pci_sun4v.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032
  1. /* pci_sun4v.c: SUN4V specific PCI controller support.
  2. *
  3. * Copyright (C) 2006, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/pci.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/percpu.h>
  12. #include <linux/irq.h>
  13. #include <linux/msi.h>
  14. #include <linux/log2.h>
  15. #include <linux/of_device.h>
  16. #include <asm/iommu.h>
  17. #include <asm/irq.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/prom.h>
  20. #include "pci_impl.h"
  21. #include "iommu_common.h"
  22. #include "pci_sun4v.h"
  23. #define DRIVER_NAME "pci_sun4v"
  24. #define PFX DRIVER_NAME ": "
  25. static unsigned long vpci_major = 1;
  26. static unsigned long vpci_minor = 1;
  27. #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
  28. struct iommu_batch {
  29. struct device *dev; /* Device mapping is for. */
  30. unsigned long prot; /* IOMMU page protections */
  31. unsigned long entry; /* Index into IOTSB. */
  32. u64 *pglist; /* List of physical pages */
  33. unsigned long npages; /* Number of pages in list. */
  34. };
  35. static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
  36. static int iommu_batch_initialized;
  37. /* Interrupts must be disabled. */
  38. static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
  39. {
  40. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  41. p->dev = dev;
  42. p->prot = prot;
  43. p->entry = entry;
  44. p->npages = 0;
  45. }
  46. /* Interrupts must be disabled. */
  47. static long iommu_batch_flush(struct iommu_batch *p)
  48. {
  49. struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
  50. unsigned long devhandle = pbm->devhandle;
  51. unsigned long prot = p->prot;
  52. unsigned long entry = p->entry;
  53. u64 *pglist = p->pglist;
  54. unsigned long npages = p->npages;
  55. while (npages != 0) {
  56. long num;
  57. num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
  58. npages, prot, __pa(pglist));
  59. if (unlikely(num < 0)) {
  60. if (printk_ratelimit())
  61. printk("iommu_batch_flush: IOMMU map of "
  62. "[%08lx:%08lx:%lx:%lx:%lx] failed with "
  63. "status %ld\n",
  64. devhandle, HV_PCI_TSBID(0, entry),
  65. npages, prot, __pa(pglist), num);
  66. return -1;
  67. }
  68. entry += num;
  69. npages -= num;
  70. pglist += num;
  71. }
  72. p->entry = entry;
  73. p->npages = 0;
  74. return 0;
  75. }
  76. static inline void iommu_batch_new_entry(unsigned long entry)
  77. {
  78. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  79. if (p->entry + p->npages == entry)
  80. return;
  81. if (p->entry != ~0UL)
  82. iommu_batch_flush(p);
  83. p->entry = entry;
  84. }
  85. /* Interrupts must be disabled. */
  86. static inline long iommu_batch_add(u64 phys_page)
  87. {
  88. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  89. BUG_ON(p->npages >= PGLIST_NENTS);
  90. p->pglist[p->npages++] = phys_page;
  91. if (p->npages == PGLIST_NENTS)
  92. return iommu_batch_flush(p);
  93. return 0;
  94. }
  95. /* Interrupts must be disabled. */
  96. static inline long iommu_batch_end(void)
  97. {
  98. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  99. BUG_ON(p->npages >= PGLIST_NENTS);
  100. return iommu_batch_flush(p);
  101. }
  102. static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
  103. dma_addr_t *dma_addrp, gfp_t gfp)
  104. {
  105. unsigned long flags, order, first_page, npages, n;
  106. struct iommu *iommu;
