oxygen_mixer.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088
  1. /*
  2. * C-Media CMI8788 driver - mixer code
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. *
  6. *
  7. * This driver is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2.
  9. *
  10. * This driver is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this driver; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/mutex.h>
  20. #include <sound/ac97_codec.h>
  21. #include <sound/asoundef.h>
  22. #include <sound/control.h>
  23. #include <sound/tlv.h>
  24. #include "oxygen.h"
  25. #include "cm9780.h"
  26. static int dac_volume_info(struct snd_kcontrol *ctl,
  27. struct snd_ctl_elem_info *info)
  28. {
  29. struct oxygen *chip = ctl->private_data;
  30. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  31. info->count = chip->model.dac_channels_mixer;
  32. info->value.integer.min = chip->model.dac_volume_min;
  33. info->value.integer.max = chip->model.dac_volume_max;
  34. return 0;
  35. }
  36. static int dac_volume_get(struct snd_kcontrol *ctl,
  37. struct snd_ctl_elem_value *value)
  38. {
  39. struct oxygen *chip = ctl->private_data;
  40. unsigned int i;
  41. mutex_lock(&chip->mutex);
  42. for (i = 0; i < chip->model.dac_channels_mixer; ++i)
  43. value->value.integer.value[i] = chip->dac_volume[i];
  44. mutex_unlock(&chip->mutex);
  45. return 0;
  46. }
  47. static int dac_volume_put(struct snd_kcontrol *ctl,
  48. struct snd_ctl_elem_value *value)
  49. {
  50. struct oxygen *chip = ctl->private_data;
  51. unsigned int i;
  52. int changed;
  53. changed = 0;
  54. mutex_lock(&chip->mutex);
  55. for (i = 0; i < chip->model.dac_channels_mixer; ++i)
  56. if (value->value.integer.value[i] != chip->dac_volume[i]) {
  57. chip->dac_volume[i] = value->value.integer.value[i];
  58. changed = 1;
  59. }
  60. if (changed)
  61. chip->model.update_dac_volume(chip);
  62. mutex_unlock(&chip->mutex);
  63. return changed;
  64. }
  65. static int dac_mute_get(struct snd_kcontrol *ctl,
  66. struct snd_ctl_elem_value *value)
  67. {
  68. struct oxygen *chip = ctl->private_data;
  69. mutex_lock(&chip->mutex);
  70. value->value.integer.value[0] = !chip->dac_mute;
  71. mutex_unlock(&chip->mutex);
  72. return 0;
  73. }
  74. static int dac_mute_put(struct snd_kcontrol *ctl,
  75. struct snd_ctl_elem_value *value)
  76. {
  77. struct oxygen *chip = ctl->private_data;
  78. int changed;
  79. mutex_lock(&chip->mutex);
  80. changed = !value->value.integer.value[0] != chip->dac_mute;
  81. if (changed) {
  82. chip->dac_mute = !value->value.integer.value[0];
  83. chip->model.update_dac_mute(chip);
  84. }
  85. mutex_unlock(&chip->mutex);
  86. return changed;
  87. }
  88. static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  89. {
  90. static const char *const names[5] = {
  91. "Front",
  92. "Front+Surround",
  93. "Front+Surround+Back",
  94. "Front+Surround+Center/LFE",
  95. "Front+Surround+Center/LFE+Back",
  96. };
  97. struct oxygen *chip = ctl->private_data;
  98. unsigned int count = chip->model.update_center_lfe_mix ? 5 : 3;
  99. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  100. info->count = 1;
  101. info->value.enumerated.items = count;
  102. if (info->value.enumerated.item >= count)
  103. info->value.enumerated.item = count - 1;
  104. strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
  105. return 0;
  106. }
  107. static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  108. {
  109. struct oxygen *chip = ctl->private_data;
  110. mutex_lock(&chip->mutex);
  111. value->value.enumerated.item[0] = chip->dac_routing;
  112. mutex_unlock(&chip->mutex);
  113. return 0;
  114. }
  115. void oxygen_update_dac_routing(struct oxygen *chip)
  116. {
  117. /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
  118. static const unsigned int reg_values[5] = {
  119. /* stereo -> front */
  120. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  121. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  122. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  123. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  124. /* stereo -> front+surround */
  125. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  126. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  127. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  128. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  129. /* stereo -> front+surround+back */
  130. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  131. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  132. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  133. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  134. /* stereo -> front+surround+center/LFE */
  135. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  136. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  137. (0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  138. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  139. /* stereo -> front+surround+center/LFE+back */
