svm.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/highmem.h>
  20. #include <linux/profile.h>
  21. #include <linux/sched.h>
  22. #include <asm/desc.h>
  23. #include "kvm_svm.h"
  24. #include "x86_emulate.h"
  25. MODULE_AUTHOR("Qumranet");
  26. MODULE_LICENSE("GPL");
  27. #define IOPM_ALLOC_ORDER 2
  28. #define MSRPM_ALLOC_ORDER 1
  29. #define DB_VECTOR 1
  30. #define UD_VECTOR 6
  31. #define GP_VECTOR 13
  32. #define DR7_GD_MASK (1 << 13)
  33. #define DR6_BD_MASK (1 << 13)
  34. #define CR4_DE_MASK (1UL << 3)
  35. #define SEG_TYPE_LDT 2
  36. #define SEG_TYPE_BUSY_TSS16 3
  37. #define KVM_EFER_LMA (1 << 10)
  38. #define KVM_EFER_LME (1 << 8)
  39. #define SVM_FEATURE_NPT (1 << 0)
  40. #define SVM_FEATURE_LBRV (1 << 1)
  41. #define SVM_DEATURE_SVML (1 << 2)
  42. unsigned long iopm_base;
  43. unsigned long msrpm_base;
  44. struct kvm_ldttss_desc {
  45. u16 limit0;
  46. u16 base0;
  47. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  48. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  49. u32 base3;
  50. u32 zero1;
  51. } __attribute__((packed));
  52. struct svm_cpu_data {
  53. int cpu;
  54. u64 asid_generation;
  55. u32 max_asid;
  56. u32 next_asid;
  57. struct kvm_ldttss_desc *tss_desc;
  58. struct page *save_area;
  59. };
  60. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  61. static uint32_t svm_features;
  62. struct svm_init_data {
  63. int cpu;
  64. int r;
  65. };
  66. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  67. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  68. #define MSRS_RANGE_SIZE 2048
  69. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  70. #define MAX_INST_SIZE 15
  71. static inline u32 svm_has(u32 feat)
  72. {
  73. return svm_features & feat;
  74. }
  75. static unsigned get_addr_size(struct kvm_vcpu *vcpu)
  76. {
  77. struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
  78. u16 cs_attrib;
  79. if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
  80. return 2;
  81. cs_attrib = sa->cs.attrib;
  82. return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
  83. (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
  84. }
  85. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  86. {
  87. int word_index = __ffs(vcpu->irq_summary);
  88. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  89. int irq = word_index * BITS_PER_LONG + bit_index;
  90. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  91. if (!vcpu->irq_pending[word_index])
  92. clear_bit(word_index, &vcpu->irq_summary);
  93. return irq;
  94. }
  95. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  96. {
  97. set_bit(irq, vcpu->irq_pending);
  98. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  99. }
  100. static inline void clgi(void)
  101. {
  102. asm volatile (SVM_CLGI);
  103. }
  104. static inline void stgi(void)
  105. {
  106. asm volatile (SVM_STGI);
  107. }
  108. static inline void invlpga(unsigned long addr, u32 asid)
  109. {
  110. asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
  111. }
  112. static inline unsigned long kvm_read_cr2(void)
  113. {
  114. unsigned long cr2;
  115. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  116. return cr2;
  117. }
  118. static inline void kvm_write_cr2(unsigned long val)
  119. {
  120. asm volatile ("mov %0, %%cr2" :: "r" (val));
  121. }
  122. static inline unsigned long read_dr6(void)
  123. {
  124. unsigned long dr6;
  125. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  126. return dr6;
  127. }
  128. static inline void write_dr6(unsigned long val)
  129. {
  130. asm volatile ("mov %0, %%dr6" :: "r" (val));
  131. }
  132. static inline unsigned long read_dr7(void)
  133. {
  134. unsigned long dr7;
  135. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  136. return dr7;
  137. }
  138. static inline void write_dr7(unsigned long val)
  139. {
  140. asm volatile ("mov %0, %%dr7" :: "r" (val));
  141. }
  142. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  143. {
  144. vcpu->svm->asid_generation--;
  145. }
  146. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  147. {
  148. force_new_asid(vcpu);
  149. }
  150. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  151. {
  152. if (!(efer & KVM_EFER_LMA))
  153. efer &= ~KVM_EFER_LME;
  154. vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  155. vcpu->shadow_efer = efer;
  156. }
  157. static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  158. {
  159. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  160. SVM_EVTINJ_VALID_ERR |
  161. SVM_EVTINJ_TYPE_EXEPT |
  162. GP_VECTOR;
  163. vcpu->svm->vmcb->control.event_inj_err = error_code;
  164. }
  165. static void inject_ud(struct kvm_vcpu *vcpu)
  166. {
  167. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  168. SVM_EVTINJ_TYPE_EXEPT |
  169. UD_VECTOR;
  170. }
  171. static int is_page_fault(uint32_t info)
  172. {
  173. info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  174. return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
  175. }
  176. static int is_external_interrupt(u32 info)
  177. {
  178. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  179. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  180. }
  181. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  182. {
  183. if (!vcpu->svm->next_rip) {
  184. printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
  185. return;
  186. }
  187. if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
  188. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  189. __FUNCTION__,
  190. vcpu->svm->vmcb->save.rip,
  191. vcpu->svm->next_rip);
  192. }
  193. vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
  194. vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  195. vcpu->interrupt_window_open = 1;
  196. }
  197. static int has_svm(void)
  198. {
  199. uint32_t eax, ebx, ecx, edx;
  200. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  201. printk(KERN_INFO "has_svm: not amd\n");
  202. return 0;
  203. }
  204. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  205. if (eax < SVM_CPUID_FUNC) {
  206. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  207. return 0;
  208. }
  209. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  210. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  211. printk(KERN_DEBUG "has_svm: svm not available\n");
  212. return 0;
  213. }
  214. return 1;
  215. }
  216. static void svm_hardware_disable(void *garbage)
  217. {
  218. struct svm_cpu_data *svm_data
  219. = per_cpu(svm_data, raw_smp_processor_id());
  220. if (svm_data) {
  221. uint64_t efer;
  222. wrmsrl(MSR_VM_HSAVE_PA, 0);
  223. rdmsrl(MSR_EFER, efer);
  224. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  225. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  226. __free_page(svm_data->save_area);
  227. kfree(svm_data);
  228. }
  229. }
  230. static void svm_hardware_enable(void *garbage)
  231. {
  232. struct svm_cpu_data *svm_data;
  233. uint64_t efer;
  234. #ifdef CONFIG_X86_64
  235. struct desc_ptr gdt_descr;
  236. #else
  237. struct Xgt_desc_struct gdt_descr;
  238. #endif
  239. struct desc_struct *gdt;
