forcedeth.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. *
  109. * Known bugs:
  110. * We suspect that on some hardware no TX done interrupts are generated.
  111. * This means recovery from netif_stop_queue only happens if the hw timer
  112. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  113. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  114. * If your hardware reliably generates tx done interrupts, then you can remove
  115. * DEV_NEED_TIMERIRQ from the driver_data flags.
  116. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  117. * superfluous timer interrupts from the nic.
  118. */
  119. #define FORCEDETH_VERSION "0.52"
  120. #define DRV_NAME "forcedeth"
  121. #include <linux/module.h>
  122. #include <linux/types.h>
  123. #include <linux/pci.h>
  124. #include <linux/interrupt.h>
  125. #include <linux/netdevice.h>
  126. #include <linux/etherdevice.h>
  127. #include <linux/delay.h>
  128. #include <linux/spinlock.h>
  129. #include <linux/ethtool.h>
  130. #include <linux/timer.h>
  131. #include <linux/skbuff.h>
  132. #include <linux/mii.h>
  133. #include <linux/random.h>
  134. #include <linux/init.h>
  135. #include <linux/if_vlan.h>
  136. #include <asm/irq.h>
  137. #include <asm/io.h>
  138. #include <asm/uaccess.h>
  139. #include <asm/system.h>
  140. #if 0
  141. #define dprintk printk
  142. #else
  143. #define dprintk(x...) do { } while (0)
  144. #endif
  145. /*
  146. * Hardware access:
  147. */
  148. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  149. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  150. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  151. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  152. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  153. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  154. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  155. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  156. enum {
  157. NvRegIrqStatus = 0x000,
  158. #define NVREG_IRQSTAT_MIIEVENT 0x040
  159. #define NVREG_IRQSTAT_MASK 0x1ff
  160. NvRegIrqMask = 0x004,
  161. #define NVREG_IRQ_RX_ERROR 0x0001
  162. #define NVREG_IRQ_RX 0x0002
  163. #define NVREG_IRQ_RX_NOBUF 0x0004
  164. #define NVREG_IRQ_TX_ERR 0x0008
  165. #define NVREG_IRQ_TX_OK 0x0010
  166. #define NVREG_IRQ_TIMER 0x0020
  167. #define NVREG_IRQ_LINK 0x0040
  168. #define NVREG_IRQ_RX_FORCED 0x0080
  169. #define NVREG_IRQ_TX_FORCED 0x0100
  170. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  171. #define NVREG_IRQMASK_CPU 0x0040
  172. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  173. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  174. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  175. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  176. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  177. NVREG_IRQ_TX_FORCED))
  178. NvRegUnknownSetupReg6 = 0x008,
  179. #define NVREG_UNKSETUP6_VAL 3
  180. /*
  181. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  182. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  183. */
  184. NvRegPollingInterval = 0x00c,
  185. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  186. #define NVREG_POLL_DEFAULT_CPU 13
  187. NvRegMSIMap0 = 0x020,
  188. NvRegMSIMap1 = 0x024,
  189. NvRegMSIIrqMask = 0x030,
  190. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  191. NvRegMisc1 = 0x080,
  192. #define NVREG_MISC1_HD 0x02
  193. #define NVREG_MISC1_FORCE 0x3b0f3c
  194. NvRegTransmitterControl = 0x084,
  195. #define NVREG_XMITCTL_START 0x01
  196. NvRegTransmitterStatus = 0x088,
  197. #define NVREG_XMITSTAT_BUSY 0x01
  198. NvRegPacketFilterFlags = 0x8c,
  199. #define NVREG_PFF_ALWAYS 0x7F0008
  200. #define NVREG_PFF_PROMISC 0x80
  201. #define NVREG_PFF_MYADDR 0x20
  202. NvRegOffloadConfig = 0x90,
  203. #define NVREG_OFFLOAD_HOMEPHY 0x601
  204. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  205. NvRegReceiverControl = 0x094,
  206. #define NVREG_RCVCTL_START 0x01
  207. NvRegReceiverStatus = 0x98,
  208. #define NVREG_RCVSTAT_BUSY 0x01
  209. NvRegRandomSeed = 0x9c,
  210. #define NVREG_RNDSEED_MASK 0x00ff
  211. #define NVREG_RNDSEED_FORCE 0x7f00
  212. #define NVREG_RNDSEED_FORCE2 0x2d00
  213. #define NVREG_RNDSEED_FORCE3 0x7400
  214. NvRegUnknownSetupReg1 = 0xA0,
  215. #define NVREG_UNKSETUP1_VAL 0x16070f
  216. NvRegUnknownSetupReg2 = 0xA4,
  217. #define NVREG_UNKSETUP2_VAL 0x16
  218. NvRegMacAddrA = 0xA8,
  219. NvRegMacAddrB = 0xAC,
  220. NvRegMulticastAddrA = 0xB0,
  221. #define NVREG_MCASTADDRA_FORCE 0x01
  222. NvRegMulticastAddrB = 0xB4,
  223. NvRegMulticastMaskA = 0xB8,
  224. NvRegMulticastMaskB = 0xBC,
  225. NvRegPhyInterface = 0xC0,
  226. #define PHY_RGMII 0x10000000
  227. NvRegTxRingPhysAddr = 0x100,
  228. NvRegRxRingPhysAddr = 0x104,
  229. NvRegRingSizes = 0x108,
  230. #define NVREG_RINGSZ_TXSHIFT 0
  231. #define NVREG_RINGSZ_RXSHIFT 16
  232. NvRegUnknownTransmitterReg = 0x10c,
  233. NvRegLinkSpeed = 0x110,
  234. #define NVREG_LINKSPEED_FORCE 0x10000
  235. #define NVREG_LINKSPEED_10 1000
  236. #define NVREG_LINKSPEED_100 100
  237. #define NVREG_LINKSPEED_1000 50
  238. #define NVREG_LINKSPEED_MASK (0xFFF)
  239. NvRegUnknownSetupReg5 = 0x130,
  240. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  241. NvRegUnknownSetupReg3 = 0x13c,
  242. #define NVREG_UNKSETUP3_VAL1 0x200010
  243. NvRegTxRxControl = 0x144,
  244. #define NVREG_TXRXCTL_KICK 0x0001
  245. #define NVREG_TXRXCTL_BIT1 0x0002
  246. #define NVREG_TXRXCTL_BIT2 0x0004
  247. #define NVREG_TXRXCTL_IDLE 0x0008
  248. #define NVREG_TXRXCTL_RESET 0x0010
  249. #define NVREG_TXRXCTL_RXCHECK 0x0400
  250. #define NVREG_TXRXCTL_DESC_1 0
  251. #define NVREG_TXRXCTL_DESC_2 0x02100
  252. #define NVREG_TXRXCTL_DESC_3 0x02200
  253. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  254. #define NVREG_TXRXCTL_VLANINS 0x00080
  255. NvRegTxRingPhysAddrHigh = 0x148,
  256. NvRegRxRingPhysAddrHigh = 0x14C,
  257. NvRegMIIStatus = 0x180,
  258. #define NVREG_MIISTAT_ERROR 0x0001
  259. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  260. #define NVREG_MIISTAT_MASK 0x000f