  140. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  141. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  142. (0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  143. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  144. };
  145. u8 channels;
  146. unsigned int reg_value;
  147. channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
  148. OXYGEN_PLAY_CHANNELS_MASK;
  149. if (channels == OXYGEN_PLAY_CHANNELS_2)
  150. reg_value = reg_values[chip->dac_routing];
  151. else if (channels == OXYGEN_PLAY_CHANNELS_8)
  152. /* in 7.1 mode, "rear" channels go to the "back" jack */
  153. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  154. (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  155. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  156. (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  157. else
  158. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  159. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  160. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  161. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  162. oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
  163. OXYGEN_PLAY_DAC0_SOURCE_MASK |
  164. OXYGEN_PLAY_DAC1_SOURCE_MASK |
  165. OXYGEN_PLAY_DAC2_SOURCE_MASK |
  166. OXYGEN_PLAY_DAC3_SOURCE_MASK);
  167. if (chip->model.update_center_lfe_mix)
  168. chip->model.update_center_lfe_mix(chip, chip->dac_routing > 2);
  169. }
  170. static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  171. {
  172. struct oxygen *chip = ctl->private_data;
  173. unsigned int count = chip->model.update_center_lfe_mix ? 5 : 3;
  174. int changed;
  175. if (value->value.enumerated.item[0] >= count)
  176. return -EINVAL;
  177. mutex_lock(&chip->mutex);
  178. changed = value->value.enumerated.item[0] != chip->dac_routing;
  179. if (changed) {
  180. chip->dac_routing = value->value.enumerated.item[0];
  181. oxygen_update_dac_routing(chip);
  182. }
  183. mutex_unlock(&chip->mutex);
  184. return changed;
  185. }
  186. static int spdif_switch_get(struct snd_kcontrol *ctl,
  187. struct snd_ctl_elem_value *value)
  188. {
  189. struct oxygen *chip = ctl->private_data;
  190. mutex_lock(&chip->mutex);
  191. value->value.integer.value[0] = chip->spdif_playback_enable;
  192. mutex_unlock(&chip->mutex);
  193. return 0;
  194. }
  195. static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
  196. {
  197. switch (oxygen_rate) {
  198. case OXYGEN_RATE_32000:
  199. return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  200. case OXYGEN_RATE_44100:
  201. return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  202. default: /* OXYGEN_RATE_48000 */
  203. return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  204. case OXYGEN_RATE_64000:
  205. return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
  206. case OXYGEN_RATE_88200:
  207. return IEC958_AES3_CON_FS_88200 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  208. case OXYGEN_RATE_96000:
  209. return IEC958_AES3_CON_FS_96000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  210. case OXYGEN_RATE_176400:
  211. return IEC958_AES3_CON_FS_176400 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  212. case OXYGEN_RATE_192000:
  213. return IEC958_AES3_CON_FS_192000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  214. }
  215. }
  216. void oxygen_update_spdif_source(struct oxygen *chip)
  217. {
  218. u32 old_control, new_control;
  219. u16 old_routing, new_routing;
  220. unsigned int oxygen_rate;
  221. old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  222. old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
  223. if (chip->pcm_active & (1 << PCM_SPDIF)) {
  224. new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
  225. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  226. | OXYGEN_PLAY_SPDIF_SPDIF;
  227. oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
  228. & OXYGEN_I2S_RATE_MASK;
  229. /* S/PDIF rate was already set by the caller */
  230. } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
  231. chip->spdif_playback_enable) {
  232. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  233. | OXYGEN_PLAY_SPDIF_MULTICH_01;
  234. oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
  235. & OXYGEN_I2S_RATE_MASK;
  236. new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
  237. (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
  238. OXYGEN_SPDIF_OUT_ENABLE;
  239. } else {
  240. new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
  241. new_routing = old_routing;
  242. oxygen_rate = OXYGEN_RATE_44100;
  243. }
  244. if (old_routing != new_routing) {
  245. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
  246. new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
  247. oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
  248. }
  249. if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
  250. oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
  251. oxygen_spdif_rate(oxygen_rate) |
  252. ((chip->pcm_active & (1 << PCM_SPDIF)) ?
