rt2800pci.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318
  1. /*
  2. Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/crc-ccitt.h>
  30. #include <linux/delay.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/init.h>
  33. #include <linux/kernel.h>
  34. #include <linux/module.h>
  35. #include <linux/pci.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/eeprom_93cx6.h>
  38. #include "rt2x00.h"
  39. #include "rt2x00pci.h"
  40. #include "rt2x00soc.h"
  41. #include "rt2800lib.h"
  42. #include "rt2800.h"
  43. #include "rt2800pci.h"
  44. #ifdef CONFIG_RT2800PCI_PCI_MODULE
  45. #define CONFIG_RT2800PCI_PCI
  46. #endif
  47. #ifdef CONFIG_RT2800PCI_WISOC_MODULE
  48. #define CONFIG_RT2800PCI_WISOC
  49. #endif
  50. /*
  51. * Allow hardware encryption to be disabled.
  52. */
  53. static int modparam_nohwcrypt = 1;
  54. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  55. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  56. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  57. {
  58. unsigned int i;
  59. u32 reg;
  60. for (i = 0; i < 200; i++) {
  61. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  62. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  64. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  65. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  66. break;
  67. udelay(REGISTER_BUSY_DELAY);
  68. }
  69. if (i == 200)
  70. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  71. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  72. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  73. }
  74. #ifdef CONFIG_RT2800PCI_WISOC
  75. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  76. {
  77. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  78. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  79. }
  80. #else
  81. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  82. {
  83. }
  84. #endif /* CONFIG_RT2800PCI_WISOC */
  85. #ifdef CONFIG_RT2800PCI_PCI
  86. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  87. {
  88. struct rt2x00_dev *rt2x00dev = eeprom->data;
  89. u32 reg;
  90. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  91. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  92. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  93. eeprom->reg_data_clock =
  94. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  95. eeprom->reg_chip_select =
  96. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  97. }
  98. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  99. {
  100. struct rt2x00_dev *rt2x00dev = eeprom->data;
  101. u32 reg = 0;
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  104. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  105. !!eeprom->reg_data_clock);
  106. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  107. !!eeprom->reg_chip_select);
  108. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  109. }
  110. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  111. {
  112. struct eeprom_93cx6 eeprom;
  113. u32 reg;
  114. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  115. eeprom.data = rt2x00dev;
  116. eeprom.register_read = rt2800pci_eepromregister_read;
  117. eeprom.register_write = rt2800pci_eepromregister_write;
  118. eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
  119. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  120. eeprom.reg_data_in = 0;
  121. eeprom.reg_data_out = 0;
  122. eeprom.reg_data_clock = 0;
  123. eeprom.reg_chip_select = 0;
  124. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  125. EEPROM_SIZE / sizeof(u16));
  126. }
  127. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  128. {
  129. return rt2800_efuse_detect(rt2x00dev);
  130. }
  131. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  132. {
  133. rt2800_read_eeprom_efuse(rt2x00dev);
  134. }
  135. #else
  136. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  137. {
  138. }
  139. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  140. {
  141. return 0;
  142. }
  143. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  144. {
  145. }
  146. #endif /* CONFIG_RT2800PCI_PCI */
  147. /*
  148. * Firmware functions
  149. */
  150. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  151. {
  152. return FIRMWARE_RT2860;
  153. }
  154. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  155. const u8 *data, const size_t len)
  156. {
  157. u16 fw_crc;
  158. u16 crc;
  159. /*
  160. * Only support 8kb firmware files.
  161. */
  162. if (len != 8192)
  163. return FW_BAD_LENGTH;
  164. /*
  165. * The last 2 bytes in the firmware array are the crc checksum itself,
  166. * this means that we should never pass those 2 bytes to the crc
  167. * algorithm.
  168. */
  169. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  170. /*
  171. * Use the crc ccitt algorithm.
  172. * This will return the same value as the legacy driver which
  173. * used bit ordering reversion on the both the firmware bytes
  174. * before input input as well as on the final output.
  175. * Obviously using crc ccitt directly is much more efficient.