  261. #define NVREG_MIISTAT_MASK2 0x000f
  262. NvRegUnknownSetupReg4 = 0x184,
  263. #define NVREG_UNKSETUP4_VAL 8
  264. NvRegAdapterControl = 0x188,
  265. #define NVREG_ADAPTCTL_START 0x02
  266. #define NVREG_ADAPTCTL_LINKUP 0x04
  267. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  268. #define NVREG_ADAPTCTL_RUNNING 0x100000
  269. #define NVREG_ADAPTCTL_PHYSHIFT 24
  270. NvRegMIISpeed = 0x18c,
  271. #define NVREG_MIISPEED_BIT8 (1<<8)
  272. #define NVREG_MIIDELAY 5
  273. NvRegMIIControl = 0x190,
  274. #define NVREG_MIICTL_INUSE 0x08000
  275. #define NVREG_MIICTL_WRITE 0x00400
  276. #define NVREG_MIICTL_ADDRSHIFT 5
  277. NvRegMIIData = 0x194,
  278. NvRegWakeUpFlags = 0x200,
  279. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  280. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  281. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  282. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  283. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  284. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  285. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  286. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  287. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  288. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  289. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  290. NvRegPatternCRC = 0x204,
  291. NvRegPatternMask = 0x208,
  292. NvRegPowerCap = 0x268,
  293. #define NVREG_POWERCAP_D3SUPP (1<<30)
  294. #define NVREG_POWERCAP_D2SUPP (1<<26)
  295. #define NVREG_POWERCAP_D1SUPP (1<<25)
  296. NvRegPowerState = 0x26c,
  297. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  298. #define NVREG_POWERSTATE_VALID 0x0100
  299. #define NVREG_POWERSTATE_MASK 0x0003
  300. #define NVREG_POWERSTATE_D0 0x0000
  301. #define NVREG_POWERSTATE_D1 0x0001
  302. #define NVREG_POWERSTATE_D2 0x0002
  303. #define NVREG_POWERSTATE_D3 0x0003
  304. NvRegVlanControl = 0x300,
  305. #define NVREG_VLANCONTROL_ENABLE 0x2000
  306. NvRegMSIXMap0 = 0x3e0,
  307. NvRegMSIXMap1 = 0x3e4,
  308. NvRegMSIXIrqStatus = 0x3f0,
  309. };
  310. /* Big endian: should work, but is untested */
  311. struct ring_desc {
  312. u32 PacketBuffer;
  313. u32 FlagLen;
  314. };
  315. struct ring_desc_ex {
  316. u32 PacketBufferHigh;
  317. u32 PacketBufferLow;
  318. u32 TxVlan;
  319. u32 FlagLen;
  320. };
  321. typedef union _ring_type {
  322. struct ring_desc* orig;
  323. struct ring_desc_ex* ex;
  324. } ring_type;
  325. #define FLAG_MASK_V1 0xffff0000
  326. #define FLAG_MASK_V2 0xffffc000
  327. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  328. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  329. #define NV_TX_LASTPACKET (1<<16)
  330. #define NV_TX_RETRYERROR (1<<19)
  331. #define NV_TX_FORCED_INTERRUPT (1<<24)
  332. #define NV_TX_DEFERRED (1<<26)
  333. #define NV_TX_CARRIERLOST (1<<27)
  334. #define NV_TX_LATECOLLISION (1<<28)
  335. #define NV_TX_UNDERFLOW (1<<29)
  336. #define NV_TX_ERROR (1<<30)
  337. #define NV_TX_VALID (1<<31)
  338. #define NV_TX2_LASTPACKET (1<<29)
  339. #define NV_TX2_RETRYERROR (1<<18)
  340. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  341. #define NV_TX2_DEFERRED (1<<25)
  342. #define NV_TX2_CARRIERLOST (1<<26)
  343. #define NV_TX2_LATECOLLISION (1<<27)
  344. #define NV_TX2_UNDERFLOW (1<<28)
  345. /* error and valid are the same for both */
  346. #define NV_TX2_ERROR (1<<30)
  347. #define NV_TX2_VALID (1<<31)
  348. #define NV_TX2_TSO (1<<28)
  349. #define NV_TX2_TSO_SHIFT 14
  350. #define NV_TX2_TSO_MAX_SHIFT 14
  351. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  352. #define NV_TX2_CHECKSUM_L3 (1<<27)
  353. #define NV_TX2_CHECKSUM_L4 (1<<26)
  354. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  355. #define NV_RX_DESCRIPTORVALID (1<<16)
  356. #define NV_RX_MISSEDFRAME (1<<17)
  357. #define NV_RX_SUBSTRACT1 (1<<18)
  358. #define NV_RX_ERROR1 (1<<23)
  359. #define NV_RX_ERROR2 (1<<24)
  360. #define NV_RX_ERROR3 (1<<25)
  361. #define NV_RX_ERROR4 (1<<26)
  362. #define NV_RX_CRCERR (1<<27)
  363. #define NV_RX_OVERFLOW (1<<28)
  364. #define NV_RX_FRAMINGERR (1<<29)
  365. #define NV_RX_ERROR (1<<30)
  366. #define NV_RX_AVAIL (1<<31)
  367. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  368. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  369. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  370. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  371. #define NV_RX2_DESCRIPTORVALID (1<<29)
  372. #define NV_RX2_SUBSTRACT1 (1<<25)
  373. #define NV_RX2_ERROR1 (1<<18)
  374. #define NV_RX2_ERROR2 (1<<19)
  375. #define NV_RX2_ERROR3 (1<<20)
  376. #define NV_RX2_ERROR4 (1<<21)
  377. #define NV_RX2_CRCERR (1<<22)
  378. #define NV_RX2_OVERFLOW (1<<23)
  379. #define NV_RX2_FRAMINGERR (1<<24)
  380. /* error and avail are the same for both */
  381. #define NV_RX2_ERROR (1<<30)
  382. #define NV_RX2_AVAIL (1<<31)
  383. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  384. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  385. /* Miscelaneous hardware related defines: */
  386. #define NV_PCI_REGSZ 0x270
  387. /* various timeout delays: all in usec */
  388. #define NV_TXRX_RESET_DELAY 4
  389. #define NV_TXSTOP_DELAY1 10
  390. #define NV_TXSTOP_DELAY1MAX 500000
  391. #define NV_TXSTOP_DELAY2 100
  392. #define NV_RXSTOP_DELAY1 10
  393. #define NV_RXSTOP_DELAY1MAX 500000
  394. #define NV_RXSTOP_DELAY2 100
  395. #define NV_SETUP5_DELAY 5
  396. #define NV_SETUP5_DELAYMAX 50000
  397. #define NV_POWERUP_DELAY 5
  398. #define NV_POWERUP_DELAYMAX 5000
  399. #define NV_MIIBUSY_DELAY 50
  400. #define NV_MIIPHY_DELAY 10
  401. #define NV_MIIPHY_DELAYMAX 10000
  402. #define NV_WAKEUPPATTERNS 5
  403. #define NV_WAKEUPMASKENTRIES 4
  404. /* General driver defaults */
  405. #define NV_WATCHDOG_TIMEO (5*HZ)
  406. #define RX_RING 128
  407. #define TX_RING 256
  408. /*
  409. * If your nic mysteriously hangs then try to reduce the limits
  410. * to 1/0: It might be required to set NV_TX_LASTPACKET in the
  411. * last valid ring entry. But this would be impossible to
  412. * implement - probably a disassembly error.