  107. struct page *page;
  108. void *ret;
  109. long entry;
  110. int nid;
  111. size = IO_PAGE_ALIGN(size);
  112. order = get_order(size);
  113. if (unlikely(order >= MAX_ORDER))
  114. return NULL;
  115. npages = size >> IO_PAGE_SHIFT;
  116. nid = dev->archdata.numa_node;
  117. page = alloc_pages_node(nid, gfp, order);
  118. if (unlikely(!page))
  119. return NULL;
  120. first_page = (unsigned long) page_address(page);
  121. memset((char *)first_page, 0, PAGE_SIZE << order);
  122. iommu = dev->archdata.iommu;
  123. spin_lock_irqsave(&iommu->lock, flags);
  124. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  125. spin_unlock_irqrestore(&iommu->lock, flags);
  126. if (unlikely(entry == DMA_ERROR_CODE))
  127. goto range_alloc_fail;
  128. *dma_addrp = (iommu->page_table_map_base +
  129. (entry << IO_PAGE_SHIFT));
  130. ret = (void *) first_page;
  131. first_page = __pa(first_page);
  132. local_irq_save(flags);
  133. iommu_batch_start(dev,
  134. (HV_PCI_MAP_ATTR_READ |
  135. HV_PCI_MAP_ATTR_WRITE),
  136. entry);
  137. for (n = 0; n < npages; n++) {
  138. long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
  139. if (unlikely(err < 0L))
  140. goto iommu_map_fail;
  141. }
  142. if (unlikely(iommu_batch_end() < 0L))
  143. goto iommu_map_fail;
  144. local_irq_restore(flags);
  145. return ret;
  146. iommu_map_fail:
  147. /* Interrupts are disabled. */
  148. spin_lock(&iommu->lock);
  149. iommu_range_free(iommu, *dma_addrp, npages);
  150. spin_unlock_irqrestore(&iommu->lock, flags);
  151. range_alloc_fail:
  152. free_pages(first_page, order);
  153. return NULL;
  154. }
  155. static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
  156. dma_addr_t dvma)
  157. {
  158. struct pci_pbm_info *pbm;
  159. struct iommu *iommu;
  160. unsigned long flags, order, npages, entry;
  161. u32 devhandle;
  162. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  163. iommu = dev->archdata.iommu;
  164. pbm = dev->archdata.host_controller;
  165. devhandle = pbm->devhandle;
  166. entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  167. spin_lock_irqsave(&iommu->lock, flags);
  168. iommu_range_free(iommu, dvma, npages);
  169. do {
  170. unsigned long num;
  171. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  172. npages);
  173. entry += num;
  174. npages -= num;
  175. } while (npages != 0);
  176. spin_unlock_irqrestore(&iommu->lock, flags);
  177. order = get_order(size);
  178. if (order < 10)
  179. free_pages((unsigned long)cpu, order);
  180. }
  181. static dma_addr_t dma_4v_map_single(struct device *dev, void *ptr, size_t sz,
  182. enum dma_data_direction direction)
  183. {
  184. struct iommu *iommu;
  185. unsigned long flags, npages, oaddr;
  186. unsigned long i, base_paddr;
  187. u32 bus_addr, ret;
  188. unsigned long prot;
  189. long entry;
  190. iommu = dev->archdata.iommu;
  191. if (unlikely(direction == DMA_NONE))
  192. goto bad;
  193. oaddr = (unsigned long)ptr;
  194. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  195. npages >>= IO_PAGE_SHIFT;
  196. spin_lock_irqsave(&iommu->lock, flags);
  197. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  198. spin_unlock_irqrestore(&iommu->lock, flags);
  199. if (unlikely(entry == DMA_ERROR_CODE))
  200. goto bad;
  201. bus_addr = (iommu->page_table_map_base +
  202. (entry << IO_PAGE_SHIFT));
  203. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  204. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  205. prot = HV_PCI_MAP_ATTR_READ;
