fs_enet-main.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/sched.h>
  21. #include <linux/string.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/slab.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/pci.h>
  28. #include <linux/init.h>
  29. #include <linux/delay.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/mii.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/bitops.h>
  37. #include <linux/fs.h>
  38. #include <linux/platform_device.h>
  39. #include <linux/phy.h>
  40. #include <linux/vmalloc.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/pgtable.h>
  43. #include <asm/irq.h>
  44. #include <asm/uaccess.h>
  45. #include "fs_enet.h"
  46. /*************************************************/
  47. static char version[] __devinitdata =
  48. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  49. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  50. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  51. MODULE_LICENSE("GPL");
  52. MODULE_VERSION(DRV_MODULE_VERSION);
  53. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  54. module_param(fs_enet_debug, int, 0);
  55. MODULE_PARM_DESC(fs_enet_debug,
  56. "Freescale bitmapped debugging message enable value");
  57. static void fs_set_multicast_list(struct net_device *dev)
  58. {
  59. struct fs_enet_private *fep = netdev_priv(dev);
  60. (*fep->ops->set_multicast_list)(dev);
  61. }
  62. /* NAPI receive function */
  63. static int fs_enet_rx_napi(struct net_device *dev, int *budget)
  64. {
  65. struct fs_enet_private *fep = netdev_priv(dev);
  66. const struct fs_platform_info *fpi = fep->fpi;
  67. cbd_t *bdp;
  68. struct sk_buff *skb, *skbn, *skbt;
  69. int received = 0;
  70. u16 pkt_len, sc;
  71. int curidx;
  72. int rx_work_limit = 0; /* pacify gcc */
  73. rx_work_limit = min(dev->quota, *budget);
  74. if (!netif_running(dev))
  75. return 0;
  76. /*
  77. * First, grab all of the stats for the incoming packet.
  78. * These get messed up if we get called due to a busy condition.
  79. */
  80. bdp = fep->cur_rx;
  81. /* clear RX status bits for napi*/
  82. (*fep->ops->napi_clear_rx_event)(dev);
  83. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  84. curidx = bdp - fep->rx_bd_base;
  85. /*
  86. * Since we have allocated space to hold a complete frame,
  87. * the last indicator should be set.
  88. */
  89. if ((sc & BD_ENET_RX_LAST) == 0)
  90. printk(KERN_WARNING DRV_MODULE_NAME
  91. ": %s rcv is not +last\n",
  92. dev->name);
  93. /*
  94. * Check for errors.
  95. */
  96. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  97. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  98. fep->stats.rx_errors++;
  99. /* Frame too long or too short. */
  100. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  101. fep->stats.rx_length_errors++;
  102. /* Frame alignment */
  103. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  104. fep->stats.rx_frame_errors++;
  105. /* CRC Error */
  106. if (sc & BD_ENET_RX_CR)
  107. fep->stats.rx_crc_errors++;
  108. /* FIFO overrun */
  109. if (sc & BD_ENET_RX_OV)
  110. fep->stats.rx_crc_errors++;
  111. skb = fep->rx_skbuff[curidx];
  112. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  113. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  114. DMA_FROM_DEVICE);
  115. skbn = skb;
  116. } else {
  117. /* napi, got packet but no quota */
  118. if (--rx_work_limit < 0)
  119. break;
  120. skb = fep->rx_skbuff[curidx];
  121. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  122. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  123. DMA_FROM_DEVICE);
  124. /*
  125. * Process the incoming frame.
  126. */
  127. fep->stats.rx_packets++;
  128. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  129. fep->stats.rx_bytes += pkt_len + 4;
  130. if (pkt_len <= fpi->rx_copybreak) {
  131. /* +2 to make IP header L1 cache aligned */
  132. skbn = dev_alloc_skb(pkt_len + 2);
  133. if (skbn != NULL) {
  134. skb_reserve(skbn, 2); /* align IP header */
  135. memcpy(skbn->data, skb->data, pkt_len);
  136. /* swap */
  137. skbt = skb;
  138. skb = skbn;
  139. skbn = skbt;
  140. }
  141. } else
  142. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  143. if (skbn != NULL) {
  144. skb->dev = dev;
  145. skb_put(skb, pkt_len); /* Make room */
  146. skb->protocol = eth_type_trans(skb, dev);
  147. received++;
  148. netif_receive_skb(skb);
  149. } else {
  150. printk(KERN_WARNING DRV_MODULE_NAME
  151. ": %s Memory squeeze, dropping packet.\n",
  152. dev->name);
  153. fep->stats.rx_dropped++;
  154. skbn = skb;
  155. }
  156. }
  157. fep->rx_skbuff[curidx] = skbn;
  158. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  159. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  160. DMA_FROM_DEVICE));
  161. CBDW_DATLEN(bdp, 0);
  162. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  163. /*
  164. * Update BD pointer to next entry.