  413. */
  414. #define TX_LIMIT_STOP 255
  415. #define TX_LIMIT_START 254
  416. /* rx/tx mac addr + type + vlan + align + slack*/
  417. #define NV_RX_HEADERS (64)
  418. /* even more slack. */
  419. #define NV_RX_ALLOC_PAD (64)
  420. /* maximum mtu size */
  421. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  422. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  423. #define OOM_REFILL (1+HZ/20)
  424. #define POLL_WAIT (1+HZ/100)
  425. #define LINK_TIMEOUT (3*HZ)
  426. /*
  427. * desc_ver values:
  428. * The nic supports three different descriptor types:
  429. * - DESC_VER_1: Original
  430. * - DESC_VER_2: support for jumbo frames.
  431. * - DESC_VER_3: 64-bit format.
  432. */
  433. #define DESC_VER_1 1
  434. #define DESC_VER_2 2
  435. #define DESC_VER_3 3
  436. /* PHY defines */
  437. #define PHY_OUI_MARVELL 0x5043
  438. #define PHY_OUI_CICADA 0x03f1
  439. #define PHYID1_OUI_MASK 0x03ff
  440. #define PHYID1_OUI_SHFT 6
  441. #define PHYID2_OUI_MASK 0xfc00
  442. #define PHYID2_OUI_SHFT 10
  443. #define PHY_INIT1 0x0f000
  444. #define PHY_INIT2 0x0e00
  445. #define PHY_INIT3 0x01000
  446. #define PHY_INIT4 0x0200
  447. #define PHY_INIT5 0x0004
  448. #define PHY_INIT6 0x02000
  449. #define PHY_GIGABIT 0x0100
  450. #define PHY_TIMEOUT 0x1
  451. #define PHY_ERROR 0x2
  452. #define PHY_100 0x1
  453. #define PHY_1000 0x2
  454. #define PHY_HALF 0x100
  455. /* FIXME: MII defines that should be added to <linux/mii.h> */
  456. #define MII_1000BT_CR 0x09
  457. #define MII_1000BT_SR 0x0a
  458. #define ADVERTISE_1000FULL 0x0200
  459. #define ADVERTISE_1000HALF 0x0100
  460. #define LPA_1000FULL 0x0800
  461. #define LPA_1000HALF 0x0400
  462. /* MSI/MSI-X defines */
  463. #define NV_MSI_X_MAX_VECTORS 8
  464. #define NV_MSI_X_VECTORS_MASK 0x000f
  465. #define NV_MSI_CAPABLE 0x0010
  466. #define NV_MSI_X_CAPABLE 0x0020
  467. #define NV_MSI_ENABLED 0x0040
  468. #define NV_MSI_X_ENABLED 0x0080
  469. #define NV_MSI_X_VECTOR_ALL 0x0
  470. #define NV_MSI_X_VECTOR_RX 0x0
  471. #define NV_MSI_X_VECTOR_TX 0x1
  472. #define NV_MSI_X_VECTOR_OTHER 0x2
  473. /*
  474. * SMP locking:
  475. * All hardware access under dev->priv->lock, except the performance
  476. * critical parts:
  477. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  478. * by the arch code for interrupts.
  479. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
  480. * needs dev->priv->lock :-(
  481. * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
  482. */
  483. /* in dev: base, irq */
  484. struct fe_priv {
  485. spinlock_t lock;
  486. /* General data:
  487. * Locking: spin_lock(&np->lock); */
  488. struct net_device_stats stats;
  489. int in_shutdown;
  490. u32 linkspeed;
  491. int duplex;
  492. int autoneg;
  493. int fixed_mode;
  494. int phyaddr;
  495. int wolenabled;
  496. unsigned int phy_oui;
  497. u16 gigabit;
  498. /* General data: RO fields */
  499. dma_addr_t ring_addr;
  500. struct pci_dev *pci_dev;
  501. u32 orig_mac[2];
  502. u32 irqmask;
  503. u32 desc_ver;
  504. u32 txrxctl_bits;
  505. u32 vlanctl_bits;
  506. void __iomem *base;
  507. /* rx specific fields.
  508. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  509. */
  510. ring_type rx_ring;
  511. unsigned int cur_rx, refill_rx;
  512. struct sk_buff *rx_skbuff[RX_RING];
  513. dma_addr_t rx_dma[RX_RING];
  514. unsigned int rx_buf_sz;
  515. unsigned int pkt_limit;
  516. struct timer_list oom_kick;
  517. struct timer_list nic_poll;
  518. u32 nic_poll_irq;
  519. /* media detection workaround.
  520. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  521. */
  522. int need_linktimer;
  523. unsigned long link_timeout;
  524. /*
  525. * tx specific fields.
  526. */
  527. ring_type tx_ring;
  528. unsigned int next_tx, nic_tx;
  529. struct sk_buff *tx_skbuff[TX_RING];
  530. dma_addr_t tx_dma[TX_RING];
  531. unsigned int tx_dma_len[TX_RING];
  532. u32 tx_flags;
  533. /* vlan fields */
  534. struct vlan_group *vlangrp;
  535. /* msi/msi-x fields */
  536. u32 msi_flags;
  537. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  538. };
  539. /*
  540. * Maximum number of loops until we assume that a bit in the irq mask
  541. * is stuck. Overridable with module param.
  542. */
  543. static int max_interrupt_work = 5;
  544. /*
  545. * Optimization can be either throuput mode or cpu mode
  546. *
  547. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  548. * CPU Mode: Interrupts are controlled by a timer.
  549. */
  550. #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
  551. #define NV_OPTIMIZATION_MODE_CPU 1
  552. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  553. /*
  554. * Poll interval for timer irq
  555. *
  556. * This interval determines how frequent an interrupt is generated.
