skge.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/in.h>
  28. #include <linux/kernel.h>
  29. #include <linux/module.h>
  30. #include <linux/moduleparam.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/etherdevice.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/pci.h>
  35. #include <linux/if_vlan.h>
  36. #include <linux/ip.h>
  37. #include <linux/delay.h>
  38. #include <linux/crc32.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/mii.h>
  41. #include <asm/irq.h>
  42. #include "skge.h"
  43. #define DRV_NAME "skge"
  44. #define DRV_VERSION "1.2"
  45. #define PFX DRV_NAME " "
  46. #define DEFAULT_TX_RING_SIZE 128
  47. #define DEFAULT_RX_RING_SIZE 512
  48. #define MAX_TX_RING_SIZE 1024
  49. #define MAX_RX_RING_SIZE 4096
  50. #define RX_COPY_THRESHOLD 128
  51. #define RX_BUF_SIZE 1536
  52. #define PHY_RETRIES 1000
  53. #define ETH_JUMBO_MTU 9000
  54. #define TX_WATCHDOG (5 * HZ)
  55. #define NAPI_WEIGHT 64
  56. #define BLINK_MS 250
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  73. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  75. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  77. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  78. { 0 }
  79. };
  80. MODULE_DEVICE_TABLE(pci, skge_id_table);
  81. static int skge_up(struct net_device *dev);
  82. static int skge_down(struct net_device *dev);
  83. static void skge_tx_clean(struct skge_port *skge);
  84. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  85. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  86. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  87. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  88. static void yukon_init(struct skge_hw *hw, int port);
  89. static void yukon_reset(struct skge_hw *hw, int port);
  90. static void genesis_mac_init(struct skge_hw *hw, int port);
  91. static void genesis_reset(struct skge_hw *hw, int port);
  92. static void genesis_link_up(struct skge_port *skge);
  93. /* Avoid conditionals by using array */
  94. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  95. static const int rxqaddr[] = { Q_R1, Q_R2 };
  96. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  97. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  98. static const u32 portirqmask[] = { IS_PORT_1, IS_PORT_2 };
  99. static int skge_get_regs_len(struct net_device *dev)
  100. {
  101. return 0x4000;
  102. }
  103. /*
  104. * Returns copy of whole control register region
  105. * Note: skip RAM address register because accessing it will
  106. * cause bus hangs!
  107. */
  108. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  109. void *p)
  110. {
  111. const struct skge_port *skge = netdev_priv(dev);
  112. const void __iomem *io = skge->hw->regs;
  113. regs->version = 1;
  114. memset(p, 0, regs->len);
  115. memcpy_fromio(p, io, B3_RAM_ADDR);
  116. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  117. regs->len - B3_RI_WTO_R1);
  118. }
  119. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  120. static int wol_supported(const struct skge_hw *hw)
  121. {
  122. return !((hw->chip_id == CHIP_ID_GENESIS ||
  123. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  124. }
  125. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  126. {
  127. struct skge_port *skge = netdev_priv(dev);
  128. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  129. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  130. }
  131. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  132. {
  133. struct skge_port *skge = netdev_priv(dev);
  134. struct skge_hw *hw = skge->hw;
  135. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  136. return -EOPNOTSUPP;
  137. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  138. return -EOPNOTSUPP;
  139. skge->wol = wol->wolopts == WAKE_MAGIC;
  140. if (skge->wol) {
  141. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  142. skge_write16(hw, WOL_CTRL_STAT,
  143. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  144. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  145. } else
  146. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  147. return 0;
  148. }
  149. /* Determine supported/advertised modes based on hardware.
  150. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  151. */
  152. static u32 skge_supported_modes(const struct skge_hw *hw)
  153. {
  154. u32 supported;
  155. if (hw->copper) {
  156. supported = SUPPORTED_10baseT_Half
  157. | SUPPORTED_10baseT_Full
  158. | SUPPORTED_100baseT_Half
  159. | SUPPORTED_100baseT_Full
  160. | SUPPORTED_1000baseT_Half
  161. | SUPPORTED_1000baseT_Full
  162. | SUPPORTED_Autoneg| SUPPORTED_TP;
  163. if (hw->chip_id == CHIP_ID_GENESIS)
  164. supported &= ~(SUPPORTED_10baseT_Half
  165. | SUPPORTED_10baseT_Full
  166. | SUPPORTED_100baseT_Half
  167. | SUPPORTED_100baseT_Full);
  168. else if (hw->chip_id == CHIP_ID_YUKON)
  169. supported &= ~SUPPORTED_1000baseT_Half;
  170. } else
  171. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  172. | SUPPORTED_Autoneg;
  173. return supported;
  174. }
  175. static int skge_get_settings(struct net_device *dev,
  176. struct ethtool_cmd *ecmd)
  177. {
  178. struct skge_port *skge = netdev_priv(dev);
  179. struct skge_hw *hw = skge->hw;
  180. ecmd->transceiver = XCVR_INTERNAL;
  181. ecmd->supported = skge_supported_modes(hw);
  182. if (hw->copper) {
  183. ecmd->port = PORT_TP;
  184. ecmd->phy_address = hw->phy_addr;
  185. } else
  186. ecmd->port = PORT_FIBRE;
  187. ecmd->advertising = skge->advertising;
  188. ecmd->autoneg = skge->autoneg;
  189. ecmd->speed = skge->speed;
  190. ecmd->duplex = skge->duplex;
  191. return 0;
  192. }
  193. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  194. {
  195. struct skge_port *skge = netdev_priv(dev);
  196. const struct skge_hw *hw = skge->hw;
  197. u32 supported = skge_supported_modes(hw);
  198. if (ecmd->autoneg == AUTONEG_ENABLE) {
  199. ecmd->advertising = supported;
  200. skge->duplex = -1;
  201. skge->speed = -1;
  202. } else {
  203. u32 setting;
  204. switch (ecmd->speed) {
  205. case SPEED_1000:
  206. if (ecmd->duplex == DUPLEX_FULL)
  207. setting = SUPPORTED_1000baseT_Full;
  208. else if (ecmd->duplex == DUPLEX_HALF)
  209. setting = SUPPORTED_1000baseT_Half;
  210. else
  211. return -EINVAL;
  212. break;
  213. case SPEED_100:
  214. if (ecmd->duplex == DUPLEX_FULL)
  215. setting = SUPPORTED_100baseT_Full;
  216. else if (ecmd->duplex == DUPLEX_HALF)
  217. setting = SUPPORTED_100baseT_Half;
  218. else
  219. return -EINVAL;
  220. break;
  221. case SPEED_10:
  222. if (ecmd->duplex == DUPLEX_FULL)
  223. setting = SUPPORTED_10baseT_Full;
  224. else if (ecmd->duplex == DUPLEX_HALF)
  225. setting = SUPPORTED_10baseT_Half;
  226. else
  227. return -EINVAL;
  228. break;
  229. default:
  230. return -EINVAL;
  231. }
  232. if ((setting & supported) == 0)
  233. return -EINVAL;
  234. skge->speed = ecmd->speed;
  235. skge->duplex = ecmd->duplex;
  236. }
  237. skge->autoneg = ecmd->autoneg;
  238. skge->advertising = ecmd->advertising;
  239. if (netif_running(dev)) {
  240. skge_down(dev);
  241. skge_up(dev);
  242. }
  243. return (0);
  244. }
  245. static void skge_get_drvinfo(struct net_device *dev,
  246. struct ethtool_drvinfo *info)
  247. {
  248. struct skge_port *skge = netdev_priv(dev);
  249. strcpy(info->driver, DRV_NAME);
  250. strcpy(info->version, DRV_VERSION);
  251. strcpy(info->fw_version, "N/A");
  252. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  253. }
  254. static const struct skge_stat {
  255. char name[ETH_GSTRING_LEN];
  256. u16 xmac_offset;
  257. u16 gma_offset;
  258. } skge_stats[] = {
  259. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  260. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  261. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  262. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  263. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  264. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  265. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  266. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  267. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  268. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  269. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  270. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  271. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  272. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  273. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  274. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  275. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  276. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  277. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  278. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  279. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  280. };
  281. static int skge_get_stats_count(struct net_device *dev)
  282. {
  283. return ARRAY_SIZE(skge_stats);
  284. }
  285. static void skge_get_ethtool_stats(struct net_device *dev,
  286. struct ethtool_stats *stats, u64 *data)
  287. {
  288. struct skge_port *skge = netdev_priv(dev);
  289. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  290. genesis_get_stats(skge, data);
  291. else
  292. yukon_get_stats(skge, data);
  293. }
  294. /* Use hardware MIB variables for critical path statistics and
  295. * transmit feedback not reported at interrupt.
  296. * Other errors are accounted for in interrupt handler.