  206. if (direction != DMA_TO_DEVICE)
  207. prot |= HV_PCI_MAP_ATTR_WRITE;
  208. local_irq_save(flags);
  209. iommu_batch_start(dev, prot, entry);
  210. for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
  211. long err = iommu_batch_add(base_paddr);
  212. if (unlikely(err < 0L))
  213. goto iommu_map_fail;
  214. }
  215. if (unlikely(iommu_batch_end() < 0L))
  216. goto iommu_map_fail;
  217. local_irq_restore(flags);
  218. return ret;
  219. bad:
  220. if (printk_ratelimit())
  221. WARN_ON(1);
  222. return DMA_ERROR_CODE;
  223. iommu_map_fail:
  224. /* Interrupts are disabled. */
  225. spin_lock(&iommu->lock);
  226. iommu_range_free(iommu, bus_addr, npages);
  227. spin_unlock_irqrestore(&iommu->lock, flags);
  228. return DMA_ERROR_CODE;
  229. }
  230. static void dma_4v_unmap_single(struct device *dev, dma_addr_t bus_addr,
  231. size_t sz, enum dma_data_direction direction)
  232. {
  233. struct pci_pbm_info *pbm;
  234. struct iommu *iommu;
  235. unsigned long flags, npages;
  236. long entry;
  237. u32 devhandle;
  238. if (unlikely(direction == DMA_NONE)) {
  239. if (printk_ratelimit())
  240. WARN_ON(1);
  241. return;
  242. }
  243. iommu = dev->archdata.iommu;
  244. pbm = dev->archdata.host_controller;
  245. devhandle = pbm->devhandle;
  246. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  247. npages >>= IO_PAGE_SHIFT;
  248. bus_addr &= IO_PAGE_MASK;
  249. spin_lock_irqsave(&iommu->lock, flags);
  250. iommu_range_free(iommu, bus_addr, npages);
  251. entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  252. do {
  253. unsigned long num;
  254. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  255. npages);
  256. entry += num;
  257. npages -= num;
  258. } while (npages != 0);
  259. spin_unlock_irqrestore(&iommu->lock, flags);
  260. }
  261. static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
  262. int nelems, enum dma_data_direction direction)
  263. {
  264. struct scatterlist *s, *outs, *segstart;
  265. unsigned long flags, handle, prot;
  266. dma_addr_t dma_next = 0, dma_addr;
  267. unsigned int max_seg_size;
  268. unsigned long seg_boundary_size;
  269. int outcount, incount, i;
  270. struct iommu *iommu;
  271. unsigned long base_shift;
  272. long err;
  273. BUG_ON(direction == DMA_NONE);
  274. iommu = dev->archdata.iommu;
  275. if (nelems == 0 || !iommu)
  276. return 0;
  277. prot = HV_PCI_MAP_ATTR_READ;
  278. if (direction != DMA_TO_DEVICE)
  279. prot |= HV_PCI_MAP_ATTR_WRITE;
  280. outs = s = segstart = &sglist[0];
  281. outcount = 1;
  282. incount = nelems;
  283. handle = 0;
  284. /* Init first segment length for backout at failure */
  285. outs->dma_length = 0;
  286. spin_lock_irqsave(&iommu->lock, flags);
  287. iommu_batch_start(dev, prot, ~0UL);
  288. max_seg_size = dma_get_max_seg_size(dev);
  289. seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  290. IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
  291. base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
  292. for_each_sg(sglist, s, nelems, i) {
  293. unsigned long paddr, npages, entry, out_entry = 0, slen;
  294. slen = s->length;
  295. /* Sanity check */
  296. if (slen == 0) {
  297. dma_next = 0;
  298. continue;
  299. }
  300. /* Allocate iommu entries for that segment */
  301. paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
  302. npages = iommu_num_pages(paddr, slen);
