queue\n");
  1108. goto out_error_queue_alloc;
  1109. }
  1110. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1111. if (status != 0) {
  1112. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1113. goto out_error_queue_alloc;
  1114. }
  1115. /* Reset SPI registers. If these registers were used by the boot loader,
  1116. * the sky may fall on your head if you enable the dma controller.
  1117. */
  1118. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1119. write_FLAG(drv_data, 0xFF00);
  1120. /* Register with the SPI framework */
  1121. platform_set_drvdata(pdev, drv_data);
  1122. status = spi_register_master(master);
  1123. if (status != 0) {
  1124. dev_err(dev, "problem registering spi master\n");
  1125. goto out_error_queue_alloc;
  1126. }
  1127. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1128. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1129. drv_data->dma_channel);
  1130. return status;
  1131. out_error_queue_alloc:
  1132. bfin_spi_destroy_queue(drv_data);
  1133. out_error_free_io:
  1134. iounmap((void *) drv_data->regs_base);
  1135. out_error_ioremap:
  1136. out_error_get_res:
  1137. spi_master_put(master);
  1138. return status;
  1139. }
  1140. /* stop hardware and remove the driver */
  1141. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1142. {
  1143. struct master_data *drv_data = platform_get_drvdata(pdev);
  1144. int status = 0;
  1145. if (!drv_data)
  1146. return 0;
  1147. /* Remove the queue */
  1148. status = bfin_spi_destroy_queue(drv_data);
  1149. if (status != 0)
  1150. return status;
  1151. /* Disable the SSP at the peripheral and SOC level */
  1152. bfin_spi_disable(drv_data);
  1153. /* Release DMA */
  1154. if (drv_data->master_info->enable_dma) {
  1155. if (dma_channel_active(drv_data->dma_channel))
  1156. free_dma(drv_data->dma_channel);
  1157. }
  1158. if (drv_data->irq_requested) {
  1159. free_irq(drv_data->spi_irq, drv_data);
  1160. drv_data->irq_requested = 0;
  1161. }
  1162. /* Disconnect from the SPI framework */
  1163. spi_unregister_master(drv_data->master);
  1164. peripheral_free_list(drv_data->pin_req);
  1165. /* Prevent double remove */
  1166. platform_set_drvdata(pdev, NULL);
  1167. return 0;
  1168. }
  1169. #ifdef CONFIG_PM
  1170. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1171. {
  1172. struct master_data *drv_data = platform_get_drvdata(pdev);
  1173. int status = 0;
  1174. status = bfin_spi_stop_queue(drv_data);
  1175. if (status != 0)
  1176. return status;
  1177. /* stop hardware */
  1178. bfin_spi_disable(drv_data);
  1179. return 0;
  1180. }
  1181. static int bfin_spi_resume(struct platform_device *pdev)
  1182. {
  1183. struct master_data *drv_data = platform_get_drvdata(pdev);
  1184. int status = 0;
  1185. /* Enable the SPI interface */
  1186. bfin_spi_enable(drv_data);
  1187. /* Start the queue running */
  1188. status = bfin_spi_start_queue(drv_data);
  1189. if (status != 0) {
  1190. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1191. return status;
  1192. }
  1193. return 0;
  1194. }
  1195. #else
  1196. #define bfin_spi_suspend NULL
  1197. #define bfin_spi_resume NULL
  1198. #endif /* CONFIG_PM */
  1199. MODULE_ALIAS("platform:bfin-spi");
  1200. static struct platform_driver bfin_spi_driver = {
  1201. .driver = {
  1202. .name = DRV_NAME,
  1203. .owner = THIS_MODULE,
  1204. },
  1205. .suspend = bfin_spi_suspend,
  1206. .resume = bfin_spi_resume,
  1207. .remove = __devexit_p(bfin_spi_remove),
  1208. };
  1209. static int __init bfin_spi_init(void)
  1210. {
  1211. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1212. }
  1213. module_init(bfin_spi_init);
  1214. static void __exit bfin_spi_exit(void)
  1215. {
  1216. platform_driver_unregister(&bfin_spi_driver);
  1217. }
  1218. module_exit(bfin_spi_exit);