  240. int me = raw_smp_processor_id();
  241. if (!has_svm()) {
  242. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  243. return;
  244. }
  245. svm_data = per_cpu(svm_data, me);
  246. if (!svm_data) {
  247. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  248. me);
  249. return;
  250. }
  251. svm_data->asid_generation = 1;
  252. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  253. svm_data->next_asid = svm_data->max_asid + 1;
  254. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  255. asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
  256. gdt = (struct desc_struct *)gdt_descr.address;
  257. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  258. rdmsrl(MSR_EFER, efer);
  259. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  260. wrmsrl(MSR_VM_HSAVE_PA,
  261. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  262. }
  263. static int svm_cpu_init(int cpu)
  264. {
  265. struct svm_cpu_data *svm_data;
  266. int r;
  267. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  268. if (!svm_data)
  269. return -ENOMEM;
  270. svm_data->cpu = cpu;
  271. svm_data->save_area = alloc_page(GFP_KERNEL);
  272. r = -ENOMEM;
  273. if (!svm_data->save_area)
  274. goto err_1;
  275. per_cpu(svm_data, cpu) = svm_data;
  276. return 0;
  277. err_1:
  278. kfree(svm_data);
  279. return r;
  280. }
  281. static int set_msr_interception(u32 *msrpm, unsigned msr,
  282. int read, int write)
  283. {
  284. int i;
  285. for (i = 0; i < NUM_MSR_MAPS; i++) {
  286. if (msr >= msrpm_ranges[i] &&
  287. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  288. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  289. msrpm_ranges[i]) * 2;
  290. u32 *base = msrpm + (msr_offset / 32);
  291. u32 msr_shift = msr_offset % 32;
  292. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  293. *base = (*base & ~(0x3 << msr_shift)) |
  294. (mask << msr_shift);
  295. return 1;
  296. }
  297. }
  298. printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
  299. return 0;
  300. }
  301. static __init int svm_hardware_setup(void)
  302. {
  303. int cpu;
  304. struct page *iopm_pages;
  305. struct page *msrpm_pages;
  306. void *iopm_va, *msrpm_va;
  307. int r;
  308. kvm_emulator_want_group7_invlpg();
  309. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  310. if (!iopm_pages)
  311. return -ENOMEM;
  312. iopm_va = page_address(iopm_pages);
  313. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  314. clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
  315. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  316. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  317. r = -ENOMEM;
  318. if (!msrpm_pages)
  319. goto err_1;
  320. msrpm_va = page_address(msrpm_pages);
  321. memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  322. msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
  323. #ifdef CONFIG_X86_64
  324. set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
  325. set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
  326. set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
  327. set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
  328. set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
  329. set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
  330. #endif
  331. set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
  332. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
  333. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
  334. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
  335. for_each_online_cpu(cpu) {
  336. r = svm_cpu_init(cpu);
  337. if (r)
  338. goto err_2;
  339. }
  340. return 0;
  341. err_2:
  342. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  343. msrpm_base = 0;
  344. err_1:
  345. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  346. iopm_base = 0;
  347. return r;
  348. }
  349. static __exit void svm_hardware_unsetup(void)
  350. {
  351. __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
  352. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  353. iopm_base = msrpm_base = 0;
  354. }
  355. static void init_seg(struct vmcb_seg *seg)
  356. {
  357. seg->selector = 0;
  358. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  359. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  360. seg->limit = 0xffff;
  361. seg->base = 0;
  362. }
  363. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  364. {
  365. seg->selector = 0;
  366. seg->attrib = SVM_SELECTOR_P_MASK | type;
  367. seg->limit = 0xffff;
  368. seg->base = 0;
  369. }
  370. static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
  371. {
  372. return 0;
  373. }
  374. static void init_vmcb(struct vmcb *vmcb)
  375. {
  376. struct vmcb_control_area *control = &vmcb->control;
  377. struct vmcb_save_area *save = &vmcb->save;
  378. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  379. INTERCEPT_CR3_MASK |
  380. INTERCEPT_CR4_MASK;
  381. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  382. INTERCEPT_CR3_MASK |
  383. INTERCEPT_CR4_MASK;
  384. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  385. INTERCEPT_DR1_MASK |
  386. INTERCEPT_DR2_MASK |
  387. INTERCEPT_DR3_MASK;
  388. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  389. INTERCEPT_DR1_MASK |
  390. INTERCEPT_DR2_MASK |
  391. INTERCEPT_DR3_MASK |
  392. INTERCEPT_DR5_MASK |
  393. INTERCEPT_DR7_MASK;
  394. control->intercept_exceptions = 1 << PF_VECTOR;
  395. control->intercept = (1ULL << INTERCEPT_INTR) |
  396. (1ULL << INTERCEPT_NMI) |
  397. (1ULL << INTERCEPT_SMI) |
  398. /*
  399. * selective cr0 intercept bug?
  400. * 0: 0f 22 d8 mov %eax,%cr3
  401. * 3: 0f 20 c0 mov %cr0,%eax
  402. * 6: 0d 00 00 00 80 or $0x80000000,%eax
  403. * b: 0f 22 c0 mov %eax,%cr0
  404. * set cr3 ->interception
  405. * get cr0 ->interception
  406. * set cr0 -> no interception
  407. */
  408. /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
  409. (1ULL << INTERCEPT_CPUID) |
  410. (1ULL << INTERCEPT_HLT) |
  411. (1ULL << INTERCEPT_INVLPGA) |
  412. (1ULL << INTERCEPT_IOIO_PROT) |
  413. (1ULL << INTERCEPT_MSR_PROT) |
  414. (1ULL << INTERCEPT_TASK_SWITCH) |
  415. (1ULL << INTERCEPT_SHUTDOWN) |
  416. (1ULL << INTERCEPT_VMRUN) |
  417. (1ULL << INTERCEPT_VMMCALL) |
  418. (1ULL << INTERCEPT_VMLOAD) |
  419. (1ULL << INTERCEPT_VMSAVE) |
  420. (1ULL << INTERCEPT_STGI) |
  421. (1ULL << INTERCEPT_CLGI) |
  422. (1ULL << INTERCEPT_SKINIT) |
  423. (1ULL << INTERCEPT_MONITOR) |
  424. (1ULL << INTERCEPT_MWAIT);
  425. control->iopm_base_pa = iopm_base;
  426. control->msrpm_base_pa = msrpm_base;
  427. control->tsc_offset = 0;
  428. control->int_ctl = V_INTR_MASKING_MASK;
  429. init_seg(&save->es);
  430. init_seg(&save->ss);
  431. init_seg(&save->ds);
  432. init_seg(&save->fs);
  433. init_seg(&save->gs);
  434. save->cs.selector = 0xf000;
  435. /* Executable/Readable Code Segment */
  436. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  437. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  438. save->cs.limit = 0xffff;
  439. /*
  440. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  441. * be consistent with it.