  557. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  558. * Min = 0, and Max = 65535
  559. */
  560. static int poll_interval = -1;
  561. /*
  562. * Disable MSI interrupts
  563. */
  564. static int disable_msi = 0;
  565. /*
  566. * Disable MSIX interrupts
  567. */
  568. static int disable_msix = 0;
  569. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  570. {
  571. return netdev_priv(dev);
  572. }
  573. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  574. {
  575. return ((struct fe_priv *)netdev_priv(dev))->base;
  576. }
  577. static inline void pci_push(u8 __iomem *base)
  578. {
  579. /* force out pending posted writes */
  580. readl(base);
  581. }
  582. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  583. {
  584. return le32_to_cpu(prd->FlagLen)
  585. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  586. }
  587. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  588. {
  589. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  590. }
  591. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  592. int delay, int delaymax, const char *msg)
  593. {
  594. u8 __iomem *base = get_hwbase(dev);
  595. pci_push(base);
  596. do {
  597. udelay(delay);
  598. delaymax -= delay;
  599. if (delaymax < 0) {
  600. if (msg)
  601. printk(msg);
  602. return 1;
  603. }
  604. } while ((readl(base + offset) & mask) != target);
  605. return 0;
  606. }
  607. #define NV_SETUP_RX_RING 0x01
  608. #define NV_SETUP_TX_RING 0x02
  609. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  610. {
  611. struct fe_priv *np = get_nvpriv(dev);
  612. u8 __iomem *base = get_hwbase(dev);
  613. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  614. if (rxtx_flags & NV_SETUP_RX_RING) {
  615. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  616. }
  617. if (rxtx_flags & NV_SETUP_TX_RING) {
  618. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  619. }
  620. } else {
  621. if (rxtx_flags & NV_SETUP_RX_RING) {
  622. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  623. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  624. }
  625. if (rxtx_flags & NV_SETUP_TX_RING) {
  626. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  627. writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  628. }
  629. }
  630. }
  631. #define MII_READ (-1)
  632. /* mii_rw: read/write a register on the PHY.
  633. *
  634. * Caller must guarantee serialization
  635. */
  636. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  637. {
  638. u8 __iomem *base = get_hwbase(dev);
  639. u32 reg;
  640. int retval;
  641. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  642. reg = readl(base + NvRegMIIControl);
  643. if (reg & NVREG_MIICTL_INUSE) {
  644. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  645. udelay(NV_MIIBUSY_DELAY);
  646. }
  647. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  648. if (value != MII_READ) {
  649. writel(value, base + NvRegMIIData);
  650. reg |= NVREG_MIICTL_WRITE;
  651. }
  652. writel(reg, base + NvRegMIIControl);
  653. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  654. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  655. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  656. dev->name, miireg, addr);
  657. retval = -1;
  658. } else if (value != MII_READ) {
  659. /* it was a write operation - fewer failures are detectable */
  660. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  661. dev->name, value, miireg, addr);
  662. retval = 0;
  663. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  664. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  665. dev->name, miireg, addr);
  666. retval = -1;
  667. } else {
  668. retval = readl(base + NvRegMIIData);
  669. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  670. dev->name, miireg, addr, retval);
  671. }
  672. return retval;
  673. }
  674. static int phy_reset(struct net_device *dev)
  675. {
  676. struct fe_priv *np = netdev_priv(dev);
  677. u32 miicontrol;
  678. unsigned int tries = 0;
  679. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  680. miicontrol |= BMCR_RESET;
  681. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  682. return -1;
  683. }
  684. /* wait for 500ms */
  685. msleep(500);
  686. /* must wait till reset is deasserted */
  687. while (miicontrol & BMCR_RESET) {
  688. msleep(10);
  689. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  690. /* FIXME: 100 tries seem excessive */
  691. if (tries++ > 100)
  692. return -1;
  693. }
  694. return 0;
  695. }
  696. static int phy_init(struct net_device *dev)
  697. {
  698. struct fe_priv *np = get_nvpriv(dev);
  699. u8 __iomem *base = get_hwbase(dev);
  700. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  701. /* set advertise register */
  702. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  703. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
  704. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  705. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  706. return PHY_ERROR;
  707. }
  708. /* get phy interface type */
  709. phyinterface = readl(base + NvRegPhyInterface);
  710. /* see if gigabit phy */
  711. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  712. if (mii_status & PHY_GIGABIT) {
  713. np->gigabit = PHY_GIGABIT;
  714. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  715. mii_control_1000 &= ~ADVERTISE_1000HALF;
  716. if (phyinterface & PHY_RGMII)
  717. mii_control_1000 |= ADVERTISE_1000FULL;
  718. else
  719. mii_control_1000 &= ~ADVERTISE_1000FULL;
  720. if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
  721. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  722. return PHY_ERROR;
  723. }
  724. }
  725. else
  726. np->gigabit = 0;
  727. /* reset the phy */
  728. if (phy_reset(dev)) {
  729. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  730. return PHY_ERROR;
  731. }
  732. /* phy vendor specific configuration */
  733. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  734. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  735. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  736. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  737. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  738. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  739. return PHY_ERROR;
  740. }
  741. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  742. phy_reserved |= PHY_INIT5;
  743. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  744. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  745. return PHY_ERROR;
  746. }
  747. }
  748. if (np->phy_oui == PHY_OUI_CICADA) {
  749. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  750. phy_reserved |= PHY_INIT6;
  751. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  752. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  753. return PHY_ERROR;
  754. }
  755. }
  756. /* restart auto negotiation */
  757. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  758. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  759. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  760. return PHY_ERROR;
  761. }
  762. return 0;
  763. }
  764. static void nv_start_rx(struct net_device *dev)
  765. {
  766. struct fe_priv *np = netdev_priv(dev);
  767. u8 __iomem *base = get_hwbase(dev);
  768. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  769. /* Already running? Stop it. */
  770. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  771. writel(0, base + NvRegReceiverControl);
  772. pci_push(base);
  773. }
  774. writel(np->linkspeed, base + NvRegLinkSpeed);
  775. pci_push(base);
  776. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  777. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  778. dev->name, np->duplex, np->linkspeed);
  779. pci_push(base);
  780. }
  781. static void nv_stop_rx(struct net_device *dev)
  782. {
  783. u8 __iomem *base = get_hwbase(dev);
  784. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  785. writel(0, base + NvRegReceiverControl);
  786. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  787. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  788. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  789. udelay(NV_RXSTOP_DELAY2);
  790. writel(0, base + NvRegLinkSpeed);
  791. }
  792. static void nv_start_tx(struct net_device *dev)
  793. {
  794. u8 __iomem *base = get_hwbase(dev);
  795. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  796. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  797. pci_push(base);
  798. }
  799. static void nv_stop_tx(struct net_device *dev)
  800. {
  801. u8 __iomem *base = get_hwbase(dev);
  802. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  803. writel(0, base + NvRegTransmitterControl);
  804. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  805. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  806. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  807. udelay(NV_TXSTOP_DELAY2);
  808. writel(0, base + NvRegUnknownTransmitterReg);
  809. }
  810. static void nv_txrx_reset(struct net_device *dev)
  811. {
  812. struct fe_priv *np = netdev_priv(dev);
  813. u8 __iomem *base = get_hwbase(dev);
  814. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  815. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  816. pci_push(base);
  817. udelay(NV_TXRX_RESET_DELAY);
  818. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  819. pci_push(base);
  820. }
  821. /*
  822. * nv_get_stats: dev->get_stats function
  823. * Get latest stats value from the nic.
