vmx.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "vmx.h"
  20. #include "segment_descriptor.h"
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/profile.h>
  26. #include <linux/sched.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. MODULE_AUTHOR("Qumranet");
  30. MODULE_LICENSE("GPL");
  31. struct vmcs {
  32. u32 revision_id;
  33. u32 abort;
  34. char data[0];
  35. };
  36. struct vcpu_vmx {
  37. struct kvm_vcpu vcpu;
  38. int launched;
  39. struct kvm_msr_entry *guest_msrs;
  40. struct kvm_msr_entry *host_msrs;
  41. int nmsrs;
  42. int save_nmsrs;
  43. int msr_offset_efer;
  44. #ifdef CONFIG_X86_64
  45. int msr_offset_kernel_gs_base;
  46. #endif
  47. struct vmcs *vmcs;
  48. struct {
  49. int loaded;
  50. u16 fs_sel, gs_sel, ldt_sel;
  51. int fs_gs_ldt_reload_needed;
  52. }host_state;
  53. };
  54. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  55. {
  56. return container_of(vcpu, struct vcpu_vmx, vcpu);
  57. }
  58. static int init_rmode_tss(struct kvm *kvm);
  59. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  60. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  61. static struct page *vmx_io_bitmap_a;
  62. static struct page *vmx_io_bitmap_b;
  63. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  64. static struct vmcs_config {
  65. int size;
  66. int order;
  67. u32 revision_id;
  68. u32 pin_based_exec_ctrl;
  69. u32 cpu_based_exec_ctrl;
  70. u32 vmexit_ctrl;
  71. u32 vmentry_ctrl;
  72. } vmcs_config;
  73. #define VMX_SEGMENT_FIELD(seg) \
  74. [VCPU_SREG_##seg] = { \
  75. .selector = GUEST_##seg##_SELECTOR, \
  76. .base = GUEST_##seg##_BASE, \
  77. .limit = GUEST_##seg##_LIMIT, \
  78. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  79. }
  80. static struct kvm_vmx_segment_field {
  81. unsigned selector;
  82. unsigned base;
  83. unsigned limit;
  84. unsigned ar_bytes;
  85. } kvm_vmx_segment_fields[] = {
  86. VMX_SEGMENT_FIELD(CS),
  87. VMX_SEGMENT_FIELD(DS),
  88. VMX_SEGMENT_FIELD(ES),
  89. VMX_SEGMENT_FIELD(FS),
  90. VMX_SEGMENT_FIELD(GS),
  91. VMX_SEGMENT_FIELD(SS),
  92. VMX_SEGMENT_FIELD(TR),
  93. VMX_SEGMENT_FIELD(LDTR),
  94. };
  95. /*
  96. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  97. * away by decrementing the array size.
  98. */
  99. static const u32 vmx_msr_index[] = {
  100. #ifdef CONFIG_X86_64
  101. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  102. #endif
  103. MSR_EFER, MSR_K6_STAR,
  104. };
  105. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  106. static void load_msrs(struct kvm_msr_entry *e, int n)
  107. {
  108. int i;
  109. for (i = 0; i < n; ++i)
  110. wrmsrl(e[i].index, e[i].data);
  111. }
  112. static void save_msrs(struct kvm_msr_entry *e, int n)
  113. {
  114. int i;
  115. for (i = 0; i < n; ++i)
  116. rdmsrl(e[i].index, e[i].data);
  117. }
  118. static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
  119. {
  120. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  121. }
  122. static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
  123. {
  124. int efer_offset = vmx->msr_offset_efer;
  125. return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
  126. msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  127. }
  128. static inline int is_page_fault(u32 intr_info)
  129. {
  130. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  131. INTR_INFO_VALID_MASK)) ==
  132. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  133. }
  134. static inline int is_no_device(u32 intr_info)
  135. {
  136. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  137. INTR_INFO_VALID_MASK)) ==
  138. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  139. }
  140. static inline int is_external_interrupt(u32 intr_info)
  141. {
  142. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  143. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  144. }
  145. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  146. {
  147. int i;
  148. for (i = 0; i < vmx->nmsrs; ++i)
  149. if (vmx->guest_msrs[i].index == msr)
  150. return i;
  151. return -1;
  152. }
  153. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  154. {
  155. int i;
  156. i = __find_msr_index(vmx, msr);
  157. if (i >= 0)
  158. return &vmx->guest_msrs[i];
  159. return NULL;
  160. }
  161. static void vmcs_clear(struct vmcs *vmcs)
  162. {
  163. u64 phys_addr = __pa(vmcs);
  164. u8 error;
  165. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  166. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  167. : "cc", "memory");
  168. if (error)
  169. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  170. vmcs, phys_addr);
  171. }
  172. static void __vcpu_clear(void *arg)
  173. {
  174. struct vcpu_vmx *vmx = arg;
  175. int cpu = raw_smp_processor_id();
  176. if (vmx->vcpu.cpu == cpu)
  177. vmcs_clear(vmx->vmcs);
  178. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  179. per_cpu(current_vmcs, cpu) = NULL;
  180. rdtscll(vmx->vcpu.host_tsc);
  181. }
  182. static void vcpu_clear(struct vcpu_vmx *vmx)
  183. {
  184. if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
  185. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
  186. vmx, 0, 1);
  187. else
  188. __vcpu_clear(vmx);
  189. vmx->launched = 0;
  190. }
  191. static unsigned long vmcs_readl(unsigned long field)
  192. {
  193. unsigned long value;
  194. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  195. : "=a"(value) : "d"(field) : "cc");
  196. return value;
  197. }
  198. static u16 vmcs_read16(unsigned long field)
  199. {
  200. return vmcs_readl(field);
  201. }
  202. static u32 vmcs_read32(unsigned long field)
  203. {
  204. return vmcs_readl(field);
  205. }
  206. static u64 vmcs_read64(unsigned long field)
  207. {
  208. #ifdef CONFIG_X86_64
  209. return vmcs_readl(field);
  210. #else
  211. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  212. #endif
  213. }
  214. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  215. {
  216. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  217. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  218. dump_stack();
  219. }
  220. static void vmcs_writel(unsigned long field, unsigned long value)
  221. {
  222. u8 error;
  223. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  224. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  225. if (unlikely(error))
  226. vmwrite_error(field, value);
  227. }
  228. static void vmcs_write16(unsigned long field, u16 value)
  229. {
  230. vmcs_writel(field, value);
  231. }
  232. static void vmcs_write32(unsigned long field, u32 value)
  233. {
  234. vmcs_writel(field, value);
  235. }
  236. static void vmcs_write64(unsigned long field, u64 value)
  237. {
  238. #ifdef CONFIG_X86_64
  239. vmcs_writel(field, value);
  240. #else
  241. vmcs_writel(field, value);
  242. asm volatile ("");
  243. vmcs_writel(field+1, value >> 32);
  244. #endif
  245. }
  246. static void vmcs_clear_bits(unsigned long field, u32 mask)
  247. {
  248. vmcs_writel(field, vmcs_readl(field) & ~mask);
  249. }
  250. static void vmcs_set_bits(unsigned long field, u32 mask)
  251. {
  252. vmcs_writel(field, vmcs_readl(field) | mask);
  253. }
  254. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  255. {
  256. u32 eb;
  257. eb = 1u << PF_VECTOR;
  258. if (!vcpu->fpu_active)
  259. eb |= 1u << NM_VECTOR;
  260. if (vcpu->guest_debug.enabled)
  261. eb |= 1u << 1;
  262. if (vcpu->rmode.active)
  263. eb = ~0;
  264. vmcs_write32(EXCEPTION_BITMAP, eb);
  265. }
  266. static void reload_tss(void)
  267. {
  268. #ifndef CONFIG_X86_64
  269. /*
  270. * VT restores TR but not its size. Useless.
  271. */
  272. struct descriptor_table gdt;
  273. struct segment_descriptor *descs;
  274. get_gdt(&gdt);
  275. descs = (void *)gdt.base;
  276. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  277. load_TR_desc();
  278. #endif
  279. }
  280. static void load_transition_efer(struct vcpu_vmx *vmx)
  281. {
  282. u64 trans_efer;
  283. int efer_offset = vmx->msr_offset_efer;
  284. trans_efer = vmx->host_msrs[efer_offset].data;
  285. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  286. trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  287. wrmsrl(MSR_EFER, trans_efer);
  288. vmx->vcpu.stat.efer_reload++;
  289. }
  290. static void vmx_save_host_state(struct vcpu_vmx *vmx)
  291. {
  292. if (vmx->host_state.loaded)
  293. return;
  294. vmx->host_state.loaded = 1;
  295. /*
  296. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  297. * allow segment selectors with cpl > 0 or ti == 1.