  442. *
  443. * Replace when we have real mode working for vmx.
  444. */
  445. save->cs.base = 0xf0000;
  446. save->gdtr.limit = 0xffff;
  447. save->idtr.limit = 0xffff;
  448. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  449. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  450. save->efer = MSR_EFER_SVME_MASK;
  451. save->dr6 = 0xffff0ff0;
  452. save->dr7 = 0x400;
  453. save->rflags = 2;
  454. save->rip = 0x0000fff0;
  455. /*
  456. * cr0 val on cpu init should be 0x60000010, we enable cpu
  457. * cache by default. the orderly way is to enable cache in bios.
  458. */
  459. save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
  460. save->cr4 = CR4_PAE_MASK;
  461. /* rdx = ?? */
  462. }
  463. static int svm_create_vcpu(struct kvm_vcpu *vcpu)
  464. {
  465. struct page *page;
  466. int r;
  467. r = -ENOMEM;
  468. vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
  469. if (!vcpu->svm)
  470. goto out1;
  471. page = alloc_page(GFP_KERNEL);
  472. if (!page)
  473. goto out2;
  474. vcpu->svm->vmcb = page_address(page);
  475. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  476. vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  477. vcpu->svm->asid_generation = 0;
  478. memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
  479. init_vmcb(vcpu->svm->vmcb);
  480. fx_init(vcpu);
  481. vcpu->fpu_active = 1;
  482. vcpu->apic_base = 0xfee00000 |
  483. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  484. MSR_IA32_APICBASE_ENABLE;
  485. return 0;
  486. out2:
  487. kfree(vcpu->svm);
  488. out1:
  489. return r;
  490. }
  491. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  492. {
  493. if (!vcpu->svm)
  494. return;
  495. if (vcpu->svm->vmcb)
  496. __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
  497. kfree(vcpu->svm);
  498. }
  499. static void svm_vcpu_load(struct kvm_vcpu *vcpu)
  500. {
  501. int cpu, i;
  502. cpu = get_cpu();
  503. if (unlikely(cpu != vcpu->cpu)) {
  504. u64 tsc_this, delta;
  505. /*
  506. * Make sure that the guest sees a monotonically
  507. * increasing TSC.
  508. */
  509. rdtscll(tsc_this);
  510. delta = vcpu->host_tsc - tsc_this;
  511. vcpu->svm->vmcb->control.tsc_offset += delta;
  512. vcpu->cpu = cpu;
  513. }
  514. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  515. rdmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
  516. }
  517. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  518. {
  519. int i;
  520. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  521. wrmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
  522. rdtscll(vcpu->host_tsc);
  523. put_cpu();
  524. }
  525. static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
  526. {
  527. }
  528. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  529. {
  530. vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
  531. vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
  532. vcpu->rip = vcpu->svm->vmcb->save.rip;
  533. }
  534. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  535. {
  536. vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
  537. vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
  538. vcpu->svm->vmcb->save.rip = vcpu->rip;
  539. }
  540. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  541. {
  542. return vcpu->svm->vmcb->save.rflags;
  543. }
  544. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  545. {
  546. vcpu->svm->vmcb->save.rflags = rflags;
  547. }
  548. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  549. {
  550. struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
  551. switch (seg) {
  552. case VCPU_SREG_CS: return &save->cs;
  553. case VCPU_SREG_DS: return &save->ds;
  554. case VCPU_SREG_ES: return &save->es;
  555. case VCPU_SREG_FS: return &save->fs;
  556. case VCPU_SREG_GS: return &save->gs;
  557. case VCPU_SREG_SS: return &save->ss;
  558. case VCPU_SREG_TR: return &save->tr;
  559. case VCPU_SREG_LDTR: return &save->ldtr;
  560. }
  561. BUG();
  562. return NULL;
  563. }
  564. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  565. {
  566. struct vmcb_seg *s = svm_seg(vcpu, seg);
  567. return s->base;
  568. }
  569. static void svm_get_segment(struct kvm_vcpu *vcpu,
  570. struct kvm_segment *var, int seg)
  571. {
  572. struct vmcb_seg *s = svm_seg(vcpu, seg);
  573. var->base = s->base;
  574. var->limit = s->limit;
  575. var->selector = s->selector;
  576. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  577. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  578. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  579. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  580. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  581. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  582. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  583. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  584. var->unusable = !var->present;
  585. }
  586. static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  587. {
  588. struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
  589. *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  590. *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  591. }
  592. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  593. {
  594. dt->limit = vcpu->svm->vmcb->save.idtr.limit;
  595. dt->base = vcpu->svm->vmcb->save.idtr.base;
  596. }
  597. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  598. {
  599. vcpu->svm->vmcb->save.idtr.limit = dt->limit;
  600. vcpu->svm->vmcb->save.idtr.base = dt->base ;
  601. }
  602. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  603. {
  604. dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
  605. dt->base = vcpu->svm->vmcb->save.gdtr.base;
  606. }
  607. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  608. {
  609. vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
  610. vcpu->svm->vmcb->save.gdtr.base = dt->base ;