  253. chip->spdif_pcm_bits : chip->spdif_bits));
  254. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
  255. }
  256. static int spdif_switch_put(struct snd_kcontrol *ctl,
  257. struct snd_ctl_elem_value *value)
  258. {
  259. struct oxygen *chip = ctl->private_data;
  260. int changed;
  261. mutex_lock(&chip->mutex);
  262. changed = value->value.integer.value[0] != chip->spdif_playback_enable;
  263. if (changed) {
  264. chip->spdif_playback_enable = !!value->value.integer.value[0];
  265. spin_lock_irq(&chip->reg_lock);
  266. oxygen_update_spdif_source(chip);
  267. spin_unlock_irq(&chip->reg_lock);
  268. }
  269. mutex_unlock(&chip->mutex);
  270. return changed;
  271. }
  272. static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  273. {
  274. info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  275. info->count = 1;
  276. return 0;
  277. }
  278. static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
  279. {
  280. value->value.iec958.status[0] =
  281. bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  282. OXYGEN_SPDIF_PREEMPHASIS);
  283. value->value.iec958.status[1] = /* category and original */
  284. bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
  285. }
  286. static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
  287. {
  288. u32 bits;
  289. bits = value->value.iec958.status[0] &
  290. (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  291. OXYGEN_SPDIF_PREEMPHASIS);
  292. bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
  293. if (bits & OXYGEN_SPDIF_NONAUDIO)
  294. bits |= OXYGEN_SPDIF_V;
  295. return bits;
  296. }
  297. static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
  298. {
  299. oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
  300. OXYGEN_SPDIF_NONAUDIO |
  301. OXYGEN_SPDIF_C |
  302. OXYGEN_SPDIF_PREEMPHASIS |
  303. OXYGEN_SPDIF_CATEGORY_MASK |
  304. OXYGEN_SPDIF_ORIGINAL |
  305. OXYGEN_SPDIF_V);
  306. }
  307. static int spdif_default_get(struct snd_kcontrol *ctl,
  308. struct snd_ctl_elem_value *value)
  309. {
  310. struct oxygen *chip = ctl->private_data;
  311. mutex_lock(&chip->mutex);
  312. oxygen_to_iec958(chip->spdif_bits, value);
  313. mutex_unlock(&chip->mutex);
  314. return 0;
  315. }
  316. static int spdif_default_put(struct snd_kcontrol *ctl,
  317. struct snd_ctl_elem_value *value)
  318. {
  319. struct oxygen *chip = ctl->private_data;
  320. u32 new_bits;
  321. int changed;
  322. new_bits = iec958_to_oxygen(value);
  323. mutex_lock(&chip->mutex);
  324. changed = new_bits != chip->spdif_bits;
  325. if (changed) {
  326. chip->spdif_bits = new_bits;
  327. if (!(chip->pcm_active & (1 << PCM_SPDIF)))
  328. write_spdif_bits(chip, new_bits);
  329. }
  330. mutex_unlock(&chip->mutex);
  331. return changed;
  332. }
  333. static int spdif_mask_get(struct snd_kcontrol *ctl,
  334. struct snd_ctl_elem_value *value)
  335. {
  336. value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
  337. IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
  338. value->value.iec958.status[1] =
  339. IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
  340. return 0;
  341. }
  342. static int spdif_pcm_get(struct snd_kcontrol *ctl,
  343. struct snd_ctl_elem_value *value)
  344. {
  345. struct oxygen *chip = ctl->private_data;
  346. mutex_lock(&chip->mutex);
  347. oxygen_to_iec958(chip->spdif_pcm_bits, value);
  348. mutex_unlock(&chip->mutex);
  349. return 0;
  350. }
  351. static int spdif_pcm_put(struct snd_kcontrol *ctl,
  352. struct snd_ctl_elem_value *value)
  353. {
  354. struct oxygen *chip = ctl->private_data;
  355. u32 new_bits;
  356. int changed;
  357. new_bits = iec958_to_oxygen(value);
  358. mutex_lock(&chip->mutex);
  359. changed = new_bits != chip->spdif_pcm_bits;
  360. if (changed) {
  361. chip->spdif_pcm_bits = new_bits;
  362. if (chip->pcm_active & (1 << PCM_SPDIF))
  363. write_spdif_bits(chip, new_bits);
  364. }
  365. mutex_unlock(&chip->mutex);
  366. return changed;
  367. }
  368. static int spdif_input_mask_get(struct snd_kcontrol *ctl,
  369. struct snd_ctl_elem_value *value)
  370. {
  371. value->value.iec958.status[0] = 0xff;
  372. value->value.iec958.status[1] = 0xff;
  373. value->value.iec958.status[2] = 0xff;
  374. value->value.iec958.status[3] = 0xff;
  375. return 0;
  376. }
  377. static int spdif_input_default_get(struct snd_kcontrol *ctl,
  378. struct snd_ctl_elem_value *value)
  379. {
  380. struct oxygen *chip = ctl->private_data;
  381. u32 bits;
  382. bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
  383. value->value.iec958.status[0] = bits;
  384. value->value.iec958.status[1] = bits >> 8;
  385. value->value.iec958.status[2] = bits >> 16;