  298. */
  299. vmx->host_state.ldt_sel = read_ldt();
  300. vmx->host_state.fs_gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  301. vmx->host_state.fs_sel = read_fs();
  302. if (!(vmx->host_state.fs_sel & 7))
  303. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  304. else {
  305. vmcs_write16(HOST_FS_SELECTOR, 0);
  306. vmx->host_state.fs_gs_ldt_reload_needed = 1;
  307. }
  308. vmx->host_state.gs_sel = read_gs();
  309. if (!(vmx->host_state.gs_sel & 7))
  310. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  311. else {
  312. vmcs_write16(HOST_GS_SELECTOR, 0);
  313. vmx->host_state.fs_gs_ldt_reload_needed = 1;
  314. }
  315. #ifdef CONFIG_X86_64
  316. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  317. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  318. #else
  319. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  320. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  321. #endif
  322. #ifdef CONFIG_X86_64
  323. if (is_long_mode(&vmx->vcpu)) {
  324. save_msrs(vmx->host_msrs +
  325. vmx->msr_offset_kernel_gs_base, 1);
  326. }
  327. #endif
  328. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  329. if (msr_efer_need_save_restore(vmx))
  330. load_transition_efer(vmx);
  331. }
  332. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  333. {
  334. unsigned long flags;
  335. if (!vmx->host_state.loaded)
  336. return;
  337. vmx->host_state.loaded = 0;
  338. if (vmx->host_state.fs_gs_ldt_reload_needed) {
  339. load_ldt(vmx->host_state.ldt_sel);
  340. load_fs(vmx->host_state.fs_sel);
  341. /*
  342. * If we have to reload gs, we must take care to
  343. * preserve our gs base.
  344. */
  345. local_irq_save(flags);
  346. load_gs(vmx->host_state.gs_sel);
  347. #ifdef CONFIG_X86_64
  348. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  349. #endif
  350. local_irq_restore(flags);
  351. reload_tss();
  352. }
  353. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  354. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  355. if (msr_efer_need_save_restore(vmx))
  356. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  357. }
  358. /*
  359. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  360. * vcpu mutex is already taken.
  361. */
  362. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  363. {
  364. struct vcpu_vmx *vmx = to_vmx(vcpu);
  365. u64 phys_addr = __pa(vmx->vmcs);
  366. u64 tsc_this, delta;
  367. if (vcpu->cpu != cpu)
  368. vcpu_clear(vmx);
  369. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  370. u8 error;
  371. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  372. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  373. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  374. : "cc");
  375. if (error)
  376. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  377. vmx->vmcs, phys_addr);
  378. }
  379. if (vcpu->cpu != cpu) {
  380. struct descriptor_table dt;
  381. unsigned long sysenter_esp;
  382. vcpu->cpu = cpu;
  383. /*
  384. * Linux uses per-cpu TSS and GDT, so set these when switching
  385. * processors.
  386. */
  387. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  388. get_gdt(&dt);
  389. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  390. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  391. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  392. /*
  393. * Make sure the time stamp counter is monotonous.
  394. */
  395. rdtscll(tsc_this);
  396. delta = vcpu->host_tsc - tsc_this;
  397. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  398. }
  399. }
  400. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  401. {
  402. vmx_load_host_state(to_vmx(vcpu));
  403. kvm_put_guest_fpu(vcpu);
  404. }
  405. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  406. {
  407. if (vcpu->fpu_active)
  408. return;
  409. vcpu->fpu_active = 1;
  410. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  411. if (vcpu->cr0 & X86_CR0_TS)
  412. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  413. update_exception_bitmap(vcpu);
  414. }
  415. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  416. {
  417. if (!vcpu->fpu_active)
  418. return;
  419. vcpu->fpu_active = 0;
  420. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  421. update_exception_bitmap(vcpu);
  422. }
  423. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  424. {
  425. vcpu_clear(to_vmx(vcpu));
  426. }
  427. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  428. {
  429. return vmcs_readl(GUEST_RFLAGS);
  430. }
  431. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  432. {
  433. vmcs_writel(GUEST_RFLAGS, rflags);
  434. }
  435. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  436. {
  437. unsigned long rip;
  438. u32 interruptibility;
  439. rip = vmcs_readl(GUEST_RIP);
  440. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  441. vmcs_writel(GUEST_RIP, rip);
  442. /*
  443. * We emulated an instruction, so temporary interrupt blocking
  444. * should be removed, if set.
  445. */
  446. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  447. if (interruptibility & 3)
  448. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  449. interruptibility & ~3);
  450. vcpu->interrupt_window_open = 1;
  451. }
  452. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  453. {
  454. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  455. vmcs_readl(GUEST_RIP));
  456. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  457. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  458. GP_VECTOR |
  459. INTR_TYPE_EXCEPTION |
  460. INTR_INFO_DELIEVER_CODE_MASK |
  461. INTR_INFO_VALID_MASK);
  462. }
  463. /*
  464. * Swap MSR entry in host/guest MSR entry array.
  465. */
  466. #ifdef CONFIG_X86_64
  467. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  468. {
  469. struct kvm_msr_entry tmp;
  470. tmp = vmx->guest_msrs[to];
  471. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  472. vmx->guest_msrs[from] = tmp;
  473. tmp = vmx->host_msrs[to];
  474. vmx->host_msrs[to] = vmx->host_msrs[from];
  475. vmx->host_msrs[from] = tmp;
  476. }
  477. #endif
  478. /*
  479. * Set up the vmcs to automatically save and restore system
  480. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  481. * mode, as fiddling with msrs is very expensive.
  482. */
  483. static void setup_msrs(struct vcpu_vmx *vmx)
  484. {
  485. int save_nmsrs;
  486. save_nmsrs = 0;
  487. #ifdef CONFIG_X86_64
  488. if (is_long_mode(&vmx->vcpu)) {
  489. int index;
  490. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  491. if (index >= 0)
  492. move_msr_up(vmx, index, save_nmsrs++);
  493. index = __find_msr_index(vmx, MSR_LSTAR);
  494. if (index >= 0)
  495. move_msr_up(vmx, index, save_nmsrs++);
  496. index = __find_msr_index(vmx, MSR_CSTAR);
  497. if (index >= 0)
  498. move_msr_up(vmx, index, save_nmsrs++);
  499. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  500. if (index >= 0)
  501. move_msr_up(vmx, index, save_nmsrs++);
  502. /*
  503. * MSR_K6_STAR is only needed on long mode guests, and only
  504. * if efer.sce is enabled.
  505. */
  506. index = __find_msr_index(vmx, MSR_K6_STAR);
  507. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  508. move_msr_up(vmx, index, save_nmsrs++);
  509. }
  510. #endif
  511. vmx->save_nmsrs = save_nmsrs;
  512. #ifdef CONFIG_X86_64
  513. vmx->msr_offset_kernel_gs_base =
  514. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  515. #endif
  516. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  517. }
  518. /*
  519. * reads and returns guest's timestamp counter "register"
  520. * guest_tsc = host_tsc + tsc_offset -- 21.3
  521. */
  522. static u64 guest_read_tsc(void)
  523. {
  524. u64 host_tsc, tsc_offset;
  525. rdtscll(host_tsc);
  526. tsc_offset = vmcs_read64(TSC_OFFSET);
  527. return host_tsc + tsc_offset;
  528. }
  529. /*
  530. * writes 'guest_tsc' into guest's timestamp counter "register"
  531. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  532. */
  533. static void guest_write_tsc(u64 guest_tsc)
  534. {
  535. u64 host_tsc;
  536. rdtscll(host_tsc);
  537. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  538. }
  539. /*
  540. * Reads an msr value (of 'msr_index') into 'pdata'.
  541. * Returns 0 on success, non-0 otherwise.
  542. * Assumes vcpu_load() was already called.