  297. */
  298. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  299. {
  300. struct skge_port *skge = netdev_priv(dev);
  301. u64 data[ARRAY_SIZE(skge_stats)];
  302. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  303. genesis_get_stats(skge, data);
  304. else
  305. yukon_get_stats(skge, data);
  306. skge->net_stats.tx_bytes = data[0];
  307. skge->net_stats.rx_bytes = data[1];
  308. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  309. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  310. skge->net_stats.multicast = data[5] + data[7];
  311. skge->net_stats.collisions = data[10];
  312. skge->net_stats.tx_aborted_errors = data[12];
  313. return &skge->net_stats;
  314. }
  315. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  316. {
  317. int i;
  318. switch (stringset) {
  319. case ETH_SS_STATS:
  320. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  321. memcpy(data + i * ETH_GSTRING_LEN,
  322. skge_stats[i].name, ETH_GSTRING_LEN);
  323. break;
  324. }
  325. }
  326. static void skge_get_ring_param(struct net_device *dev,
  327. struct ethtool_ringparam *p)
  328. {
  329. struct skge_port *skge = netdev_priv(dev);
  330. p->rx_max_pending = MAX_RX_RING_SIZE;
  331. p->tx_max_pending = MAX_TX_RING_SIZE;
  332. p->rx_mini_max_pending = 0;
  333. p->rx_jumbo_max_pending = 0;
  334. p->rx_pending = skge->rx_ring.count;
  335. p->tx_pending = skge->tx_ring.count;
  336. p->rx_mini_pending = 0;
  337. p->rx_jumbo_pending = 0;
  338. }
  339. static int skge_set_ring_param(struct net_device *dev,
  340. struct ethtool_ringparam *p)
  341. {
  342. struct skge_port *skge = netdev_priv(dev);
  343. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  344. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  345. return -EINVAL;
  346. skge->rx_ring.count = p->rx_pending;
  347. skge->tx_ring.count = p->tx_pending;
  348. if (netif_running(dev)) {
  349. skge_down(dev);
  350. skge_up(dev);
  351. }
  352. return 0;
  353. }
  354. static u32 skge_get_msglevel(struct net_device *netdev)
  355. {
  356. struct skge_port *skge = netdev_priv(netdev);
  357. return skge->msg_enable;
  358. }
  359. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  360. {
  361. struct skge_port *skge = netdev_priv(netdev);
  362. skge->msg_enable = value;
  363. }
  364. static int skge_nway_reset(struct net_device *dev)
  365. {
  366. struct skge_port *skge = netdev_priv(dev);
  367. struct skge_hw *hw = skge->hw;
  368. int port = skge->port;
  369. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  370. return -EINVAL;
  371. spin_lock_bh(&hw->phy_lock);
  372. if (hw->chip_id == CHIP_ID_GENESIS) {
  373. genesis_reset(hw, port);
  374. genesis_mac_init(hw, port);
  375. } else {
  376. yukon_reset(hw, port);
  377. yukon_init(hw, port);
  378. }
  379. spin_unlock_bh(&hw->phy_lock);
  380. return 0;
  381. }
  382. static int skge_set_sg(struct net_device *dev, u32 data)
  383. {
  384. struct skge_port *skge = netdev_priv(dev);
  385. struct skge_hw *hw = skge->hw;
  386. if (hw->chip_id == CHIP_ID_GENESIS && data)
  387. return -EOPNOTSUPP;
  388. return ethtool_op_set_sg(dev, data);
  389. }
  390. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  391. {
  392. struct skge_port *skge = netdev_priv(dev);
  393. struct skge_hw *hw = skge->hw;
  394. if (hw->chip_id == CHIP_ID_GENESIS && data)
  395. return -EOPNOTSUPP;
  396. return ethtool_op_set_tx_csum(dev, data);
  397. }
  398. static u32 skge_get_rx_csum(struct net_device *dev)
  399. {
  400. struct skge_port *skge = netdev_priv(dev);
  401. return skge->rx_csum;
  402. }
  403. /* Only Yukon supports checksum offload. */
  404. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  405. {
  406. struct skge_port *skge = netdev_priv(dev);
  407. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  408. return -EOPNOTSUPP;
  409. skge->rx_csum = data;
  410. return 0;
  411. }
  412. static void skge_get_pauseparam(struct net_device *dev,
  413. struct ethtool_pauseparam *ecmd)
  414. {
  415. struct skge_port *skge = netdev_priv(dev);
  416. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  417. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  418. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  419. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  420. ecmd->autoneg = skge->autoneg;
  421. }
  422. static int skge_set_pauseparam(struct net_device *dev,
  423. struct ethtool_pauseparam *ecmd)
  424. {
  425. struct skge_port *skge = netdev_priv(dev);
  426. skge->autoneg = ecmd->autoneg;
  427. if (ecmd->rx_pause && ecmd->tx_pause)
  428. skge->flow_control = FLOW_MODE_SYMMETRIC;
  429. else if (ecmd->rx_pause && !ecmd->tx_pause)
  430. skge->flow_control = FLOW_MODE_REM_SEND;
  431. else if (!ecmd->rx_pause && ecmd->tx_pause)
  432. skge->flow_control = FLOW_MODE_LOC_SEND;
  433. else
  434. skge->flow_control = FLOW_MODE_NONE;
  435. if (netif_running(dev)) {
  436. skge_down(dev);
  437. skge_up(dev);
  438. }
  439. return 0;
  440. }
  441. /* Chip internal frequency for clock calculations */
  442. static inline u32 hwkhz(const struct skge_hw *hw)
  443. {
  444. if (hw->chip_id == CHIP_ID_GENESIS)
  445. return 53215; /* or: 53.125 MHz */
  446. else
  447. return 78215; /* or: 78.125 MHz */
  448. }
  449. /* Chip HZ to microseconds */
  450. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  451. {
  452. return (ticks * 1000) / hwkhz(hw);
  453. }
  454. /* Microseconds to chip HZ */
  455. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  456. {
  457. return hwkhz(hw) * usec / 1000;
  458. }
  459. static int skge_get_coalesce(struct net_device *dev,
  460. struct ethtool_coalesce *ecmd)
  461. {
  462. struct skge_port *skge = netdev_priv(dev);
  463. struct skge_hw *hw = skge->hw;
  464. int port = skge->port;
  465. ecmd->rx_coalesce_usecs = 0;
  466. ecmd->tx_coalesce_usecs = 0;
  467. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  468. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  469. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  470. if (msk & rxirqmask[port])
  471. ecmd->rx_coalesce_usecs = delay;
  472. if (msk & txirqmask[port])
  473. ecmd->tx_coalesce_usecs = delay;
  474. }
  475. return 0;
  476. }
  477. /* Note: interrupt timer is per board, but can turn on/off per port */
  478. static int skge_set_coalesce(struct net_device *dev,
  479. struct ethtool_coalesce *ecmd)
  480. {
  481. struct skge_port *skge = netdev_priv(dev);
  482. struct skge_hw *hw = skge->hw;
  483. int port = skge->port;
  484. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  485. u32 delay = 25;
  486. if (ecmd->rx_coalesce_usecs == 0)
  487. msk &= ~rxirqmask[port];
  488. else if (ecmd->rx_coalesce_usecs < 25 ||
  489. ecmd->rx_coalesce_usecs > 33333)
  490. return -EINVAL;
  491. else {
  492. msk |= rxirqmask[port];
  493. delay = ecmd->rx_coalesce_usecs;
  494. }
  495. if (ecmd->tx_coalesce_usecs == 0)
  496. msk &= ~txirqmask[port];
  497. else if (ecmd->tx_coalesce_usecs < 25 ||
  498. ecmd->tx_coalesce_usecs > 33333)
  499. return -EINVAL;
  500. else {
  501. msk |= txirqmask[port];
  502. delay = min(delay, ecmd->rx_coalesce_usecs);
  503. }
  504. skge_write32(hw, B2_IRQM_MSK, msk);
  505. if (msk == 0)
  506. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  507. else {
  508. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  509. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  510. }
  511. return 0;
  512. }
  513. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  514. static void skge_led(struct skge_port *skge, enum led_mode mode)
  515. {
  516. struct skge_hw *hw = skge->hw;
  517. int port = skge->port;
  518. spin_lock_bh(&hw->phy_lock);
  519. if (hw->chip_id == CHIP_ID_GENESIS) {
  520. switch (mode) {
  521. case LED_MODE_OFF:
  522. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  523. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  524. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  525. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  526. break;
  527. case LED_MODE_ON:
  528. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  529. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  530. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  531. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  532. break;
  533. case LED_MODE_TST:
  534. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  535. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  536. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  537. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  538. break;
  539. }
  540. } else {
  541. switch (mode) {
  542. case LED_MODE_OFF:
  543. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  544. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  545. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  546. PHY_M_LED_MO_10(MO_LED_OFF) |
  547. PHY_M_LED_MO_100(MO_LED_OFF) |
  548. PHY_M_LED_MO_1000(MO_LED_OFF) |
  549. PHY_M_LED_MO_RX(MO_LED_OFF));
  550. break;
  551. case LED_MODE_ON:
  552. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  553. PHY_M_LED_PULS_DUR(PULS_170MS) |
  554. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  555. PHY_M_LEDC_TX_CTRL |
  556. PHY_M_LEDC_DP_CTRL);
  557. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  558. PHY_M_LED_MO_RX(MO_LED_OFF) |
  559. (skge->speed == SPEED_100 ?
  560. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  561. break;
  562. case LED_MODE_TST:
  563. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  564. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  565. PHY_M_LED_MO_DUP(MO_LED_ON) |
  566. PHY_M_LED_MO_10(MO_LED_ON) |
  567. PHY_M_LED_MO_100(MO_LED_ON) |
  568. PHY_M_LED_MO_1000(MO_LED_ON) |
  569. PHY_M_LED_MO_RX(MO_LED_ON));
  570. }
  571. }
  572. spin_unlock_bh(&hw->phy_lock);
  573. }
  574. /* blink LED's for finding board */
  575. static int skge_phys_id(struct net_device *dev, u32 data)
  576. {
  577. struct skge_port *skge = netdev_priv(dev);
  578. unsigned long ms;
  579. enum led_mode mode = LED_MODE_TST;
  580. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  581. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  582. else
  583. ms = data * 1000;
  584. while (ms > 0) {
  585. skge_led(skge, mode);
  586. mode ^= LED_MODE_TST;
  587. if (msleep_interruptible(BLINK_MS))
  588. break;
  589. ms -= BLINK_MS;
  590. }
  591. /* back to regular LED state */
  592. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  593. return 0;
  594. }
  595. static struct ethtool_ops skge_ethtool_ops = {
  596. .get_settings = skge_get_settings,
  597. .set_settings = skge_set_settings,
  598. .get_drvinfo = skge_get_drvinfo,
  599. .get_regs_len = skge_get_regs_len,
  600. .get_regs = skge_get_regs,
  601. .get_wol = skge_get_wol,
  602. .set_wol = skge_set_wol,
  603. .get_msglevel = skge_get_msglevel,
  604. .set_msglevel = skge_set_msglevel,
  605. .nway_reset = skge_nway_reset,
  606. .get_link = ethtool_op_get_link,
  607. .get_ringparam = skge_get_ring_param,
  608. .set_ringparam = skge_set_ring_param,
  609. .get_pauseparam = skge_get_pauseparam,
  610. .set_pauseparam = skge_set_pauseparam,
  611. .get_coalesce = skge_get_coalesce,
  612. .set_coalesce = skge_set_coalesce,
  613. .get_sg = ethtool_op_get_sg,
  614. .set_sg = skge_set_sg,
  615. .get_tx_csum = ethtool_op_get_tx_csum,
  616. .set_tx_csum = skge_set_tx_csum,
  617. .get_rx_csum = skge_get_rx_csum,
  618. .set_rx_csum = skge_set_rx_csum,
  619. .get_strings = skge_get_strings,
  620. .phys_id = skge_phys_id,
  621. .get_stats_count = skge_get_stats_count,
  622. .get_ethtool_stats = skge_get_ethtool_stats,
  623. .get_perm_addr = ethtool_op_get_perm_addr,
  624. };
  625. /*
  626. * Allocate ring elements and chain them together
  627. * One-to-one association of board descriptors with ring elements
  628. */
  629. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  630. {
  631. struct skge_tx_desc *d;
  632. struct skge_element *e;
  633. int i;
  634. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  635. if (!ring->start)
  636. return -ENOMEM;
  637. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  638. e->desc = d;
  639. e->skb = NULL;
  640. if (i == ring->count - 1) {
  641. e->next = ring->start;
  642. d->next_offset = base;
  643. } else {
  644. e->next = e + 1;
  645. d->next_offset = base + (i+1) * sizeof(*d);
  646. }
  647. }
  648. ring->to_use = ring->to_clean = ring->start;
  649. return 0;
  650. }
  651. /* Allocate and setup a new buffer for receiving */
  652. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  653. struct sk_buff *skb, unsigned int bufsize)
  654. {
  655. struct skge_rx_desc *rd = e->desc;
  656. u64 map;
  657. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  658. PCI_DMA_FROMDEVICE);
  659. rd->dma_lo = map;
  660. rd->dma_hi = map >> 32;
  661. e->skb = skb;
  662. rd->csum1_start = ETH_HLEN;
  663. rd->csum2_start = ETH_HLEN;
  664. rd->csum1 = 0;
  665. rd->csum2 = 0;
  666. wmb();
  667. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  668. pci_unmap_addr_set(e, mapaddr, map);
  669. pci_unmap_len_set(e, maplen, bufsize);
  670. }
  671. /* Resume receiving using existing skb,
  672. * Note: DMA address is not changed by chip.
  673. * MTU not changed while receiver active.
  674. */
  675. static void skge_rx_reuse(struct skge_element *e, unsigned int size)
  676. {
  677. struct skge_rx_desc *rd = e->desc;
  678. rd->csum2 = 0;
  679. rd->csum2_start = ETH_HLEN;
  680. wmb();
  681. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  682. }
  683. /* Free all buffers in receive ring, assumes receiver stopped */
  684. static void skge_rx_clean(struct skge_port *skge)
  685. {
  686. struct skge_hw *hw = skge->hw;
  687. struct skge_ring *ring = &skge->rx_ring;
  688. struct skge_element *e;
  689. e = ring->start;
  690. do {
  691. struct skge_rx_desc *rd = e->desc;
  692. rd->control = 0;
  693. if (e->skb) {
  694. pci_unmap_single(hw->pdev,
  695. pci_unmap_addr(e, mapaddr),
  696. pci_unmap_len(e, maplen),
  697. PCI_DMA_FROMDEVICE);
  698. dev_kfree_skb(e->skb);
  699. e->skb = NULL;
  700. }
  701. } while ((e = e->next) != ring->start);
  702. }
  703. /* Allocate buffers for receive ring
  704. * For receive: to_clean is next received frame.