  303. entry = iommu_range_alloc(dev, iommu, npages, &handle);
  304. /* Handle failure */
  305. if (unlikely(entry == DMA_ERROR_CODE)) {
  306. if (printk_ratelimit())
  307. printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
  308. " npages %lx\n", iommu, paddr, npages);
  309. goto iommu_map_failed;
  310. }
  311. iommu_batch_new_entry(entry);
  312. /* Convert entry to a dma_addr_t */
  313. dma_addr = iommu->page_table_map_base +
  314. (entry << IO_PAGE_SHIFT);
  315. dma_addr |= (s->offset & ~IO_PAGE_MASK);
  316. /* Insert into HW table */
  317. paddr &= IO_PAGE_MASK;
  318. while (npages--) {
  319. err = iommu_batch_add(paddr);
  320. if (unlikely(err < 0L))
  321. goto iommu_map_failed;
  322. paddr += IO_PAGE_SIZE;
  323. }
  324. /* If we are in an open segment, try merging */
  325. if (segstart != s) {
  326. /* We cannot merge if:
  327. * - allocated dma_addr isn't contiguous to previous allocation
  328. */
  329. if ((dma_addr != dma_next) ||
  330. (outs->dma_length + s->length > max_seg_size) ||
  331. (is_span_boundary(out_entry, base_shift,
  332. seg_boundary_size, outs, s))) {
  333. /* Can't merge: create a new segment */
  334. segstart = s;
  335. outcount++;
  336. outs = sg_next(outs);
  337. } else {
  338. outs->dma_length += s->length;
  339. }
  340. }
  341. if (segstart == s) {
  342. /* This is a new segment, fill entries */
  343. outs->dma_address = dma_addr;
  344. outs->dma_length = slen;
  345. out_entry = entry;
  346. }
  347. /* Calculate next page pointer for contiguous check */
  348. dma_next = dma_addr + slen;
  349. }
  350. err = iommu_batch_end();
  351. if (unlikely(err < 0L))
  352. goto iommu_map_failed;
  353. spin_unlock_irqrestore(&iommu->lock, flags);
  354. if (outcount < incount) {
  355. outs = sg_next(outs);
  356. outs->dma_address = DMA_ERROR_CODE;
  357. outs->dma_length = 0;
  358. }
  359. return outcount;
  360. iommu_map_failed:
  361. for_each_sg(sglist, s, nelems, i) {
  362. if (s->dma_length != 0) {
  363. unsigned long vaddr, npages;
  364. vaddr = s->dma_address & IO_PAGE_MASK;
  365. npages = iommu_num_pages(s->dma_address, s->dma_length);
  366. iommu_range_free(iommu, vaddr, npages);
  367. /* XXX demap? XXX */
  368. s->dma_address = DMA_ERROR_CODE;
  369. s->dma_length = 0;
  370. }
  371. if (s == outs)
  372. break;
  373. }
  374. spin_unlock_irqrestore(&iommu->lock, flags);
  375. return 0;
  376. }
  377. static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
  378. int nelems, enum dma_data_direction direction)
  379. {
  380. struct pci_pbm_info *pbm;
  381. struct scatterlist *sg;
  382. struct iommu *iommu;
  383. unsigned long flags;
  384. u32 devhandle;
  385. BUG_ON(direction == DMA_NONE);
  386. iommu = dev->archdata.iommu;
  387. pbm = dev->archdata.host_controller;
  388. devhandle = pbm->devhandle;
  389. spin_lock_irqsave(&iommu->lock, flags);
  390. sg = sglist;
  391. while (nelems--) {
  392. dma_addr_t dma_handle = sg->dma_address;
  393. unsigned int len = sg->dma_length;
  394. unsigned long npages, entry;
  395. if (!len)
  396. break;
  397. npages = iommu_num_pages(dma_handle, len);
  398. iommu_range_free(iommu, dma_handle, npages);
  399. entry = ((dma_handle - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  400. while (npages) {
  401. unsigned long num;
  402. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  403. npages);
  404. entry += num;
  405. npages -= num;
  406. }
  407. sg = sg_next(sg);
  408. }