  543. */
  544. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  545. {
  546. u64 data;
  547. struct kvm_msr_entry *msr;
  548. if (!pdata) {
  549. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  550. return -EINVAL;
  551. }
  552. switch (msr_index) {
  553. #ifdef CONFIG_X86_64
  554. case MSR_FS_BASE:
  555. data = vmcs_readl(GUEST_FS_BASE);
  556. break;
  557. case MSR_GS_BASE:
  558. data = vmcs_readl(GUEST_GS_BASE);
  559. break;
  560. case MSR_EFER:
  561. return kvm_get_msr_common(vcpu, msr_index, pdata);
  562. #endif
  563. case MSR_IA32_TIME_STAMP_COUNTER:
  564. data = guest_read_tsc();
  565. break;
  566. case MSR_IA32_SYSENTER_CS:
  567. data = vmcs_read32(GUEST_SYSENTER_CS);
  568. break;
  569. case MSR_IA32_SYSENTER_EIP:
  570. data = vmcs_readl(GUEST_SYSENTER_EIP);
  571. break;
  572. case MSR_IA32_SYSENTER_ESP:
  573. data = vmcs_readl(GUEST_SYSENTER_ESP);
  574. break;
  575. default:
  576. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  577. if (msr) {
  578. data = msr->data;
  579. break;
  580. }
  581. return kvm_get_msr_common(vcpu, msr_index, pdata);
  582. }
  583. *pdata = data;
  584. return 0;
  585. }
  586. /*
  587. * Writes msr value into into the appropriate "register".
  588. * Returns 0 on success, non-0 otherwise.
  589. * Assumes vcpu_load() was already called.
  590. */
  591. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  592. {
  593. struct vcpu_vmx *vmx = to_vmx(vcpu);
  594. struct kvm_msr_entry *msr;
  595. int ret = 0;
  596. switch (msr_index) {
  597. #ifdef CONFIG_X86_64
  598. case MSR_EFER:
  599. ret = kvm_set_msr_common(vcpu, msr_index, data);
  600. if (vmx->host_state.loaded)
  601. load_transition_efer(vmx);
  602. break;
  603. case MSR_FS_BASE:
  604. vmcs_writel(GUEST_FS_BASE, data);
  605. break;
  606. case MSR_GS_BASE:
  607. vmcs_writel(GUEST_GS_BASE, data);
  608. break;
  609. #endif
  610. case MSR_IA32_SYSENTER_CS:
  611. vmcs_write32(GUEST_SYSENTER_CS, data);
  612. break;
  613. case MSR_IA32_SYSENTER_EIP:
  614. vmcs_writel(GUEST_SYSENTER_EIP, data);
  615. break;
  616. case MSR_IA32_SYSENTER_ESP:
  617. vmcs_writel(GUEST_SYSENTER_ESP, data);
  618. break;
  619. case MSR_IA32_TIME_STAMP_COUNTER:
  620. guest_write_tsc(data);
  621. break;
  622. default:
  623. msr = find_msr_entry(vmx, msr_index);
  624. if (msr) {
  625. msr->data = data;
  626. if (vmx->host_state.loaded)
  627. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  628. break;
  629. }
  630. ret = kvm_set_msr_common(vcpu, msr_index, data);
  631. }
  632. return ret;
  633. }
  634. /*
  635. * Sync the rsp and rip registers into the vcpu structure. This allows
  636. * registers to be accessed by indexing vcpu->regs.
  637. */
  638. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  639. {
  640. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  641. vcpu->rip = vmcs_readl(GUEST_RIP);
  642. }
  643. /*
  644. * Syncs rsp and rip back into the vmcs. Should be called after possible
  645. * modification.
  646. */
  647. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  648. {
  649. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  650. vmcs_writel(GUEST_RIP, vcpu->rip);
  651. }
  652. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  653. {
  654. unsigned long dr7 = 0x400;
  655. int old_singlestep;
  656. old_singlestep = vcpu->guest_debug.singlestep;
  657. vcpu->guest_debug.enabled = dbg->enabled;
  658. if (vcpu->guest_debug.enabled) {
  659. int i;
  660. dr7 |= 0x200; /* exact */
  661. for (i = 0; i < 4; ++i) {
  662. if (!dbg->breakpoints[i].enabled)
  663. continue;
  664. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  665. dr7 |= 2 << (i*2); /* global enable */
  666. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  667. }
  668. vcpu->guest_debug.singlestep = dbg->singlestep;
  669. } else
  670. vcpu->guest_debug.singlestep = 0;
  671. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  672. unsigned long flags;
  673. flags = vmcs_readl(GUEST_RFLAGS);
  674. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  675. vmcs_writel(GUEST_RFLAGS, flags);
  676. }
  677. update_exception_bitmap(vcpu);
  678. vmcs_writel(GUEST_DR7, dr7);
  679. return 0;
  680. }
  681. static __init int cpu_has_kvm_support(void)
  682. {
  683. unsigned long ecx = cpuid_ecx(1);
  684. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  685. }
  686. static __init int vmx_disabled_by_bios(void)
  687. {
  688. u64 msr;
  689. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  690. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  691. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  692. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  693. /* locked but not enabled */
  694. }
  695. static void hardware_enable(void *garbage)
  696. {
  697. int cpu = raw_smp_processor_id();
  698. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  699. u64 old;
  700. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  701. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  702. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  703. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  704. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  705. /* enable and lock */
  706. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  707. MSR_IA32_FEATURE_CONTROL_LOCKED |
  708. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  709. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  710. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  711. : "memory", "cc");
  712. }
  713. static void hardware_disable(void *garbage)
  714. {
  715. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  716. }
  717. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  718. u32 msr, u32* result)
  719. {
  720. u32 vmx_msr_low, vmx_msr_high;
  721. u32 ctl = ctl_min | ctl_opt;
  722. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  723. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  724. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  725. /* Ensure minimum (required) set of control bits are supported. */
  726. if (ctl_min & ~ctl)
  727. return -EIO;
  728. *result = ctl;
  729. return 0;
  730. }
  731. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  732. {
  733. u32 vmx_msr_low, vmx_msr_high;
  734. u32 min, opt;
  735. u32 _pin_based_exec_control = 0;
  736. u32 _cpu_based_exec_control = 0;
  737. u32 _vmexit_control = 0;
  738. u32 _vmentry_control = 0;
  739. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  740. opt = 0;
  741. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  742. &_pin_based_exec_control) < 0)
  743. return -EIO;
  744. min = CPU_BASED_HLT_EXITING |
  745. #ifdef CONFIG_X86_64
  746. CPU_BASED_CR8_LOAD_EXITING |
  747. CPU_BASED_CR8_STORE_EXITING |
  748. #endif
  749. CPU_BASED_USE_IO_BITMAPS |
  750. CPU_BASED_MOV_DR_EXITING |
  751. CPU_BASED_USE_TSC_OFFSETING;
  752. opt = 0;
  753. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  754. &_cpu_based_exec_control) < 0)
  755. return -EIO;
  756. min = 0;
  757. #ifdef CONFIG_X86_64
  758. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  759. #endif
  760. opt = 0;
  761. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  762. &_vmexit_control) < 0)
  763. return -EIO;
  764. min = opt = 0;
  765. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  766. &_vmentry_control) < 0)
  767. return -EIO;
  768. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  769. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  770. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  771. return -EIO;
  772. #ifdef CONFIG_X86_64
  773. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  774. if (vmx_msr_high & (1u<<16))
  775. return -EIO;
  776. #endif
  777. /* Require Write-Back (WB) memory type for VMCS accesses. */
  778. if (((vmx_msr_high >> 18) & 15) != 6)
  779. return -EIO;
  780. vmcs_conf->size = vmx_msr_high & 0x1fff;
  781. vmcs_conf->order = get_order(vmcs_config.size);
  782. vmcs_conf->revision_id = vmx_msr_low;
  783. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  784. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  785. vmcs_conf->vmexit_ctrl = _vmexit_control;
  786. vmcs_conf->vmentry_ctrl = _vmentry_control;
  787. return 0;
  788. }
  789. static struct vmcs *alloc_vmcs_cpu(int cpu)
  790. {
  791. int node = cpu_to_node(cpu);
  792. struct page *pages;
  793. struct vmcs *vmcs;
  794. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  795. if (!pages)
  796. return NULL;
  797. vmcs = page_address(pages);
  798. memset(vmcs, 0, vmcs_config.size);
  799. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  800. return vmcs;
  801. }
  802. static struct vmcs *alloc_vmcs(void)
  803. {
  804. return alloc_vmcs_cpu(raw_smp_processor_id());
  805. }
  806. static void free_vmcs(struct vmcs *vmcs)
  807. {
  808. free_pages((unsigned long)vmcs, vmcs_config.order);
  809. }
  810. static void free_kvm_area(void)
  811. {
  812. int cpu;
  813. for_each_online_cpu(cpu)
  814. free_vmcs(per_cpu(vmxarea, cpu));
  815. }
  816. static __init int alloc_kvm_area(void)
  817. {
  818. int cpu;
  819. for_each_online_cpu(cpu) {
  820. struct vmcs *vmcs;
  821. vmcs = alloc_vmcs_cpu(cpu);