  165. */
  166. if ((sc & BD_ENET_RX_WRAP) == 0)
  167. bdp++;
  168. else
  169. bdp = fep->rx_bd_base;
  170. (*fep->ops->rx_bd_done)(dev);
  171. }
  172. fep->cur_rx = bdp;
  173. dev->quota -= received;
  174. *budget -= received;
  175. if (rx_work_limit < 0)
  176. return 1; /* not done */
  177. /* done */
  178. netif_rx_complete(dev);
  179. (*fep->ops->napi_enable_rx)(dev);
  180. return 0;
  181. }
  182. /* non NAPI receive function */
  183. static int fs_enet_rx_non_napi(struct net_device *dev)
  184. {
  185. struct fs_enet_private *fep = netdev_priv(dev);
  186. const struct fs_platform_info *fpi = fep->fpi;
  187. cbd_t *bdp;
  188. struct sk_buff *skb, *skbn, *skbt;
  189. int received = 0;
  190. u16 pkt_len, sc;
  191. int curidx;
  192. /*
  193. * First, grab all of the stats for the incoming packet.
  194. * These get messed up if we get called due to a busy condition.
  195. */
  196. bdp = fep->cur_rx;
  197. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  198. curidx = bdp - fep->rx_bd_base;
  199. /*
  200. * Since we have allocated space to hold a complete frame,
  201. * the last indicator should be set.
  202. */
  203. if ((sc & BD_ENET_RX_LAST) == 0)
  204. printk(KERN_WARNING DRV_MODULE_NAME
  205. ": %s rcv is not +last\n",
  206. dev->name);
  207. /*
  208. * Check for errors.
  209. */
  210. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  211. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  212. fep->stats.rx_errors++;
  213. /* Frame too long or too short. */
  214. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  215. fep->stats.rx_length_errors++;
  216. /* Frame alignment */
  217. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  218. fep->stats.rx_frame_errors++;
  219. /* CRC Error */
  220. if (sc & BD_ENET_RX_CR)
  221. fep->stats.rx_crc_errors++;
  222. /* FIFO overrun */
  223. if (sc & BD_ENET_RX_OV)
  224. fep->stats.rx_crc_errors++;
  225. skb = fep->rx_skbuff[curidx];
  226. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  227. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  228. DMA_FROM_DEVICE);
  229. skbn = skb;
  230. } else {
  231. skb = fep->rx_skbuff[curidx];
  232. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  233. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  234. DMA_FROM_DEVICE);
  235. /*
  236. * Process the incoming frame.
  237. */
  238. fep->stats.rx_packets++;
  239. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  240. fep->stats.rx_bytes += pkt_len + 4;
  241. if (pkt_len <= fpi->rx_copybreak) {
  242. /* +2 to make IP header L1 cache aligned */
  243. skbn = dev_alloc_skb(pkt_len + 2);
  244. if (skbn != NULL) {
  245. skb_reserve(skbn, 2); /* align IP header */
  246. memcpy(skbn->data, skb->data, pkt_len);
  247. /* swap */
  248. skbt = skb;
  249. skb = skbn;
  250. skbn = skbt;
  251. }
  252. } else
  253. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  254. if (skbn != NULL) {
  255. skb->dev = dev;
  256. skb_put(skb, pkt_len); /* Make room */
  257. skb->protocol = eth_type_trans(skb, dev);
  258. received++;
  259. netif_rx(skb);
  260. } else {
  261. printk(KERN_WARNING DRV_MODULE_NAME
  262. ": %s Memory squeeze, dropping packet.\n",
  263. dev->name);
  264. fep->stats.rx_dropped++;
  265. skbn = skb;
  266. }
  267. }
  268. fep->rx_skbuff[curidx] = skbn;
  269. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  270. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  271. DMA_FROM_DEVICE));
  272. CBDW_DATLEN(bdp, 0);
  273. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  274. /*
  275. * Update BD pointer to next entry.