  176. */
  177. crc = crc_ccitt(~0, data, len - 2);
  178. /*
  179. * There is a small difference between the crc-itu-t + bitrev and
  180. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  181. * will be swapped, use swab16 to convert the crc to the correct
  182. * value.
  183. */
  184. crc = swab16(crc);
  185. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  186. }
  187. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  188. const u8 *data, const size_t len)
  189. {
  190. unsigned int i;
  191. u32 reg;
  192. /*
  193. * Wait for stable hardware.
  194. */
  195. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  196. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  197. if (reg && reg != ~0)
  198. break;
  199. msleep(1);
  200. }
  201. if (i == REGISTER_BUSY_COUNT) {
  202. ERROR(rt2x00dev, "Unstable hardware.\n");
  203. return -EBUSY;
  204. }
  205. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  206. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  207. /*
  208. * Disable DMA, will be reenabled later when enabling
  209. * the radio.
  210. */
  211. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  212. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  213. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  214. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  215. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  216. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  217. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  218. /*
  219. * enable Host program ram write selection
  220. */
  221. reg = 0;
  222. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  223. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  224. /*
  225. * Write firmware to device.
  226. */
  227. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  228. data, len);
  229. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  230. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  231. /*
  232. * Wait for device to stabilize.
  233. */
  234. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  235. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  236. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  237. break;
  238. msleep(1);
  239. }
  240. if (i == REGISTER_BUSY_COUNT) {
  241. ERROR(rt2x00dev, "PBF system register not ready.\n");
  242. return -EBUSY;
  243. }
  244. /*
  245. * Disable interrupts
  246. */
  247. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  248. /*
  249. * Initialize BBP R/W access agent
  250. */
  251. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  252. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  253. return 0;
  254. }
  255. /*
  256. * Initialization functions.
  257. */
  258. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  259. {
  260. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  261. u32 word;
  262. if (entry->queue->qid == QID_RX) {
  263. rt2x00_desc_read(entry_priv->desc, 1, &word);
  264. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  265. } else {
  266. rt2x00_desc_read(entry_priv->desc, 1, &word);
  267. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  268. }
  269. }
  270. static void rt2800pci_clear_entry(struct queue_entry *entry)
  271. {
  272. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  273. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  274. u32 word;
  275. if (entry->queue->qid == QID_RX) {
  276. rt2x00_desc_read(entry_priv->desc, 0, &word);
  277. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  278. rt2x00_desc_write(entry_priv->desc, 0, word);
  279. rt2x00_desc_read(entry_priv->desc, 1, &word);
  280. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  281. rt2x00_desc_write(entry_priv->desc, 1, word);
  282. } else {
  283. rt2x00_desc_read(entry_priv->desc, 1, &word);
  284. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  285. rt2x00_desc_write(entry_priv->desc, 1, word);
  286. }
  287. }
  288. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  289. {
  290. struct queue_entry_priv_pci *entry_priv;
  291. u32 reg;
  292. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  293. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  294. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  295. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  296. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  297. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  298. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  299. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  300. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  301. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  302. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  303. /*
  304. * Initialize registers.
  305. */
  306. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  307. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  308. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  309. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  310. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  311. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  312. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  313. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  314. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  315. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  316. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  317. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  318. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  319. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  320. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  321. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  322. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  323. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  324. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  325. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  326. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  327. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  328. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  329. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  330. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  331. /*
  332. * Enable global DMA configuration
  333. */
  334. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  335. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  336. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  337. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  338. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  339. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  340. return 0;
  341. }
  342. /*
  343. * Device state switch handlers.
  344. */
  345. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  346. enum dev_state state)
  347. {
  348. u32 reg;
  349. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  350. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  351. (state == STATE_RADIO_RX_ON) ||
  352. (state == STATE_RADIO_RX_ON_LINK));
  353. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  354. }
  355. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  356. enum dev_state state)
  357. {
  358. int mask = (state == STATE_RADIO_IRQ_ON);
  359. u32 reg;
  360. /*
  361. * When interrupts are being enabled, the interrupt registers
  362. * should clear the register to assure a clean state.