  705. */
  706. static int skge_rx_fill(struct skge_port *skge)
  707. {
  708. struct skge_ring *ring = &skge->rx_ring;
  709. struct skge_element *e;
  710. e = ring->start;
  711. do {
  712. struct sk_buff *skb;
  713. skb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
  714. if (!skb)
  715. return -ENOMEM;
  716. skb_reserve(skb, NET_IP_ALIGN);
  717. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  718. } while ( (e = e->next) != ring->start);
  719. ring->to_clean = ring->start;
  720. return 0;
  721. }
  722. static void skge_link_up(struct skge_port *skge)
  723. {
  724. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  725. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  726. netif_carrier_on(skge->netdev);
  727. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  728. netif_wake_queue(skge->netdev);
  729. if (netif_msg_link(skge))
  730. printk(KERN_INFO PFX
  731. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  732. skge->netdev->name, skge->speed,
  733. skge->duplex == DUPLEX_FULL ? "full" : "half",
  734. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  735. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  736. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  737. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  738. "unknown");
  739. }
  740. static void skge_link_down(struct skge_port *skge)
  741. {
  742. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  743. netif_carrier_off(skge->netdev);
  744. netif_stop_queue(skge->netdev);
  745. if (netif_msg_link(skge))
  746. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  747. }
  748. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  749. {
  750. int i;
  751. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  752. xm_read16(hw, port, XM_PHY_DATA);
  753. /* Need to wait for external PHY */
  754. for (i = 0; i < PHY_RETRIES; i++) {
  755. udelay(1);
  756. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  757. goto ready;
  758. }
  759. return -ETIMEDOUT;
  760. ready:
  761. *val = xm_read16(hw, port, XM_PHY_DATA);
  762. return 0;
  763. }
  764. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  765. {
  766. u16 v = 0;
  767. if (__xm_phy_read(hw, port, reg, &v))
  768. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  769. hw->dev[port]->name);
  770. return v;
  771. }
  772. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  773. {
  774. int i;
  775. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  776. for (i = 0; i < PHY_RETRIES; i++) {
  777. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  778. goto ready;
  779. udelay(1);
  780. }
  781. return -EIO;
  782. ready:
  783. xm_write16(hw, port, XM_PHY_DATA, val);
  784. return 0;
  785. }
  786. static void genesis_init(struct skge_hw *hw)
  787. {
  788. /* set blink source counter */
  789. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  790. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  791. /* configure mac arbiter */
  792. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  793. /* configure mac arbiter timeout values */
  794. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  795. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  796. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  797. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  798. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  799. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  800. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  801. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  802. /* configure packet arbiter timeout */
  803. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  804. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  805. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  806. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  807. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  808. }
  809. static void genesis_reset(struct skge_hw *hw, int port)
  810. {
  811. const u8 zero[8] = { 0 };
  812. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  813. /* reset the statistics module */
  814. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  815. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  816. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  817. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  818. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  819. /* disable Broadcom PHY IRQ */
  820. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  821. xm_outhash(hw, port, XM_HSM, zero);
  822. }
  823. /* Convert mode to MII values */
  824. static const u16 phy_pause_map[] = {
  825. [FLOW_MODE_NONE] = 0,
  826. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  827. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  828. [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  829. };
  830. /* Check status of Broadcom phy link */
  831. static void bcom_check_link(struct skge_hw *hw, int port)
  832. {
  833. struct net_device *dev = hw->dev[port];
  834. struct skge_port *skge = netdev_priv(dev);
  835. u16 status;
  836. /* read twice because of latch */
  837. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  838. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  839. if ((status & PHY_ST_LSYNC) == 0) {
  840. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  841. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  842. xm_write16(hw, port, XM_MMU_CMD, cmd);
  843. /* dummy read to ensure writing */
  844. (void) xm_read16(hw, port, XM_MMU_CMD);
  845. if (netif_carrier_ok(dev))
  846. skge_link_down(skge);
  847. } else {
  848. if (skge->autoneg == AUTONEG_ENABLE &&
  849. (status & PHY_ST_AN_OVER)) {
  850. u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
  851. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  852. if (lpa & PHY_B_AN_RF) {
  853. printk(KERN_NOTICE PFX "%s: remote fault\n",
  854. dev->name);
  855. return;
  856. }
  857. /* Check Duplex mismatch */
  858. switch (aux & PHY_B_AS_AN_RES_MSK) {
  859. case PHY_B_RES_1000FD:
  860. skge->duplex = DUPLEX_FULL;
  861. break;
  862. case PHY_B_RES_1000HD:
  863. skge->duplex = DUPLEX_HALF;
  864. break;
  865. default:
  866. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  867. dev->name);
  868. return;
  869. }
  870. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  871. switch (aux & PHY_B_AS_PAUSE_MSK) {
  872. case PHY_B_AS_PAUSE_MSK:
  873. skge->flow_control = FLOW_MODE_SYMMETRIC;
  874. break;
  875. case PHY_B_AS_PRR:
  876. skge->flow_control = FLOW_MODE_REM_SEND;
  877. break;
  878. case PHY_B_AS_PRT:
  879. skge->flow_control = FLOW_MODE_LOC_SEND;
  880. break;
  881. default:
  882. skge->flow_control = FLOW_MODE_NONE;
  883. }
  884. skge->speed = SPEED_1000;
  885. }
  886. if (!netif_carrier_ok(dev))
  887. genesis_link_up(skge);
  888. }
  889. }
  890. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  891. * Phy on for 100 or 10Mbit operation
  892. */
  893. static void bcom_phy_init(struct skge_port *skge, int jumbo)
  894. {
  895. struct skge_hw *hw = skge->hw;
  896. int port = skge->port;
  897. int i;
  898. u16 id1, r, ext, ctl;
  899. /* magic workaround patterns for Broadcom */
  900. static const struct {
  901. u16 reg;
  902. u16 val;
  903. } A1hack[] = {
  904. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  905. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  906. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  907. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  908. }, C0hack[] = {
  909. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  910. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  911. };
  912. /* read Id from external PHY (all have the same address) */
  913. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  914. /* Optimize MDIO transfer by suppressing preamble. */
  915. r = xm_read16(hw, port, XM_MMU_CMD);
  916. r |= XM_MMU_NO_PRE;
  917. xm_write16(hw, port, XM_MMU_CMD,r);
  918. switch (id1) {
  919. case PHY_BCOM_ID1_C0:
  920. /*
  921. * Workaround BCOM Errata for the C0 type.
  922. * Write magic patterns to reserved registers.
  923. */
  924. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  925. xm_phy_write(hw, port,
  926. C0hack[i].reg, C0hack[i].val);
  927. break;
  928. case PHY_BCOM_ID1_A1:
  929. /*
  930. * Workaround BCOM Errata for the A1 type.
  931. * Write magic patterns to reserved registers.
  932. */
  933. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  934. xm_phy_write(hw, port,
  935. A1hack[i].reg, A1hack[i].val);
  936. break;
  937. }
  938. /*
  939. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  940. * Disable Power Management after reset.
  941. */
  942. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  943. r |= PHY_B_AC_DIS_PM;
  944. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  945. /* Dummy read */
  946. xm_read16(hw, port, XM_ISRC);
  947. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  948. ctl = PHY_CT_SP1000; /* always 1000mbit */
  949. if (skge->autoneg == AUTONEG_ENABLE) {
  950. /*
  951. * Workaround BCOM Errata #1 for the C5 type.
  952. * 1000Base-T Link Acquisition Failure in Slave Mode
  953. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  954. */
  955. u16 adv = PHY_B_1000C_RD;
  956. if (skge->advertising & ADVERTISED_1000baseT_Half)
  957. adv |= PHY_B_1000C_AHD;
  958. if (skge->advertising & ADVERTISED_1000baseT_Full)
  959. adv |= PHY_B_1000C_AFD;
  960. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  961. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  962. } else {
  963. if (skge->duplex == DUPLEX_FULL)
  964. ctl |= PHY_CT_DUP_MD;
  965. /* Force to slave */
  966. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  967. }
  968. /* Set autonegotiation pause parameters */
  969. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  970. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  971. /* Handle Jumbo frames */
  972. if (jumbo) {
  973. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  974. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  975. ext |= PHY_B_PEC_HIGH_LA;
  976. }
  977. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  978. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  979. /* Use link status change interrupt */
  980. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  981. bcom_check_link(hw, port);
  982. }
  983. static void genesis_mac_init(struct skge_hw *hw, int port)
  984. {
  985. struct net_device *dev = hw->dev[port];
  986. struct skge_port *skge = netdev_priv(dev);
  987. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  988. int i;
  989. u32 r;
  990. const u8 zero[6] = { 0 };
  991. /* Clear MIB counters */
  992. xm_write16(hw, port, XM_STAT_CMD,
  993. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  994. /* Clear two times according to Errata #3 */
  995. xm_write16(hw, port, XM_STAT_CMD,
  996. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  997. /* Unreset the XMAC. */
  998. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  999. /*
  1000. * Perform additional initialization for external PHYs,
  1001. * namely for the 1000baseTX cards that use the XMAC's
  1002. * GMII mode.
  1003. */
  1004. /* Take external Phy out of reset */
  1005. r = skge_read32(hw, B2_GP_IO);
  1006. if (port == 0)
  1007. r |= GP_DIR_0|GP_IO_0;
  1008. else
  1009. r |= GP_DIR_2|GP_IO_2;
  1010. skge_write32(hw, B2_GP_IO, r);
  1011. skge_read32(hw, B2_GP_IO);
  1012. /* Enable GMII interface */
  1013. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1014. bcom_phy_init(skge, jumbo);
  1015. /* Set Station Address */
  1016. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1017. /* We don't use match addresses so clear */
  1018. for (i = 1; i < 16; i++)
  1019. xm_outaddr(hw, port, XM_EXM(i), zero);
  1020. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1021. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1022. /* We don't need the FCS appended to the packet. */
  1023. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1024. if (jumbo)
  1025. r |= XM_RX_BIG_PK_OK;
  1026. if (skge->duplex == DUPLEX_HALF) {
  1027. /*
  1028. * If in manual half duplex mode the other side might be in
  1029. * full duplex mode, so ignore if a carrier extension is not seen
  1030. * on frames received
  1031. */
  1032. r |= XM_RX_DIS_CEXT;
  1033. }
  1034. xm_write16(hw, port, XM_RX_CMD, r);
  1035. /* We want short frames padded to 60 bytes. */
  1036. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1037. /*
  1038. * Bump up the transmit threshold. This helps hold off transmit
  1039. * underruns when we're blasting traffic from both ports at once.
  1040. */
  1041. xm_write16(hw, port, XM_TX_THR, 512);
  1042. /*
  1043. * Enable the reception of all error frames. This is is
  1044. * a necessary evil due to the design of the XMAC. The
  1045. * XMAC's receive FIFO is only 8K in size, however jumbo
  1046. * frames can be up to 9000 bytes in length. When bad
  1047. * frame filtering is enabled, the XMAC's RX FIFO operates
  1048. * in 'store and forward' mode. For this to work, the
  1049. * entire frame has to fit into the FIFO, but that means
  1050. * that jumbo frames larger than 8192 bytes will be
  1051. * truncated. Disabling all bad frame filtering causes
  1052. * the RX FIFO to operate in streaming mode, in which
  1053. * case the XMAC will start transferring frames out of the
  1054. * RX FIFO as soon as the FIFO threshold is reached.
  1055. */
  1056. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1057. /*
  1058. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1059. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1060. * and 'Octets Rx OK Hi Cnt Ov'.
  1061. */
  1062. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1063. /*
  1064. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1065. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1066. * and 'Octets Tx OK Hi Cnt Ov'.
  1067. */
  1068. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1069. /* Configure MAC arbiter */
  1070. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1071. /* configure timeout values */
  1072. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1073. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1074. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1075. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1076. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1077. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1078. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1079. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1080. /* Configure Rx MAC FIFO */
  1081. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1082. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1083. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1084. /* Configure Tx MAC FIFO */
  1085. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1086. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1087. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1088. if (jumbo) {
  1089. /* Enable frame flushing if jumbo frames used */
  1090. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1091. } else {
  1092. /* enable timeout timers if normal frames */
  1093. skge_write16(hw, B3_PA_CTRL,
  1094. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1095. }
  1096. }
  1097. static void genesis_stop(struct skge_port *skge)
  1098. {
  1099. struct skge_hw *hw = skge->hw;
  1100. int port = skge->port;
  1101. u32 reg;
  1102. genesis_reset(hw, port);
  1103. /* Clear Tx packet arbiter timeout IRQ */
  1104. skge_write16(hw, B3_PA_CTRL,
  1105. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1106. /*
  1107. * If the transfer sticks at the MAC the STOP command will not
  1108. * terminate if we don't flush the XMAC's transmit FIFO !