  276. */
  277. if ((sc & BD_ENET_RX_WRAP) == 0)
  278. bdp++;
  279. else
  280. bdp = fep->rx_bd_base;
  281. (*fep->ops->rx_bd_done)(dev);
  282. }
  283. fep->cur_rx = bdp;
  284. return 0;
  285. }
  286. static void fs_enet_tx(struct net_device *dev)
  287. {
  288. struct fs_enet_private *fep = netdev_priv(dev);
  289. cbd_t *bdp;
  290. struct sk_buff *skb;
  291. int dirtyidx, do_wake, do_restart;
  292. u16 sc;
  293. spin_lock(&fep->lock);
  294. bdp = fep->dirty_tx;
  295. do_wake = do_restart = 0;
  296. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  297. dirtyidx = bdp - fep->tx_bd_base;
  298. if (fep->tx_free == fep->tx_ring)
  299. break;
  300. skb = fep->tx_skbuff[dirtyidx];
  301. /*
  302. * Check for errors.
  303. */
  304. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  305. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  306. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  307. fep->stats.tx_heartbeat_errors++;
  308. if (sc & BD_ENET_TX_LC) /* Late collision */
  309. fep->stats.tx_window_errors++;
  310. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  311. fep->stats.tx_aborted_errors++;
  312. if (sc & BD_ENET_TX_UN) /* Underrun */
  313. fep->stats.tx_fifo_errors++;
  314. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  315. fep->stats.tx_carrier_errors++;
  316. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  317. fep->stats.tx_errors++;
  318. do_restart = 1;
  319. }
  320. } else
  321. fep->stats.tx_packets++;
  322. if (sc & BD_ENET_TX_READY)
  323. printk(KERN_WARNING DRV_MODULE_NAME
  324. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  325. dev->name);
  326. /*
  327. * Deferred means some collisions occurred during transmit,
  328. * but we eventually sent the packet OK.
  329. */
  330. if (sc & BD_ENET_TX_DEF)
  331. fep->stats.collisions++;
  332. /* unmap */
  333. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  334. skb->len, DMA_TO_DEVICE);
  335. /*
  336. * Free the sk buffer associated with this last transmit.
  337. */
  338. dev_kfree_skb_irq(skb);
  339. fep->tx_skbuff[dirtyidx] = NULL;
  340. /*
  341. * Update pointer to next buffer descriptor to be transmitted.
  342. */
  343. if ((sc & BD_ENET_TX_WRAP) == 0)
  344. bdp++;
  345. else
  346. bdp = fep->tx_bd_base;
  347. /*
  348. * Since we have freed up a buffer, the ring is no longer
  349. * full.
  350. */
  351. if (!fep->tx_free++)
  352. do_wake = 1;
  353. }
  354. fep->dirty_tx = bdp;
  355. if (do_restart)
  356. (*fep->ops->tx_restart)(dev);
  357. spin_unlock(&fep->lock);
  358. if (do_wake)
  359. netif_wake_queue(dev);
  360. }
  361. /*
  362. * The interrupt handler.
  363. * This is called from the MPC core interrupt.
  364. */
  365. static irqreturn_t
  366. fs_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  367. {
  368. struct net_device *dev = dev_id;
  369. struct fs_enet_private *fep;
  370. const struct fs_platform_info *fpi;
  371. u32 int_events;
  372. u32 int_clr_events;
  373. int nr, napi_ok;
  374. int handled;
  375. fep = netdev_priv(dev);
  376. fpi = fep->fpi;
  377. nr = 0;
  378. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  379. nr++;
  380. int_clr_events = int_events;
  381. if (fpi->use_napi)
  382. int_clr_events &= ~fep->ev_napi_rx;
  383. (*fep->ops->clear_int_events)(dev, int_clr_events);
  384. if (int_events & fep->ev_err)
  385. (*fep->ops->ev_error)(dev, int_events);
  386. if (int_events & fep->ev_rx) {
  387. if (!fpi->use_napi)
  388. fs_enet_rx_non_napi(dev);
  389. else {
  390. napi_ok = netif_rx_schedule_prep(dev);
  391. (*fep->ops->napi_disable_rx)(dev);
  392. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  393. /* NOTE: it is possible for FCCs in NAPI mode */
  394. /* to submit a spurious interrupt while in poll */
  395. if (napi_ok)
  396. __netif_rx_schedule(dev);
  397. }
  398. }
  399. if (int_events & fep->ev_tx)
  400. fs_enet_tx(dev);
  401. }
  402. handled = nr > 0;
  403. return IRQ_RETVAL(handled);
  404. }
  405. void fs_init_bds(struct net_device *dev)
  406. {
  407. struct fs_enet_private *fep = netdev_priv(dev);
  408. cbd_t *bdp;
  409. struct sk_buff *skb;
  410. int i;
  411. fs_cleanup_bds(dev);
  412. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  413. fep->tx_free = fep->tx_ring;
  414. fep->cur_rx = fep->rx_bd_base;
  415. /*
  416. * Initialize the receive buffer descriptors.