  386. value->value.iec958.status[3] = bits >> 24;
  387. return 0;
  388. }
  389. static int spdif_loopback_get(struct snd_kcontrol *ctl,
  390. struct snd_ctl_elem_value *value)
  391. {
  392. struct oxygen *chip = ctl->private_data;
  393. value->value.integer.value[0] =
  394. !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
  395. & OXYGEN_SPDIF_LOOPBACK);
  396. return 0;
  397. }
  398. static int spdif_loopback_put(struct snd_kcontrol *ctl,
  399. struct snd_ctl_elem_value *value)
  400. {
  401. struct oxygen *chip = ctl->private_data;
  402. u32 oldreg, newreg;
  403. int changed;
  404. spin_lock_irq(&chip->reg_lock);
  405. oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  406. if (value->value.integer.value[0])
  407. newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
  408. else
  409. newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
  410. changed = newreg != oldreg;
  411. if (changed)
  412. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
  413. spin_unlock_irq(&chip->reg_lock);
  414. return changed;
  415. }
  416. static int monitor_volume_info(struct snd_kcontrol *ctl,
  417. struct snd_ctl_elem_info *info)
  418. {
  419. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  420. info->count = 1;
  421. info->value.integer.min = 0;
  422. info->value.integer.max = 1;
  423. return 0;
  424. }
  425. static int monitor_get(struct snd_kcontrol *ctl,
  426. struct snd_ctl_elem_value *value)
  427. {
  428. struct oxygen *chip = ctl->private_data;
  429. u8 bit = ctl->private_value;
  430. int invert = ctl->private_value & (1 << 8);
  431. value->value.integer.value[0] =
  432. !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
  433. return 0;
  434. }
  435. static int monitor_put(struct snd_kcontrol *ctl,
  436. struct snd_ctl_elem_value *value)
  437. {
  438. struct oxygen *chip = ctl->private_data;
  439. u8 bit = ctl->private_value;
  440. int invert = ctl->private_value & (1 << 8);
  441. u8 oldreg, newreg;
  442. int changed;
  443. spin_lock_irq(&chip->reg_lock);
  444. oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
  445. if ((!!value->value.integer.value[0] ^ !!invert) != 0)
  446. newreg = oldreg | bit;
  447. else
  448. newreg = oldreg & ~bit;
  449. changed = newreg != oldreg;
  450. if (changed)
  451. oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
  452. spin_unlock_irq(&chip->reg_lock);
  453. return changed;
  454. }
  455. static int ac97_switch_get(struct snd_kcontrol *ctl,
  456. struct snd_ctl_elem_value *value)
  457. {
  458. struct oxygen *chip = ctl->private_data;
  459. unsigned int codec = (ctl->private_value >> 24) & 1;
  460. unsigned int index = ctl->private_value & 0xff;
  461. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  462. int invert = ctl->private_value & (1 << 16);
  463. u16 reg;
  464. mutex_lock(&chip->mutex);
  465. reg = oxygen_read_ac97(chip, codec, index);
  466. mutex_unlock(&chip->mutex);
  467. if (!(reg & (1 << bitnr)) ^ !invert)
  468. value->value.integer.value[0] = 1;
  469. else
  470. value->value.integer.value[0] = 0;
  471. return 0;
  472. }
  473. static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
  474. {
  475. unsigned int priv_idx;
  476. u16 value;
  477. if (!chip->controls[control])
  478. return;
  479. priv_idx = chip->controls[control]->private_value & 0xff;
  480. value = oxygen_read_ac97(chip, 0, priv_idx);
  481. if (!(value & 0x8000)) {
  482. oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
  483. if (chip->model.ac97_switch)
  484. chip->model.ac97_switch(chip, priv_idx, 0x8000);
  485. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  486. &chip->controls[control]->id);
  487. }
  488. }
  489. static int ac97_switch_put(struct snd_kcontrol *ctl,
  490. struct snd_ctl_elem_value *value)
  491. {
  492. struct oxygen *chip = ctl->private_data;
  493. unsigned int codec = (ctl->private_value >> 24) & 1;
  494. unsigned int index = ctl->private_value & 0xff;
  495. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  496. int invert = ctl->private_value & (1 << 16);
  497. u16 oldreg, newreg;
  498. int change;
  499. mutex_lock(&chip->mutex);
  500. oldreg = oxygen_read_ac97(chip, codec, index);
  501. newreg = oldreg;
  502. if (!value->value.integer.value[0] ^ !invert)
  503. newreg |= 1 << bitnr;
  504. else
  505. newreg &= ~(1 << bitnr);
  506. change = newreg != oldreg;
  507. if (change) {
  508. oxygen_write_ac97(chip, codec, index, newreg);
  509. if (codec == 0 && chip->model.ac97_switch)
  510. chip->model.ac97_switch(chip, index, newreg & 0x8000);
  511. if (index == AC97_LINE) {
  512. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  513. newreg & 0x8000 ?