  611. }
  612. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  613. {
  614. }
  615. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  616. {
  617. #ifdef CONFIG_X86_64
  618. if (vcpu->shadow_efer & KVM_EFER_LME) {
  619. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  620. vcpu->shadow_efer |= KVM_EFER_LMA;
  621. vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
  622. }
  623. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
  624. vcpu->shadow_efer &= ~KVM_EFER_LMA;
  625. vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
  626. }
  627. }
  628. #endif
  629. if ((vcpu->cr0 & CR0_TS_MASK) && !(cr0 & CR0_TS_MASK)) {
  630. vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  631. vcpu->fpu_active = 1;
  632. }
  633. vcpu->cr0 = cr0;
  634. cr0 |= CR0_PG_MASK | CR0_WP_MASK;
  635. cr0 &= ~(CR0_CD_MASK | CR0_NW_MASK);
  636. vcpu->svm->vmcb->save.cr0 = cr0;
  637. }
  638. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  639. {
  640. vcpu->cr4 = cr4;
  641. vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
  642. }
  643. static void svm_set_segment(struct kvm_vcpu *vcpu,
  644. struct kvm_segment *var, int seg)
  645. {
  646. struct vmcb_seg *s = svm_seg(vcpu, seg);
  647. s->base = var->base;
  648. s->limit = var->limit;
  649. s->selector = var->selector;
  650. if (var->unusable)
  651. s->attrib = 0;
  652. else {
  653. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  654. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  655. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  656. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  657. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  658. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  659. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  660. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  661. }
  662. if (seg == VCPU_SREG_CS)
  663. vcpu->svm->vmcb->save.cpl
  664. = (vcpu->svm->vmcb->save.cs.attrib
  665. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  666. }
  667. /* FIXME:
  668. vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  669. vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
  670. */
  671. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  672. {
  673. return -EOPNOTSUPP;
  674. }
  675. static void load_host_msrs(struct kvm_vcpu *vcpu)
  676. {
  677. #ifdef CONFIG_X86_64
  678. wrmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
  679. #endif
  680. }
  681. static void save_host_msrs(struct kvm_vcpu *vcpu)
  682. {
  683. #ifdef CONFIG_X86_64
  684. rdmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
  685. #endif
  686. }
  687. static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
  688. {
  689. if (svm_data->next_asid > svm_data->max_asid) {
  690. ++svm_data->asid_generation;
  691. svm_data->next_asid = 1;
  692. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  693. }
  694. vcpu->cpu = svm_data->cpu;
  695. vcpu->svm->asid_generation = svm_data->asid_generation;
  696. vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
  697. }
  698. static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  699. {
  700. invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
  701. }
  702. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  703. {
  704. return vcpu->svm->db_regs[dr];
  705. }
  706. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  707. int *exception)
  708. {
  709. *exception = 0;
  710. if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
  711. vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  712. vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
  713. *exception = DB_VECTOR;
  714. return;
  715. }
  716. switch (dr) {
  717. case 0 ... 3:
  718. vcpu->svm->db_regs[dr] = value;
  719. return;
  720. case 4 ... 5:
  721. if (vcpu->cr4 & CR4_DE_MASK) {
  722. *exception = UD_VECTOR;
  723. return;
  724. }
  725. case 7: {
  726. if (value & ~((1ULL << 32) - 1)) {
  727. *exception = GP_VECTOR;
  728. return;
  729. }
  730. vcpu->svm->vmcb->save.dr7 = value;
  731. return;
  732. }
  733. default:
  734. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  735. __FUNCTION__, dr);
  736. *exception = UD_VECTOR;
  737. return;
  738. }
  739. }
  740. static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  741. {
  742. u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  743. u64 fault_address;
  744. u32 error_code;
  745. enum emulation_result er;
  746. int r;
  747. if (is_external_interrupt(exit_int_info))
  748. push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  749. spin_lock(&vcpu->kvm->lock);
  750. fault_address = vcpu->svm->vmcb->control.exit_info_2;
  751. error_code = vcpu->svm->vmcb->control.exit_info_1;
  752. r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
  753. if (r < 0) {
  754. spin_unlock(&vcpu->kvm->lock);
  755. return r;
  756. }
  757. if (!r) {
  758. spin_unlock(&vcpu->kvm->lock);
  759. return 1;
  760. }
  761. er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
  762. spin_unlock(&vcpu->kvm->lock);
  763. switch (er) {
  764. case EMULATE_DONE:
  765. return 1;
  766. case EMULATE_DO_MMIO:
  767. ++vcpu->stat.mmio_exits;
  768. kvm_run->exit_reason = KVM_EXIT_MMIO;
  769. return 0;
  770. case EMULATE_FAIL:
  771. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  772. break;
  773. default:
  774. BUG();
  775. }
  776. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  777. return 0;
  778. }
  779. static int nm_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  780. {
  781. vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  782. if (!(vcpu->cr0 & CR0_TS_MASK))
  783. vcpu->svm->vmcb->save.cr0 &= ~CR0_TS_MASK;
  784. vcpu->fpu_active = 1;
  785. return 1;
  786. }
  787. static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  788. {
  789. /*
  790. * VMCB is undefined after a SHUTDOWN intercept
  791. * so reinitialize it.