  417. */
  418. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  419. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  420. if (skb == NULL) {
  421. printk(KERN_WARNING DRV_MODULE_NAME
  422. ": %s Memory squeeze, unable to allocate skb\n",
  423. dev->name);
  424. break;
  425. }
  426. fep->rx_skbuff[i] = skb;
  427. skb->dev = dev;
  428. CBDW_BUFADDR(bdp,
  429. dma_map_single(fep->dev, skb->data,
  430. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  431. DMA_FROM_DEVICE));
  432. CBDW_DATLEN(bdp, 0); /* zero */
  433. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  434. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  435. }
  436. /*
  437. * if we failed, fillup remainder
  438. */
  439. for (; i < fep->rx_ring; i++, bdp++) {
  440. fep->rx_skbuff[i] = NULL;
  441. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  442. }
  443. /*
  444. * ...and the same for transmit.
  445. */
  446. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  447. fep->tx_skbuff[i] = NULL;
  448. CBDW_BUFADDR(bdp, 0);
  449. CBDW_DATLEN(bdp, 0);
  450. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  451. }
  452. }
  453. void fs_cleanup_bds(struct net_device *dev)
  454. {
  455. struct fs_enet_private *fep = netdev_priv(dev);
  456. struct sk_buff *skb;
  457. cbd_t *bdp;
  458. int i;
  459. /*
  460. * Reset SKB transmit buffers.
  461. */
  462. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  463. if ((skb = fep->tx_skbuff[i]) == NULL)
  464. continue;
  465. /* unmap */
  466. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  467. skb->len, DMA_TO_DEVICE);
  468. fep->tx_skbuff[i] = NULL;
  469. dev_kfree_skb(skb);
  470. }
  471. /*
  472. * Reset SKB receive buffers
  473. */
  474. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  475. if ((skb = fep->rx_skbuff[i]) == NULL)
  476. continue;
  477. /* unmap */
  478. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  479. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  480. DMA_FROM_DEVICE);
  481. fep->rx_skbuff[i] = NULL;
  482. dev_kfree_skb(skb);
  483. }
  484. }
  485. /**********************************************************************************/
  486. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  487. {
  488. struct fs_enet_private *fep = netdev_priv(dev);
  489. cbd_t *bdp;
  490. int curidx;
  491. u16 sc;
  492. unsigned long flags;
  493. spin_lock_irqsave(&fep->tx_lock, flags);
  494. /*
  495. * Fill in a Tx ring entry
  496. */
  497. bdp = fep->cur_tx;
  498. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  499. netif_stop_queue(dev);
  500. spin_unlock_irqrestore(&fep->tx_lock, flags);
  501. /*
  502. * Ooops. All transmit buffers are full. Bail out.
  503. * This should not happen, since the tx queue should be stopped.
  504. */
  505. printk(KERN_WARNING DRV_MODULE_NAME
  506. ": %s tx queue full!.\n", dev->name);
  507. return NETDEV_TX_BUSY;
  508. }
  509. curidx = bdp - fep->tx_bd_base;
  510. /*
  511. * Clear all of the status flags.
  512. */
  513. CBDC_SC(bdp, BD_ENET_TX_STATS);
  514. /*
  515. * Save skb pointer.
  516. */
  517. fep->tx_skbuff[curidx] = skb;
  518. fep->stats.tx_bytes += skb->len;
  519. /*
  520. * Push the data cache so the CPM does not get stale memory data.
  521. */
  522. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  523. skb->data, skb->len, DMA_TO_DEVICE));
  524. CBDW_DATLEN(bdp, skb->len);
  525. dev->trans_start = jiffies;
  526. /*
  527. * If this was the last BD in the ring, start at the beginning again.