  824. * Called with read_lock(&dev_base_lock) held for read -
  825. * only synchronized against unregister_netdevice.
  826. */
  827. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  828. {
  829. struct fe_priv *np = netdev_priv(dev);
  830. /* It seems that the nic always generates interrupts and doesn't
  831. * accumulate errors internally. Thus the current values in np->stats
  832. * are already up to date.
  833. */
  834. return &np->stats;
  835. }
  836. /*
  837. * nv_alloc_rx: fill rx ring entries.
  838. * Return 1 if the allocations for the skbs failed and the
  839. * rx engine is without Available descriptors
  840. */
  841. static int nv_alloc_rx(struct net_device *dev)
  842. {
  843. struct fe_priv *np = netdev_priv(dev);
  844. unsigned int refill_rx = np->refill_rx;
  845. int nr;
  846. while (np->cur_rx != refill_rx) {
  847. struct sk_buff *skb;
  848. nr = refill_rx % RX_RING;
  849. if (np->rx_skbuff[nr] == NULL) {
  850. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  851. if (!skb)
  852. break;
  853. skb->dev = dev;
  854. np->rx_skbuff[nr] = skb;
  855. } else {
  856. skb = np->rx_skbuff[nr];
  857. }
  858. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  859. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  860. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  861. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  862. wmb();
  863. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  864. } else {
  865. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  866. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  867. wmb();
  868. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  869. }
  870. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  871. dev->name, refill_rx);
  872. refill_rx++;
  873. }
  874. np->refill_rx = refill_rx;
  875. if (np->cur_rx - refill_rx == RX_RING)
  876. return 1;
  877. return 0;
  878. }
  879. static void nv_do_rx_refill(unsigned long data)
  880. {
  881. struct net_device *dev = (struct net_device *) data;
  882. struct fe_priv *np = netdev_priv(dev);
  883. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  884. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  885. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  886. disable_irq(dev->irq);
  887. } else {
  888. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  889. }
  890. if (nv_alloc_rx(dev)) {
  891. spin_lock(&np->lock);
  892. if (!np->in_shutdown)
  893. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  894. spin_unlock(&np->lock);
  895. }
  896. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  897. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  898. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  899. enable_irq(dev->irq);
  900. } else {
  901. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  902. }
  903. }
  904. static void nv_init_rx(struct net_device *dev)
  905. {
  906. struct fe_priv *np = netdev_priv(dev);
  907. int i;
  908. np->cur_rx = RX_RING;
  909. np->refill_rx = 0;
  910. for (i = 0; i < RX_RING; i++)
  911. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  912. np->rx_ring.orig[i].FlagLen = 0;
  913. else
  914. np->rx_ring.ex[i].FlagLen = 0;
  915. }
  916. static void nv_init_tx(struct net_device *dev)
  917. {
  918. struct fe_priv *np = netdev_priv(dev);
  919. int i;
  920. np->next_tx = np->nic_tx = 0;
  921. for (i = 0; i < TX_RING; i++) {
  922. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  923. np->tx_ring.orig[i].FlagLen = 0;
  924. else
  925. np->tx_ring.ex[i].FlagLen = 0;
  926. np->tx_skbuff[i] = NULL;
  927. np->tx_dma[i] = 0;
  928. }
  929. }
  930. static int nv_init_ring(struct net_device *dev)
  931. {
  932. nv_init_tx(dev);
  933. nv_init_rx(dev);
  934. return nv_alloc_rx(dev);
  935. }
  936. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  937. {
  938. struct fe_priv *np = netdev_priv(dev);
  939. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  940. dev->name, skbnr);
  941. if (np->tx_dma[skbnr]) {
  942. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  943. np->tx_dma_len[skbnr],
  944. PCI_DMA_TODEVICE);
  945. np->tx_dma[skbnr] = 0;
  946. }
  947. if (np->tx_skbuff[skbnr]) {
  948. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  949. np->tx_skbuff[skbnr] = NULL;
  950. return 1;
  951. } else {
  952. return 0;
  953. }
  954. }
  955. static void nv_drain_tx(struct net_device *dev)
  956. {
  957. struct fe_priv *np = netdev_priv(dev);
  958. unsigned int i;
  959. for (i = 0; i < TX_RING; i++) {
  960. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  961. np->tx_ring.orig[i].FlagLen = 0;
  962. else
  963. np->tx_ring.ex[i].FlagLen = 0;
  964. if (nv_release_txskb(dev, i))
  965. np->stats.tx_dropped++;
  966. }
  967. }
  968. static void nv_drain_rx(struct net_device *dev)
  969. {
  970. struct fe_priv *np = netdev_priv(dev);
  971. int i;
  972. for (i = 0; i < RX_RING; i++) {
  973. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  974. np->rx_ring.orig[i].FlagLen = 0;
  975. else
  976. np->rx_ring.ex[i].FlagLen = 0;
  977. wmb();
  978. if (np->rx_skbuff[i]) {
  979. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  980. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  981. PCI_DMA_FROMDEVICE);
  982. dev_kfree_skb(np->rx_skbuff[i]);
  983. np->rx_skbuff[i] = NULL;
  984. }
  985. }
  986. }
  987. static void drain_ring(struct net_device *dev)
  988. {
  989. nv_drain_tx(dev);
  990. nv_drain_rx(dev);
  991. }
  992. /*
  993. * nv_start_xmit: dev->hard_start_xmit function
  994. * Called with dev->xmit_lock held.