  1109. */
  1110. xm_write32(hw, port, XM_MODE,
  1111. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1112. /* Reset the MAC */
  1113. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1114. /* For external PHYs there must be special handling */
  1115. reg = skge_read32(hw, B2_GP_IO);
  1116. if (port == 0) {
  1117. reg |= GP_DIR_0;
  1118. reg &= ~GP_IO_0;
  1119. } else {
  1120. reg |= GP_DIR_2;
  1121. reg &= ~GP_IO_2;
  1122. }
  1123. skge_write32(hw, B2_GP_IO, reg);
  1124. skge_read32(hw, B2_GP_IO);
  1125. xm_write16(hw, port, XM_MMU_CMD,
  1126. xm_read16(hw, port, XM_MMU_CMD)
  1127. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1128. xm_read16(hw, port, XM_MMU_CMD);
  1129. }
  1130. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1131. {
  1132. struct skge_hw *hw = skge->hw;
  1133. int port = skge->port;
  1134. int i;
  1135. unsigned long timeout = jiffies + HZ;
  1136. xm_write16(hw, port,
  1137. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1138. /* wait for update to complete */
  1139. while (xm_read16(hw, port, XM_STAT_CMD)
  1140. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1141. if (time_after(jiffies, timeout))
  1142. break;
  1143. udelay(10);
  1144. }
  1145. /* special case for 64 bit octet counter */
  1146. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1147. | xm_read32(hw, port, XM_TXO_OK_LO);
  1148. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1149. | xm_read32(hw, port, XM_RXO_OK_LO);
  1150. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1151. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1152. }
  1153. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1154. {
  1155. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1156. u16 status = xm_read16(hw, port, XM_ISRC);
  1157. if (netif_msg_intr(skge))
  1158. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1159. skge->netdev->name, status);
  1160. if (status & XM_IS_TXF_UR) {
  1161. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1162. ++skge->net_stats.tx_fifo_errors;
  1163. }
  1164. if (status & XM_IS_RXF_OV) {
  1165. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1166. ++skge->net_stats.rx_fifo_errors;
  1167. }
  1168. }
  1169. static void genesis_link_up(struct skge_port *skge)
  1170. {
  1171. struct skge_hw *hw = skge->hw;
  1172. int port = skge->port;
  1173. u16 cmd;
  1174. u32 mode, msk;
  1175. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1176. /*
  1177. * enabling pause frame reception is required for 1000BT
  1178. * because the XMAC is not reset if the link is going down
  1179. */
  1180. if (skge->flow_control == FLOW_MODE_NONE ||
  1181. skge->flow_control == FLOW_MODE_LOC_SEND)
  1182. /* Disable Pause Frame Reception */
  1183. cmd |= XM_MMU_IGN_PF;
  1184. else
  1185. /* Enable Pause Frame Reception */
  1186. cmd &= ~XM_MMU_IGN_PF;
  1187. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1188. mode = xm_read32(hw, port, XM_MODE);
  1189. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1190. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1191. /*
  1192. * Configure Pause Frame Generation
  1193. * Use internal and external Pause Frame Generation.
  1194. * Sending pause frames is edge triggered.
  1195. * Send a Pause frame with the maximum pause time if
  1196. * internal oder external FIFO full condition occurs.
  1197. * Send a zero pause time frame to re-start transmission.
  1198. */
  1199. /* XM_PAUSE_DA = '010000C28001' (default) */
  1200. /* XM_MAC_PTIME = 0xffff (maximum) */
  1201. /* remember this value is defined in big endian (!) */
  1202. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1203. mode |= XM_PAUSE_MODE;
  1204. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1205. } else {
  1206. /*
  1207. * disable pause frame generation is required for 1000BT
  1208. * because the XMAC is not reset if the link is going down
  1209. */
  1210. /* Disable Pause Mode in Mode Register */
  1211. mode &= ~XM_PAUSE_MODE;
  1212. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1213. }
  1214. xm_write32(hw, port, XM_MODE, mode);
  1215. msk = XM_DEF_MSK;
  1216. /* disable GP0 interrupt bit for external Phy */
  1217. msk |= XM_IS_INP_ASS;
  1218. xm_write16(hw, port, XM_IMSK, msk);
  1219. xm_read16(hw, port, XM_ISRC);
  1220. /* get MMU Command Reg. */
  1221. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1222. if (skge->duplex == DUPLEX_FULL)
  1223. cmd |= XM_MMU_GMII_FD;
  1224. /*
  1225. * Workaround BCOM Errata (#10523) for all BCom Phys
  1226. * Enable Power Management after link up
  1227. */
  1228. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1229. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1230. & ~PHY_B_AC_DIS_PM);
  1231. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1232. /* enable Rx/Tx */
  1233. xm_write16(hw, port, XM_MMU_CMD,
  1234. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1235. skge_link_up(skge);
  1236. }
  1237. static inline void bcom_phy_intr(struct skge_port *skge)
  1238. {
  1239. struct skge_hw *hw = skge->hw;
  1240. int port = skge->port;
  1241. u16 isrc;
  1242. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1243. if (netif_msg_intr(skge))
  1244. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1245. skge->netdev->name, isrc);
  1246. if (isrc & PHY_B_IS_PSE)
  1247. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1248. hw->dev[port]->name);
  1249. /* Workaround BCom Errata:
  1250. * enable and disable loopback mode if "NO HCD" occurs.
  1251. */
  1252. if (isrc & PHY_B_IS_NO_HDCL) {
  1253. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1254. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1255. ctrl | PHY_CT_LOOP);
  1256. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1257. ctrl & ~PHY_CT_LOOP);
  1258. }
  1259. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1260. bcom_check_link(hw, port);
  1261. }
  1262. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1263. {
  1264. int i;
  1265. gma_write16(hw, port, GM_SMI_DATA, val);
  1266. gma_write16(hw, port, GM_SMI_CTRL,
  1267. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1268. for (i = 0; i < PHY_RETRIES; i++) {
  1269. udelay(1);
  1270. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1271. return 0;
  1272. }
  1273. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1274. hw->dev[port]->name);
  1275. return -EIO;
  1276. }
  1277. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1278. {
  1279. int i;
  1280. gma_write16(hw, port, GM_SMI_CTRL,
  1281. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1282. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1283. for (i = 0; i < PHY_RETRIES; i++) {
  1284. udelay(1);
  1285. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1286. goto ready;
  1287. }
  1288. return -ETIMEDOUT;
  1289. ready:
  1290. *val = gma_read16(hw, port, GM_SMI_DATA);
  1291. return 0;
  1292. }
  1293. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1294. {
  1295. u16 v = 0;
  1296. if (__gm_phy_read(hw, port, reg, &v))
  1297. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1298. hw->dev[port]->name);
  1299. return v;
  1300. }
  1301. /* Marvell Phy Initialization */
  1302. static void yukon_init(struct skge_hw *hw, int port)
  1303. {
  1304. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1305. u16 ctrl, ct1000, adv;
  1306. if (skge->autoneg == AUTONEG_ENABLE) {
  1307. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1308. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1309. PHY_M_EC_MAC_S_MSK);
  1310. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1311. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1312. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1313. }
  1314. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1315. if (skge->autoneg == AUTONEG_DISABLE)
  1316. ctrl &= ~PHY_CT_ANE;
  1317. ctrl |= PHY_CT_RESET;
  1318. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1319. ctrl = 0;
  1320. ct1000 = 0;
  1321. adv = PHY_AN_CSMA;
  1322. if (skge->autoneg == AUTONEG_ENABLE) {
  1323. if (hw->copper) {
  1324. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1325. ct1000 |= PHY_M_1000C_AFD;
  1326. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1327. ct1000 |= PHY_M_1000C_AHD;
  1328. if (skge->advertising & ADVERTISED_100baseT_Full)
  1329. adv |= PHY_M_AN_100_FD;
  1330. if (skge->advertising & ADVERTISED_100baseT_Half)
  1331. adv |= PHY_M_AN_100_HD;
  1332. if (skge->advertising & ADVERTISED_10baseT_Full)
  1333. adv |= PHY_M_AN_10_FD;
  1334. if (skge->advertising & ADVERTISED_10baseT_Half)
  1335. adv |= PHY_M_AN_10_HD;
  1336. } else /* special defines for FIBER (88E1011S only) */
  1337. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1338. /* Set Flow-control capabilities */
  1339. adv |= phy_pause_map[skge->flow_control];
  1340. /* Restart Auto-negotiation */
  1341. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1342. } else {
  1343. /* forced speed/duplex settings */
  1344. ct1000 = PHY_M_1000C_MSE;
  1345. if (skge->duplex == DUPLEX_FULL)
  1346. ctrl |= PHY_CT_DUP_MD;
  1347. switch (skge->speed) {
  1348. case SPEED_1000:
  1349. ctrl |= PHY_CT_SP1000;
  1350. break;
  1351. case SPEED_100:
  1352. ctrl |= PHY_CT_SP100;
  1353. break;
  1354. }
  1355. ctrl |= PHY_CT_RESET;
  1356. }
  1357. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1358. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1359. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1360. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1361. if (skge->autoneg == AUTONEG_ENABLE)
  1362. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1363. else
  1364. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1365. }
  1366. static void yukon_reset(struct skge_hw *hw, int port)
  1367. {
  1368. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1369. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1370. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1371. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1372. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1373. gma_write16(hw, port, GM_RX_CTRL,
  1374. gma_read16(hw, port, GM_RX_CTRL)
  1375. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1376. }
  1377. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1378. static int is_yukon_lite_a0(struct skge_hw *hw)
  1379. {
  1380. u32 reg;
  1381. int ret;
  1382. if (hw->chip_id != CHIP_ID_YUKON)
  1383. return 0;
  1384. reg = skge_read32(hw, B2_FAR);
  1385. skge_write8(hw, B2_FAR + 3, 0xff);
  1386. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1387. skge_write32(hw, B2_FAR, reg);
  1388. return ret;
  1389. }
  1390. static void yukon_mac_init(struct skge_hw *hw, int port)
  1391. {
  1392. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1393. int i;
  1394. u32 reg;
  1395. const u8 *addr = hw->dev[port]->dev_addr;
  1396. /* WA code for COMA mode -- set PHY reset */
  1397. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1398. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1399. reg = skge_read32(hw, B2_GP_IO);
  1400. reg |= GP_DIR_9 | GP_IO_9;
  1401. skge_write32(hw, B2_GP_IO, reg);
  1402. }
  1403. /* hard reset */
  1404. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1405. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1406. /* WA code for COMA mode -- clear PHY reset */
  1407. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1408. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1409. reg = skge_read32(hw, B2_GP_IO);
  1410. reg |= GP_DIR_9;
  1411. reg &= ~GP_IO_9;
  1412. skge_write32(hw, B2_GP_IO, reg);
  1413. }
  1414. /* Set hardware config mode */
  1415. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1416. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1417. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1418. /* Clear GMC reset */
  1419. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1420. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1421. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1422. if (skge->autoneg == AUTONEG_DISABLE) {
  1423. reg = GM_GPCR_AU_ALL_DIS;
  1424. gma_write16(hw, port, GM_GP_CTRL,
  1425. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1426. switch (skge->speed) {
  1427. case SPEED_1000:
  1428. reg |= GM_GPCR_SPEED_1000;
  1429. /* fallthru */
  1430. case SPEED_100:
  1431. reg |= GM_GPCR_SPEED_100;
  1432. }
  1433. if (skge->duplex == DUPLEX_FULL)
  1434. reg |= GM_GPCR_DUP_FULL;
  1435. } else
  1436. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1437. switch (skge->flow_control) {
  1438. case FLOW_MODE_NONE:
  1439. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1440. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1441. break;
  1442. case FLOW_MODE_LOC_SEND:
  1443. /* disable Rx flow-control */
  1444. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1445. }
  1446. gma_write16(hw, port, GM_GP_CTRL, reg);
  1447. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1448. yukon_init(hw, port);
  1449. /* MIB clear */
  1450. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1451. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1452. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1453. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1454. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1455. /* transmit control */
  1456. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1457. /* receive control reg: unicast + multicast + no FCS */
  1458. gma_write16(hw, port, GM_RX_CTRL,
  1459. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1460. /* transmit flow control */
  1461. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1462. /* transmit parameter */
  1463. gma_write16(hw, port, GM_TX_PARAM,
  1464. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1465. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1466. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1467. /* serial mode register */
  1468. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1469. if (hw->dev[port]->mtu > 1500)
  1470. reg |= GM_SMOD_JUMBO_ENA;
  1471. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1472. /* physical address: used for pause frames */
  1473. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1474. /* virtual address for data */
  1475. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1476. /* enable interrupt mask for counter overflows */
  1477. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1478. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1479. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1480. /* Initialize Mac Fifo */
  1481. /* Configure Rx MAC FIFO */
  1482. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1483. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1484. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1485. if (is_yukon_lite_a0(hw))
  1486. reg &= ~GMF_RX_F_FL_ON;
  1487. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1488. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1489. /*
  1490. * because Pause Packet Truncation in GMAC is not working
  1491. * we have to increase the Flush Threshold to 64 bytes
  1492. * in order to flush pause packets in Rx FIFO on Yukon-1
  1493. */
  1494. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1495. /* Configure Tx MAC FIFO */