  528. */
  529. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  530. fep->cur_tx++;
  531. else
  532. fep->cur_tx = fep->tx_bd_base;
  533. if (!--fep->tx_free)
  534. netif_stop_queue(dev);
  535. /* Trigger transmission start */
  536. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  537. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  538. /* note that while FEC does not have this bit
  539. * it marks it as available for software use
  540. * yay for hw reuse :) */
  541. if (skb->len <= 60)
  542. sc |= BD_ENET_TX_PAD;
  543. CBDS_SC(bdp, sc);
  544. (*fep->ops->tx_kickstart)(dev);
  545. spin_unlock_irqrestore(&fep->tx_lock, flags);
  546. return NETDEV_TX_OK;
  547. }
  548. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  549. irqreturn_t (*irqf)(int irq, void *dev_id, struct pt_regs *regs))
  550. {
  551. struct fs_enet_private *fep = netdev_priv(dev);
  552. (*fep->ops->pre_request_irq)(dev, irq);
  553. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  554. }
  555. static void fs_free_irq(struct net_device *dev, int irq)
  556. {
  557. struct fs_enet_private *fep = netdev_priv(dev);
  558. free_irq(irq, dev);
  559. (*fep->ops->post_free_irq)(dev, irq);
  560. }
  561. static void fs_timeout(struct net_device *dev)
  562. {
  563. struct fs_enet_private *fep = netdev_priv(dev);
  564. unsigned long flags;
  565. int wake = 0;
  566. fep->stats.tx_errors++;
  567. spin_lock_irqsave(&fep->lock, flags);
  568. if (dev->flags & IFF_UP) {
  569. phy_stop(fep->phydev);
  570. (*fep->ops->stop)(dev);
  571. (*fep->ops->restart)(dev);
  572. phy_start(fep->phydev);
  573. }
  574. phy_start(fep->phydev);
  575. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  576. spin_unlock_irqrestore(&fep->lock, flags);
  577. if (wake)
  578. netif_wake_queue(dev);
  579. }
  580. /*-----------------------------------------------------------------------------
  581. * generic link-change handler - should be sufficient for most cases
  582. *-----------------------------------------------------------------------------*/
  583. static void generic_adjust_link(struct net_device *dev)
  584. {
  585. struct fs_enet_private *fep = netdev_priv(dev);
  586. struct phy_device *phydev = fep->phydev;
  587. int new_state = 0;
  588. if (phydev->link) {
  589. /* adjust to duplex mode */
  590. if (phydev->duplex != fep->oldduplex){
  591. new_state = 1;
  592. fep->oldduplex = phydev->duplex;
  593. }
  594. if (phydev->speed != fep->oldspeed) {
  595. new_state = 1;
  596. fep->oldspeed = phydev->speed;
  597. }
  598. if (!fep->oldlink) {
  599. new_state = 1;
  600. fep->oldlink = 1;
  601. netif_schedule(dev);
  602. netif_carrier_on(dev);
  603. netif_start_queue(dev);
  604. }
  605. if (new_state)
  606. fep->ops->restart(dev);
  607. } else if (fep->oldlink) {
  608. new_state = 1;
  609. fep->oldlink = 0;
  610. fep->oldspeed = 0;
  611. fep->oldduplex = -1;
  612. netif_carrier_off(dev);
  613. netif_stop_queue(dev);
  614. }
  615. if (new_state && netif_msg_link(fep))
  616. phy_print_status(phydev);
  617. }
  618. static void fs_adjust_link(struct net_device *dev)
  619. {
  620. struct fs_enet_private *fep = netdev_priv(dev);
  621. unsigned long flags;
  622. spin_lock_irqsave(&fep->lock, flags);
  623. if(fep->ops->adjust_link)
  624. fep->ops->adjust_link(dev);
  625. else
  626. generic_adjust_link(dev);
  627. spin_unlock_irqrestore(&fep->lock, flags);
  628. }
  629. static int fs_init_phy(struct net_device *dev)
  630. {
  631. struct fs_enet_private *fep = netdev_priv(dev);
  632. struct phy_device *phydev;
  633. fep->oldlink = 0;
  634. fep->oldspeed = 0;
  635. fep->oldduplex = -1;
  636. if(fep->fpi->bus_id)
  637. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0);
  638. else {
  639. printk("No phy bus ID specified in BSP code\n");
  640. return -EINVAL;
  641. }
  642. if (IS_ERR(phydev)) {
  643. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  644. return PTR_ERR(phydev);
  645. }
  646. fep->phydev = phydev;
  647. return 0;
  648. }
  649. static int fs_enet_open(struct net_device *dev)
  650. {
  651. struct fs_enet_private *fep = netdev_priv(dev);
  652. int r;
  653. int err;
  654. /* Install our interrupt handler. */
  655. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  656. if (r != 0) {
  657. printk(KERN_ERR DRV_MODULE_NAME
  658. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  659. return -EINVAL;
  660. }
  661. err = fs_init_phy(dev);
  662. if(err)
  663. return err;
  664. phy_start(fep->phydev);
  665. return 0;
  666. }
  667. static int fs_enet_close(struct net_device *dev)
  668. {
  669. struct fs_enet_private *fep = netdev_priv(dev);
  670. unsigned long flags;
  671. netif_stop_queue(dev);
  672. netif_carrier_off(dev);
  673. phy_stop(fep->phydev);
  674. spin_lock_irqsave(&fep->lock, flags);
  675. (*fep->ops->stop)(dev);
  676. spin_unlock_irqrestore(&fep->lock, flags);
  677. /* release any irqs */
  678. phy_disconnect(fep->phydev);