  363. */
  364. if (state == STATE_RADIO_IRQ_ON) {
  365. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  366. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  367. }
  368. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  369. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  370. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  371. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  372. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  373. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  374. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  375. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  376. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  377. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  378. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  379. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  380. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  381. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  382. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  383. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  384. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  385. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  386. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  387. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  388. }
  389. static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
  390. {
  391. unsigned int i;
  392. u32 reg;
  393. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  394. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  395. if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
  396. !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
  397. return 0;
  398. msleep(1);
  399. }
  400. ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
  401. return -EACCES;
  402. }
  403. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  404. {
  405. u32 reg;
  406. u16 word;
  407. /*
  408. * Initialize all registers.
  409. */
  410. if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  411. rt2800pci_init_queues(rt2x00dev) ||
  412. rt2800_init_registers(rt2x00dev) ||
  413. rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  414. rt2800_init_bbp(rt2x00dev) ||
  415. rt2800_init_rfcsr(rt2x00dev)))
  416. return -EIO;
  417. /*
  418. * Send signal to firmware during boot time.
  419. */
  420. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
  421. /*
  422. * Enable RX.
  423. */
  424. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  425. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  426. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  427. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  428. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  429. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  430. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  431. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  432. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  433. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  434. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  435. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  436. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  437. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  438. /*
  439. * Initialize LED control
  440. */
  441. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  442. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  443. word & 0xff, (word >> 8) & 0xff);
  444. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  445. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  446. word & 0xff, (word >> 8) & 0xff);
  447. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  448. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  449. word & 0xff, (word >> 8) & 0xff);
  450. return 0;
  451. }
  452. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  453. {
  454. u32 reg;
  455. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  456. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  457. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  458. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  459. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  460. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  461. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  462. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  463. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  464. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  465. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  466. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  467. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  468. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  469. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  470. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  471. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  472. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  473. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  474. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  475. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  476. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  477. /* Wait for DMA, ignore error */
  478. rt2800pci_wait_wpdma_ready(rt2x00dev);
  479. }
  480. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  481. enum dev_state state)
  482. {
  483. /*
  484. * Always put the device to sleep (even when we intend to wakeup!)
  485. * if the device is booting and wasn't asleep it will return
  486. * failure when attempting to wakeup.
  487. */
  488. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  489. if (state == STATE_AWAKE) {
  490. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  491. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  492. }
  493. return 0;
  494. }
  495. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  496. enum dev_state state)
  497. {
  498. int retval = 0;
  499. switch (state) {
  500. case STATE_RADIO_ON:
  501. /*
  502. * Before the radio can be enabled, the device first has
  503. * to be woken up. After that it needs a bit of time
  504. * to be fully awake and then the radio can be enabled.
  505. */
  506. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  507. msleep(1);
  508. retval = rt2800pci_enable_radio(rt2x00dev);
  509. break;
  510. case STATE_RADIO_OFF:
  511. /*
  512. * After the radio has been disabled, the device should
  513. * be put to sleep for powersaving.