  1496. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1497. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1498. }
  1499. /* Go into power down mode */
  1500. static void yukon_suspend(struct skge_hw *hw, int port)
  1501. {
  1502. u16 ctrl;
  1503. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1504. ctrl |= PHY_M_PC_POL_R_DIS;
  1505. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1506. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1507. ctrl |= PHY_CT_RESET;
  1508. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1509. /* switch IEEE compatible power down mode on */
  1510. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1511. ctrl |= PHY_CT_PDOWN;
  1512. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1513. }
  1514. static void yukon_stop(struct skge_port *skge)
  1515. {
  1516. struct skge_hw *hw = skge->hw;
  1517. int port = skge->port;
  1518. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1519. yukon_reset(hw, port);
  1520. gma_write16(hw, port, GM_GP_CTRL,
  1521. gma_read16(hw, port, GM_GP_CTRL)
  1522. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1523. gma_read16(hw, port, GM_GP_CTRL);
  1524. yukon_suspend(hw, port);
  1525. /* set GPHY Control reset */
  1526. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1527. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1528. }
  1529. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1530. {
  1531. struct skge_hw *hw = skge->hw;
  1532. int port = skge->port;
  1533. int i;
  1534. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1535. | gma_read32(hw, port, GM_TXO_OK_LO);
  1536. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1537. | gma_read32(hw, port, GM_RXO_OK_LO);
  1538. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1539. data[i] = gma_read32(hw, port,
  1540. skge_stats[i].gma_offset);
  1541. }
  1542. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1543. {
  1544. struct net_device *dev = hw->dev[port];
  1545. struct skge_port *skge = netdev_priv(dev);
  1546. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1547. if (netif_msg_intr(skge))
  1548. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1549. dev->name, status);
  1550. if (status & GM_IS_RX_FF_OR) {
  1551. ++skge->net_stats.rx_fifo_errors;
  1552. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1553. }
  1554. if (status & GM_IS_TX_FF_UR) {
  1555. ++skge->net_stats.tx_fifo_errors;
  1556. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1557. }
  1558. }
  1559. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1560. {
  1561. switch (aux & PHY_M_PS_SPEED_MSK) {
  1562. case PHY_M_PS_SPEED_1000:
  1563. return SPEED_1000;
  1564. case PHY_M_PS_SPEED_100:
  1565. return SPEED_100;
  1566. default:
  1567. return SPEED_10;
  1568. }
  1569. }
  1570. static void yukon_link_up(struct skge_port *skge)
  1571. {
  1572. struct skge_hw *hw = skge->hw;
  1573. int port = skge->port;
  1574. u16 reg;
  1575. /* Enable Transmit FIFO Underrun */
  1576. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1577. reg = gma_read16(hw, port, GM_GP_CTRL);
  1578. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1579. reg |= GM_GPCR_DUP_FULL;
  1580. /* enable Rx/Tx */
  1581. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1582. gma_write16(hw, port, GM_GP_CTRL, reg);
  1583. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1584. skge_link_up(skge);
  1585. }
  1586. static void yukon_link_down(struct skge_port *skge)
  1587. {
  1588. struct skge_hw *hw = skge->hw;
  1589. int port = skge->port;
  1590. u16 ctrl;
  1591. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1592. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1593. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1594. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1595. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1596. /* restore Asymmetric Pause bit */
  1597. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1598. gm_phy_read(hw, port,
  1599. PHY_MARV_AUNE_ADV)
  1600. | PHY_M_AN_ASP);
  1601. }
  1602. yukon_reset(hw, port);
  1603. skge_link_down(skge);
  1604. yukon_init(hw, port);
  1605. }
  1606. static void yukon_phy_intr(struct skge_port *skge)
  1607. {
  1608. struct skge_hw *hw = skge->hw;
  1609. int port = skge->port;
  1610. const char *reason = NULL;
  1611. u16 istatus, phystat;
  1612. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1613. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1614. if (netif_msg_intr(skge))
  1615. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1616. skge->netdev->name, istatus, phystat);
  1617. if (istatus & PHY_M_IS_AN_COMPL) {
  1618. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1619. & PHY_M_AN_RF) {
  1620. reason = "remote fault";
  1621. goto failed;
  1622. }
  1623. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1624. reason = "master/slave fault";
  1625. goto failed;
  1626. }
  1627. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1628. reason = "speed/duplex";
  1629. goto failed;
  1630. }
  1631. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1632. ? DUPLEX_FULL : DUPLEX_HALF;
  1633. skge->speed = yukon_speed(hw, phystat);
  1634. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1635. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1636. case PHY_M_PS_PAUSE_MSK:
  1637. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1638. break;
  1639. case PHY_M_PS_RX_P_EN:
  1640. skge->flow_control = FLOW_MODE_REM_SEND;
  1641. break;
  1642. case PHY_M_PS_TX_P_EN:
  1643. skge->flow_control = FLOW_MODE_LOC_SEND;
  1644. break;
  1645. default:
  1646. skge->flow_control = FLOW_MODE_NONE;
  1647. }
  1648. if (skge->flow_control == FLOW_MODE_NONE ||
  1649. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1650. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1651. else
  1652. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1653. yukon_link_up(skge);
  1654. return;
  1655. }
  1656. if (istatus & PHY_M_IS_LSP_CHANGE)
  1657. skge->speed = yukon_speed(hw, phystat);
  1658. if (istatus & PHY_M_IS_DUP_CHANGE)
  1659. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1660. if (istatus & PHY_M_IS_LST_CHANGE) {
  1661. if (phystat & PHY_M_PS_LINK_UP)
  1662. yukon_link_up(skge);
  1663. else
  1664. yukon_link_down(skge);
  1665. }
  1666. return;
  1667. failed:
  1668. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1669. skge->netdev->name, reason);
  1670. /* XXX restart autonegotiation? */
  1671. }
  1672. /* Basic MII support */
  1673. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1674. {
  1675. struct mii_ioctl_data *data = if_mii(ifr);
  1676. struct skge_port *skge = netdev_priv(dev);
  1677. struct skge_hw *hw = skge->hw;
  1678. int err = -EOPNOTSUPP;
  1679. if (!netif_running(dev))
  1680. return -ENODEV; /* Phy still in reset */
  1681. switch(cmd) {
  1682. case SIOCGMIIPHY:
  1683. data->phy_id = hw->phy_addr;
  1684. /* fallthru */
  1685. case SIOCGMIIREG: {
  1686. u16 val = 0;
  1687. spin_lock_bh(&hw->phy_lock);
  1688. if (hw->chip_id == CHIP_ID_GENESIS)
  1689. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1690. else
  1691. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1692. spin_unlock_bh(&hw->phy_lock);
  1693. data->val_out = val;
  1694. break;
  1695. }
  1696. case SIOCSMIIREG:
  1697. if (!capable(CAP_NET_ADMIN))
  1698. return -EPERM;
  1699. spin_lock_bh(&hw->phy_lock);
  1700. if (hw->chip_id == CHIP_ID_GENESIS)
  1701. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1702. data->val_in);
  1703. else
  1704. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1705. data->val_in);
  1706. spin_unlock_bh(&hw->phy_lock);
  1707. break;
  1708. }
  1709. return err;
  1710. }
  1711. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1712. {
  1713. u32 end;
  1714. start /= 8;
  1715. len /= 8;
  1716. end = start + len - 1;
  1717. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1718. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1719. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1720. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1721. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1722. if (q == Q_R1 || q == Q_R2) {
  1723. /* Set thresholds on receive queue's */
  1724. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1725. start + (2*len)/3);
  1726. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1727. start + (len/3));
  1728. } else {
  1729. /* Enable store & forward on Tx queue's because
  1730. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1731. */
  1732. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1733. }
  1734. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1735. }
  1736. /* Setup Bus Memory Interface */
  1737. static void skge_qset(struct skge_port *skge, u16 q,
  1738. const struct skge_element *e)
  1739. {
  1740. struct skge_hw *hw = skge->hw;
  1741. u32 watermark = 0x600;
  1742. u64 base = skge->dma + (e->desc - skge->mem);
  1743. /* optimization to reduce window on 32bit/33mhz */
  1744. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1745. watermark /= 2;
  1746. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1747. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1748. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1749. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1750. }
  1751. static int skge_up(struct net_device *dev)
  1752. {
  1753. struct skge_port *skge = netdev_priv(dev);
  1754. struct skge_hw *hw = skge->hw;
  1755. int port = skge->port;
  1756. u32 chunk, ram_addr;
  1757. size_t rx_size, tx_size;
  1758. int err;
  1759. if (netif_msg_ifup(skge))
  1760. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1761. if (dev->mtu > RX_BUF_SIZE)
  1762. skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
  1763. else
  1764. skge->rx_buf_size = RX_BUF_SIZE;
  1765. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1766. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1767. skge->mem_size = tx_size + rx_size;
  1768. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1769. if (!skge->mem)
  1770. return -ENOMEM;
  1771. memset(skge->mem, 0, skge->mem_size);
  1772. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1773. goto free_pci_mem;
  1774. err = skge_rx_fill(skge);
  1775. if (err)
  1776. goto free_rx_ring;
  1777. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1778. skge->dma + rx_size)))
  1779. goto free_rx_ring;
  1780. skge->tx_avail = skge->tx_ring.count - 1;
  1781. /* Enable IRQ from port */
  1782. hw->intr_mask |= portirqmask[port];
  1783. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1784. /* Initialize MAC */
  1785. spin_lock_bh(&hw->phy_lock);
  1786. if (hw->chip_id == CHIP_ID_GENESIS)
  1787. genesis_mac_init(hw, port);
  1788. else
  1789. yukon_mac_init(hw, port);
  1790. spin_unlock_bh(&hw->phy_lock);
  1791. /* Configure RAMbuffers */
  1792. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1793. ram_addr = hw->ram_offset + 2 * chunk * port;
  1794. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1795. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1796. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1797. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1798. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1799. /* Start receiver BMU */
  1800. wmb();
  1801. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1802. skge_led(skge, LED_MODE_ON);
  1803. return 0;
  1804. free_rx_ring:
  1805. skge_rx_clean(skge);
  1806. kfree(skge->rx_ring.start);
  1807. free_pci_mem:
  1808. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1809. return err;
  1810. }
  1811. static int skge_down(struct net_device *dev)
  1812. {
  1813. struct skge_port *skge = netdev_priv(dev);
  1814. struct skge_hw *hw = skge->hw;
  1815. int port = skge->port;
  1816. if (netif_msg_ifdown(skge))
  1817. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1818. netif_stop_queue(dev);
  1819. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  1820. if (hw->chip_id == CHIP_ID_GENESIS)
  1821. genesis_stop(skge);
  1822. else
  1823. yukon_stop(skge);
  1824. hw->intr_mask &= ~portirqmask[skge->port];
  1825. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1826. /* Stop transmitter */
  1827. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1828. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1829. RB_RST_SET|RB_DIS_OP_MD);
  1830. /* Disable Force Sync bit and Enable Alloc bit */
  1831. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1832. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1833. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1834. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1835. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1836. /* Reset PCI FIFO */
  1837. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1838. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1839. /* Reset the RAM Buffer async Tx queue */
  1840. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1841. /* stop receiver */
  1842. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1843. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1844. RB_RST_SET|RB_DIS_OP_MD);
  1845. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1846. if (hw->chip_id == CHIP_ID_GENESIS) {
  1847. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1848. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1849. } else {
  1850. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1851. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1852. }
  1853. skge_led(skge, LED_MODE_OFF);
  1854. skge_tx_clean(skge);
  1855. skge_rx_clean(skge);
  1856. kfree(skge->rx_ring.start);
  1857. kfree(skge->tx_ring.start);
  1858. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1859. return 0;
  1860. }
  1861. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1862. {
  1863. struct skge_port *skge = netdev_priv(dev);
  1864. struct skge_hw *hw = skge->hw;
  1865. struct skge_ring *ring = &skge->tx_ring;
  1866. struct skge_element *e;
  1867. struct skge_tx_desc *td;
  1868. int i;
  1869. u32 control, len;
  1870. u64 map;
  1871. unsigned long flags;
  1872. skb = skb_padto(skb, ETH_ZLEN);
  1873. if (!skb)
  1874. return NETDEV_TX_OK;
  1875. local_irq_save(flags);
  1876. if (!spin_trylock(&skge->tx_lock)) {
  1877. /* Collision - tell upper layer to requeue */
  1878. local_irq_restore(flags);
  1879. return NETDEV_TX_LOCKED;
  1880. }
  1881. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1882. if (!netif_queue_stopped(dev)) {
  1883. netif_stop_queue(dev);
  1884. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1885. dev->name);
  1886. }
  1887. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1888. return NETDEV_TX_BUSY;
  1889. }
  1890. e = ring->to_use;
  1891. td = e->desc;
  1892. e->skb = skb;
  1893. len = skb_headlen(skb);
  1894. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1895. pci_unmap_addr_set(e, mapaddr, map);
  1896. pci_unmap_len_set(e, maplen, len);
  1897. td->dma_lo = map;
  1898. td->dma_hi = map >> 32;
  1899. if (skb->ip_summed == CHECKSUM_HW) {
  1900. int offset = skb->h.raw - skb->data;
  1901. /* This seems backwards, but it is what the sk98lin
  1902. * does. Looks like hardware is wrong?