  995. */
  996. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  997. {
  998. struct fe_priv *np = netdev_priv(dev);
  999. u32 tx_flags = 0;
  1000. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1001. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1002. unsigned int nr = (np->next_tx - 1) % TX_RING;
  1003. unsigned int start_nr = np->next_tx % TX_RING;
  1004. unsigned int i;
  1005. u32 offset = 0;
  1006. u32 bcnt;
  1007. u32 size = skb->len-skb->data_len;
  1008. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1009. u32 tx_flags_vlan = 0;
  1010. /* add fragments to entries count */
  1011. for (i = 0; i < fragments; i++) {
  1012. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1013. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1014. }
  1015. spin_lock_irq(&np->lock);
  1016. if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
  1017. spin_unlock_irq(&np->lock);
  1018. netif_stop_queue(dev);
  1019. return NETDEV_TX_BUSY;
  1020. }
  1021. /* setup the header buffer */
  1022. do {
  1023. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1024. nr = (nr + 1) % TX_RING;
  1025. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1026. PCI_DMA_TODEVICE);
  1027. np->tx_dma_len[nr] = bcnt;
  1028. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1029. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1030. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1031. } else {
  1032. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1033. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1034. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1035. }
  1036. tx_flags = np->tx_flags;
  1037. offset += bcnt;
  1038. size -= bcnt;
  1039. } while(size);
  1040. /* setup the fragments */
  1041. for (i = 0; i < fragments; i++) {
  1042. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1043. u32 size = frag->size;
  1044. offset = 0;
  1045. do {
  1046. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1047. nr = (nr + 1) % TX_RING;
  1048. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1049. PCI_DMA_TODEVICE);
  1050. np->tx_dma_len[nr] = bcnt;
  1051. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1052. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1053. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1054. } else {
  1055. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1056. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1057. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1058. }
  1059. offset += bcnt;
  1060. size -= bcnt;
  1061. } while (size);
  1062. }
  1063. /* set last fragment flag */
  1064. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1065. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1066. } else {
  1067. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1068. }
  1069. np->tx_skbuff[nr] = skb;
  1070. #ifdef NETIF_F_TSO
  1071. if (skb_shinfo(skb)->tso_size)
  1072. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
  1073. else
  1074. #endif
  1075. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1076. /* vlan tag */
  1077. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1078. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1079. }
  1080. /* set tx flags */
  1081. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1082. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1083. } else {
  1084. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1085. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1086. }
  1087. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1088. dev->name, np->next_tx, entries, tx_flags_extra);
  1089. {
  1090. int j;
  1091. for (j=0; j<64; j++) {
  1092. if ((j%16) == 0)
  1093. dprintk("\n%03x:", j);
  1094. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1095. }
  1096. dprintk("\n");
  1097. }
  1098. np->next_tx += entries;
  1099. dev->trans_start = jiffies;
  1100. spin_unlock_irq(&np->lock);
  1101. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1102. pci_push(get_hwbase(dev));
  1103. return NETDEV_TX_OK;
  1104. }
  1105. /*
  1106. * nv_tx_done: check for completed packets, release the skbs.
  1107. *
  1108. * Caller must own np->lock.
  1109. */
  1110. static void nv_tx_done(struct net_device *dev)
  1111. {
  1112. struct fe_priv *np = netdev_priv(dev);
  1113. u32 Flags;
  1114. unsigned int i;
  1115. struct sk_buff *skb;
  1116. while (np->nic_tx != np->next_tx) {
  1117. i = np->nic_tx % TX_RING;
  1118. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1119. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1120. else
  1121. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1122. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1123. dev->name, np->nic_tx, Flags);
  1124. if (Flags & NV_TX_VALID)
  1125. break;
  1126. if (np->desc_ver == DESC_VER_1) {
  1127. if (Flags & NV_TX_LASTPACKET) {
  1128. skb = np->tx_skbuff[i];
  1129. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1130. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1131. if (Flags & NV_TX_UNDERFLOW)
  1132. np->stats.tx_fifo_errors++;
  1133. if (Flags & NV_TX_CARRIERLOST)
  1134. np->stats.tx_carrier_errors++;
  1135. np->stats.tx_errors++;
  1136. } else {
  1137. np->stats.tx_packets++;
  1138. np->stats.tx_bytes += skb->len;
  1139. }
  1140. }
  1141. } else {
  1142. if (Flags & NV_TX2_LASTPACKET) {
  1143. skb = np->tx_skbuff[i];
  1144. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1145. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1146. if (Flags & NV_TX2_UNDERFLOW)
  1147. np->stats.tx_fifo_errors++;
  1148. if (Flags & NV_TX2_CARRIERLOST)
  1149. np->stats.tx_carrier_errors++;
  1150. np->stats.tx_errors++;
  1151. } else {
  1152. np->stats.tx_packets++;
  1153. np->stats.tx_bytes += skb->len;
  1154. }
  1155. }
  1156. }
  1157. nv_release_txskb(dev, i);
  1158. np->nic_tx++;
  1159. }
  1160. if (np->next_tx - np->nic_tx < TX_LIMIT_START)
  1161. netif_wake_queue(dev);
  1162. }
  1163. /*
  1164. * nv_tx_timeout: dev->tx_timeout function
  1165. * Called with dev->xmit_lock held.
  1166. */
  1167. static void nv_tx_timeout(struct net_device *dev)
  1168. {
  1169. struct fe_priv *np = netdev_priv(dev);
  1170. u8 __iomem *base = get_hwbase(dev);
  1171. u32 status;
  1172. if (np->msi_flags & NV_MSI_X_ENABLED)
  1173. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1174. else
  1175. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1176. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1177. {
  1178. int i;
  1179. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1180. dev->name, (unsigned long)np->ring_addr,
  1181. np->next_tx, np->nic_tx);
  1182. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1183. for (i=0;i<0x400;i+= 32) {
  1184. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1185. i,
  1186. readl(base + i + 0), readl(base + i + 4),
  1187. readl(base + i + 8), readl(base + i + 12),
  1188. readl(base + i + 16), readl(base + i + 20),
  1189. readl(base + i + 24), readl(base + i + 28));
  1190. }
  1191. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1192. for (i=0;i<TX_RING;i+= 4) {
  1193. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1194. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1195. i,
  1196. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1197. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1198. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1199. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1200. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1201. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1202. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1203. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1204. } else {
  1205. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1206. i,
  1207. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1208. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1209. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1210. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1211. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1212. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1213. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1214. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1215. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1216. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1217. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1218. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1219. }
  1220. }
  1221. }
  1222. spin_lock_irq(&np->lock);
  1223. /* 1) stop tx engine */
  1224. nv_stop_tx(dev);
  1225. /* 2) check that the packets were not sent already: */
  1226. nv_tx_done(dev);
  1227. /* 3) if there are dead entries: clear everything */
  1228. if (np->next_tx != np->nic_tx) {
  1229. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1230. nv_drain_tx(dev);
  1231. np->next_tx = np->nic_tx = 0;
  1232. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1233. netif_wake_queue(dev);
  1234. }
  1235. /* 4) restart tx engine */
  1236. nv_start_tx(dev);
  1237. spin_unlock_irq(&np->lock);
  1238. }
  1239. /*
  1240. * Called when the nic notices a mismatch between the actual data len on the
  1241. * wire and the len indicated in the 802 header
  1242. */
  1243. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1244. {
  1245. int hdrlen; /* length of the 802 header */
  1246. int protolen; /* length as stored in the proto field */
  1247. /* 1) calculate len according to header */
  1248. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1249. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1250. hdrlen = VLAN_HLEN;
  1251. } else {
  1252. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1253. hdrlen = ETH_HLEN;
  1254. }
  1255. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1256. dev->name, datalen, protolen, hdrlen);
  1257. if (protolen > ETH_DATA_LEN)
  1258. return datalen; /* Value in proto field not a len, no checks possible */
  1259. protolen += hdrlen;
  1260. /* consistency checks: */
  1261. if (datalen > ETH_ZLEN) {
  1262. if (datalen >= protolen) {
  1263. /* more data on wire than in 802 header, trim of
  1264. * additional data.