  514. CM9780_GPO0 : 0, CM9780_GPO0);
  515. if (!(newreg & 0x8000)) {
  516. mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
  517. mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
  518. mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
  519. }
  520. } else if ((index == AC97_MIC || index == AC97_CD ||
  521. index == AC97_VIDEO || index == AC97_AUX) &&
  522. bitnr == 15 && !(newreg & 0x8000)) {
  523. mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
  524. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  525. CM9780_GPO0, CM9780_GPO0);
  526. }
  527. }
  528. mutex_unlock(&chip->mutex);
  529. return change;
  530. }
  531. static int ac97_volume_info(struct snd_kcontrol *ctl,
  532. struct snd_ctl_elem_info *info)
  533. {
  534. int stereo = (ctl->private_value >> 16) & 1;
  535. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  536. info->count = stereo ? 2 : 1;
  537. info->value.integer.min = 0;
  538. info->value.integer.max = 0x1f;
  539. return 0;
  540. }
  541. static int ac97_volume_get(struct snd_kcontrol *ctl,
  542. struct snd_ctl_elem_value *value)
  543. {
  544. struct oxygen *chip = ctl->private_data;
  545. unsigned int codec = (ctl->private_value >> 24) & 1;
  546. int stereo = (ctl->private_value >> 16) & 1;
  547. unsigned int index = ctl->private_value & 0xff;
  548. u16 reg;
  549. mutex_lock(&chip->mutex);
  550. reg = oxygen_read_ac97(chip, codec, index);
  551. mutex_unlock(&chip->mutex);
  552. value->value.integer.value[0] = 31 - (reg & 0x1f);
  553. if (stereo)
  554. value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
  555. return 0;
  556. }
  557. static int ac97_volume_put(struct snd_kcontrol *ctl,
  558. struct snd_ctl_elem_value *value)
  559. {
  560. struct oxygen *chip = ctl->private_data;
  561. unsigned int codec = (ctl->private_value >> 24) & 1;
  562. int stereo = (ctl->private_value >> 16) & 1;
  563. unsigned int index = ctl->private_value & 0xff;
  564. u16 oldreg, newreg;
  565. int change;
  566. mutex_lock(&chip->mutex);
  567. oldreg = oxygen_read_ac97(chip, codec, index);
  568. newreg = oldreg;
  569. newreg = (newreg & ~0x1f) |
  570. (31 - (value->value.integer.value[0] & 0x1f));
  571. if (stereo)
  572. newreg = (newreg & ~0x1f00) |
  573. ((31 - (value->value.integer.value[1] & 0x1f)) << 8);
  574. else
  575. newreg = (newreg & ~0x1f00) | ((newreg & 0x1f) << 8);
  576. change = newreg != oldreg;
  577. if (change)
  578. oxygen_write_ac97(chip, codec, index, newreg);
  579. mutex_unlock(&chip->mutex);
  580. return change;
  581. }
  582. static int mic_fmic_source_info(struct snd_kcontrol *ctl,
  583. struct snd_ctl_elem_info *info)
  584. {
  585. static const char *const names[] = { "Mic Jack", "Front Panel" };
  586. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  587. info->count = 1;
  588. info->value.enumerated.items = 2;
  589. info->value.enumerated.item &= 1;
  590. strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
  591. return 0;
  592. }
  593. static int mic_fmic_source_get(struct snd_kcontrol *ctl,
  594. struct snd_ctl_elem_value *value)
  595. {
  596. struct oxygen *chip = ctl->private_data;
  597. mutex_lock(&chip->mutex);
  598. value->value.enumerated.item[0] =
  599. !!(oxygen_read_ac97(chip, 0, CM9780_JACK) & CM9780_FMIC2MIC);
  600. mutex_unlock(&chip->mutex);
  601. return 0;
  602. }
  603. static int mic_fmic_source_put(struct snd_kcontrol *ctl,
  604. struct snd_ctl_elem_value *value)
  605. {
  606. struct oxygen *chip = ctl->private_data;
  607. u16 oldreg, newreg;
  608. int change;
  609. mutex_lock(&chip->mutex);
  610. oldreg = oxygen_read_ac97(chip, 0, CM9780_JACK);
  611. if (value->value.enumerated.item[0])
  612. newreg = oldreg | CM9780_FMIC2MIC;
  613. else
  614. newreg = oldreg & ~CM9780_FMIC2MIC;
  615. change = newreg != oldreg;
  616. if (change)
  617. oxygen_write_ac97(chip, 0, CM9780_JACK, newreg);
  618. mutex_unlock(&chip->mutex);
  619. return change;
  620. }
  621. static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
  622. struct snd_ctl_elem_info *info)
  623. {
  624. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  625. info->count = 2;
  626. info->value.integer.min = 0;
  627. info->value.integer.max = 7;
  628. return 0;
  629. }
  630. static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
  631. struct snd_ctl_elem_value *value)