  822. if (!vmcs) {
  823. free_kvm_area();
  824. return -ENOMEM;
  825. }
  826. per_cpu(vmxarea, cpu) = vmcs;
  827. }
  828. return 0;
  829. }
  830. static __init int hardware_setup(void)
  831. {
  832. if (setup_vmcs_config(&vmcs_config) < 0)
  833. return -EIO;
  834. return alloc_kvm_area();
  835. }
  836. static __exit void hardware_unsetup(void)
  837. {
  838. free_kvm_area();
  839. }
  840. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  841. {
  842. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  843. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  844. vmcs_write16(sf->selector, save->selector);
  845. vmcs_writel(sf->base, save->base);
  846. vmcs_write32(sf->limit, save->limit);
  847. vmcs_write32(sf->ar_bytes, save->ar);
  848. } else {
  849. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  850. << AR_DPL_SHIFT;
  851. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  852. }
  853. }
  854. static void enter_pmode(struct kvm_vcpu *vcpu)
  855. {
  856. unsigned long flags;
  857. vcpu->rmode.active = 0;
  858. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  859. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  860. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  861. flags = vmcs_readl(GUEST_RFLAGS);
  862. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  863. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  864. vmcs_writel(GUEST_RFLAGS, flags);
  865. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  866. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  867. update_exception_bitmap(vcpu);
  868. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  869. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  870. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  871. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  872. vmcs_write16(GUEST_SS_SELECTOR, 0);
  873. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  874. vmcs_write16(GUEST_CS_SELECTOR,
  875. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  876. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  877. }
  878. static gva_t rmode_tss_base(struct kvm* kvm)
  879. {
  880. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  881. return base_gfn << PAGE_SHIFT;
  882. }
  883. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  884. {
  885. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  886. save->selector = vmcs_read16(sf->selector);
  887. save->base = vmcs_readl(sf->base);
  888. save->limit = vmcs_read32(sf->limit);
  889. save->ar = vmcs_read32(sf->ar_bytes);
  890. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  891. vmcs_write32(sf->limit, 0xffff);
  892. vmcs_write32(sf->ar_bytes, 0xf3);
  893. }
  894. static void enter_rmode(struct kvm_vcpu *vcpu)
  895. {
  896. unsigned long flags;
  897. vcpu->rmode.active = 1;
  898. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  899. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  900. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  901. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  902. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  903. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  904. flags = vmcs_readl(GUEST_RFLAGS);
  905. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  906. flags |= IOPL_MASK | X86_EFLAGS_VM;
  907. vmcs_writel(GUEST_RFLAGS, flags);
  908. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  909. update_exception_bitmap(vcpu);
  910. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  911. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  912. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  913. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  914. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  915. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  916. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  917. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  918. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  919. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  920. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  921. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  922. init_rmode_tss(vcpu->kvm);
  923. }
  924. #ifdef CONFIG_X86_64
  925. static void enter_lmode(struct kvm_vcpu *vcpu)
  926. {
  927. u32 guest_tr_ar;
  928. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  929. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  930. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  931. __FUNCTION__);
  932. vmcs_write32(GUEST_TR_AR_BYTES,
  933. (guest_tr_ar & ~AR_TYPE_MASK)
  934. | AR_TYPE_BUSY_64_TSS);
  935. }
  936. vcpu->shadow_efer |= EFER_LMA;
  937. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  938. vmcs_write32(VM_ENTRY_CONTROLS,
  939. vmcs_read32(VM_ENTRY_CONTROLS)
  940. | VM_ENTRY_IA32E_MODE);
  941. }
  942. static void exit_lmode(struct kvm_vcpu *vcpu)
  943. {
  944. vcpu->shadow_efer &= ~EFER_LMA;
  945. vmcs_write32(VM_ENTRY_CONTROLS,
  946. vmcs_read32(VM_ENTRY_CONTROLS)
  947. & ~VM_ENTRY_IA32E_MODE);
  948. }
  949. #endif
  950. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  951. {
  952. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  953. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  954. }
  955. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  956. {
  957. vmx_fpu_deactivate(vcpu);
  958. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  959. enter_pmode(vcpu);
  960. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  961. enter_rmode(vcpu);
  962. #ifdef CONFIG_X86_64
  963. if (vcpu->shadow_efer & EFER_LME) {
  964. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  965. enter_lmode(vcpu);
  966. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  967. exit_lmode(vcpu);
  968. }
  969. #endif
  970. vmcs_writel(CR0_READ_SHADOW, cr0);
  971. vmcs_writel(GUEST_CR0,
  972. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  973. vcpu->cr0 = cr0;
  974. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  975. vmx_fpu_activate(vcpu);
  976. }
  977. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  978. {
  979. vmcs_writel(GUEST_CR3, cr3);
  980. if (vcpu->cr0 & X86_CR0_PE)
  981. vmx_fpu_deactivate(vcpu);
  982. }
  983. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  984. {
  985. vmcs_writel(CR4_READ_SHADOW, cr4);
  986. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  987. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  988. vcpu->cr4 = cr4;
  989. }
  990. #ifdef CONFIG_X86_64
  991. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  992. {
  993. struct vcpu_vmx *vmx = to_vmx(vcpu);
  994. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  995. vcpu->shadow_efer = efer;
  996. if (efer & EFER_LMA) {
  997. vmcs_write32(VM_ENTRY_CONTROLS,
  998. vmcs_read32(VM_ENTRY_CONTROLS) |
  999. VM_ENTRY_IA32E_MODE);
  1000. msr->data = efer;
  1001. } else {
  1002. vmcs_write32(VM_ENTRY_CONTROLS,
  1003. vmcs_read32(VM_ENTRY_CONTROLS) &
  1004. ~VM_ENTRY_IA32E_MODE);
  1005. msr->data = efer & ~EFER_LME;
  1006. }
  1007. setup_msrs(vmx);
  1008. }
  1009. #endif
  1010. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1011. {
  1012. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1013. return vmcs_readl(sf->base);
  1014. }
  1015. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1016. struct kvm_segment *var, int seg)
  1017. {
  1018. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1019. u32 ar;
  1020. var->base = vmcs_readl(sf->base);
  1021. var->limit = vmcs_read32(sf->limit);
  1022. var->selector = vmcs_read16(sf->selector);
  1023. ar = vmcs_read32(sf->ar_bytes);
  1024. if (ar & AR_UNUSABLE_MASK)
  1025. ar = 0;
  1026. var->type = ar & 15;
  1027. var->s = (ar >> 4) & 1;
  1028. var->dpl = (ar >> 5) & 3;
  1029. var->present = (ar >> 7) & 1;
  1030. var->avl = (ar >> 12) & 1;
  1031. var->l = (ar >> 13) & 1;
  1032. var->db = (ar >> 14) & 1;
  1033. var->g = (ar >> 15) & 1;
  1034. var->unusable = (ar >> 16) & 1;
  1035. }
  1036. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1037. {
  1038. u32 ar;
  1039. if (var->unusable)
  1040. ar = 1 << 16;
  1041. else {
  1042. ar = var->type & 15;
  1043. ar |= (var->s & 1) << 4;
  1044. ar |= (var->dpl & 3) << 5;
  1045. ar |= (var->present & 1) << 7;
  1046. ar |= (var->avl & 1) << 12;
  1047. ar |= (var->l & 1) << 13;
  1048. ar |= (var->db & 1) << 14;
  1049. ar |= (var->g & 1) << 15;
  1050. }
  1051. if (ar == 0) /* a 0 value means unusable */
  1052. ar = AR_UNUSABLE_MASK;
  1053. return ar;
  1054. }
  1055. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1056. struct kvm_segment *var, int seg)
  1057. {
  1058. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1059. u32 ar;
  1060. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1061. vcpu->rmode.tr.selector = var->selector;
  1062. vcpu->rmode.tr.base = var->base;
  1063. vcpu->rmode.tr.limit = var->limit;
  1064. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1065. return;
  1066. }
  1067. vmcs_writel(sf->base, var->base);
  1068. vmcs_write32(sf->limit, var->limit);
  1069. vmcs_write16(sf->selector, var->selector);
  1070. if (vcpu->rmode.active && var->s) {
  1071. /*
  1072. * Hack real-mode segments into vm86 compatibility.