  409. spin_unlock_irqrestore(&iommu->lock, flags);
  410. }
  411. static void dma_4v_sync_single_for_cpu(struct device *dev,
  412. dma_addr_t bus_addr, size_t sz,
  413. enum dma_data_direction direction)
  414. {
  415. /* Nothing to do... */
  416. }
  417. static void dma_4v_sync_sg_for_cpu(struct device *dev,
  418. struct scatterlist *sglist, int nelems,
  419. enum dma_data_direction direction)
  420. {
  421. /* Nothing to do... */
  422. }
  423. static const struct dma_ops sun4v_dma_ops = {
  424. .alloc_coherent = dma_4v_alloc_coherent,
  425. .free_coherent = dma_4v_free_coherent,
  426. .map_single = dma_4v_map_single,
  427. .unmap_single = dma_4v_unmap_single,
  428. .map_sg = dma_4v_map_sg,
  429. .unmap_sg = dma_4v_unmap_sg,
  430. .sync_single_for_cpu = dma_4v_sync_single_for_cpu,
  431. .sync_sg_for_cpu = dma_4v_sync_sg_for_cpu,
  432. };
  433. static void __init pci_sun4v_scan_bus(struct pci_pbm_info *pbm,
  434. struct device *parent)
  435. {
  436. struct property *prop;
  437. struct device_node *dp;
  438. dp = pbm->prom_node;
  439. prop = of_find_property(dp, "66mhz-capable", NULL);
  440. pbm->is_66mhz_capable = (prop != NULL);
  441. pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
  442. /* XXX register error interrupt handlers XXX */
  443. }
  444. static unsigned long __init probe_existing_entries(struct pci_pbm_info *pbm,
  445. struct iommu *iommu)
  446. {
  447. struct iommu_arena *arena = &iommu->arena;
  448. unsigned long i, cnt = 0;
  449. u32 devhandle;
  450. devhandle = pbm->devhandle;
  451. for (i = 0; i < arena->limit; i++) {
  452. unsigned long ret, io_attrs, ra;
  453. ret = pci_sun4v_iommu_getmap(devhandle,
  454. HV_PCI_TSBID(0, i),
  455. &io_attrs, &ra);
  456. if (ret == HV_EOK) {
  457. if (page_in_phys_avail(ra)) {
  458. pci_sun4v_iommu_demap(devhandle,
  459. HV_PCI_TSBID(0, i), 1);
  460. } else {
  461. cnt++;
  462. __set_bit(i, arena->map);
  463. }
  464. }
  465. }
  466. return cnt;
  467. }
  468. static int __init pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
  469. {
  470. static const u32 vdma_default[] = { 0x80000000, 0x80000000 };
  471. struct iommu *iommu = pbm->iommu;
  472. unsigned long num_tsb_entries, sz, tsbsize;
  473. u32 dma_mask, dma_offset;
  474. const u32 *vdma;
  475. vdma = of_get_property(pbm->prom_node, "virtual-dma", NULL);
  476. if (!vdma)
  477. vdma = vdma_default;
  478. if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
  479. printk(KERN_ERR PFX "Strange virtual-dma[%08x:%08x].\n",
  480. vdma[0], vdma[1]);
  481. return -EINVAL;
  482. };
  483. dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
  484. num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
  485. tsbsize = num_tsb_entries * sizeof(iopte_t);
  486. dma_offset = vdma[0];
  487. /* Setup initial software IOMMU state. */
  488. spin_lock_init(&iommu->lock);
  489. iommu->ctx_lowest_free = 1;
  490. iommu->page_table_map_base = dma_offset;
  491. iommu->dma_addr_mask = dma_mask;
  492. /* Allocate and initialize the free area map. */
  493. sz = (num_tsb_entries + 7) / 8;
  494. sz = (sz + 7UL) & ~7UL;
  495. iommu->arena.map = kzalloc(sz, GFP_KERNEL);
  496. if (!iommu->arena.map) {
  497. printk(KERN_ERR PFX "Error, kmalloc(arena.map) failed.\n");
  498. return -ENOMEM;
  499. }
  500. iommu->arena.limit = num_tsb_entries;
  501. sz = probe_existing_entries(pbm, iommu);
  502. if (sz)
  503. printk("%s: Imported %lu TSB entries from OBP\n",