  679. fep->phydev = NULL;
  680. fs_free_irq(dev, fep->interrupt);
  681. return 0;
  682. }
  683. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  684. {
  685. struct fs_enet_private *fep = netdev_priv(dev);
  686. return &fep->stats;
  687. }
  688. /*************************************************************************/
  689. static void fs_get_drvinfo(struct net_device *dev,
  690. struct ethtool_drvinfo *info)
  691. {
  692. strcpy(info->driver, DRV_MODULE_NAME);
  693. strcpy(info->version, DRV_MODULE_VERSION);
  694. }
  695. static int fs_get_regs_len(struct net_device *dev)
  696. {
  697. struct fs_enet_private *fep = netdev_priv(dev);
  698. return (*fep->ops->get_regs_len)(dev);
  699. }
  700. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  701. void *p)
  702. {
  703. struct fs_enet_private *fep = netdev_priv(dev);
  704. unsigned long flags;
  705. int r, len;
  706. len = regs->len;
  707. spin_lock_irqsave(&fep->lock, flags);
  708. r = (*fep->ops->get_regs)(dev, p, &len);
  709. spin_unlock_irqrestore(&fep->lock, flags);
  710. if (r == 0)
  711. regs->version = 0;
  712. }
  713. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  714. {
  715. struct fs_enet_private *fep = netdev_priv(dev);
  716. return phy_ethtool_gset(fep->phydev, cmd);
  717. }
  718. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  719. {
  720. struct fs_enet_private *fep = netdev_priv(dev);
  721. phy_ethtool_sset(fep->phydev, cmd);
  722. return 0;
  723. }
  724. static int fs_nway_reset(struct net_device *dev)
  725. {
  726. return 0;
  727. }
  728. static u32 fs_get_msglevel(struct net_device *dev)
  729. {
  730. struct fs_enet_private *fep = netdev_priv(dev);
  731. return fep->msg_enable;
  732. }
  733. static void fs_set_msglevel(struct net_device *dev, u32 value)
  734. {
  735. struct fs_enet_private *fep = netdev_priv(dev);
  736. fep->msg_enable = value;
  737. }
  738. static struct ethtool_ops fs_ethtool_ops = {
  739. .get_drvinfo = fs_get_drvinfo,
  740. .get_regs_len = fs_get_regs_len,
  741. .get_settings = fs_get_settings,
  742. .set_settings = fs_set_settings,
  743. .nway_reset = fs_nway_reset,
  744. .get_link = ethtool_op_get_link,
  745. .get_msglevel = fs_get_msglevel,
  746. .set_msglevel = fs_set_msglevel,
  747. .get_tx_csum = ethtool_op_get_tx_csum,
  748. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  749. .get_sg = ethtool_op_get_sg,
  750. .set_sg = ethtool_op_set_sg,
  751. .get_regs = fs_get_regs,
  752. };
  753. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  754. {
  755. struct fs_enet_private *fep = netdev_priv(dev);
  756. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  757. unsigned long flags;
  758. int rc;
  759. if (!netif_running(dev))
  760. return -EINVAL;
  761. spin_lock_irqsave(&fep->lock, flags);
  762. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  763. spin_unlock_irqrestore(&fep->lock, flags);
  764. return rc;
  765. }
  766. extern int fs_mii_connect(struct net_device *dev);
  767. extern void fs_mii_disconnect(struct net_device *dev);
  768. static struct net_device *fs_init_instance(struct device *dev,
  769. const struct fs_platform_info *fpi)
  770. {
  771. struct net_device *ndev = NULL;
  772. struct fs_enet_private *fep = NULL;
  773. int privsize, i, r, err = 0, registered = 0;
  774. /* guard */
  775. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  776. return ERR_PTR(-EINVAL);
  777. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  778. (fpi->rx_ring + fpi->tx_ring));
  779. ndev = alloc_etherdev(privsize);
  780. if (!ndev) {
  781. err = -ENOMEM;
  782. goto err;
  783. }
  784. SET_MODULE_OWNER(ndev);
  785. fep = netdev_priv(ndev);
  786. memset(fep, 0, privsize); /* clear everything */
  787. fep->dev = dev;
  788. dev_set_drvdata(dev, ndev);
  789. fep->fpi = fpi;
  790. if (fpi->init_ioports)
  791. fpi->init_ioports((struct fs_platform_info *)fpi);
  792. #ifdef CONFIG_FS_ENET_HAS_FEC
  793. if (fs_get_fec_index(fpi->fs_no) >= 0)
  794. fep->ops = &fs_fec_ops;
  795. #endif
  796. #ifdef CONFIG_FS_ENET_HAS_SCC
  797. if (fs_get_scc_index(fpi->fs_no) >=0 )
  798. fep->ops = &fs_scc_ops;
  799. #endif
  800. #ifdef CONFIG_FS_ENET_HAS_FCC
  801. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  802. fep->ops = &fs_fcc_ops;
  803. #endif
  804. if (fep->ops == NULL) {
  805. printk(KERN_ERR DRV_MODULE_NAME
  806. ": %s No matching ops found (%d).\n",
  807. ndev->name, fpi->fs_no);
  808. err = -EINVAL;
  809. goto err;
  810. }
  811. r = (*fep->ops->setup_data)(ndev);
  812. if (r != 0) {
  813. printk(KERN_ERR DRV_MODULE_NAME
  814. ": %s setup_data failed\n",
  815. ndev->name);
  816. err = r;
  817. goto err;
  818. }
  819. /* point rx_skbuff, tx_skbuff */
  820. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  821. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  822. /* init locks */
  823. spin_lock_init(&fep->lock);
  824. spin_lock_init(&fep->tx_lock);
  825. /*
  826. * Set the Ethernet address.