  1073. */
  1074. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1075. vmcs_writel(sf->base, 0xf0000);
  1076. ar = 0xf3;
  1077. } else
  1078. ar = vmx_segment_access_rights(var);
  1079. vmcs_write32(sf->ar_bytes, ar);
  1080. }
  1081. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1082. {
  1083. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1084. *db = (ar >> 14) & 1;
  1085. *l = (ar >> 13) & 1;
  1086. }
  1087. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1088. {
  1089. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1090. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1091. }
  1092. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1093. {
  1094. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1095. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1096. }
  1097. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1098. {
  1099. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1100. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1101. }
  1102. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1103. {
  1104. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1105. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1106. }
  1107. static int init_rmode_tss(struct kvm* kvm)
  1108. {
  1109. struct page *p1, *p2, *p3;
  1110. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1111. char *page;
  1112. p1 = gfn_to_page(kvm, fn++);
  1113. p2 = gfn_to_page(kvm, fn++);
  1114. p3 = gfn_to_page(kvm, fn);
  1115. if (!p1 || !p2 || !p3) {
  1116. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1117. return 0;
  1118. }
  1119. page = kmap_atomic(p1, KM_USER0);
  1120. clear_page(page);
  1121. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1122. kunmap_atomic(page, KM_USER0);
  1123. page = kmap_atomic(p2, KM_USER0);
  1124. clear_page(page);
  1125. kunmap_atomic(page, KM_USER0);
  1126. page = kmap_atomic(p3, KM_USER0);
  1127. clear_page(page);
  1128. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1129. kunmap_atomic(page, KM_USER0);
  1130. return 1;
  1131. }
  1132. static void seg_setup(int seg)
  1133. {
  1134. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1135. vmcs_write16(sf->selector, 0);
  1136. vmcs_writel(sf->base, 0);
  1137. vmcs_write32(sf->limit, 0xffff);
  1138. vmcs_write32(sf->ar_bytes, 0x93);
  1139. }
  1140. /*
  1141. * Sets up the vmcs for emulated real mode.
  1142. */
  1143. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1144. {
  1145. u32 host_sysenter_cs;
  1146. u32 junk;
  1147. unsigned long a;
  1148. struct descriptor_table dt;
  1149. int i;
  1150. int ret = 0;
  1151. unsigned long kvm_vmx_return;
  1152. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1153. ret = -ENOMEM;
  1154. goto out;
  1155. }
  1156. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1157. vmx->vcpu.cr8 = 0;
  1158. vmx->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1159. if (vmx->vcpu.vcpu_id == 0)
  1160. vmx->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
  1161. fx_init(&vmx->vcpu);
  1162. /*
  1163. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1164. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1165. */
  1166. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1167. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1168. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1169. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1170. seg_setup(VCPU_SREG_DS);
  1171. seg_setup(VCPU_SREG_ES);
  1172. seg_setup(VCPU_SREG_FS);
  1173. seg_setup(VCPU_SREG_GS);
  1174. seg_setup(VCPU_SREG_SS);
  1175. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1176. vmcs_writel(GUEST_TR_BASE, 0);
  1177. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1178. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1179. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1180. vmcs_writel(GUEST_LDTR_BASE, 0);
  1181. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1182. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1183. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1184. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1185. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1186. vmcs_writel(GUEST_RFLAGS, 0x02);
  1187. vmcs_writel(GUEST_RIP, 0xfff0);
  1188. vmcs_writel(GUEST_RSP, 0);
  1189. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1190. vmcs_writel(GUEST_DR7, 0x400);
  1191. vmcs_writel(GUEST_GDTR_BASE, 0);
  1192. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1193. vmcs_writel(GUEST_IDTR_BASE, 0);
  1194. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1195. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1196. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1197. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1198. /* I/O */
  1199. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1200. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1201. guest_write_tsc(0);
  1202. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1203. /* Special registers */
  1204. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1205. /* Control */
  1206. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1207. vmcs_config.pin_based_exec_ctrl);
  1208. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1209. vmcs_config.cpu_based_exec_ctrl);
  1210. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1211. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1212. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1213. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1214. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1215. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1216. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1217. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1218. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1219. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1220. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1221. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1222. #ifdef CONFIG_X86_64
  1223. rdmsrl(MSR_FS_BASE, a);
  1224. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1225. rdmsrl(MSR_GS_BASE, a);
  1226. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1227. #else
  1228. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1229. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1230. #endif
  1231. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1232. get_idt(&dt);
  1233. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1234. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1235. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1236. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1237. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1238. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1239. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1240. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1241. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1242. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1243. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1244. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1245. for (i = 0; i < NR_VMX_MSR; ++i) {
  1246. u32 index = vmx_msr_index[i];
  1247. u32 data_low, data_high;
  1248. u64 data;
  1249. int j = vmx->nmsrs;
  1250. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1251. continue;
  1252. if (wrmsr_safe(index, data_low, data_high) < 0)
  1253. continue;
  1254. data = data_low | ((u64)data_high << 32);
  1255. vmx->host_msrs[j].index = index;
  1256. vmx->host_msrs[j].reserved = 0;
  1257. vmx->host_msrs[j].data = data;
  1258. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1259. ++vmx->nmsrs;
  1260. }
  1261. setup_msrs(vmx);
  1262. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1263. /* 22.2.1, 20.8.1 */
  1264. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1265. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1266. #ifdef CONFIG_X86_64
  1267. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1268. vmcs_writel(TPR_THRESHOLD, 0);
  1269. #endif
  1270. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1271. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1272. vmx->vcpu.cr0 = 0x60000010;
  1273. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
  1274. vmx_set_cr4(&vmx->vcpu, 0);
  1275. #ifdef CONFIG_X86_64
  1276. vmx_set_efer(&vmx->vcpu, 0);
  1277. #endif
  1278. vmx_fpu_activate(&vmx->vcpu);
  1279. update_exception_bitmap(&vmx->vcpu);
  1280. return 0;
  1281. out:
  1282. return ret;
  1283. }
  1284. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1285. {
  1286. u16 ent[2];
  1287. u16 cs;
  1288. u16 ip;
  1289. unsigned long flags;
  1290. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1291. u16 sp = vmcs_readl(GUEST_RSP);
  1292. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1293. if (sp > ss_limit || sp < 6 ) {
  1294. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1295. __FUNCTION__,
  1296. vmcs_readl(GUEST_RSP),
  1297. vmcs_readl(GUEST_SS_BASE),
  1298. vmcs_read32(GUEST_SS_LIMIT));
  1299. return;
  1300. }
  1301. if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
  1302. X86EMUL_CONTINUE) {
  1303. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1304. return;
  1305. }
  1306. flags = vmcs_readl(GUEST_RFLAGS);
  1307. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1308. ip = vmcs_readl(GUEST_RIP);
  1309. if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
  1310. emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
  1311. emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
  1312. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1313. return;
  1314. }
  1315. vmcs_writel(GUEST_RFLAGS, flags &
  1316. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1317. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1318. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1319. vmcs_writel(GUEST_RIP, ent[0]);
  1320. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1321. }
  1322. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1323. {
  1324. int word_index = __ffs(vcpu->irq_summary);
  1325. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1326. int irq = word_index * BITS_PER_LONG + bit_index;
  1327. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1328. if (!vcpu->irq_pending[word_index])
  1329. clear_bit(word_index, &vcpu->irq_summary);
  1330. if (vcpu->rmode.active) {
  1331. inject_rmode_irq(vcpu, irq);
  1332. return;
  1333. }
  1334. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1335. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1336. }
  1337. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1338. struct kvm_run *kvm_run)
  1339. {
  1340. u32 cpu_based_vm_exec_control;
  1341. vcpu->interrupt_window_open =
  1342. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1343. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1344. if (vcpu->interrupt_window_open &&
  1345. vcpu->irq_summary &&
  1346. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1347. /*
  1348. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1349. */
  1350. kvm_do_inject_irq(vcpu);
  1351. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1352. if (!vcpu->interrupt_window_open &&
  1353. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1354. /*
  1355. * Interrupts blocked. Wait for unblock.
  1356. */
  1357. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1358. else
  1359. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1360. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1361. }
  1362. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1363. {
  1364. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1365. set_debugreg(dbg->bp[0], 0);
  1366. set_debugreg(dbg->bp[1], 1);
  1367. set_debugreg(dbg->bp[2], 2);
  1368. set_debugreg(dbg->bp[3], 3);
  1369. if (dbg->singlestep) {
  1370. unsigned long flags;
  1371. flags = vmcs_readl(GUEST_RFLAGS);
  1372. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1373. vmcs_writel(GUEST_RFLAGS, flags);
  1374. }
  1375. }
  1376. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1377. int vec, u32 err_code)
  1378. {
  1379. if (!vcpu->rmode.active)
  1380. return 0;
  1381. /*
  1382. * Instruction with address size override prefix opcode 0x67
  1383. * Cause the #SS fault with 0 error code in VM86 mode.