  514. */
  515. rt2800pci_disable_radio(rt2x00dev);
  516. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  517. break;
  518. case STATE_RADIO_RX_ON:
  519. case STATE_RADIO_RX_ON_LINK:
  520. case STATE_RADIO_RX_OFF:
  521. case STATE_RADIO_RX_OFF_LINK:
  522. rt2800pci_toggle_rx(rt2x00dev, state);
  523. break;
  524. case STATE_RADIO_IRQ_ON:
  525. case STATE_RADIO_IRQ_OFF:
  526. rt2800pci_toggle_irq(rt2x00dev, state);
  527. break;
  528. case STATE_DEEP_SLEEP:
  529. case STATE_SLEEP:
  530. case STATE_STANDBY:
  531. case STATE_AWAKE:
  532. retval = rt2800pci_set_state(rt2x00dev, state);
  533. break;
  534. default:
  535. retval = -ENOTSUPP;
  536. break;
  537. }
  538. if (unlikely(retval))
  539. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  540. state, retval);
  541. return retval;
  542. }
  543. /*
  544. * TX descriptor initialization
  545. */
  546. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  547. struct sk_buff *skb,
  548. struct txentry_desc *txdesc)
  549. {
  550. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  551. __le32 *txd = skbdesc->desc;
  552. __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->ops->extra_tx_headroom);
  553. u32 word;
  554. /*
  555. * Initialize TX Info descriptor
  556. */
  557. rt2x00_desc_read(txwi, 0, &word);
  558. rt2x00_set_field32(&word, TXWI_W0_FRAG,
  559. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  560. rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
  561. rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
  562. rt2x00_set_field32(&word, TXWI_W0_TS,
  563. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  564. rt2x00_set_field32(&word, TXWI_W0_AMPDU,
  565. test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
  566. rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
  567. rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
  568. rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
  569. rt2x00_set_field32(&word, TXWI_W0_BW,
  570. test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
  571. rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
  572. test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
  573. rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
  574. rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
  575. rt2x00_desc_write(txwi, 0, word);
  576. rt2x00_desc_read(txwi, 1, &word);
  577. rt2x00_set_field32(&word, TXWI_W1_ACK,
  578. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  579. rt2x00_set_field32(&word, TXWI_W1_NSEQ,
  580. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  581. rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
  582. rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
  583. test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
  584. txdesc->key_idx : 0xff);
  585. rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
  586. skb->len - txdesc->l2pad);
  587. rt2x00_set_field32(&word, TXWI_W1_PACKETID,
  588. skbdesc->entry->queue->qid + 1);
  589. rt2x00_desc_write(txwi, 1, word);
  590. /*
  591. * Always write 0 to IV/EIV fields, hardware will insert the IV
  592. * from the IVEIV register when TXD_W3_WIV is set to 0.
  593. * When TXD_W3_WIV is set to 1 it will use the IV data
  594. * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
  595. * crypto entry in the registers should be used to encrypt the frame.
  596. */
  597. _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
  598. _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
  599. /*
  600. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  601. * must contains a TXWI structure + 802.11 header + padding + 802.11
  602. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  603. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  604. * data. It means that LAST_SEC0 is always 0.
  605. */
  606. /*
  607. * Initialize TX descriptor
  608. */
  609. rt2x00_desc_read(txd, 0, &word);
  610. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  611. rt2x00_desc_write(txd, 0, word);
  612. rt2x00_desc_read(txd, 1, &word);
  613. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  614. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  615. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  616. rt2x00_set_field32(&word, TXD_W1_BURST,
  617. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  618. rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
  619. rt2x00dev->ops->extra_tx_headroom);
  620. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  621. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  622. rt2x00_desc_write(txd, 1, word);
  623. rt2x00_desc_read(txd, 2, &word);
  624. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  625. skbdesc->skb_dma + rt2x00dev->ops->extra_tx_headroom);
  626. rt2x00_desc_write(txd, 2, word);
  627. rt2x00_desc_read(txd, 3, &word);
  628. rt2x00_set_field32(&word, TXD_W3_WIV,
  629. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  630. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  631. rt2x00_desc_write(txd, 3, word);
  632. }
  633. /*
  634. * TX data initialization
  635. */
  636. static void rt2800pci_write_beacon(struct queue_entry *entry)
  637. {
  638. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  639. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  640. unsigned int beacon_base;
  641. u32 reg;
  642. /*
  643. * Disable beaconing while we are reloading the beacon data,
  644. * otherwise we might be sending out invalid data.
  645. */
  646. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  647. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  648. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  649. /*
  650. * Write entire beacon with descriptor to register.
  651. */
  652. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  653. rt2800_register_multiwrite(rt2x00dev,
  654. beacon_base,
  655. skbdesc->desc, skbdesc->desc_len);
  656. rt2800_register_multiwrite(rt2x00dev,
  657. beacon_base + skbdesc->desc_len,
  658. entry->skb->data, entry->skb->len);
  659. /*
  660. * Clean up beacon skb.