  1903. */
  1904. if (skb->h.ipiph->protocol == IPPROTO_UDP
  1905. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1906. control = BMU_TCP_CHECK;
  1907. else
  1908. control = BMU_UDP_CHECK;
  1909. td->csum_offs = 0;
  1910. td->csum_start = offset;
  1911. td->csum_write = offset + skb->csum;
  1912. } else
  1913. control = BMU_CHECK;
  1914. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1915. control |= BMU_EOF| BMU_IRQ_EOF;
  1916. else {
  1917. struct skge_tx_desc *tf = td;
  1918. control |= BMU_STFWD;
  1919. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1920. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1921. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1922. frag->size, PCI_DMA_TODEVICE);
  1923. e = e->next;
  1924. e->skb = NULL;
  1925. tf = e->desc;
  1926. tf->dma_lo = map;
  1927. tf->dma_hi = (u64) map >> 32;
  1928. pci_unmap_addr_set(e, mapaddr, map);
  1929. pci_unmap_len_set(e, maplen, frag->size);
  1930. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1931. }
  1932. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1933. }
  1934. /* Make sure all the descriptors written */
  1935. wmb();
  1936. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1937. wmb();
  1938. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1939. if (netif_msg_tx_queued(skge))
  1940. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1941. dev->name, e - ring->start, skb->len);
  1942. ring->to_use = e->next;
  1943. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1944. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1945. pr_debug("%s: transmit queue full\n", dev->name);
  1946. netif_stop_queue(dev);
  1947. }
  1948. dev->trans_start = jiffies;
  1949. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1950. return NETDEV_TX_OK;
  1951. }
  1952. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1953. {
  1954. /* This ring element can be skb or fragment */
  1955. if (e->skb) {
  1956. pci_unmap_single(hw->pdev,
  1957. pci_unmap_addr(e, mapaddr),
  1958. pci_unmap_len(e, maplen),
  1959. PCI_DMA_TODEVICE);
  1960. dev_kfree_skb_any(e->skb);
  1961. e->skb = NULL;
  1962. } else {
  1963. pci_unmap_page(hw->pdev,
  1964. pci_unmap_addr(e, mapaddr),
  1965. pci_unmap_len(e, maplen),
  1966. PCI_DMA_TODEVICE);
  1967. }
  1968. }
  1969. static void skge_tx_clean(struct skge_port *skge)
  1970. {
  1971. struct skge_ring *ring = &skge->tx_ring;
  1972. struct skge_element *e;
  1973. unsigned long flags;
  1974. spin_lock_irqsave(&skge->tx_lock, flags);
  1975. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  1976. ++skge->tx_avail;
  1977. skge_tx_free(skge->hw, e);
  1978. }
  1979. ring->to_clean = e;
  1980. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1981. }
  1982. static void skge_tx_timeout(struct net_device *dev)
  1983. {
  1984. struct skge_port *skge = netdev_priv(dev);
  1985. if (netif_msg_timer(skge))
  1986. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  1987. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  1988. skge_tx_clean(skge);
  1989. }
  1990. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  1991. {
  1992. int err = 0;
  1993. int running = netif_running(dev);
  1994. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1995. return -EINVAL;
  1996. if (running)
  1997. skge_down(dev);
  1998. dev->mtu = new_mtu;
  1999. if (running)
  2000. skge_up(dev);
  2001. return err;
  2002. }
  2003. static void genesis_set_multicast(struct net_device *dev)
  2004. {
  2005. struct skge_port *skge = netdev_priv(dev);
  2006. struct skge_hw *hw = skge->hw;
  2007. int port = skge->port;
  2008. int i, count = dev->mc_count;
  2009. struct dev_mc_list *list = dev->mc_list;
  2010. u32 mode;
  2011. u8 filter[8];
  2012. mode = xm_read32(hw, port, XM_MODE);
  2013. mode |= XM_MD_ENA_HASH;
  2014. if (dev->flags & IFF_PROMISC)
  2015. mode |= XM_MD_ENA_PROM;
  2016. else
  2017. mode &= ~XM_MD_ENA_PROM;
  2018. if (dev->flags & IFF_ALLMULTI)
  2019. memset(filter, 0xff, sizeof(filter));
  2020. else {
  2021. memset(filter, 0, sizeof(filter));
  2022. for (i = 0; list && i < count; i++, list = list->next) {
  2023. u32 crc, bit;
  2024. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2025. bit = ~crc & 0x3f;
  2026. filter[bit/8] |= 1 << (bit%8);
  2027. }
  2028. }
  2029. xm_write32(hw, port, XM_MODE, mode);
  2030. xm_outhash(hw, port, XM_HSM, filter);
  2031. }
  2032. static void yukon_set_multicast(struct net_device *dev)
  2033. {
  2034. struct skge_port *skge = netdev_priv(dev);
  2035. struct skge_hw *hw = skge->hw;
  2036. int port = skge->port;
  2037. struct dev_mc_list *list = dev->mc_list;
  2038. u16 reg;
  2039. u8 filter[8];
  2040. memset(filter, 0, sizeof(filter));
  2041. reg = gma_read16(hw, port, GM_RX_CTRL);
  2042. reg |= GM_RXCR_UCF_ENA;
  2043. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2044. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2045. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2046. memset(filter, 0xff, sizeof(filter));
  2047. else if (dev->mc_count == 0) /* no multicast */
  2048. reg &= ~GM_RXCR_MCF_ENA;
  2049. else {
  2050. int i;
  2051. reg |= GM_RXCR_MCF_ENA;
  2052. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2053. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2054. filter[bit/8] |= 1 << (bit%8);
  2055. }
  2056. }
  2057. gma_write16(hw, port, GM_MC_ADDR_H1,
  2058. (u16)filter[0] | ((u16)filter[1] << 8));
  2059. gma_write16(hw, port, GM_MC_ADDR_H2,
  2060. (u16)filter[2] | ((u16)filter[3] << 8));
  2061. gma_write16(hw, port, GM_MC_ADDR_H3,
  2062. (u16)filter[4] | ((u16)filter[5] << 8));
  2063. gma_write16(hw, port, GM_MC_ADDR_H4,
  2064. (u16)filter[6] | ((u16)filter[7] << 8));
  2065. gma_write16(hw, port, GM_RX_CTRL, reg);
  2066. }
  2067. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2068. {
  2069. if (hw->chip_id == CHIP_ID_GENESIS)
  2070. return status >> XMR_FS_LEN_SHIFT;
  2071. else
  2072. return status >> GMR_FS_LEN_SHIFT;
  2073. }
  2074. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2075. {
  2076. if (hw->chip_id == CHIP_ID_GENESIS)
  2077. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2078. else
  2079. return (status & GMR_FS_ANY_ERR) ||
  2080. (status & GMR_FS_RX_OK) == 0;
  2081. }
  2082. /* Get receive buffer from descriptor.