  504. pbm->name, sz);
  505. return 0;
  506. }
  507. #ifdef CONFIG_PCI_MSI
  508. struct pci_sun4v_msiq_entry {
  509. u64 version_type;
  510. #define MSIQ_VERSION_MASK 0xffffffff00000000UL
  511. #define MSIQ_VERSION_SHIFT 32
  512. #define MSIQ_TYPE_MASK 0x00000000000000ffUL
  513. #define MSIQ_TYPE_SHIFT 0
  514. #define MSIQ_TYPE_NONE 0x00
  515. #define MSIQ_TYPE_MSG 0x01
  516. #define MSIQ_TYPE_MSI32 0x02
  517. #define MSIQ_TYPE_MSI64 0x03
  518. #define MSIQ_TYPE_INTX 0x08
  519. #define MSIQ_TYPE_NONE2 0xff
  520. u64 intx_sysino;
  521. u64 reserved1;
  522. u64 stick;
  523. u64 req_id; /* bus/device/func */
  524. #define MSIQ_REQID_BUS_MASK 0xff00UL
  525. #define MSIQ_REQID_BUS_SHIFT 8
  526. #define MSIQ_REQID_DEVICE_MASK 0x00f8UL
  527. #define MSIQ_REQID_DEVICE_SHIFT 3
  528. #define MSIQ_REQID_FUNC_MASK 0x0007UL
  529. #define MSIQ_REQID_FUNC_SHIFT 0
  530. u64 msi_address;
  531. /* The format of this value is message type dependent.
  532. * For MSI bits 15:0 are the data from the MSI packet.
  533. * For MSI-X bits 31:0 are the data from the MSI packet.
  534. * For MSG, the message code and message routing code where:
  535. * bits 39:32 is the bus/device/fn of the msg target-id
  536. * bits 18:16 is the message routing code
  537. * bits 7:0 is the message code
  538. * For INTx the low order 2-bits are:
  539. * 00 - INTA
  540. * 01 - INTB
  541. * 10 - INTC
  542. * 11 - INTD
  543. */
  544. u64 msi_data;
  545. u64 reserved2;
  546. };
  547. static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  548. unsigned long *head)
  549. {
  550. unsigned long err, limit;
  551. err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
  552. if (unlikely(err))
  553. return -ENXIO;
  554. limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  555. if (unlikely(*head >= limit))
  556. return -EFBIG;
  557. return 0;
  558. }
  559. static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
  560. unsigned long msiqid, unsigned long *head,
  561. unsigned long *msi)
  562. {
  563. struct pci_sun4v_msiq_entry *ep;
  564. unsigned long err, type;
  565. /* Note: void pointer arithmetic, 'head' is a byte offset */
  566. ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
  567. (pbm->msiq_ent_count *
  568. sizeof(struct pci_sun4v_msiq_entry))) +
  569. *head);
  570. if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
  571. return 0;
  572. type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
  573. if (unlikely(type != MSIQ_TYPE_MSI32 &&
  574. type != MSIQ_TYPE_MSI64))
  575. return -EINVAL;
  576. *msi = ep->msi_data;
  577. err = pci_sun4v_msi_setstate(pbm->devhandle,
  578. ep->msi_data /* msi_num */,
  579. HV_MSISTATE_IDLE);
  580. if (unlikely(err))
  581. return -ENXIO;
  582. /* Clear the entry. */
  583. ep->version_type &= ~MSIQ_TYPE_MASK;
  584. (*head) += sizeof(struct pci_sun4v_msiq_entry);
  585. if (*head >=
  586. (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
  587. *head = 0;
  588. return 1;
  589. }
  590. static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  591. unsigned long head)
  592. {
  593. unsigned long err;
  594. err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
  595. if (unlikely(err))
  596. return -EINVAL;
  597. return 0;
  598. }
  599. static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
  600. unsigned long msi, int is_msi64)
  601. {
  602. if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
  603. (is_msi64 ?