  632. {
  633. struct oxygen *chip = ctl->private_data;
  634. u16 reg;
  635. mutex_lock(&chip->mutex);
  636. reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  637. mutex_unlock(&chip->mutex);
  638. value->value.integer.value[0] = reg & 7;
  639. value->value.integer.value[1] = (reg >> 8) & 7;
  640. return 0;
  641. }
  642. static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
  643. struct snd_ctl_elem_value *value)
  644. {
  645. struct oxygen *chip = ctl->private_data;
  646. u16 oldreg, newreg;
  647. int change;
  648. mutex_lock(&chip->mutex);
  649. oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  650. newreg = oldreg & ~0x0707;
  651. newreg = newreg | (value->value.integer.value[0] & 7);
  652. newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
  653. change = newreg != oldreg;
  654. if (change)
  655. oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
  656. mutex_unlock(&chip->mutex);
  657. return change;
  658. }
  659. #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
  660. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  661. .name = xname, \
  662. .info = snd_ctl_boolean_mono_info, \
  663. .get = ac97_switch_get, \
  664. .put = ac97_switch_put, \
  665. .private_value = ((codec) << 24) | ((invert) << 16) | \
  666. ((bitnr) << 8) | (index), \
  667. }
  668. #define AC97_VOLUME(xname, codec, index, stereo) { \
  669. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  670. .name = xname, \
  671. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
  672. SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  673. .info = ac97_volume_info, \
  674. .get = ac97_volume_get, \
  675. .put = ac97_volume_put, \
  676. .tlv = { .p = ac97_db_scale, }, \
  677. .private_value = ((codec) << 24) | ((stereo) << 16) | (index), \
  678. }
  679. static DECLARE_TLV_DB_SCALE(monitor_db_scale, -600, 600, 0);
  680. static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
  681. static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
  682. static const struct snd_kcontrol_new controls[] = {
  683. {
  684. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  685. .name = "Master Playback Volume",
  686. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  687. .info = dac_volume_info,
  688. .get = dac_volume_get,
  689. .put = dac_volume_put,
  690. },
  691. {
  692. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  693. .name = "Master Playback Switch",
  694. .info = snd_ctl_boolean_mono_info,
  695. .get = dac_mute_get,
  696. .put = dac_mute_put,
  697. },
  698. {
  699. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  700. .name = "Stereo Upmixing",
  701. .info = upmix_info,
  702. .get = upmix_get,
  703. .put = upmix_put,
  704. },
  705. {
  706. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  707. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  708. .info = snd_ctl_boolean_mono_info,
  709. .get = spdif_switch_get,
  710. .put = spdif_switch_put,
  711. },
  712. {
  713. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  714. .device = 1,
  715. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  716. .info = spdif_info,
  717. .get = spdif_default_get,
  718. .put = spdif_default_put,
  719. },
  720. {
  721. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  722. .device = 1,
  723. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  724. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  725. .info = spdif_info,
  726. .get = spdif_mask_get,
  727. },
  728. {
  729. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  730. .device = 1,
  731. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  732. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  733. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  734. .info = spdif_info,
  735. .get = spdif_pcm_get,
  736. .put = spdif_pcm_put,
  737. },
  738. };
  739. static const struct snd_kcontrol_new spdif_input_controls[] = {
  740. {
  741. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  742. .device = 1,
  743. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
  744. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  745. .info = spdif_info,
  746. .get = spdif_input_mask_get,
  747. },
  748. {
  749. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  750. .device = 1,