  792. */
  793. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  794. init_vmcb(vcpu->svm->vmcb);
  795. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  796. return 0;
  797. }
  798. static int io_get_override(struct kvm_vcpu *vcpu,
  799. struct vmcb_seg **seg,
  800. int *addr_override)
  801. {
  802. u8 inst[MAX_INST_SIZE];
  803. unsigned ins_length;
  804. gva_t rip;
  805. int i;
  806. rip = vcpu->svm->vmcb->save.rip;
  807. ins_length = vcpu->svm->next_rip - rip;
  808. rip += vcpu->svm->vmcb->save.cs.base;
  809. if (ins_length > MAX_INST_SIZE)
  810. printk(KERN_DEBUG
  811. "%s: inst length err, cs base 0x%llx rip 0x%llx "
  812. "next rip 0x%llx ins_length %u\n",
  813. __FUNCTION__,
  814. vcpu->svm->vmcb->save.cs.base,
  815. vcpu->svm->vmcb->save.rip,
  816. vcpu->svm->vmcb->control.exit_info_2,
  817. ins_length);
  818. if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
  819. /* #PF */
  820. return 0;
  821. *addr_override = 0;
  822. *seg = NULL;
  823. for (i = 0; i < ins_length; i++)
  824. switch (inst[i]) {
  825. case 0xf0:
  826. case 0xf2:
  827. case 0xf3:
  828. case 0x66:
  829. continue;
  830. case 0x67:
  831. *addr_override = 1;
  832. continue;
  833. case 0x2e:
  834. *seg = &vcpu->svm->vmcb->save.cs;
  835. continue;
  836. case 0x36:
  837. *seg = &vcpu->svm->vmcb->save.ss;
  838. continue;
  839. case 0x3e:
  840. *seg = &vcpu->svm->vmcb->save.ds;
  841. continue;
  842. case 0x26:
  843. *seg = &vcpu->svm->vmcb->save.es;
  844. continue;
  845. case 0x64:
  846. *seg = &vcpu->svm->vmcb->save.fs;
  847. continue;
  848. case 0x65:
  849. *seg = &vcpu->svm->vmcb->save.gs;
  850. continue;
  851. default:
  852. return 1;
  853. }
  854. printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
  855. return 0;
  856. }
  857. static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
  858. {
  859. unsigned long addr_mask;
  860. unsigned long *reg;
  861. struct vmcb_seg *seg;
  862. int addr_override;
  863. struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
  864. u16 cs_attrib = save_area->cs.attrib;
  865. unsigned addr_size = get_addr_size(vcpu);
  866. if (!io_get_override(vcpu, &seg, &addr_override))
  867. return 0;
  868. if (addr_override)
  869. addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
  870. if (ins) {
  871. reg = &vcpu->regs[VCPU_REGS_RDI];
  872. seg = &vcpu->svm->vmcb->save.es;
  873. } else {
  874. reg = &vcpu->regs[VCPU_REGS_RSI];
  875. seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
  876. }
  877. addr_mask = ~0ULL >> (64 - (addr_size * 8));
  878. if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
  879. !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
  880. *address = (*reg & addr_mask);
  881. return addr_mask;
  882. }
  883. if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
  884. svm_inject_gp(vcpu, 0);
  885. return 0;
  886. }
  887. *address = (*reg & addr_mask) + seg->base;
  888. return addr_mask;
  889. }
  890. static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  891. {
  892. u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
  893. int size, down, in, string, rep;
  894. unsigned port;
  895. unsigned long count;
  896. gva_t address = 0;
  897. ++vcpu->stat.io_exits;
  898. vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
  899. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  900. port = io_info >> 16;
  901. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  902. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  903. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  904. count = 1;
  905. down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  906. if (string) {
  907. unsigned addr_mask;
  908. addr_mask = io_adress(vcpu, in, &address);
  909. if (!addr_mask) {
  910. printk(KERN_DEBUG "%s: get io address failed\n",
  911. __FUNCTION__);
  912. return 1;
  913. }
  914. if (rep)
  915. count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
  916. }
  917. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  918. address, rep, port);
  919. }
  920. static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  921. {
  922. return 1;
  923. }
  924. static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  925. {
  926. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
  927. skip_emulated_instruction(vcpu);
  928. return kvm_emulate_halt(vcpu);
  929. }
  930. static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  931. {
  932. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
  933. skip_emulated_instruction(vcpu);
  934. return kvm_hypercall(vcpu, kvm_run);
  935. }
  936. static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  937. {
  938. inject_ud(vcpu);
  939. return 1;
  940. }
  941. static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  942. {
  943. printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
  944. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  945. return 0;
  946. }
  947. static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  948. {
  949. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  950. kvm_emulate_cpuid(vcpu);
  951. return 1;
  952. }
  953. static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  954. {
  955. if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
  956. printk(KERN_ERR "%s: failed\n", __FUNCTION__);
  957. return 1;
  958. }
  959. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  960. {
  961. switch (ecx) {
  962. case MSR_IA32_TIME_STAMP_COUNTER: {
  963. u64 tsc;
  964. rdtscll(tsc);
  965. *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
  966. break;
  967. }
  968. case MSR_K6_STAR:
  969. *data = vcpu->svm->vmcb->save.star;
  970. break;
  971. #ifdef CONFIG_X86_64
  972. case MSR_LSTAR:
  973. *data = vcpu->svm->vmcb->save.lstar;
  974. break;
  975. case MSR_CSTAR:
  976. *data = vcpu->svm->vmcb->save.cstar;
  977. break;
  978. case MSR_KERNEL_GS_BASE:
  979. *data = vcpu->svm->vmcb->save.kernel_gs_base;
  980. break;
  981. case MSR_SYSCALL_MASK:
  982. *data = vcpu->svm->vmcb->save.sfmask;
  983. break;
  984. #endif
  985. case MSR_IA32_SYSENTER_CS:
  986. *data = vcpu->svm->vmcb->save.sysenter_cs;
  987. break;
  988. case MSR_IA32_SYSENTER_EIP:
  989. *data = vcpu->svm->vmcb->save.sysenter_eip;
  990. break;
  991. case MSR_IA32_SYSENTER_ESP:
  992. *data = vcpu->svm->vmcb->save.sysenter_esp;
  993. break;
  994. default:
  995. return kvm_get_msr_common(vcpu, ecx, data);
  996. }
  997. return 0;
  998. }
  999. static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1000. {
  1001. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1002. u64 data;
  1003. if (svm_get_msr(vcpu, ecx, &data))
  1004. svm_inject_gp(vcpu, 0);
  1005. else {
  1006. vcpu->svm->vmcb->save.rax = data & 0xffffffff;
  1007. vcpu->regs[VCPU_REGS_RDX] = data >> 32;
  1008. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  1009. skip_emulated_instruction(vcpu);
  1010. }
  1011. return 1;
  1012. }
  1013. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  1014. {
  1015. switch (ecx) {
  1016. case MSR_IA32_TIME_STAMP_COUNTER: {
  1017. u64 tsc;
  1018. rdtscll(tsc);
  1019. vcpu->svm->vmcb->control.tsc_offset = data - tsc;
  1020. break;
  1021. }
  1022. case MSR_K6_STAR:
  1023. vcpu->svm->vmcb->save.star = data;
  1024. break;
  1025. #ifdef CONFIG_X86_64
  1026. case MSR_LSTAR:
  1027. vcpu->svm->vmcb->save.lstar = data;
  1028. break;
  1029. case MSR_CSTAR:
  1030. vcpu->svm->vmcb->save.cstar = data;
  1031. break;
  1032. case MSR_KERNEL_GS_BASE:
  1033. vcpu->svm->vmcb->save.kernel_gs_base = data;
  1034. break;
  1035. case MSR_SYSCALL_MASK:
  1036. vcpu->svm->vmcb->save.sfmask = data;
  1037. break;
  1038. #endif
  1039. case MSR_IA32_SYSENTER_CS:
  1040. vcpu->svm->vmcb->save.sysenter_cs = data;
  1041. break;
  1042. case MSR_IA32_SYSENTER_EIP:
  1043. vcpu->svm->vmcb->save.sysenter_eip = data;
  1044. break;
  1045. case MSR_IA32_SYSENTER_ESP:
  1046. vcpu->svm->vmcb->save.sysenter_esp = data;
  1047. break;
  1048. default:
  1049. return kvm_set_msr_common(vcpu, ecx, data);
  1050. }
  1051. return 0;
  1052. }
  1053. static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1054. {
  1055. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1056. u64 data = (vcpu->svm->vmcb->save.rax & -1u)
  1057. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1058. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  1059. if (svm_set_msr(vcpu, ecx, data))
  1060. svm_inject_gp(vcpu, 0);
  1061. else
  1062. skip_emulated_instruction(vcpu);
  1063. return 1;
  1064. }
  1065. static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1066. {
  1067. if (vcpu->svm->vmcb->control.exit_info_1)
  1068. return wrmsr_interception(vcpu, kvm_run);
  1069. else
  1070. return rdmsr_interception(vcpu, kvm_run);
  1071. }
  1072. static int interrupt_window_interception(struct kvm_vcpu *vcpu,
  1073. struct kvm_run *kvm_run)
  1074. {
  1075. /*
  1076. * If the user space waits to inject interrupts, exit as soon as
  1077. * possible
  1078. */
  1079. if (kvm_run->request_interrupt_window &&
  1080. !vcpu->irq_summary) {
  1081. ++vcpu->stat.irq_window_exits;
  1082. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1083. return 0;
  1084. }
  1085. return 1;
  1086. }
  1087. static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
  1088. struct kvm_run *kvm_run) = {
  1089. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1090. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1091. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1092. /* for now: */
  1093. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1094. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1095. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1096. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1097. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1098. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1099. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1100. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1101. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1102. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1103. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1104. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1105. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1106. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1107. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1108. [SVM_EXIT_INTR] = nop_on_interception,
  1109. [SVM_EXIT_NMI] = nop_on_interception,
  1110. [SVM_EXIT_SMI] = nop_on_interception,
  1111. [SVM_EXIT_INIT] = nop_on_interception,
  1112. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1113. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1114. [SVM_EXIT_CPUID] = cpuid_interception,
  1115. [SVM_EXIT_HLT] = halt_interception,
  1116. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1117. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1118. [SVM_EXIT_IOIO] = io_interception,
  1119. [SVM_EXIT_MSR] = msr_interception,
  1120. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1121. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1122. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1123. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1124. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1125. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1126. [SVM_EXIT_STGI] = invalid_op_interception,
  1127. [SVM_EXIT_CLGI] = invalid_op_interception,
  1128. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1129. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1130. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1131. };
  1132. static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1133. {
  1134. u32 exit_code = vcpu->svm->vmcb->control.exit_code;
  1135. if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
  1136. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
  1137. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1138. "exit_code 0x%x\n",
  1139. __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
  1140. exit_code);
  1141. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1142. || svm_exit_handlers[exit_code] == 0) {
  1143. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1144. kvm_run->hw.hardware_exit_reason = exit_code;
  1145. return 0;
  1146. }
  1147. return svm_exit_handlers[exit_code](vcpu, kvm_run);
  1148. }
  1149. static void reload_tss(struct kvm_vcpu *vcpu)
  1150. {
  1151. int cpu = raw_smp_processor_id();
  1152. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1153. svm_data->tss_desc->type = 9; //available 32/64-bit TSS
  1154. load_TR_desc();
  1155. }
  1156. static void pre_svm_run(struct kvm_vcpu *vcpu)
  1157. {
  1158. int cpu = raw_smp_processor_id();
  1159. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1160. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1161. if (vcpu->cpu != cpu ||
  1162. vcpu->svm->asid_generation != svm_data->asid_generation)
  1163. new_asid(vcpu, svm_data);
  1164. }
  1165. static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1166. {
  1167. struct vmcb_control_area *control;
  1168. control = &vcpu->svm->vmcb->control;
  1169. control->int_vector = pop_irq(vcpu);
  1170. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1171. control->int_ctl |= V_IRQ_MASK |
  1172. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1173. }
  1174. static void kvm_reput_irq(struct kvm_vcpu *vcpu)
  1175. {
  1176. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1177. if (control->int_ctl & V_IRQ_MASK) {
  1178. control->int_ctl &= ~V_IRQ_MASK;
  1179. push_irq(vcpu, control->int_vector);
  1180. }
  1181. vcpu->interrupt_window_open =
  1182. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1183. }
  1184. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1185. struct kvm_run *kvm_run)
  1186. {
  1187. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1188. vcpu->interrupt_window_open =
  1189. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1190. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1191. if (vcpu->interrupt_window_open && vcpu->irq_summary)
  1192. /*
  1193. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1194. */
  1195. kvm_do_inject_irq(vcpu);
  1196. /*
  1197. * Interrupts blocked. Wait for unblock.
  1198. */
  1199. if (!vcpu->interrupt_window_open &&
  1200. (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
  1201. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1202. } else
  1203. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1204. }
  1205. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1206. struct kvm_run *kvm_run)
  1207. {
  1208. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1209. vcpu->irq_summary == 0);
  1210. kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
  1211. kvm_run->cr8 = vcpu->cr8;
  1212. kvm_run->apic_base = vcpu->apic_base;
  1213. }
  1214. /*
  1215. * Check if userspace requested an interrupt window, and that the
  1216. * interrupt window is open.
  1217. *
  1218. * No need to exit to userspace if we already have an interrupt queued.