  1265. */
  1266. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1267. dev->name, protolen);
  1268. return protolen;
  1269. } else {
  1270. /* less data on wire than mentioned in header.
  1271. * Discard the packet.
  1272. */
  1273. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1274. dev->name);
  1275. return -1;
  1276. }
  1277. } else {
  1278. /* short packet. Accept only if 802 values are also short */
  1279. if (protolen > ETH_ZLEN) {
  1280. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1281. dev->name);
  1282. return -1;
  1283. }
  1284. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1285. dev->name, datalen);
  1286. return datalen;
  1287. }
  1288. }
  1289. static void nv_rx_process(struct net_device *dev)
  1290. {
  1291. struct fe_priv *np = netdev_priv(dev);
  1292. u32 Flags;
  1293. u32 vlanflags = 0;
  1294. for (;;) {
  1295. struct sk_buff *skb;
  1296. int len;
  1297. int i;
  1298. if (np->cur_rx - np->refill_rx >= RX_RING)
  1299. break; /* we scanned the whole ring - do not continue */
  1300. i = np->cur_rx % RX_RING;
  1301. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1302. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1303. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1304. } else {
  1305. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1306. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1307. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1308. }
  1309. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1310. dev->name, np->cur_rx, Flags);
  1311. if (Flags & NV_RX_AVAIL)
  1312. break; /* still owned by hardware, */
  1313. /*
  1314. * the packet is for us - immediately tear down the pci mapping.
  1315. * TODO: check if a prefetch of the first cacheline improves
  1316. * the performance.
  1317. */
  1318. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1319. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1320. PCI_DMA_FROMDEVICE);
  1321. {
  1322. int j;
  1323. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1324. for (j=0; j<64; j++) {
  1325. if ((j%16) == 0)
  1326. dprintk("\n%03x:", j);
  1327. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1328. }
  1329. dprintk("\n");
  1330. }
  1331. /* look at what we actually got: */
  1332. if (np->desc_ver == DESC_VER_1) {
  1333. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1334. goto next_pkt;
  1335. if (Flags & NV_RX_ERROR) {
  1336. if (Flags & NV_RX_MISSEDFRAME) {
  1337. np->stats.rx_missed_errors++;
  1338. np->stats.rx_errors++;
  1339. goto next_pkt;
  1340. }
  1341. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1342. np->stats.rx_errors++;
  1343. goto next_pkt;
  1344. }
  1345. if (Flags & NV_RX_CRCERR) {
  1346. np->stats.rx_crc_errors++;
  1347. np->stats.rx_errors++;
  1348. goto next_pkt;
  1349. }
  1350. if (Flags & NV_RX_OVERFLOW) {
  1351. np->stats.rx_over_errors++;
  1352. np->stats.rx_errors++;
  1353. goto next_pkt;
  1354. }
  1355. if (Flags & NV_RX_ERROR4) {
  1356. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1357. if (len < 0) {
  1358. np->stats.rx_errors++;
  1359. goto next_pkt;
  1360. }
  1361. }
  1362. /* framing errors are soft errors. */
  1363. if (Flags & NV_RX_FRAMINGERR) {
  1364. if (Flags & NV_RX_SUBSTRACT1) {
  1365. len--;
  1366. }
  1367. }
  1368. }
  1369. } else {
  1370. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1371. goto next_pkt;
  1372. if (Flags & NV_RX2_ERROR) {
  1373. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1374. np->stats.rx_errors++;
  1375. goto next_pkt;
  1376. }
  1377. if (Flags & NV_RX2_CRCERR) {
  1378. np->stats.rx_crc_errors++;
  1379. np->stats.rx_errors++;
  1380. goto next_pkt;
  1381. }
  1382. if (Flags & NV_RX2_OVERFLOW) {
  1383. np->stats.rx_over_errors++;
  1384. np->stats.rx_errors++;
  1385. goto next_pkt;
  1386. }
  1387. if (Flags & NV_RX2_ERROR4) {
  1388. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1389. if (len < 0) {
  1390. np->stats.rx_errors++;
  1391. goto next_pkt;
  1392. }
  1393. }
  1394. /* framing errors are soft errors */
  1395. if (Flags & NV_RX2_FRAMINGERR) {
  1396. if (Flags & NV_RX2_SUBSTRACT1) {
  1397. len--;
  1398. }
  1399. }
  1400. }
  1401. Flags &= NV_RX2_CHECKSUMMASK;
  1402. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1403. Flags == NV_RX2_CHECKSUMOK2 ||
  1404. Flags == NV_RX2_CHECKSUMOK3) {
  1405. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1406. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1407. } else {
  1408. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1409. }
  1410. }
  1411. /* got a valid packet - forward it to the network core */
  1412. skb = np->rx_skbuff[i];
  1413. np->rx_skbuff[i] = NULL;
  1414. skb_put(skb, len);
  1415. skb->protocol = eth_type_trans(skb, dev);
  1416. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1417. dev->name, np->cur_rx, len, skb->protocol);
  1418. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1419. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1420. } else {
  1421. netif_rx(skb);
  1422. }
  1423. dev->last_rx = jiffies;
  1424. np->stats.rx_packets++;
  1425. np->stats.rx_bytes += len;
  1426. next_pkt:
  1427. np->cur_rx++;
  1428. }
  1429. }
  1430. static void set_bufsize(struct net_device *dev)
  1431. {
  1432. struct fe_priv *np = netdev_priv(dev);
  1433. if (dev->mtu <= ETH_DATA_LEN)
  1434. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1435. else
  1436. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1437. }
  1438. /*
  1439. * nv_change_mtu: dev->change_mtu function
  1440. * Called with dev_base_lock held for read.
  1441. */
  1442. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1443. {
  1444. struct fe_priv *np = netdev_priv(dev);
  1445. int old_mtu;
  1446. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1447. return -EINVAL;
  1448. old_mtu = dev->mtu;
  1449. dev->mtu = new_mtu;
  1450. /* return early if the buffer sizes will not change */
  1451. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1452. return 0;
  1453. if (old_mtu == new_mtu)
  1454. return 0;
  1455. /* synchronized against open : rtnl_lock() held by caller */
  1456. if (netif_running(dev)) {
  1457. u8 __iomem *base = get_hwbase(dev);
  1458. /*
  1459. * It seems that the nic preloads valid ring entries into an
  1460. * internal buffer. The procedure for flushing everything is
  1461. * guessed, there is probably a simpler approach.