  1384. */
  1385. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1386. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1387. return 1;
  1388. return 0;
  1389. }
  1390. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1391. {
  1392. u32 intr_info, error_code;
  1393. unsigned long cr2, rip;
  1394. u32 vect_info;
  1395. enum emulation_result er;
  1396. int r;
  1397. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1398. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1399. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1400. !is_page_fault(intr_info)) {
  1401. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1402. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1403. }
  1404. if (is_external_interrupt(vect_info)) {
  1405. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1406. set_bit(irq, vcpu->irq_pending);
  1407. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1408. }
  1409. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1410. asm ("int $2");
  1411. return 1;
  1412. }
  1413. if (is_no_device(intr_info)) {
  1414. vmx_fpu_activate(vcpu);
  1415. return 1;
  1416. }
  1417. error_code = 0;
  1418. rip = vmcs_readl(GUEST_RIP);
  1419. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1420. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1421. if (is_page_fault(intr_info)) {
  1422. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1423. mutex_lock(&vcpu->kvm->lock);
  1424. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1425. if (r < 0) {
  1426. mutex_unlock(&vcpu->kvm->lock);
  1427. return r;
  1428. }
  1429. if (!r) {
  1430. mutex_unlock(&vcpu->kvm->lock);
  1431. return 1;
  1432. }
  1433. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1434. mutex_unlock(&vcpu->kvm->lock);
  1435. switch (er) {
  1436. case EMULATE_DONE:
  1437. return 1;
  1438. case EMULATE_DO_MMIO:
  1439. ++vcpu->stat.mmio_exits;
  1440. return 0;
  1441. case EMULATE_FAIL:
  1442. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1443. break;
  1444. default:
  1445. BUG();
  1446. }
  1447. }
  1448. if (vcpu->rmode.active &&
  1449. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1450. error_code)) {
  1451. if (vcpu->halt_request) {
  1452. vcpu->halt_request = 0;
  1453. return kvm_emulate_halt(vcpu);
  1454. }
  1455. return 1;
  1456. }
  1457. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1458. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1459. return 0;
  1460. }
  1461. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1462. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1463. kvm_run->ex.error_code = error_code;
  1464. return 0;
  1465. }
  1466. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1467. struct kvm_run *kvm_run)
  1468. {
  1469. ++vcpu->stat.irq_exits;
  1470. return 1;
  1471. }
  1472. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1473. {
  1474. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1475. return 0;
  1476. }
  1477. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1478. {
  1479. u64 exit_qualification;
  1480. int size, down, in, string, rep;
  1481. unsigned port;
  1482. ++vcpu->stat.io_exits;
  1483. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1484. string = (exit_qualification & 16) != 0;
  1485. if (string) {
  1486. if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
  1487. return 0;
  1488. return 1;
  1489. }
  1490. size = (exit_qualification & 7) + 1;
  1491. in = (exit_qualification & 8) != 0;
  1492. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1493. rep = (exit_qualification & 32) != 0;
  1494. port = exit_qualification >> 16;
  1495. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1496. }
  1497. static void
  1498. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1499. {
  1500. /*
  1501. * Patch in the VMCALL instruction:
  1502. */
  1503. hypercall[0] = 0x0f;
  1504. hypercall[1] = 0x01;
  1505. hypercall[2] = 0xc1;
  1506. hypercall[3] = 0xc3;
  1507. }
  1508. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1509. {
  1510. u64 exit_qualification;
  1511. int cr;
  1512. int reg;
  1513. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1514. cr = exit_qualification & 15;
  1515. reg = (exit_qualification >> 8) & 15;
  1516. switch ((exit_qualification >> 4) & 3) {
  1517. case 0: /* mov to cr */
  1518. switch (cr) {
  1519. case 0:
  1520. vcpu_load_rsp_rip(vcpu);
  1521. set_cr0(vcpu, vcpu->regs[reg]);
  1522. skip_emulated_instruction(vcpu);
  1523. return 1;
  1524. case 3:
  1525. vcpu_load_rsp_rip(vcpu);
  1526. set_cr3(vcpu, vcpu->regs[reg]);
  1527. skip_emulated_instruction(vcpu);
  1528. return 1;
  1529. case 4:
  1530. vcpu_load_rsp_rip(vcpu);
  1531. set_cr4(vcpu, vcpu->regs[reg]);
  1532. skip_emulated_instruction(vcpu);
  1533. return 1;
  1534. case 8:
  1535. vcpu_load_rsp_rip(vcpu);
  1536. set_cr8(vcpu, vcpu->regs[reg]);
  1537. skip_emulated_instruction(vcpu);
  1538. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1539. return 0;
  1540. };
  1541. break;
  1542. case 2: /* clts */
  1543. vcpu_load_rsp_rip(vcpu);
  1544. vmx_fpu_deactivate(vcpu);
  1545. vcpu->cr0 &= ~X86_CR0_TS;
  1546. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1547. vmx_fpu_activate(vcpu);
  1548. skip_emulated_instruction(vcpu);
  1549. return 1;
  1550. case 1: /*mov from cr*/
  1551. switch (cr) {
  1552. case 3:
  1553. vcpu_load_rsp_rip(vcpu);
  1554. vcpu->regs[reg] = vcpu->cr3;
  1555. vcpu_put_rsp_rip(vcpu);
  1556. skip_emulated_instruction(vcpu);
  1557. return 1;
  1558. case 8:
  1559. vcpu_load_rsp_rip(vcpu);
  1560. vcpu->regs[reg] = vcpu->cr8;
  1561. vcpu_put_rsp_rip(vcpu);
  1562. skip_emulated_instruction(vcpu);
  1563. return 1;
  1564. }
  1565. break;
  1566. case 3: /* lmsw */
  1567. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1568. skip_emulated_instruction(vcpu);
  1569. return 1;
  1570. default:
  1571. break;
  1572. }
  1573. kvm_run->exit_reason = 0;
  1574. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1575. (int)(exit_qualification >> 4) & 3, cr);
  1576. return 0;
  1577. }
  1578. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1579. {
  1580. u64 exit_qualification;
  1581. unsigned long val;
  1582. int dr, reg;
  1583. /*
  1584. * FIXME: this code assumes the host is debugging the guest.
  1585. * need to deal with guest debugging itself too.
  1586. */
  1587. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1588. dr = exit_qualification & 7;
  1589. reg = (exit_qualification >> 8) & 15;
  1590. vcpu_load_rsp_rip(vcpu);
  1591. if (exit_qualification & 16) {
  1592. /* mov from dr */
  1593. switch (dr) {
  1594. case 6:
  1595. val = 0xffff0ff0;
  1596. break;
  1597. case 7:
  1598. val = 0x400;
  1599. break;
  1600. default:
  1601. val = 0;
  1602. }
  1603. vcpu->regs[reg] = val;
  1604. } else {
  1605. /* mov to dr */
  1606. }
  1607. vcpu_put_rsp_rip(vcpu);
  1608. skip_emulated_instruction(vcpu);
  1609. return 1;
  1610. }
  1611. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1612. {
  1613. kvm_emulate_cpuid(vcpu);
  1614. return 1;
  1615. }
  1616. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1617. {
  1618. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1619. u64 data;
  1620. if (vmx_get_msr(vcpu, ecx, &data)) {
  1621. vmx_inject_gp(vcpu, 0);
  1622. return 1;
  1623. }
  1624. /* FIXME: handling of bits 32:63 of rax, rdx */
  1625. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1626. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1627. skip_emulated_instruction(vcpu);
  1628. return 1;
  1629. }
  1630. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1631. {
  1632. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1633. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1634. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1635. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1636. vmx_inject_gp(vcpu, 0);
  1637. return 1;
  1638. }
  1639. skip_emulated_instruction(vcpu);
  1640. return 1;
  1641. }
  1642. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1643. struct kvm_run *kvm_run)
  1644. {
  1645. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1646. kvm_run->cr8 = vcpu->cr8;
  1647. kvm_run->apic_base = vcpu->apic_base;
  1648. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1649. vcpu->irq_summary == 0);
  1650. }
  1651. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1652. struct kvm_run *kvm_run)
  1653. {
  1654. /*
  1655. * If the user space waits to inject interrupts, exit as soon as
  1656. * possible
  1657. */
  1658. if (kvm_run->request_interrupt_window &&
  1659. !vcpu->irq_summary) {
  1660. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1661. ++vcpu->stat.irq_window_exits;
  1662. return 0;
  1663. }
  1664. return 1;
  1665. }
  1666. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1667. {
  1668. skip_emulated_instruction(vcpu);
  1669. return kvm_emulate_halt(vcpu);
  1670. }
  1671. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1672. {
  1673. skip_emulated_instruction(vcpu);
  1674. return kvm_hypercall(vcpu, kvm_run);
  1675. }
  1676. /*
  1677. * The exit handlers return 1 if the exit was handled fully and guest execution
  1678. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1679. * to be done to userspace and return 0.