  661. */
  662. dev_kfree_skb_any(entry->skb);
  663. entry->skb = NULL;
  664. }
  665. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  666. const enum data_queue_qid queue_idx)
  667. {
  668. struct data_queue *queue;
  669. unsigned int idx, qidx = 0;
  670. u32 reg;
  671. if (queue_idx == QID_BEACON) {
  672. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  673. if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
  674. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  675. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  676. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  677. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  678. }
  679. return;
  680. }
  681. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  682. return;
  683. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  684. idx = queue->index[Q_INDEX];
  685. if (queue_idx == QID_MGMT)
  686. qidx = 5;
  687. else
  688. qidx = queue_idx;
  689. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  690. }
  691. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  692. const enum data_queue_qid qid)
  693. {
  694. u32 reg;
  695. if (qid == QID_BEACON) {
  696. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  697. return;
  698. }
  699. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  700. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  701. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  702. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  703. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  704. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  705. }
  706. /*
  707. * RX control handlers
  708. */
  709. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  710. struct rxdone_entry_desc *rxdesc)
  711. {
  712. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  713. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  714. __le32 *rxd = entry_priv->desc;
  715. __le32 *rxwi = (__le32 *)entry->skb->data;
  716. u32 rxd3;
  717. u32 rxwi0;
  718. u32 rxwi1;
  719. u32 rxwi2;
  720. u32 rxwi3;
  721. rt2x00_desc_read(rxd, 3, &rxd3);
  722. rt2x00_desc_read(rxwi, 0, &rxwi0);
  723. rt2x00_desc_read(rxwi, 1, &rxwi1);
  724. rt2x00_desc_read(rxwi, 2, &rxwi2);
  725. rt2x00_desc_read(rxwi, 3, &rxwi3);
  726. if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
  727. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  728. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  729. /*
  730. * Unfortunately we don't know the cipher type used during
  731. * decryption. This prevents us from correct providing
  732. * correct statistics through debugfs.
  733. */
  734. rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
  735. rxdesc->cipher_status =
  736. rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
  737. }
  738. if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
  739. /*
  740. * Hardware has stripped IV/EIV data from 802.11 frame during
  741. * decryption. Unfortunately the descriptor doesn't contain
  742. * any fields with the EIV/IV data either, so they can't
  743. * be restored by rt2x00lib.
  744. */
  745. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  746. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  747. rxdesc->flags |= RX_FLAG_DECRYPTED;
  748. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  749. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  750. }
  751. if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
  752. rxdesc->dev_flags |= RXDONE_MY_BSS;
  753. if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD))
  754. rxdesc->dev_flags |= RXDONE_L2PAD;
  755. if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
  756. rxdesc->flags |= RX_FLAG_SHORT_GI;
  757. if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
  758. rxdesc->flags |= RX_FLAG_40MHZ;
  759. /*
  760. * Detect RX rate, always use MCS as signal type.
  761. */
  762. rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
  763. rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
  764. rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
  765. /*
  766. * Mask of 0x8 bit to remove the short preamble flag.
  767. */
  768. if (rxdesc->rate_mode == RATE_MODE_CCK)
  769. rxdesc->signal &= ~0x8;
  770. rxdesc->rssi =
  771. (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
  772. rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
  773. rxdesc->noise =
  774. (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
  775. rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
  776. rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
  777. /*
  778. * Set RX IDX in register to inform hardware that we have handled
  779. * this entry and it is available for reuse again.
  780. */
  781. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  782. /*
  783. * Remove TXWI descriptor from start of buffer.
  784. */
  785. skb_pull(entry->skb, RXWI_DESC_SIZE);
  786. }
  787. /*
  788. * Interrupt functions.