  604. HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
  605. return -ENXIO;
  606. if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
  607. return -ENXIO;
  608. if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
  609. return -ENXIO;
  610. return 0;
  611. }
  612. static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
  613. {
  614. unsigned long err, msiqid;
  615. err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
  616. if (err)
  617. return -ENXIO;
  618. pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
  619. return 0;
  620. }
  621. static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
  622. {
  623. unsigned long q_size, alloc_size, pages, order;
  624. int i;
  625. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  626. alloc_size = (pbm->msiq_num * q_size);
  627. order = get_order(alloc_size);
  628. pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
  629. if (pages == 0UL) {
  630. printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
  631. order);
  632. return -ENOMEM;
  633. }
  634. memset((char *)pages, 0, PAGE_SIZE << order);
  635. pbm->msi_queues = (void *) pages;
  636. for (i = 0; i < pbm->msiq_num; i++) {
  637. unsigned long err, base = __pa(pages + (i * q_size));
  638. unsigned long ret1, ret2;
  639. err = pci_sun4v_msiq_conf(pbm->devhandle,
  640. pbm->msiq_first + i,
  641. base, pbm->msiq_ent_count);
  642. if (err) {
  643. printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
  644. err);
  645. goto h_error;
  646. }
  647. err = pci_sun4v_msiq_info(pbm->devhandle,
  648. pbm->msiq_first + i,
  649. &ret1, &ret2);
  650. if (err) {
  651. printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
  652. err);
  653. goto h_error;
  654. }
  655. if (ret1 != base || ret2 != pbm->msiq_ent_count) {
  656. printk(KERN_ERR "MSI: Bogus qconf "
  657. "expected[%lx:%x] got[%lx:%lx]\n",
  658. base, pbm->msiq_ent_count,
  659. ret1, ret2);
  660. goto h_error;
  661. }
  662. }
  663. return 0;
  664. h_error:
  665. free_pages(pages, order);
  666. return -EINVAL;
  667. }
  668. static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
  669. {
  670. unsigned long q_size, alloc_size, pages, order;
  671. int i;
  672. for (i = 0; i < pbm->msiq_num; i++) {
  673. unsigned long msiqid = pbm->msiq_first + i;
  674. (void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
  675. }
  676. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  677. alloc_size = (pbm->msiq_num * q_size);
  678. order = get_order(alloc_size);
  679. pages = (unsigned long) pbm->msi_queues;
  680. free_pages(pages, order);
  681. pbm->msi_queues = NULL;
  682. }
  683. static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
  684. unsigned long msiqid,
  685. unsigned long devino)
  686. {
  687. unsigned int virt_irq = sun4v_build_irq(pbm->devhandle, devino);
  688. if (!virt_irq)
  689. return -ENOMEM;
  690. if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
  691. return -EINVAL;
  692. if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
  693. return -EINVAL;
  694. return virt_irq;
  695. }
  696. static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
  697. .get_head = pci_sun4v_get_head,
  698. .dequeue_msi = pci_sun4v_dequeue_msi,
  699. .set_head = pci_sun4v_set_head,
  700. .msi_setup = pci_sun4v_msi_setup,
  701. .msi_teardown = pci_sun4v_msi_teardown,
  702. .msiq_alloc = pci_sun4v_msiq_alloc,
  703. .msiq_free = pci_sun4v_msiq_free,
  704. .msiq_build_irq = pci_sun4v_msiq_build_irq,
  705. };
  706. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  707. {