  2083. * Handles copy of small buffers and reallocation failures
  2084. */
  2085. static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
  2086. struct skge_element *e,
  2087. u32 control, u32 status, u16 csum)
  2088. {
  2089. struct sk_buff *skb;
  2090. u16 len = control & BMU_BBC;
  2091. if (unlikely(netif_msg_rx_status(skge)))
  2092. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2093. skge->netdev->name, e - skge->rx_ring.start,
  2094. status, len);
  2095. if (len > skge->rx_buf_size)
  2096. goto error;
  2097. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2098. goto error;
  2099. if (bad_phy_status(skge->hw, status))
  2100. goto error;
  2101. if (phy_length(skge->hw, status) != len)
  2102. goto error;
  2103. if (len < RX_COPY_THRESHOLD) {
  2104. skb = dev_alloc_skb(len + 2);
  2105. if (!skb)
  2106. goto resubmit;
  2107. skb_reserve(skb, 2);
  2108. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2109. pci_unmap_addr(e, mapaddr),
  2110. len, PCI_DMA_FROMDEVICE);
  2111. memcpy(skb->data, e->skb->data, len);
  2112. pci_dma_sync_single_for_device(skge->hw->pdev,
  2113. pci_unmap_addr(e, mapaddr),
  2114. len, PCI_DMA_FROMDEVICE);
  2115. skge_rx_reuse(e, skge->rx_buf_size);
  2116. } else {
  2117. struct sk_buff *nskb;
  2118. nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
  2119. if (!nskb)
  2120. goto resubmit;
  2121. pci_unmap_single(skge->hw->pdev,
  2122. pci_unmap_addr(e, mapaddr),
  2123. pci_unmap_len(e, maplen),
  2124. PCI_DMA_FROMDEVICE);
  2125. skb = e->skb;
  2126. prefetch(skb->data);
  2127. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2128. }
  2129. skb_put(skb, len);
  2130. skb->dev = skge->netdev;
  2131. if (skge->rx_csum) {
  2132. skb->csum = csum;
  2133. skb->ip_summed = CHECKSUM_HW;
  2134. }
  2135. skb->protocol = eth_type_trans(skb, skge->netdev);
  2136. return skb;
  2137. error:
  2138. if (netif_msg_rx_err(skge))
  2139. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2140. skge->netdev->name, e - skge->rx_ring.start,
  2141. control, status);
  2142. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2143. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2144. skge->net_stats.rx_length_errors++;
  2145. if (status & XMR_FS_FRA_ERR)
  2146. skge->net_stats.rx_frame_errors++;
  2147. if (status & XMR_FS_FCS_ERR)
  2148. skge->net_stats.rx_crc_errors++;
  2149. } else {
  2150. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2151. skge->net_stats.rx_length_errors++;
  2152. if (status & GMR_FS_FRAGMENT)
  2153. skge->net_stats.rx_frame_errors++;
  2154. if (status & GMR_FS_CRC_ERR)
  2155. skge->net_stats.rx_crc_errors++;
  2156. }
  2157. resubmit:
  2158. skge_rx_reuse(e, skge->rx_buf_size);
  2159. return NULL;
  2160. }
  2161. static int skge_poll(struct net_device *dev, int *budget)
  2162. {
  2163. struct skge_port *skge = netdev_priv(dev);
  2164. struct skge_hw *hw = skge->hw;
  2165. struct skge_ring *ring = &skge->rx_ring;
  2166. struct skge_element *e;
  2167. unsigned int to_do = min(dev->quota, *budget);
  2168. unsigned int work_done = 0;
  2169. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2170. struct skge_rx_desc *rd = e->desc;
  2171. struct sk_buff *skb;
  2172. u32 control;
  2173. rmb();
  2174. control = rd->control;
  2175. if (control & BMU_OWN)
  2176. break;
  2177. skb = skge_rx_get(skge, e, control, rd->status,
  2178. le16_to_cpu(rd->csum2));
  2179. if (likely(skb)) {
  2180. dev->last_rx = jiffies;
  2181. netif_receive_skb(skb);
  2182. ++work_done;
  2183. } else
  2184. skge_rx_reuse(e, skge->rx_buf_size);
  2185. }
  2186. ring->to_clean = e;
  2187. /* restart receiver */
  2188. wmb();
  2189. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2190. CSR_START | CSR_IRQ_CL_F);
  2191. *budget -= work_done;
  2192. dev->quota -= work_done;
  2193. if (work_done >= to_do)
  2194. return 1; /* not done */
  2195. netif_rx_complete(dev);
  2196. hw->intr_mask |= portirqmask[skge->port];
  2197. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2198. skge_read32(hw, B0_IMSK);
  2199. return 0;
  2200. }
  2201. static inline void skge_tx_intr(struct net_device *dev)
  2202. {
  2203. struct skge_port *skge = netdev_priv(dev);
  2204. struct skge_hw *hw = skge->hw;
  2205. struct skge_ring *ring = &skge->tx_ring;
  2206. struct skge_element *e;
  2207. spin_lock(&skge->tx_lock);
  2208. for (e = ring->to_clean; prefetch(e->next), e != ring->to_use; e = e->next) {
  2209. struct skge_tx_desc *td = e->desc;
  2210. u32 control;
  2211. rmb();
  2212. control = td->control;
  2213. if (control & BMU_OWN)
  2214. break;
  2215. if (unlikely(netif_msg_tx_done(skge)))
  2216. printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
  2217. dev->name, e - ring->start, td->status);
  2218. skge_tx_free(hw, e);
  2219. e->skb = NULL;
  2220. ++skge->tx_avail;
  2221. }
  2222. ring->to_clean = e;
  2223. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2224. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2225. netif_wake_queue(dev);
  2226. spin_unlock(&skge->tx_lock);
  2227. }
  2228. /* Parity errors seem to happen when Genesis is connected to a switch
  2229. * with no other ports present. Heartbeat error??
  2230. */
  2231. static void skge_mac_parity(struct skge_hw *hw, int port)
  2232. {
  2233. struct net_device *dev = hw->dev[port];
  2234. if (dev) {
  2235. struct skge_port *skge = netdev_priv(dev);
  2236. ++skge->net_stats.tx_heartbeat_errors;
  2237. }
  2238. if (hw->chip_id == CHIP_ID_GENESIS)
  2239. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2240. MFF_CLR_PERR);
  2241. else
  2242. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2243. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2244. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2245. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2246. }
  2247. static void skge_pci_clear(struct skge_hw *hw)
  2248. {
  2249. u16 status;
  2250. pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  2251. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2252. pci_write_config_word(hw->pdev, PCI_STATUS,
  2253. status | PCI_STATUS_ERROR_BITS);
  2254. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2255. }
  2256. static void skge_mac_intr(struct skge_hw *hw, int port)
  2257. {
  2258. if (hw->chip_id == CHIP_ID_GENESIS)
  2259. genesis_mac_intr(hw, port);
  2260. else
  2261. yukon_mac_intr(hw, port);
  2262. }
  2263. /* Handle device specific framing and timeout interrupts */
  2264. static void skge_error_irq(struct skge_hw *hw)
  2265. {
  2266. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2267. if (hw->chip_id == CHIP_ID_GENESIS) {
  2268. /* clear xmac errors */
  2269. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2270. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2271. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2272. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2273. } else {
  2274. /* Timestamp (unused) overflow */
  2275. if (hwstatus & IS_IRQ_TIST_OV)
  2276. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2277. }
  2278. if (hwstatus & IS_RAM_RD_PAR) {
  2279. printk(KERN_ERR PFX "Ram read data parity error\n");
  2280. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2281. }
  2282. if (hwstatus & IS_RAM_WR_PAR) {
  2283. printk(KERN_ERR PFX "Ram write data parity error\n");
  2284. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2285. }
  2286. if (hwstatus & IS_M1_PAR_ERR)
  2287. skge_mac_parity(hw, 0);
  2288. if (hwstatus & IS_M2_PAR_ERR)
  2289. skge_mac_parity(hw, 1);
  2290. if (hwstatus & IS_R1_PAR_ERR)
  2291. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2292. if (hwstatus & IS_R2_PAR_ERR)
  2293. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2294. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2295. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2296. hwstatus);
  2297. skge_pci_clear(hw);
  2298. /* if error still set then just ignore it */
  2299. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2300. if (hwstatus & IS_IRQ_STAT) {
  2301. pr_debug("IRQ status %x: still set ignoring hardware errors\n",
  2302. hwstatus);
  2303. hw->intr_mask &= ~IS_HW_ERR;
  2304. }
  2305. }
  2306. }
  2307. /*
  2308. * Interrupt from PHY are handled in tasklet (soft irq)
  2309. * because accessing phy registers requires spin wait which might
  2310. * cause excess interrupt latency.
  2311. */
  2312. static void skge_extirq(unsigned long data)
  2313. {
  2314. struct skge_hw *hw = (struct skge_hw *) data;
  2315. int port;
  2316. spin_lock(&hw->phy_lock);
  2317. for (port = 0; port < 2; port++) {
  2318. struct net_device *dev = hw->dev[port];
  2319. if (dev && netif_running(dev)) {
  2320. struct skge_port *skge = netdev_priv(dev);
  2321. if (hw->chip_id != CHIP_ID_GENESIS)
  2322. yukon_phy_intr(skge);
  2323. else
  2324. bcom_phy_intr(skge);
  2325. }
  2326. }
  2327. spin_unlock(&hw->phy_lock);
  2328. local_irq_disable();
  2329. hw->intr_mask |= IS_EXT_REG;
  2330. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2331. local_irq_enable();
  2332. }
  2333. static inline void skge_wakeup(struct net_device *dev)
  2334. {
  2335. struct skge_port *skge = netdev_priv(dev);
  2336. prefetch(skge->rx_ring.to_clean);
  2337. netif_rx_schedule(dev);
  2338. }
  2339. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2340. {
  2341. struct skge_hw *hw = dev_id;
  2342. u32 status = skge_read32(hw, B0_SP_ISRC);
  2343. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2344. return IRQ_NONE;
  2345. status &= hw->intr_mask;
  2346. if (status & IS_R1_F) {
  2347. hw->intr_mask &= ~IS_R1_F;
  2348. skge_wakeup(hw->dev[0]);
  2349. }
  2350. if (status & IS_R2_F) {
  2351. hw->intr_mask &= ~IS_R2_F;
  2352. skge_wakeup(hw->dev[1]);
  2353. }
  2354. if (status & IS_XA1_F)
  2355. skge_tx_intr(hw->dev[0]);
  2356. if (status & IS_XA2_F)
  2357. skge_tx_intr(hw->dev[1]);
  2358. if (status & IS_PA_TO_RX1) {
  2359. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2360. ++skge->net_stats.rx_over_errors;
  2361. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2362. }
  2363. if (status & IS_PA_TO_RX2) {
  2364. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2365. ++skge->net_stats.rx_over_errors;
  2366. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2367. }
  2368. if (status & IS_PA_TO_TX1)
  2369. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2370. if (status & IS_PA_TO_TX2)
  2371. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2372. if (status & IS_MAC1)
  2373. skge_mac_intr(hw, 0);
  2374. if (status & IS_MAC2)
  2375. skge_mac_intr(hw, 1);
  2376. if (status & IS_HW_ERR)
  2377. skge_error_irq(hw);
  2378. if (status & IS_EXT_REG) {
  2379. hw->intr_mask &= ~IS_EXT_REG;
  2380. tasklet_schedule(&hw->ext_tasklet);
  2381. }
  2382. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2383. return IRQ_HANDLED;
  2384. }
  2385. #ifdef CONFIG_NET_POLL_CONTROLLER
  2386. static void skge_netpoll(struct net_device *dev)
  2387. {
  2388. struct skge_port *skge = netdev_priv(dev);
  2389. disable_irq(dev->irq);
  2390. skge_intr(dev->irq, skge->hw, NULL);
  2391. enable_irq(dev->irq);
  2392. }
  2393. #endif
  2394. static int skge_set_mac_address(struct net_device *dev, void *p)
  2395. {
  2396. struct skge_port *skge = netdev_priv(dev);
  2397. struct skge_hw *hw = skge->hw;
  2398. unsigned port = skge->port;
  2399. const struct sockaddr *addr = p;
  2400. if (!is_valid_ether_addr(addr->sa_data))
  2401. return -EADDRNOTAVAIL;
  2402. spin_lock_bh(&hw->phy_lock);
  2403. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2404. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2405. dev->dev_addr, ETH_ALEN);
  2406. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2407. dev->dev_addr, ETH_ALEN);
  2408. if (hw->chip_id == CHIP_ID_GENESIS)
  2409. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2410. else {
  2411. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2412. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2413. }
  2414. spin_unlock_bh(&hw->phy_lock);
  2415. return 0;
  2416. }
  2417. static const struct {
  2418. u8 id;
  2419. const char *name;
  2420. } skge_chips[] = {
  2421. { CHIP_ID_GENESIS, "Genesis" },
  2422. { CHIP_ID_YUKON, "Yukon" },
  2423. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2424. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2425. };
  2426. static const char *skge_board_name(const struct skge_hw *hw)
  2427. {
  2428. int i;
  2429. static char buf[16];
  2430. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2431. if (skge_chips[i].id == hw->chip_id)
  2432. return skge_chips[i].name;
  2433. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2434. return buf;
  2435. }
  2436. /*
  2437. * Setup the board data structure, but don't bring up
  2438. * the port(s)
  2439. */
  2440. static int skge_reset(struct skge_hw *hw)
  2441. {
  2442. u32 reg;
  2443. u16 ctst;
  2444. u8 t8, mac_cfg, pmd_type, phy_type;
  2445. int i;
  2446. ctst = skge_read16(hw, B0_CTST);
  2447. /* do a SW reset */
  2448. skge_write8(hw, B0_CTST, CS_RST_SET);
  2449. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2450. /* clear PCI errors, if any */
  2451. skge_pci_clear(hw);