  751. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  752. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  753. .info = spdif_info,
  754. .get = spdif_input_default_get,
  755. },
  756. {
  757. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  758. .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
  759. .info = snd_ctl_boolean_mono_info,
  760. .get = spdif_loopback_get,
  761. .put = spdif_loopback_put,
  762. },
  763. };
  764. static const struct {
  765. unsigned int pcm_dev;
  766. struct snd_kcontrol_new controls[2];
  767. } monitor_controls[] = {
  768. {
  769. .pcm_dev = CAPTURE_0_FROM_I2S_1,
  770. .controls = {
  771. {
  772. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  773. .name = "Analog Input Monitor Playback Switch",
  774. .info = snd_ctl_boolean_mono_info,
  775. .get = monitor_get,
  776. .put = monitor_put,
  777. .private_value = OXYGEN_ADC_MONITOR_A,
  778. },
  779. {
  780. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  781. .name = "Analog Input Monitor Playback Volume",
  782. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  783. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  784. .info = monitor_volume_info,
  785. .get = monitor_get,
  786. .put = monitor_put,
  787. .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
  788. | (1 << 8),
  789. .tlv = { .p = monitor_db_scale, },
  790. },
  791. },
  792. },
  793. {
  794. .pcm_dev = CAPTURE_0_FROM_I2S_2,
  795. .controls = {
  796. {
  797. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  798. .name = "Analog Input Monitor Playback Switch",
  799. .info = snd_ctl_boolean_mono_info,
  800. .get = monitor_get,
  801. .put = monitor_put,
  802. .private_value = OXYGEN_ADC_MONITOR_B,
  803. },
  804. {
  805. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  806. .name = "Analog Input Monitor Playback Volume",
  807. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  808. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  809. .info = monitor_volume_info,
  810. .get = monitor_get,
  811. .put = monitor_put,
  812. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  813. | (1 << 8),
  814. .tlv = { .p = monitor_db_scale, },
  815. },
  816. },
  817. },
  818. {
  819. .pcm_dev = CAPTURE_2_FROM_I2S_2,
  820. .controls = {
  821. {
  822. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  823. .name = "Analog Input Monitor Playback Switch",
  824. .index = 1,
  825. .info = snd_ctl_boolean_mono_info,
  826. .get = monitor_get,
  827. .put = monitor_put,
  828. .private_value = OXYGEN_ADC_MONITOR_B,
  829. },
  830. {
  831. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  832. .name = "Analog Input Monitor Playback Volume",
  833. .index = 1,
  834. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  835. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  836. .info = monitor_volume_info,
  837. .get = monitor_get,
  838. .put = monitor_put,
  839. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  840. | (1 << 8),
  841. .tlv = { .p = monitor_db_scale, },
  842. },
  843. },
  844. },
  845. {
  846. .pcm_dev = CAPTURE_1_FROM_SPDIF,
  847. .controls = {
  848. {
  849. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  850. .name = "Digital Input Monitor Playback Switch",
  851. .info = snd_ctl_boolean_mono_info,
  852. .get = monitor_get,
  853. .put = monitor_put,
  854. .private_value = OXYGEN_ADC_MONITOR_C,
  855. },
  856. {
  857. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  858. .name = "Digital Input Monitor Playback Volume",
  859. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  860. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  861. .info = monitor_volume_info,
  862. .get = monitor_get,
  863. .put = monitor_put,
  864. .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
  865. | (1 << 8),
  866. .tlv = { .p = monitor_db_scale, },
  867. },
  868. },
  869. },
  870. };
  871. static const struct snd_kcontrol_new ac97_controls[] = {
  872. AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC, 0),
  873. AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
  874. AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
  875. {
  876. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  877. .name = "Mic Source Capture Enum",
  878. .info = mic_fmic_source_info,
  879. .get = mic_fmic_source_get,
  880. .put = mic_fmic_source_put,
  881. },
  882. AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