  789. */
  790. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  791. {
  792. struct data_queue *queue;
  793. struct queue_entry *entry;
  794. struct queue_entry *entry_done;
  795. struct queue_entry_priv_pci *entry_priv;
  796. struct txdone_entry_desc txdesc;
  797. u32 word;
  798. u32 reg;
  799. u32 old_reg;
  800. unsigned int type;
  801. unsigned int index;
  802. u16 mcs, real_mcs;
  803. /*
  804. * During each loop we will compare the freshly read
  805. * TX_STA_FIFO register value with the value read from
  806. * the previous loop. If the 2 values are equal then
  807. * we should stop processing because the chance it
  808. * quite big that the device has been unplugged and
  809. * we risk going into an endless loop.
  810. */
  811. old_reg = 0;
  812. while (1) {
  813. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  814. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  815. break;
  816. if (old_reg == reg)
  817. break;
  818. old_reg = reg;
  819. /*
  820. * Skip this entry when it contains an invalid
  821. * queue identication number.
  822. */
  823. type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
  824. if (type >= QID_RX)
  825. continue;
  826. queue = rt2x00queue_get_queue(rt2x00dev, type);
  827. if (unlikely(!queue))
  828. continue;
  829. /*
  830. * Skip this entry when it contains an invalid
  831. * index number.
  832. */
  833. index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
  834. if (unlikely(index >= queue->limit))
  835. continue;
  836. entry = &queue->entries[index];
  837. entry_priv = entry->priv_data;
  838. rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
  839. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  840. while (entry != entry_done) {
  841. /*
  842. * Catch up.
  843. * Just report any entries we missed as failed.
  844. */
  845. WARNING(rt2x00dev,
  846. "TX status report missed for entry %d\n",
  847. entry_done->entry_idx);
  848. txdesc.flags = 0;
  849. __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
  850. txdesc.retry = 0;
  851. rt2x00lib_txdone(entry_done, &txdesc);
  852. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  853. }
  854. /*
  855. * Obtain the status about this packet.
  856. */
  857. txdesc.flags = 0;
  858. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
  859. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  860. else
  861. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  862. /*
  863. * Ralink has a retry mechanism using a global fallback
  864. * table. We setup this fallback table to try immediate
  865. * lower rate for all rates. In the TX_STA_FIFO,
  866. * the MCS field contains the MCS used for the successfull
  867. * transmission. If the first transmission succeed,
  868. * we have mcs == tx_mcs. On the second transmission,
  869. * we have mcs = tx_mcs - 1. So the number of
  870. * retry is (tx_mcs - mcs).
  871. */
  872. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  873. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  874. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  875. txdesc.retry = mcs - min(mcs, real_mcs);
  876. rt2x00lib_txdone(entry, &txdesc);
  877. }
  878. }
  879. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  880. {
  881. struct rt2x00_dev *rt2x00dev = dev_instance;
  882. u32 reg;
  883. /* Read status and ACK all interrupts */
  884. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  885. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  886. if (!reg)
  887. return IRQ_NONE;
  888. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  889. return IRQ_HANDLED;
  890. /*
  891. * 1 - Rx ring done interrupt.
  892. */
  893. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  894. rt2x00pci_rxdone(rt2x00dev);
  895. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  896. rt2800pci_txdone(rt2x00dev);
  897. return IRQ_HANDLED;
  898. }
  899. /*
  900. * Device probe functions.
  901. */
  902. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  903. {
  904. /*
  905. * Read EEPROM into buffer
  906. */
  907. switch (rt2x00dev->chip.rt) {
  908. case RT2880:
  909. case RT3052:
  910. rt2800pci_read_eeprom_soc(rt2x00dev);
  911. break;
  912. default:
  913. if (rt2800pci_efuse_detect(rt2x00dev))
  914. rt2800pci_read_eeprom_efuse(rt2x00dev);
  915. else
  916. rt2800pci_read_eeprom_pci(rt2x00dev);
  917. break;
  918. }
  919. return rt2800_validate_eeprom(rt2x00dev);
  920. }
  921. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  922. .register_read = rt2x00pci_register_read,
  923. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  924. .register_write = rt2x00pci_register_write,
  925. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  926. .register_multiread = rt2x00pci_register_multiread,
  927. .register_multiwrite = rt2x00pci_register_multiwrite,
  928. .regbusy_read = rt2x00pci_regbusy_read,
  929. };
  930. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  931. {
  932. int retval;
  933. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  934. /*
  935. * Allocate eeprom data.