  827. */
  828. for (i = 0; i < 6; i++)
  829. ndev->dev_addr[i] = fpi->macaddr[i];
  830. r = (*fep->ops->allocate_bd)(ndev);
  831. if (fep->ring_base == NULL) {
  832. printk(KERN_ERR DRV_MODULE_NAME
  833. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  834. err = r;
  835. goto err;
  836. }
  837. /*
  838. * Set receive and transmit descriptor base.
  839. */
  840. fep->rx_bd_base = fep->ring_base;
  841. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  842. /* initialize ring size variables */
  843. fep->tx_ring = fpi->tx_ring;
  844. fep->rx_ring = fpi->rx_ring;
  845. /*
  846. * The FEC Ethernet specific entries in the device structure.
  847. */
  848. ndev->open = fs_enet_open;
  849. ndev->hard_start_xmit = fs_enet_start_xmit;
  850. ndev->tx_timeout = fs_timeout;
  851. ndev->watchdog_timeo = 2 * HZ;
  852. ndev->stop = fs_enet_close;
  853. ndev->get_stats = fs_enet_get_stats;
  854. ndev->set_multicast_list = fs_set_multicast_list;
  855. if (fpi->use_napi) {
  856. ndev->poll = fs_enet_rx_napi;
  857. ndev->weight = fpi->napi_weight;
  858. }
  859. ndev->ethtool_ops = &fs_ethtool_ops;
  860. ndev->do_ioctl = fs_ioctl;
  861. init_timer(&fep->phy_timer_list);
  862. netif_carrier_off(ndev);
  863. err = register_netdev(ndev);
  864. if (err != 0) {
  865. printk(KERN_ERR DRV_MODULE_NAME
  866. ": %s register_netdev failed.\n", ndev->name);
  867. goto err;
  868. }
  869. registered = 1;
  870. return ndev;
  871. err:
  872. if (ndev != NULL) {
  873. if (registered)
  874. unregister_netdev(ndev);
  875. if (fep != NULL) {
  876. (*fep->ops->free_bd)(ndev);
  877. (*fep->ops->cleanup_data)(ndev);
  878. }
  879. free_netdev(ndev);
  880. }
  881. dev_set_drvdata(dev, NULL);
  882. return ERR_PTR(err);
  883. }
  884. static int fs_cleanup_instance(struct net_device *ndev)
  885. {
  886. struct fs_enet_private *fep;
  887. const struct fs_platform_info *fpi;
  888. struct device *dev;
  889. if (ndev == NULL)
  890. return -EINVAL;
  891. fep = netdev_priv(ndev);
  892. if (fep == NULL)
  893. return -EINVAL;
  894. fpi = fep->fpi;
  895. unregister_netdev(ndev);
  896. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  897. fep->ring_base, fep->ring_mem_addr);
  898. /* reset it */
  899. (*fep->ops->cleanup_data)(ndev);
  900. dev = fep->dev;
  901. if (dev != NULL) {
  902. dev_set_drvdata(dev, NULL);
  903. fep->dev = NULL;
  904. }
  905. free_netdev(ndev);
  906. return 0;
  907. }
  908. /**************************************************************************************/
  909. /* handy pointer to the immap */
  910. void *fs_enet_immap = NULL;
  911. static int setup_immap(void)
  912. {
  913. phys_addr_t paddr = 0;
  914. unsigned long size = 0;
  915. #ifdef CONFIG_CPM1
  916. paddr = IMAP_ADDR;
  917. size = 0x10000; /* map 64K */
  918. #endif
  919. #ifdef CONFIG_CPM2
  920. paddr = CPM_MAP_ADDR;
  921. size = 0x40000; /* map 256 K */
  922. #endif
  923. fs_enet_immap = ioremap(paddr, size);
  924. if (fs_enet_immap == NULL)
  925. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  926. return 0;
  927. }
  928. static void cleanup_immap(void)
  929. {