  883. AC97_VOLUME("CD Capture Volume", 0, AC97_CD, 1),
  884. AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
  885. AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX, 1),
  886. AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
  887. };
  888. static const struct snd_kcontrol_new ac97_fp_controls[] = {
  889. AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE, 1),
  890. AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
  891. {
  892. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  893. .name = "Front Panel Capture Volume",
  894. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  895. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  896. .info = ac97_fp_rec_volume_info,
  897. .get = ac97_fp_rec_volume_get,
  898. .put = ac97_fp_rec_volume_put,
  899. .tlv = { .p = ac97_rec_db_scale, },
  900. },
  901. AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
  902. };
  903. static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
  904. {
  905. struct oxygen *chip = ctl->private_data;
  906. unsigned int i;
  907. /* I'm too lazy to write a function for each control :-) */
  908. for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
  909. chip->controls[i] = NULL;
  910. }
  911. static int add_controls(struct oxygen *chip,
  912. const struct snd_kcontrol_new controls[],
  913. unsigned int count)
  914. {
  915. static const char *const known_ctl_names[CONTROL_COUNT] = {
  916. [CONTROL_SPDIF_PCM] =
  917. SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  918. [CONTROL_SPDIF_INPUT_BITS] =
  919. SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  920. [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
  921. [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
  922. [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
  923. [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
  924. };
  925. unsigned int i, j;
  926. struct snd_kcontrol_new template;
  927. struct snd_kcontrol *ctl;
  928. int err;
  929. for (i = 0; i < count; ++i) {
  930. template = controls[i];
  931. if (chip->model.control_filter) {
  932. err = chip->model.control_filter(&template);
  933. if (err < 0)
  934. return err;
  935. if (err == 1)
  936. continue;
  937. }
  938. if (!strcmp(template.name, "Stereo Upmixing") &&
  939. chip->model.dac_channels_pcm == 2)
  940. continue;
  941. if (!strcmp(template.name, "Mic Source Capture Enum") &&
  942. !(chip->model.device_config & AC97_FMIC_SWITCH))
  943. continue;
  944. if (!strncmp(template.name, "CD Capture ", 11) &&
  945. !(chip->model.device_config & AC97_CD_INPUT))
  946. continue;
  947. if (!strcmp(template.name, "Master Playback Volume") &&
  948. chip->model.dac_tlv) {
  949. template.tlv.p = chip->model.dac_tlv;
  950. template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  951. }
  952. ctl = snd_ctl_new1(&template, chip);
  953. if (!ctl)
  954. return -ENOMEM;
  955. err = snd_ctl_add(chip->card, ctl);
  956. if (err < 0)
  957. return err;
  958. for (j = 0; j < CONTROL_COUNT; ++j)
  959. if (!strcmp(ctl->id.name, known_ctl_names[j])) {
  960. chip->controls[j] = ctl;
  961. ctl->private_free = oxygen_any_ctl_free;
  962. }
  963. }
  964. return 0;
  965. }
  966. int oxygen_mixer_init(struct oxygen *chip)
  967. {
  968. unsigned int i;
  969. int err;
  970. err = add_controls(chip, controls, ARRAY_SIZE(controls));
  971. if (err < 0)
  972. return err;
  973. if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) {
  974. err = add_controls(chip, spdif_input_controls,
  975. ARRAY_SIZE(spdif_input_controls));
  976. if (err < 0)
  977. return err;
  978. }
  979. for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
  980. if (!(chip->model.device_config & monitor_controls[i].pcm_dev))
  981. continue;
  982. err = add_controls(chip, monitor_controls[i].controls,
  983. ARRAY_SIZE(monitor_controls[i].controls));
  984. if (err < 0)
  985. return err;
  986. }
  987. if (chip->has_ac97_0) {
  988. err = add_controls(chip, ac97_controls,
  989. ARRAY_SIZE(ac97_controls));
  990. if (err < 0)
  991. return err;
  992. }
  993. if (chip->has_ac97_1) {
  994. err = add_controls(chip, ac97_fp_controls,
  995. ARRAY_SIZE(ac97_fp_controls));
  996. if (err < 0)
  997. return err;
  998. }
  999. return chip->model.mixer_init ? chip->model.mixer_init(chip) : 0;
  1000. }