  1219. */
  1220. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1221. struct kvm_run *kvm_run)
  1222. {
  1223. return (!vcpu->irq_summary &&
  1224. kvm_run->request_interrupt_window &&
  1225. vcpu->interrupt_window_open &&
  1226. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1227. }
  1228. static void save_db_regs(unsigned long *db_regs)
  1229. {
  1230. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1231. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1232. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1233. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1234. }
  1235. static void load_db_regs(unsigned long *db_regs)
  1236. {
  1237. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1238. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1239. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1240. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1241. }
  1242. static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1243. {
  1244. u16 fs_selector;
  1245. u16 gs_selector;
  1246. u16 ldt_selector;
  1247. int r;
  1248. again:
  1249. r = kvm_mmu_reload(vcpu);
  1250. if (unlikely(r))
  1251. return r;
  1252. if (!vcpu->mmio_read_completed)
  1253. do_interrupt_requests(vcpu, kvm_run);
  1254. clgi();
  1255. pre_svm_run(vcpu);
  1256. save_host_msrs(vcpu);
  1257. fs_selector = read_fs();
  1258. gs_selector = read_gs();
  1259. ldt_selector = read_ldt();
  1260. vcpu->svm->host_cr2 = kvm_read_cr2();
  1261. vcpu->svm->host_dr6 = read_dr6();
  1262. vcpu->svm->host_dr7 = read_dr7();
  1263. vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
  1264. if (vcpu->svm->vmcb->save.dr7 & 0xff) {
  1265. write_dr7(0);
  1266. save_db_regs(vcpu->svm->host_db_regs);
  1267. load_db_regs(vcpu->svm->db_regs);
  1268. }
  1269. if (vcpu->fpu_active) {
  1270. fx_save(vcpu->host_fx_image);
  1271. fx_restore(vcpu->guest_fx_image);
  1272. }
  1273. asm volatile (
  1274. #ifdef CONFIG_X86_64
  1275. "push %%rbx; push %%rcx; push %%rdx;"
  1276. "push %%rsi; push %%rdi; push %%rbp;"
  1277. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1278. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1279. #else
  1280. "push %%ebx; push %%ecx; push %%edx;"
  1281. "push %%esi; push %%edi; push %%ebp;"
  1282. #endif
  1283. #ifdef CONFIG_X86_64
  1284. "mov %c[rbx](%[vcpu]), %%rbx \n\t"
  1285. "mov %c[rcx](%[vcpu]), %%rcx \n\t"
  1286. "mov %c[rdx](%[vcpu]), %%rdx \n\t"
  1287. "mov %c[rsi](%[vcpu]), %%rsi \n\t"
  1288. "mov %c[rdi](%[vcpu]), %%rdi \n\t"
  1289. "mov %c[rbp](%[vcpu]), %%rbp \n\t"
  1290. "mov %c[r8](%[vcpu]), %%r8 \n\t"
  1291. "mov %c[r9](%[vcpu]), %%r9 \n\t"
  1292. "mov %c[r10](%[vcpu]), %%r10 \n\t"
  1293. "mov %c[r11](%[vcpu]), %%r11 \n\t"
  1294. "mov %c[r12](%[vcpu]), %%r12 \n\t"
  1295. "mov %c[r13](%[vcpu]), %%r13 \n\t"
  1296. "mov %c[r14](%[vcpu]), %%r14 \n\t"
  1297. "mov %c[r15](%[vcpu]), %%r15 \n\t"
  1298. #else
  1299. "mov %c[rbx](%[vcpu]), %%ebx \n\t"
  1300. "mov %c[rcx](%[vcpu]), %%ecx \n\t"
  1301. "mov %c[rdx](%[vcpu]), %%edx \n\t"
  1302. "mov %c[rsi](%[vcpu]), %%esi \n\t"
  1303. "mov %c[rdi](%[vcpu]), %%edi \n\t"
  1304. "mov %c[rbp](%[vcpu]), %%ebp \n\t"
  1305. #endif
  1306. #ifdef CONFIG_X86_64
  1307. /* Enter guest mode */
  1308. "push %%rax \n\t"
  1309. "mov %c[svm](%[vcpu]), %%rax \n\t"
  1310. "mov %c[vmcb](%%rax), %%rax \n\t"
  1311. SVM_VMLOAD "\n\t"
  1312. SVM_VMRUN "\n\t"
  1313. SVM_VMSAVE "\n\t"
  1314. "pop %%rax \n\t"
  1315. #else
  1316. /* Enter guest mode */
  1317. "push %%eax \n\t"
  1318. "mov %c[svm](%[vcpu]), %%eax \n\t"
  1319. "mov %c[vmcb](%%eax), %%eax \n\t"
  1320. SVM_VMLOAD "\n\t"
  1321. SVM_VMRUN "\n\t"
  1322. SVM_VMSAVE "\n\t"
  1323. "pop %%eax \n\t"
  1324. #endif
  1325. /* Save guest registers, load host registers */
  1326. #ifdef CONFIG_X86_64
  1327. "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
  1328. "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
  1329. "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
  1330. "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
  1331. "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
  1332. "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
  1333. "mov %%r8, %c[r8](%[vcpu]) \n\t"
  1334. "mov %%r9, %c[r9](%[vcpu]) \n\t"
  1335. "mov %%r10, %c[r10](%[vcpu]) \n\t"
  1336. "mov %%r11, %c[r11](%[vcpu]) \n\t"
  1337. "mov %%r12, %c[r12](%[vcpu]) \n\t"
  1338. "mov %%r13, %c[r13](%[vcpu]) \n\t"
  1339. "mov %%r14, %c[r14](%[vcpu]) \n\t"
  1340. "mov %%r15, %c[r15](%[vcpu]) \n\t"
  1341. "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1342. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1343. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1344. "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
  1345. #else
  1346. "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
  1347. "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
  1348. "mov %%edx, %c[rdx](%[vcpu]) \n\t"
  1349. "mov %%esi, %c[rsi](%[vcpu]) \n\t"
  1350. "mov %%edi, %c[rdi](%[vcpu]) \n\t"
  1351. "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
  1352. "pop %%ebp; pop %%edi; pop %%esi;"
  1353. "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
  1354. #endif
  1355. :
  1356. : [vcpu]"a"(vcpu),
  1357. [svm]"i"(offsetof(struct kvm_vcpu, svm)),
  1358. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1359. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1360. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1361. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1362. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1363. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1364. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
  1365. #ifdef CONFIG_X86_64