  930. if (fs_enet_immap != NULL) {
  931. iounmap(fs_enet_immap);
  932. fs_enet_immap = NULL;
  933. }
  934. }
  935. /**************************************************************************************/
  936. static int __devinit fs_enet_probe(struct device *dev)
  937. {
  938. struct net_device *ndev;
  939. /* no fixup - no device */
  940. if (dev->platform_data == NULL) {
  941. printk(KERN_INFO "fs_enet: "
  942. "probe called with no platform data; "
  943. "remove unused devices\n");
  944. return -ENODEV;
  945. }
  946. ndev = fs_init_instance(dev, dev->platform_data);
  947. if (IS_ERR(ndev))
  948. return PTR_ERR(ndev);
  949. return 0;
  950. }
  951. static int fs_enet_remove(struct device *dev)
  952. {
  953. return fs_cleanup_instance(dev_get_drvdata(dev));
  954. }
  955. static struct device_driver fs_enet_fec_driver = {
  956. .name = "fsl-cpm-fec",
  957. .bus = &platform_bus_type,
  958. .probe = fs_enet_probe,
  959. .remove = fs_enet_remove,
  960. #ifdef CONFIG_PM
  961. /* .suspend = fs_enet_suspend, TODO */
  962. /* .resume = fs_enet_resume, TODO */
  963. #endif
  964. };
  965. static struct device_driver fs_enet_scc_driver = {
  966. .name = "fsl-cpm-scc",
  967. .bus = &platform_bus_type,
  968. .probe = fs_enet_probe,
  969. .remove = fs_enet_remove,
  970. #ifdef CONFIG_PM
  971. /* .suspend = fs_enet_suspend, TODO */
  972. /* .resume = fs_enet_resume, TODO */
  973. #endif
  974. };
  975. static struct device_driver fs_enet_fcc_driver = {
  976. .name = "fsl-cpm-fcc",
  977. .bus = &platform_bus_type,
  978. .probe = fs_enet_probe,
  979. .remove = fs_enet_remove,
  980. #ifdef CONFIG_PM
  981. /* .suspend = fs_enet_suspend, TODO */
  982. /* .resume = fs_enet_resume, TODO */
  983. #endif
  984. };
  985. static int __init fs_init(void)
  986. {
  987. int r;
  988. printk(KERN_INFO
  989. "%s", version);
  990. r = setup_immap();
  991. if (r != 0)
  992. return r;
  993. #ifdef CONFIG_FS_ENET_HAS_FCC
  994. /* let's insert mii stuff */
  995. r = fs_enet_mdio_bb_init();
  996. if (r != 0) {
  997. printk(KERN_ERR DRV_MODULE_NAME
  998. "BB PHY init failed.\n");
  999. return r;
  1000. }
  1001. r = driver_register(&fs_enet_fcc_driver);
  1002. if (r != 0)
  1003. goto err;
  1004. #endif
  1005. #ifdef CONFIG_FS_ENET_HAS_FEC
  1006. r = fs_enet_mdio_fec_init();
  1007. if (r != 0) {
  1008. printk(KERN_ERR DRV_MODULE_NAME
  1009. "FEC PHY init failed.\n");
  1010. return r;
  1011. }
  1012. r = driver_register(&fs_enet_fec_driver);
  1013. if (r != 0)
  1014. goto err;
  1015. #endif
  1016. #ifdef CONFIG_FS_ENET_HAS_SCC
  1017. r = driver_register(&fs_enet_scc_driver);
  1018. if (r != 0)
  1019. goto err;
  1020. #endif
  1021. return 0;
  1022. err:
  1023. cleanup_immap();
  1024. return r;
  1025. }
  1026. static void __exit fs_cleanup(void)
  1027. {
  1028. driver_unregister(&fs_enet_fec_driver);
  1029. driver_unregister(&fs_enet_fcc_driver);
  1030. driver_unregister(&fs_enet_scc_driver);
  1031. cleanup_immap();
  1032. }
  1033. /**************************************************************************************/
  1034. module_init(fs_init);
  1035. module_exit(fs_cleanup);