  708. sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
  709. }
  710. #else /* CONFIG_PCI_MSI */
  711. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  712. {
  713. }
  714. #endif /* !(CONFIG_PCI_MSI) */
  715. static int __init pci_sun4v_pbm_init(struct pci_pbm_info *pbm,
  716. struct of_device *op, u32 devhandle)
  717. {
  718. struct device_node *dp = op->node;
  719. int err;
  720. pbm->numa_node = of_node_to_nid(dp);
  721. pbm->pci_ops = &sun4v_pci_ops;
  722. pbm->config_space_reg_bits = 12;
  723. pbm->index = pci_num_pbms++;
  724. pbm->prom_node = dp;
  725. pbm->devhandle = devhandle;
  726. pbm->name = dp->full_name;
  727. printk("%s: SUN4V PCI Bus Module\n", pbm->name);
  728. printk("%s: On NUMA node %d\n", pbm->name, pbm->numa_node);
  729. pci_determine_mem_io_space(pbm);
  730. pci_get_pbm_props(pbm);
  731. err = pci_sun4v_iommu_init(pbm);
  732. if (err)
  733. return err;
  734. pci_sun4v_msi_init(pbm);
  735. pci_sun4v_scan_bus(pbm, &op->dev);
  736. pbm->next = pci_pbm_root;
  737. pci_pbm_root = pbm;
  738. return 0;
  739. }
  740. static int __devinit pci_sun4v_probe(struct of_device *op,
  741. const struct of_device_id *match)
  742. {
  743. const struct linux_prom64_registers *regs;
  744. static int hvapi_negotiated = 0;
  745. struct pci_pbm_info *pbm;
  746. struct device_node *dp;
  747. struct iommu *iommu;
  748. u32 devhandle;
  749. int i, err;
  750. dp = op->node;
  751. if (!hvapi_negotiated++) {
  752. int err = sun4v_hvapi_register(HV_GRP_PCI,
  753. vpci_major,
  754. &vpci_minor);
  755. if (err) {
  756. printk(KERN_ERR PFX "Could not register hvapi, "
  757. "err=%d\n", err);
  758. return err;
  759. }
  760. printk(KERN_INFO PFX "Registered hvapi major[%lu] minor[%lu]\n",
  761. vpci_major, vpci_minor);
  762. dma_ops = &sun4v_dma_ops;
  763. }
  764. regs = of_get_property(dp, "reg", NULL);
  765. err = -ENODEV;
  766. if (!regs) {
  767. printk(KERN_ERR PFX "Could not find config registers\n");
  768. goto out_err;
  769. }
  770. devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  771. err = -ENOMEM;
  772. if (!iommu_batch_initialized) {
  773. for_each_possible_cpu(i) {
  774. unsigned long page = get_zeroed_page(GFP_KERNEL);
  775. if (!page)
  776. goto out_err;
  777. per_cpu(iommu_batch, i).pglist = (u64 *) page;
  778. }
  779. iommu_batch_initialized = 1;
  780. }
  781. pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
  782. if (!pbm) {
  783. printk(KERN_ERR PFX "Could not allocate pci_pbm_info\n");
  784. goto out_err;
  785. }
  786. iommu = kzalloc(sizeof(struct iommu), GFP_KERNEL);
  787. if (!iommu) {
  788. printk(KERN_ERR PFX "Could not allocate pbm iommu\n");
  789. goto out_free_controller;
  790. }
  791. pbm->iommu = iommu;
  792. err = pci_sun4v_pbm_init(pbm, op, devhandle);
  793. if (err)
  794. goto out_free_iommu;
  795. dev_set_drvdata(&op->dev, pbm);
  796. return 0;
  797. out_free_iommu:
  798. kfree(pbm->iommu);
  799. out_free_controller:
  800. kfree(pbm);
  801. out_err:
  802. return err;
  803. }
  804. static struct of_device_id __initdata pci_sun4v_match[] = {
  805. {
  806. .name = "pci",
  807. .compatible = "SUNW,sun4v-pci",
  808. },
  809. {},
  810. };
  811. static struct of_platform_driver pci_sun4v_driver = {
  812. .name = DRIVER_NAME,
  813. .match_table = pci_sun4v_match,
  814. .probe = pci_sun4v_probe,
  815. };
  816. static int __init pci_sun4v_init(void)
  817. {
  818. return of_register_driver(&pci_sun4v_driver, &of_bus_type);
  819. }
  820. subsys_initcall(pci_sun4v_init);