  2452. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2453. /* restore CLK_RUN bits (for Yukon-Lite) */
  2454. skge_write16(hw, B0_CTST,
  2455. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2456. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2457. phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2458. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2459. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2460. switch (hw->chip_id) {
  2461. case CHIP_ID_GENESIS:
  2462. switch (phy_type) {
  2463. case SK_PHY_BCOM:
  2464. hw->phy_addr = PHY_ADDR_BCOM;
  2465. break;
  2466. default:
  2467. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2468. pci_name(hw->pdev), phy_type);
  2469. return -EOPNOTSUPP;
  2470. }
  2471. break;
  2472. case CHIP_ID_YUKON:
  2473. case CHIP_ID_YUKON_LITE:
  2474. case CHIP_ID_YUKON_LP:
  2475. if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2476. hw->copper = 1;
  2477. hw->phy_addr = PHY_ADDR_MARV;
  2478. break;
  2479. default:
  2480. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2481. pci_name(hw->pdev), hw->chip_id);
  2482. return -EOPNOTSUPP;
  2483. }
  2484. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2485. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2486. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2487. /* read the adapters RAM size */
  2488. t8 = skge_read8(hw, B2_E_0);
  2489. if (hw->chip_id == CHIP_ID_GENESIS) {
  2490. if (t8 == 3) {
  2491. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2492. hw->ram_size = 0x100000;
  2493. hw->ram_offset = 0x80000;
  2494. } else
  2495. hw->ram_size = t8 * 512;
  2496. }
  2497. else if (t8 == 0)
  2498. hw->ram_size = 0x20000;
  2499. else
  2500. hw->ram_size = t8 * 4096;
  2501. hw->intr_mask = IS_HW_ERR | IS_EXT_REG;
  2502. if (hw->chip_id == CHIP_ID_GENESIS)
  2503. genesis_init(hw);
  2504. else {
  2505. /* switch power to VCC (WA for VAUX problem) */
  2506. skge_write8(hw, B0_POWER_CTRL,
  2507. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2508. /* avoid boards with stuck Hardware error bits */
  2509. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2510. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2511. printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
  2512. hw->intr_mask &= ~IS_HW_ERR;
  2513. }
  2514. /* Clear PHY COMA */
  2515. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2516. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2517. reg &= ~PCI_PHY_COMA;
  2518. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2519. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2520. for (i = 0; i < hw->ports; i++) {
  2521. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2522. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2523. }
  2524. }
  2525. /* turn off hardware timer (unused) */
  2526. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2527. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2528. skge_write8(hw, B0_LED, LED_STAT_ON);
  2529. /* enable the Tx Arbiters */
  2530. for (i = 0; i < hw->ports; i++)
  2531. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2532. /* Initialize ram interface */
  2533. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2534. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2535. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2536. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2537. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2538. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2539. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2540. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2541. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2542. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2543. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2544. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2545. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2546. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2547. /* Set interrupt moderation for Transmit only
  2548. * Receive interrupts avoided by NAPI
  2549. */
  2550. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2551. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2552. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2553. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2554. spin_lock_bh(&hw->phy_lock);
  2555. for (i = 0; i < hw->ports; i++) {
  2556. if (hw->chip_id == CHIP_ID_GENESIS)
  2557. genesis_reset(hw, i);
  2558. else
  2559. yukon_reset(hw, i);
  2560. }
  2561. spin_unlock_bh(&hw->phy_lock);
  2562. return 0;
  2563. }
  2564. /* Initialize network device */
  2565. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2566. int highmem)
  2567. {
  2568. struct skge_port *skge;
  2569. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2570. if (!dev) {
  2571. printk(KERN_ERR "skge etherdev alloc failed");
  2572. return NULL;
  2573. }
  2574. SET_MODULE_OWNER(dev);
  2575. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2576. dev->open = skge_up;
  2577. dev->stop = skge_down;
  2578. dev->do_ioctl = skge_ioctl;
  2579. dev->hard_start_xmit = skge_xmit_frame;
  2580. dev->get_stats = skge_get_stats;
  2581. if (hw->chip_id == CHIP_ID_GENESIS)
  2582. dev->set_multicast_list = genesis_set_multicast;
  2583. else
  2584. dev->set_multicast_list = yukon_set_multicast;
  2585. dev->set_mac_address = skge_set_mac_address;
  2586. dev->change_mtu = skge_change_mtu;
  2587. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2588. dev->tx_timeout = skge_tx_timeout;
  2589. dev->watchdog_timeo = TX_WATCHDOG;
  2590. dev->poll = skge_poll;
  2591. dev->weight = NAPI_WEIGHT;
  2592. #ifdef CONFIG_NET_POLL_CONTROLLER
  2593. dev->poll_controller = skge_netpoll;
  2594. #endif
  2595. dev->irq = hw->pdev->irq;
  2596. dev->features = NETIF_F_LLTX;
  2597. if (highmem)
  2598. dev->features |= NETIF_F_HIGHDMA;
  2599. skge = netdev_priv(dev);
  2600. skge->netdev = dev;
  2601. skge->hw = hw;
  2602. skge->msg_enable = netif_msg_init(debug, default_msg);
  2603. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2604. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2605. /* Auto speed and flow control */
  2606. skge->autoneg = AUTONEG_ENABLE;
  2607. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2608. skge->duplex = -1;
  2609. skge->speed = -1;
  2610. skge->advertising = skge_supported_modes(hw);
  2611. hw->dev[port] = dev;
  2612. skge->port = port;
  2613. spin_lock_init(&skge->tx_lock);
  2614. if (hw->chip_id != CHIP_ID_GENESIS) {
  2615. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2616. skge->rx_csum = 1;
  2617. }
  2618. /* read the mac address */
  2619. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2620. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2621. /* device is off until link detection */
  2622. netif_carrier_off(dev);
  2623. netif_stop_queue(dev);
  2624. return dev;
  2625. }
  2626. static void __devinit skge_show_addr(struct net_device *dev)
  2627. {
  2628. const struct skge_port *skge = netdev_priv(dev);
  2629. if (netif_msg_probe(skge))
  2630. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2631. dev->name,
  2632. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2633. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2634. }
  2635. static int __devinit skge_probe(struct pci_dev *pdev,
  2636. const struct pci_device_id *ent)
  2637. {
  2638. struct net_device *dev, *dev1;
  2639. struct skge_hw *hw;
  2640. int err, using_dac = 0;
  2641. if ((err = pci_enable_device(pdev))) {
  2642. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2643. pci_name(pdev));
  2644. goto err_out;
  2645. }
  2646. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2647. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2648. pci_name(pdev));
  2649. goto err_out_disable_pdev;
  2650. }
  2651. pci_set_master(pdev);
  2652. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2653. using_dac = 1;
  2654. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2655. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2656. pci_name(pdev));
  2657. goto err_out_free_regions;
  2658. }
  2659. #ifdef __BIG_ENDIAN
  2660. /* byte swap descriptors in hardware */
  2661. {
  2662. u32 reg;
  2663. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2664. reg |= PCI_REV_DESC;
  2665. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2666. }
  2667. #endif
  2668. err = -ENOMEM;
  2669. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2670. if (!hw) {
  2671. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2672. pci_name(pdev));
  2673. goto err_out_free_regions;
  2674. }
  2675. hw->pdev = pdev;
  2676. spin_lock_init(&hw->phy_lock);
  2677. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2678. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2679. if (!hw->regs) {
  2680. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2681. pci_name(pdev));
  2682. goto err_out_free_hw;
  2683. }
  2684. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2685. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2686. pci_name(pdev), pdev->irq);
  2687. goto err_out_iounmap;
  2688. }
  2689. pci_set_drvdata(pdev, hw);
  2690. err = skge_reset(hw);
  2691. if (err)
  2692. goto err_out_free_irq;
  2693. printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n",
  2694. pci_resource_start(pdev, 0), pdev->irq,
  2695. skge_board_name(hw), hw->chip_rev);
  2696. if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
  2697. goto err_out_led_off;
  2698. if ((err = register_netdev(dev))) {
  2699. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2700. pci_name(pdev));
  2701. goto err_out_free_netdev;
  2702. }
  2703. skge_show_addr(dev);
  2704. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2705. if (register_netdev(dev1) == 0)
  2706. skge_show_addr(dev1);
  2707. else {
  2708. /* Failure to register second port need not be fatal */
  2709. printk(KERN_WARNING PFX "register of second port failed\n");
  2710. hw->dev[1] = NULL;
  2711. free_netdev(dev1);
  2712. }
  2713. }
  2714. return 0;
  2715. err_out_free_netdev:
  2716. free_netdev(dev);
  2717. err_out_led_off:
  2718. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2719. err_out_free_irq:
  2720. free_irq(pdev->irq, hw);
  2721. err_out_iounmap:
  2722. iounmap(hw->regs);
  2723. err_out_free_hw:
  2724. kfree(hw);
  2725. err_out_free_regions:
  2726. pci_release_regions(pdev);
  2727. err_out_disable_pdev:
  2728. pci_disable_device(pdev);
  2729. pci_set_drvdata(pdev, NULL);
  2730. err_out:
  2731. return err;
  2732. }
  2733. static void __devexit skge_remove(struct pci_dev *pdev)
  2734. {
  2735. struct skge_hw *hw = pci_get_drvdata(pdev);
  2736. struct net_device *dev0, *dev1;
  2737. if (!hw)
  2738. return;
  2739. if ((dev1 = hw->dev[1]))
  2740. unregister_netdev(dev1);
  2741. dev0 = hw->dev[0];
  2742. unregister_netdev(dev0);
  2743. skge_write32(hw, B0_IMSK, 0);
  2744. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2745. skge_pci_clear(hw);
  2746. skge_write8(hw, B0_CTST, CS_RST_SET);
  2747. tasklet_kill(&hw->ext_tasklet);
  2748. free_irq(pdev->irq, hw);
  2749. pci_release_regions(pdev);
  2750. pci_disable_device(pdev);
  2751. if (dev1)
  2752. free_netdev(dev1);
  2753. free_netdev(dev0);
  2754. iounmap(hw->regs);
  2755. kfree(hw);
  2756. pci_set_drvdata(pdev, NULL);
  2757. }
  2758. #ifdef CONFIG_PM
  2759. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  2760. {
  2761. struct skge_hw *hw = pci_get_drvdata(pdev);
  2762. int i, wol = 0;
  2763. for (i = 0; i < 2; i++) {
  2764. struct net_device *dev = hw->dev[i];
  2765. if (dev) {
  2766. struct skge_port *skge = netdev_priv(dev);
  2767. if (netif_running(dev)) {
  2768. netif_carrier_off(dev);
  2769. if (skge->wol)
  2770. netif_stop_queue(dev);
  2771. else
  2772. skge_down(dev);
  2773. }
  2774. netif_device_detach(dev);
  2775. wol |= skge->wol;
  2776. }
  2777. }
  2778. pci_save_state(pdev);
  2779. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  2780. pci_disable_device(pdev);
  2781. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2782. return 0;
  2783. }
  2784. static int skge_resume(struct pci_dev *pdev)
  2785. {
  2786. struct skge_hw *hw = pci_get_drvdata(pdev);
  2787. int i;
  2788. pci_set_power_state(pdev, PCI_D0);
  2789. pci_restore_state(pdev);
  2790. pci_enable_wake(pdev, PCI_D0, 0);
  2791. skge_reset(hw);
  2792. for (i = 0; i < 2; i++) {
  2793. struct net_device *dev = hw->dev[i];
  2794. if (dev) {
  2795. netif_device_attach(dev);
  2796. if (netif_running(dev))
  2797. skge_up(dev);
  2798. }
  2799. }
  2800. return 0;
  2801. }
  2802. #endif
  2803. static struct pci_driver skge_driver = {
  2804. .name = DRV_NAME,
  2805. .id_table = skge_id_table,
  2806. .probe = skge_probe,
  2807. .remove = __devexit_p(skge_remove),
  2808. #ifdef CONFIG_PM
  2809. .suspend = skge_suspend,
  2810. .resume = skge_resume,
  2811. #endif
  2812. };
  2813. static int __init skge_init_module(void)
  2814. {
  2815. return pci_module_init(&skge_driver);
  2816. }
  2817. static void __exit skge_cleanup_module(void)
  2818. {
  2819. pci_unregister_driver(&skge_driver);
  2820. }
  2821. module_init(skge_init_module);
  2822. module_exit(skge_cleanup_module);