  1680. */
  1681. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1682. struct kvm_run *kvm_run) = {
  1683. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1684. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1685. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1686. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1687. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1688. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1689. [EXIT_REASON_CPUID] = handle_cpuid,
  1690. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1691. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1692. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1693. [EXIT_REASON_HLT] = handle_halt,
  1694. [EXIT_REASON_VMCALL] = handle_vmcall,
  1695. };
  1696. static const int kvm_vmx_max_exit_handlers =
  1697. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1698. /*
  1699. * The guest has exited. See if we can fix it or if we need userspace
  1700. * assistance.
  1701. */
  1702. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1703. {
  1704. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1705. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1706. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1707. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1708. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1709. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1710. if (exit_reason < kvm_vmx_max_exit_handlers
  1711. && kvm_vmx_exit_handlers[exit_reason])
  1712. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1713. else {
  1714. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1715. kvm_run->hw.hardware_exit_reason = exit_reason;
  1716. }
  1717. return 0;
  1718. }
  1719. /*
  1720. * Check if userspace requested an interrupt window, and that the
  1721. * interrupt window is open.
  1722. *
  1723. * No need to exit to userspace if we already have an interrupt queued.
  1724. */
  1725. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1726. struct kvm_run *kvm_run)
  1727. {
  1728. return (!vcpu->irq_summary &&
  1729. kvm_run->request_interrupt_window &&
  1730. vcpu->interrupt_window_open &&
  1731. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1732. }
  1733. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1734. {
  1735. }
  1736. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1737. {
  1738. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1739. u8 fail;
  1740. int r;
  1741. preempted:
  1742. if (vcpu->guest_debug.enabled)
  1743. kvm_guest_debug_pre(vcpu);
  1744. again:
  1745. r = kvm_mmu_reload(vcpu);
  1746. if (unlikely(r))
  1747. goto out;
  1748. preempt_disable();
  1749. vmx_save_host_state(vmx);
  1750. kvm_load_guest_fpu(vcpu);
  1751. /*
  1752. * Loading guest fpu may have cleared host cr0.ts
  1753. */
  1754. vmcs_writel(HOST_CR0, read_cr0());
  1755. local_irq_disable();
  1756. if (signal_pending(current)) {
  1757. local_irq_enable();
  1758. preempt_enable();
  1759. r = -EINTR;
  1760. kvm_run->exit_reason = KVM_EXIT_INTR;
  1761. ++vcpu->stat.signal_exits;
  1762. goto out;
  1763. }
  1764. if (!vcpu->mmio_read_completed)
  1765. do_interrupt_requests(vcpu, kvm_run);
  1766. vcpu->guest_mode = 1;
  1767. if (vcpu->requests)
  1768. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1769. vmx_flush_tlb(vcpu);
  1770. asm (
  1771. /* Store host registers */
  1772. #ifdef CONFIG_X86_64
  1773. "push %%rax; push %%rbx; push %%rdx;"
  1774. "push %%rsi; push %%rdi; push %%rbp;"
  1775. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1776. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1777. "push %%rcx \n\t"
  1778. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1779. #else
  1780. "pusha; push %%ecx \n\t"
  1781. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1782. #endif
  1783. /* Check if vmlaunch of vmresume is needed */
  1784. "cmp $0, %1 \n\t"
  1785. /* Load guest registers. Don't clobber flags. */
  1786. #ifdef CONFIG_X86_64
  1787. "mov %c[cr2](%3), %%rax \n\t"
  1788. "mov %%rax, %%cr2 \n\t"
  1789. "mov %c[rax](%3), %%rax \n\t"
  1790. "mov %c[rbx](%3), %%rbx \n\t"
  1791. "mov %c[rdx](%3), %%rdx \n\t"
  1792. "mov %c[rsi](%3), %%rsi \n\t"
  1793. "mov %c[rdi](%3), %%rdi \n\t"
  1794. "mov %c[rbp](%3), %%rbp \n\t"
  1795. "mov %c[r8](%3), %%r8 \n\t"
  1796. "mov %c[r9](%3), %%r9 \n\t"
  1797. "mov %c[r10](%3), %%r10 \n\t"
  1798. "mov %c[r11](%3), %%r11 \n\t"
  1799. "mov %c[r12](%3), %%r12 \n\t"
  1800. "mov %c[r13](%3), %%r13 \n\t"
  1801. "mov %c[r14](%3), %%r14 \n\t"
  1802. "mov %c[r15](%3), %%r15 \n\t"
  1803. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1804. #else
  1805. "mov %c[cr2](%3), %%eax \n\t"
  1806. "mov %%eax, %%cr2 \n\t"
  1807. "mov %c[rax](%3), %%eax \n\t"
  1808. "mov %c[rbx](%3), %%ebx \n\t"
  1809. "mov %c[rdx](%3), %%edx \n\t"
  1810. "mov %c[rsi](%3), %%esi \n\t"
  1811. "mov %c[rdi](%3), %%edi \n\t"
  1812. "mov %c[rbp](%3), %%ebp \n\t"
  1813. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1814. #endif
  1815. /* Enter guest mode */
  1816. "jne .Llaunched \n\t"
  1817. ASM_VMX_VMLAUNCH "\n\t"
  1818. "jmp .Lkvm_vmx_return \n\t"
  1819. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1820. ".Lkvm_vmx_return: "
  1821. /* Save guest registers, load host registers, keep flags */
  1822. #ifdef CONFIG_X86_64
  1823. "xchg %3, (%%rsp) \n\t"
  1824. "mov %%rax, %c[rax](%3) \n\t"
  1825. "mov %%rbx, %c[rbx](%3) \n\t"
  1826. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1827. "mov %%rdx, %c[rdx](%3) \n\t"
  1828. "mov %%rsi, %c[rsi](%3) \n\t"
  1829. "mov %%rdi, %c[rdi](%3) \n\t"
  1830. "mov %%rbp, %c[rbp](%3) \n\t"
  1831. "mov %%r8, %c[r8](%3) \n\t"
  1832. "mov %%r9, %c[r9](%3) \n\t"
  1833. "mov %%r10, %c[r10](%3) \n\t"
  1834. "mov %%r11, %c[r11](%3) \n\t"
  1835. "mov %%r12, %c[r12](%3) \n\t"
  1836. "mov %%r13, %c[r13](%3) \n\t"
  1837. "mov %%r14, %c[r14](%3) \n\t"
  1838. "mov %%r15, %c[r15](%3) \n\t"
  1839. "mov %%cr2, %%rax \n\t"
  1840. "mov %%rax, %c[cr2](%3) \n\t"
  1841. "mov (%%rsp), %3 \n\t"
  1842. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1843. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1844. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1845. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1846. #else
  1847. "xchg %3, (%%esp) \n\t"
  1848. "mov %%eax, %c[rax](%3) \n\t"
  1849. "mov %%ebx, %c[rbx](%3) \n\t"
  1850. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1851. "mov %%edx, %c[rdx](%3) \n\t"
  1852. "mov %%esi, %c[rsi](%3) \n\t"
  1853. "mov %%edi, %c[rdi](%3) \n\t"
  1854. "mov %%ebp, %c[rbp](%3) \n\t"
  1855. "mov %%cr2, %%eax \n\t"
  1856. "mov %%eax, %c[cr2](%3) \n\t"
  1857. "mov (%%esp), %3 \n\t"
  1858. "pop %%ecx; popa \n\t"
  1859. #endif
  1860. "setbe %0 \n\t"
  1861. : "=q" (fail)
  1862. : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
  1863. "c"(vcpu),
  1864. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1865. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1866. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1867. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1868. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1869. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1870. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1871. #ifdef CONFIG_X86_64