  1366. ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1367. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1368. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1369. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1370. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1371. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1372. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1373. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
  1374. #endif
  1375. : "cc", "memory" );
  1376. if (vcpu->fpu_active) {
  1377. fx_save(vcpu->guest_fx_image);
  1378. fx_restore(vcpu->host_fx_image);
  1379. }
  1380. if ((vcpu->svm->vmcb->save.dr7 & 0xff))
  1381. load_db_regs(vcpu->svm->host_db_regs);
  1382. vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
  1383. write_dr6(vcpu->svm->host_dr6);
  1384. write_dr7(vcpu->svm->host_dr7);
  1385. kvm_write_cr2(vcpu->svm->host_cr2);
  1386. load_fs(fs_selector);
  1387. load_gs(gs_selector);
  1388. load_ldt(ldt_selector);
  1389. load_host_msrs(vcpu);
  1390. reload_tss(vcpu);
  1391. /*
  1392. * Profile KVM exit RIPs:
  1393. */
  1394. if (unlikely(prof_on == KVM_PROFILING))
  1395. profile_hit(KVM_PROFILING,
  1396. (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
  1397. stgi();
  1398. kvm_reput_irq(vcpu);
  1399. vcpu->svm->next_rip = 0;
  1400. if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1401. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1402. kvm_run->fail_entry.hardware_entry_failure_reason
  1403. = vcpu->svm->vmcb->control.exit_code;
  1404. post_kvm_run_save(vcpu, kvm_run);
  1405. return 0;
  1406. }
  1407. r = handle_exit(vcpu, kvm_run);
  1408. if (r > 0) {
  1409. if (signal_pending(current)) {
  1410. ++vcpu->stat.signal_exits;
  1411. post_kvm_run_save(vcpu, kvm_run);
  1412. kvm_run->exit_reason = KVM_EXIT_INTR;
  1413. return -EINTR;
  1414. }
  1415. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1416. ++vcpu->stat.request_irq_exits;
  1417. post_kvm_run_save(vcpu, kvm_run);
  1418. kvm_run->exit_reason = KVM_EXIT_INTR;
  1419. return -EINTR;
  1420. }
  1421. kvm_resched(vcpu);
  1422. goto again;
  1423. }
  1424. post_kvm_run_save(vcpu, kvm_run);
  1425. return r;
  1426. }
  1427. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1428. {
  1429. force_new_asid(vcpu);
  1430. }
  1431. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1432. {
  1433. vcpu->svm->vmcb->save.cr3 = root;
  1434. force_new_asid(vcpu);
  1435. if (vcpu->fpu_active) {
  1436. vcpu->svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  1437. vcpu->svm->vmcb->save.cr0 |= CR0_TS_MASK;
  1438. vcpu->fpu_active = 0;
  1439. }
  1440. }
  1441. static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
  1442. unsigned long addr,
  1443. uint32_t err_code)
  1444. {
  1445. uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  1446. ++vcpu->stat.pf_guest;
  1447. if (is_page_fault(exit_int_info)) {
  1448. vcpu->svm->vmcb->control.event_inj_err = 0;
  1449. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1450. SVM_EVTINJ_VALID_ERR |
  1451. SVM_EVTINJ_TYPE_EXEPT |
  1452. DF_VECTOR;
  1453. return;
  1454. }
  1455. vcpu->cr2 = addr;
  1456. vcpu->svm->vmcb->save.cr2 = addr;
  1457. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1458. SVM_EVTINJ_VALID_ERR |
  1459. SVM_EVTINJ_TYPE_EXEPT |
  1460. PF_VECTOR;
  1461. vcpu->svm->vmcb->control.event_inj_err = err_code;
  1462. }
  1463. static int is_disabled(void)
  1464. {
  1465. return 0;
  1466. }
  1467. static void
  1468. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1469. {
  1470. /*
  1471. * Patch in the VMMCALL instruction:
  1472. */
  1473. hypercall[0] = 0x0f;
  1474. hypercall[1] = 0x01;
  1475. hypercall[2] = 0xd9;
  1476. hypercall[3] = 0xc3;
  1477. }
  1478. static struct kvm_arch_ops svm_arch_ops = {
  1479. .cpu_has_kvm_support = has_svm,
  1480. .disabled_by_bios = is_disabled,
  1481. .hardware_setup = svm_hardware_setup,
  1482. .hardware_unsetup = svm_hardware_unsetup,
  1483. .hardware_enable = svm_hardware_enable,
  1484. .hardware_disable = svm_hardware_disable,
  1485. .vcpu_create = svm_create_vcpu,
  1486. .vcpu_free = svm_free_vcpu,
  1487. .vcpu_load = svm_vcpu_load,
  1488. .vcpu_put = svm_vcpu_put,
  1489. .vcpu_decache = svm_vcpu_decache,
  1490. .set_guest_debug = svm_guest_debug,
  1491. .get_msr = svm_get_msr,
  1492. .set_msr = svm_set_msr,
  1493. .get_segment_base = svm_get_segment_base,
  1494. .get_segment = svm_get_segment,
  1495. .set_segment = svm_set_segment,
  1496. .get_cs_db_l_bits = svm_get_cs_db_l_bits,
  1497. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  1498. .set_cr0 = svm_set_cr0,
  1499. .set_cr3 = svm_set_cr3,
  1500. .set_cr4 = svm_set_cr4,
  1501. .set_efer = svm_set_efer,
  1502. .get_idt = svm_get_idt,
  1503. .set_idt = svm_set_idt,
  1504. .get_gdt = svm_get_gdt,
  1505. .set_gdt = svm_set_gdt,
  1506. .get_dr = svm_get_dr,
  1507. .set_dr = svm_set_dr,
  1508. .cache_regs = svm_cache_regs,
  1509. .decache_regs = svm_decache_regs,
  1510. .get_rflags = svm_get_rflags,
  1511. .set_rflags = svm_set_rflags,
  1512. .invlpg = svm_invlpg,
  1513. .tlb_flush = svm_flush_tlb,
  1514. .inject_page_fault = svm_inject_page_fault,
  1515. .inject_gp = svm_inject_gp,
  1516. .run = svm_vcpu_run,
  1517. .skip_emulated_instruction = skip_emulated_instruction,
  1518. .vcpu_setup = svm_vcpu_setup,
  1519. .patch_hypercall = svm_patch_hypercall,
  1520. };
  1521. static int __init svm_init(void)
  1522. {
  1523. return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
  1524. }
  1525. static void __exit svm_exit(void)
  1526. {
  1527. kvm_exit_arch();
  1528. }
  1529. module_init(svm_init)
  1530. module_exit(svm_exit)