  936. */
  937. retval = rt2800pci_validate_eeprom(rt2x00dev);
  938. if (retval)
  939. return retval;
  940. retval = rt2800_init_eeprom(rt2x00dev);
  941. if (retval)
  942. return retval;
  943. /*
  944. * Initialize hw specifications.
  945. */
  946. retval = rt2800_probe_hw_mode(rt2x00dev);
  947. if (retval)
  948. return retval;
  949. /*
  950. * This device has multiple filters for control frames
  951. * and has a separate filter for PS Poll frames.
  952. */
  953. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  954. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  955. /*
  956. * This device requires firmware.
  957. */
  958. if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
  959. !rt2x00_rt(&rt2x00dev->chip, RT3052))
  960. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  961. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  962. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  963. if (!modparam_nohwcrypt)
  964. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  965. /*
  966. * Set the rssi offset.
  967. */
  968. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  969. return 0;
  970. }
  971. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  972. .irq_handler = rt2800pci_interrupt,
  973. .probe_hw = rt2800pci_probe_hw,
  974. .get_firmware_name = rt2800pci_get_firmware_name,
  975. .check_firmware = rt2800pci_check_firmware,
  976. .load_firmware = rt2800pci_load_firmware,
  977. .initialize = rt2x00pci_initialize,
  978. .uninitialize = rt2x00pci_uninitialize,
  979. .get_entry_state = rt2800pci_get_entry_state,
  980. .clear_entry = rt2800pci_clear_entry,
  981. .set_device_state = rt2800pci_set_device_state,
  982. .rfkill_poll = rt2800_rfkill_poll,
  983. .link_stats = rt2800_link_stats,
  984. .reset_tuner = rt2800_reset_tuner,
  985. .link_tuner = rt2800_link_tuner,
  986. .write_tx_desc = rt2800pci_write_tx_desc,
  987. .write_tx_data = rt2x00pci_write_tx_data,
  988. .write_beacon = rt2800pci_write_beacon,
  989. .kick_tx_queue = rt2800pci_kick_tx_queue,
  990. .kill_tx_queue = rt2800pci_kill_tx_queue,
  991. .fill_rxdone = rt2800pci_fill_rxdone,
  992. .config_shared_key = rt2800_config_shared_key,
  993. .config_pairwise_key = rt2800_config_pairwise_key,
  994. .config_filter = rt2800_config_filter,
  995. .config_intf = rt2800_config_intf,
  996. .config_erp = rt2800_config_erp,
  997. .config_ant = rt2800_config_ant,
  998. .config = rt2800_config,
  999. };
  1000. static const struct data_queue_desc rt2800pci_queue_rx = {
  1001. .entry_num = RX_ENTRIES,
  1002. .data_size = AGGREGATION_SIZE,
  1003. .desc_size = RXD_DESC_SIZE,
  1004. .priv_size = sizeof(struct queue_entry_priv_pci),
  1005. };
  1006. static const struct data_queue_desc rt2800pci_queue_tx = {
  1007. .entry_num = TX_ENTRIES,
  1008. .data_size = AGGREGATION_SIZE,
  1009. .desc_size = TXD_DESC_SIZE,
  1010. .priv_size = sizeof(struct queue_entry_priv_pci),
  1011. };
  1012. static const struct data_queue_desc rt2800pci_queue_bcn = {
  1013. .entry_num = 8 * BEACON_ENTRIES,
  1014. .data_size = 0, /* No DMA required for beacons */
  1015. .desc_size = TXWI_DESC_SIZE,
  1016. .priv_size = sizeof(struct queue_entry_priv_pci),
  1017. };
  1018. static const struct rt2x00_ops rt2800pci_ops = {
  1019. .name = KBUILD_MODNAME,
  1020. .max_sta_intf = 1,
  1021. .max_ap_intf = 8,
  1022. .eeprom_size = EEPROM_SIZE,
  1023. .rf_size = RF_SIZE,
  1024. .tx_queues = NUM_TX_QUEUES,
  1025. .extra_tx_headroom = TXWI_DESC_SIZE,
  1026. .rx = &rt2800pci_queue_rx,
  1027. .tx = &rt2800pci_queue_tx,
  1028. .bcn = &rt2800pci_queue_bcn,
  1029. .lib = &rt2800pci_rt2x00_ops,
  1030. .hw = &rt2800_mac80211_ops,
  1031. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1032. .debugfs = &rt2800_rt2x00debug,
  1033. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1034. };
  1035. /*
  1036. * RT2800pci module information.