  1872. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1873. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1874. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1875. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1876. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1877. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1878. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1879. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1880. #endif
  1881. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1882. : "cc", "memory" );
  1883. vcpu->guest_mode = 0;
  1884. local_irq_enable();
  1885. ++vcpu->stat.exits;
  1886. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1887. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1888. vmx->launched = 1;
  1889. preempt_enable();
  1890. if (unlikely(fail)) {
  1891. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1892. kvm_run->fail_entry.hardware_entry_failure_reason
  1893. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1894. r = 0;
  1895. goto out;
  1896. }
  1897. /*
  1898. * Profile KVM exit RIPs:
  1899. */
  1900. if (unlikely(prof_on == KVM_PROFILING))
  1901. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1902. r = kvm_handle_exit(kvm_run, vcpu);
  1903. if (r > 0) {
  1904. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1905. r = -EINTR;
  1906. kvm_run->exit_reason = KVM_EXIT_INTR;
  1907. ++vcpu->stat.request_irq_exits;
  1908. goto out;
  1909. }
  1910. if (!need_resched()) {
  1911. ++vcpu->stat.light_exits;
  1912. goto again;
  1913. }
  1914. }
  1915. out:
  1916. if (r > 0) {
  1917. kvm_resched(vcpu);
  1918. goto preempted;
  1919. }
  1920. post_kvm_run_save(vcpu, kvm_run);
  1921. return r;
  1922. }
  1923. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1924. unsigned long addr,
  1925. u32 err_code)
  1926. {
  1927. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1928. ++vcpu->stat.pf_guest;
  1929. if (is_page_fault(vect_info)) {
  1930. printk(KERN_DEBUG "inject_page_fault: "
  1931. "double fault 0x%lx @ 0x%lx\n",
  1932. addr, vmcs_readl(GUEST_RIP));
  1933. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1934. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1935. DF_VECTOR |
  1936. INTR_TYPE_EXCEPTION |
  1937. INTR_INFO_DELIEVER_CODE_MASK |
  1938. INTR_INFO_VALID_MASK);
  1939. return;
  1940. }
  1941. vcpu->cr2 = addr;
  1942. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1943. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1944. PF_VECTOR |
  1945. INTR_TYPE_EXCEPTION |
  1946. INTR_INFO_DELIEVER_CODE_MASK |
  1947. INTR_INFO_VALID_MASK);
  1948. }
  1949. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1950. {
  1951. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1952. if (vmx->vmcs) {
  1953. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  1954. free_vmcs(vmx->vmcs);
  1955. vmx->vmcs = NULL;
  1956. }
  1957. }
  1958. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1959. {
  1960. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1961. vmx_free_vmcs(vcpu);
  1962. kfree(vmx->host_msrs);
  1963. kfree(vmx->guest_msrs);
  1964. kvm_vcpu_uninit(vcpu);
  1965. kmem_cache_free(kvm_vcpu_cache, vmx);
  1966. }
  1967. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  1968. {
  1969. int err;
  1970. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  1971. int cpu;
  1972. if (!vmx)
  1973. return ERR_PTR(-ENOMEM);
  1974. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  1975. if (err)
  1976. goto free_vcpu;
  1977. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1978. if (!vmx->guest_msrs) {
  1979. err = -ENOMEM;
  1980. goto uninit_vcpu;
  1981. }
  1982. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1983. if (!vmx->host_msrs)
  1984. goto free_guest_msrs;
  1985. vmx->vmcs = alloc_vmcs();
  1986. if (!vmx->vmcs)
  1987. goto free_msrs;
  1988. vmcs_clear(vmx->vmcs);
  1989. cpu = get_cpu();
  1990. vmx_vcpu_load(&vmx->vcpu, cpu);
  1991. err = vmx_vcpu_setup(vmx);
  1992. vmx_vcpu_put(&vmx->vcpu);
  1993. put_cpu();
  1994. if (err)
  1995. goto free_vmcs;
  1996. return &vmx->vcpu;
  1997. free_vmcs:
  1998. free_vmcs(vmx->vmcs);
  1999. free_msrs:
  2000. kfree(vmx->host_msrs);
  2001. free_guest_msrs:
  2002. kfree(vmx->guest_msrs);
  2003. uninit_vcpu:
  2004. kvm_vcpu_uninit(&vmx->vcpu);
  2005. free_vcpu:
  2006. kmem_cache_free(kvm_vcpu_cache, vmx);
  2007. return ERR_PTR(err);
  2008. }
  2009. static void __init vmx_check_processor_compat(void *rtn)
  2010. {
  2011. struct vmcs_config vmcs_conf;
  2012. *(int *)rtn = 0;
  2013. if (setup_vmcs_config(&vmcs_conf) < 0)
  2014. *(int *)rtn = -EIO;
  2015. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2016. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2017. smp_processor_id());
  2018. *(int *)rtn = -EIO;
  2019. }
  2020. }
  2021. static struct kvm_arch_ops vmx_arch_ops = {
  2022. .cpu_has_kvm_support = cpu_has_kvm_support,
  2023. .disabled_by_bios = vmx_disabled_by_bios,
  2024. .hardware_setup = hardware_setup,
  2025. .hardware_unsetup = hardware_unsetup,
  2026. .check_processor_compatibility = vmx_check_processor_compat,
  2027. .hardware_enable = hardware_enable,
  2028. .hardware_disable = hardware_disable,
  2029. .vcpu_create = vmx_create_vcpu,
  2030. .vcpu_free = vmx_free_vcpu,
  2031. .vcpu_load = vmx_vcpu_load,
  2032. .vcpu_put = vmx_vcpu_put,
  2033. .vcpu_decache = vmx_vcpu_decache,
  2034. .set_guest_debug = set_guest_debug,
  2035. .get_msr = vmx_get_msr,
  2036. .set_msr = vmx_set_msr,
  2037. .get_segment_base = vmx_get_segment_base,
  2038. .get_segment = vmx_get_segment,
  2039. .set_segment = vmx_set_segment,
  2040. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2041. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2042. .set_cr0 = vmx_set_cr0,
  2043. .set_cr3 = vmx_set_cr3,
  2044. .set_cr4 = vmx_set_cr4,
  2045. #ifdef CONFIG_X86_64
  2046. .set_efer = vmx_set_efer,
  2047. #endif
  2048. .get_idt = vmx_get_idt,
  2049. .set_idt = vmx_set_idt,
  2050. .get_gdt = vmx_get_gdt,
  2051. .set_gdt = vmx_set_gdt,
  2052. .cache_regs = vcpu_load_rsp_rip,
  2053. .decache_regs = vcpu_put_rsp_rip,
  2054. .get_rflags = vmx_get_rflags,
  2055. .set_rflags = vmx_set_rflags,
  2056. .tlb_flush = vmx_flush_tlb,
  2057. .inject_page_fault = vmx_inject_page_fault,
  2058. .inject_gp = vmx_inject_gp,
  2059. .run = vmx_vcpu_run,
  2060. .skip_emulated_instruction = skip_emulated_instruction,
  2061. .patch_hypercall = vmx_patch_hypercall,
  2062. };
  2063. static int __init vmx_init(void)
  2064. {
  2065. void *iova;
  2066. int r;
  2067. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2068. if (!vmx_io_bitmap_a)
  2069. return -ENOMEM;
  2070. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2071. if (!vmx_io_bitmap_b) {
  2072. r = -ENOMEM;
  2073. goto out;
  2074. }
  2075. /*
  2076. * Allow direct access to the PC debug port (it is often used for I/O
  2077. * delays, but the vmexits simply slow things down).
  2078. */
  2079. iova = kmap(vmx_io_bitmap_a);
  2080. memset(iova, 0xff, PAGE_SIZE);
  2081. clear_bit(0x80, iova);
  2082. kunmap(vmx_io_bitmap_a);
  2083. iova = kmap(vmx_io_bitmap_b);
  2084. memset(iova, 0xff, PAGE_SIZE);
  2085. kunmap(vmx_io_bitmap_b);
  2086. r = kvm_init_arch(&vmx_arch_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2087. if (r)
  2088. goto out1;
  2089. return 0;
  2090. out1:
  2091. __free_page(vmx_io_bitmap_b);
  2092. out:
  2093. __free_page(vmx_io_bitmap_a);
  2094. return r;
  2095. }
  2096. static void __exit vmx_exit(void)
  2097. {
  2098. __free_page(vmx_io_bitmap_b);
  2099. __free_page(vmx_io_bitmap_a);
  2100. kvm_exit_arch();
  2101. }
  2102. module_init(vmx_init)
  2103. module_exit(vmx_exit)