  1037. */
  1038. static struct pci_device_id rt2800pci_device_table[] = {
  1039. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1040. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1041. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1042. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1043. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1044. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1045. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1046. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1047. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1048. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1049. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1050. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1051. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1052. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1053. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1054. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1055. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1056. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1057. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1058. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1059. { 0, }
  1060. };
  1061. MODULE_AUTHOR(DRV_PROJECT);
  1062. MODULE_VERSION(DRV_VERSION);
  1063. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1064. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1065. #ifdef CONFIG_RT2800PCI_PCI
  1066. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1067. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1068. #endif /* CONFIG_RT2800PCI_PCI */
  1069. MODULE_LICENSE("GPL");
  1070. #ifdef CONFIG_RT2800PCI_WISOC
  1071. #if defined(CONFIG_RALINK_RT288X)
  1072. __rt2x00soc_probe(RT2880, &rt2800pci_ops);
  1073. #elif defined(CONFIG_RALINK_RT305X)
  1074. __rt2x00soc_probe(RT3052, &rt2800pci_ops);
  1075. #endif
  1076. static struct platform_driver rt2800soc_driver = {
  1077. .driver = {
  1078. .name = "rt2800_wmac",
  1079. .owner = THIS_MODULE,
  1080. .mod_name = KBUILD_MODNAME,
  1081. },
  1082. .probe = __rt2x00soc_probe,
  1083. .remove = __devexit_p(rt2x00soc_remove),
  1084. .suspend = rt2x00soc_suspend,
  1085. .resume = rt2x00soc_resume,
  1086. };
  1087. #endif /* CONFIG_RT2800PCI_WISOC */
  1088. #ifdef CONFIG_RT2800PCI_PCI
  1089. static struct pci_driver rt2800pci_driver = {
  1090. .name = KBUILD_MODNAME,
  1091. .id_table = rt2800pci_device_table,
  1092. .probe = rt2x00pci_probe,
  1093. .remove = __devexit_p(rt2x00pci_remove),
  1094. .suspend = rt2x00pci_suspend,
  1095. .resume = rt2x00pci_resume,
  1096. };
  1097. #endif /* CONFIG_RT2800PCI_PCI */
  1098. static int __init rt2800pci_init(void)
  1099. {
  1100. int ret = 0;
  1101. #ifdef CONFIG_RT2800PCI_WISOC
  1102. ret = platform_driver_register(&rt2800soc_driver);
  1103. if (ret)
  1104. return ret;
  1105. #endif
  1106. #ifdef CONFIG_RT2800PCI_PCI
  1107. ret = pci_register_driver(&rt2800pci_driver);
  1108. if (ret) {
  1109. #ifdef CONFIG_RT2800PCI_WISOC
  1110. platform_driver_unregister(&rt2800soc_driver);
  1111. #endif
  1112. return ret;
  1113. }
  1114. #endif
  1115. return ret;
  1116. }
  1117. static void __exit rt2800pci_exit(void)
  1118. {
  1119. #ifdef CONFIG_RT2800PCI_PCI
  1120. pci_unregister_driver(&rt2800pci_driver);
  1121. #endif
  1122. #ifdef CONFIG_RT2800PCI_WISOC
  1123. platform_driver_unregister(&rt2800soc_driver);
  1124. #endif
  1125. }
  1126. module_init(rt2800pci_init);
  1127. module_exit(rt2800pci_exit);