  1462. * Changing the MTU is a rare event, it shouldn't matter.
  1463. */
  1464. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  1465. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  1466. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  1467. disable_irq(dev->irq);
  1468. } else {
  1469. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1470. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  1471. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  1472. }
  1473. spin_lock_bh(&dev->xmit_lock);
  1474. spin_lock(&np->lock);
  1475. /* stop engines */
  1476. nv_stop_rx(dev);
  1477. nv_stop_tx(dev);
  1478. nv_txrx_reset(dev);
  1479. /* drain rx queue */
  1480. nv_drain_rx(dev);
  1481. nv_drain_tx(dev);
  1482. /* reinit driver view of the rx queue */
  1483. nv_init_rx(dev);
  1484. nv_init_tx(dev);
  1485. /* alloc new rx buffers */
  1486. set_bufsize(dev);
  1487. if (nv_alloc_rx(dev)) {
  1488. if (!np->in_shutdown)
  1489. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1490. }
  1491. /* reinit nic view of the rx queue */
  1492. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1493. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1494. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  1495. base + NvRegRingSizes);
  1496. pci_push(base);
  1497. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1498. pci_push(base);
  1499. /* restart rx engine */
  1500. nv_start_rx(dev);
  1501. nv_start_tx(dev);
  1502. spin_unlock(&np->lock);
  1503. spin_unlock_bh(&dev->xmit_lock);
  1504. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  1505. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  1506. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  1507. enable_irq(dev->irq);
  1508. } else {
  1509. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1510. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  1511. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  1512. }
  1513. }
  1514. return 0;
  1515. }
  1516. static void nv_copy_mac_to_hw(struct net_device *dev)
  1517. {
  1518. u8 __iomem *base = get_hwbase(dev);
  1519. u32 mac[2];
  1520. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1521. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1522. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1523. writel(mac[0], base + NvRegMacAddrA);
  1524. writel(mac[1], base + NvRegMacAddrB);
  1525. }
  1526. /*
  1527. * nv_set_mac_address: dev->set_mac_address function
  1528. * Called with rtnl_lock() held.
  1529. */
  1530. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1531. {
  1532. struct fe_priv *np = netdev_priv(dev);
  1533. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1534. if(!is_valid_ether_addr(macaddr->sa_data))
  1535. return -EADDRNOTAVAIL;
  1536. /* synchronized against open : rtnl_lock() held by caller */
  1537. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1538. if (netif_running(dev)) {
  1539. spin_lock_bh(&dev->xmit_lock);
  1540. spin_lock_irq(&np->lock);
  1541. /* stop rx engine */
  1542. nv_stop_rx(dev);
  1543. /* set mac address */
  1544. nv_copy_mac_to_hw(dev);
  1545. /* restart rx engine */
  1546. nv_start_rx(dev);
  1547. spin_unlock_irq(&np->lock);
  1548. spin_unlock_bh(&dev->xmit_lock);
  1549. } else {
  1550. nv_copy_mac_to_hw(dev);
  1551. }
  1552. return 0;
  1553. }
  1554. /*
  1555. * nv_set_multicast: dev->set_multicast function
  1556. * Called with dev->xmit_lock held.
  1557. */
  1558. static void nv_set_multicast(struct net_device *dev)
  1559. {
  1560. struct fe_priv *np = netdev_priv(dev);
  1561. u8 __iomem *base = get_hwbase(dev);
  1562. u32 addr[2];
  1563. u32 mask[2];
  1564. u32 pff;
  1565. memset(addr, 0, sizeof(addr));
  1566. memset(mask, 0, sizeof(mask));
  1567. if (dev->flags & IFF_PROMISC) {
  1568. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1569. pff = NVREG_PFF_PROMISC;
  1570. } else {
  1571. pff = NVREG_PFF_MYADDR;
  1572. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1573. u32 alwaysOff[2];
  1574. u32 alwaysOn[2];
  1575. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1576. if (dev->flags & IFF_ALLMULTI) {
  1577. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1578. } else {
  1579. struct dev_mc_list *walk;
  1580. walk = dev->mc_list;
  1581. while (walk != NULL) {
  1582. u32 a, b;
  1583. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1584. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1585. alwaysOn[0] &= a;
  1586. alwaysOff[0] &= ~a;
  1587. alwaysOn[1] &= b;
  1588. alwaysOff[1] &= ~b;
  1589. walk = walk->next;
  1590. }
  1591. }
  1592. addr[0] = alwaysOn[0];
  1593. addr[1] = alwaysOn[1];
  1594. mask[0] = alwaysOn[0] | alwaysOff[0];
  1595. mask[1] = alwaysOn[1] | alwaysOff[1];
  1596. }
  1597. }
  1598. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1599. pff |= NVREG_PFF_ALWAYS;
  1600. spin_lock_irq(&np->lock);
  1601. nv_stop_rx(dev);
  1602. writel(addr[0], base + NvRegMulticastAddrA);
  1603. writel(addr[1], base + NvRegMulticastAddrB);
  1604. writel(mask[0], base + NvRegMulticastMaskA);
  1605. writel(mask[1], base + NvRegMulticastMaskB);
  1606. writel(pff, base + NvRegPacketFilterFlags);
  1607. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1608. dev->name);
  1609. nv_start_rx(dev);
  1610. spin_unlock_irq(&np->lock);
  1611. }
  1612. /**
  1613. * nv_update_linkspeed: Setup the MAC according to the link partner
  1614. * @dev: Network device to be configured
  1615. *
  1616. * The function queries the PHY and checks if there is a link partner.
  1617. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1618. * set to 10 MBit HD.
  1619. *
  1620. * The function returns 0 if there is no link partner and 1 if there is
  1621. * a good link partner.
  1622. */
  1623. static int nv_update_linkspeed(struct net_device *dev)
  1624. {
  1625. struct fe_priv *np = netdev_priv(dev);
  1626. u8 __iomem *base = get_hwbase(dev);
  1627. int adv, lpa;
  1628. int newls = np->linkspeed;
  1629. int newdup = np->duplex;
  1630. int mii_status;
  1631. int retval = 0;
  1632. u32 control_1000, status_1000, phyreg;
  1633. /* BMSR_LSTATUS is latched, read it twice:
  1634. * we want the current value.
  1635. */
  1636. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1637. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1638. if (!(mii_status & BMSR_LSTATUS)) {
  1639. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1640. dev->name);
  1641. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1642. newdup = 0;
  1643. retval = 0;
  1644. goto set_speed;
  1645. }
  1646. if (np->autoneg == 0) {
  1647. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1648. dev->name, np->fixed_mode);
  1649. if (np->fixed_mode & LPA_100FULL) {
  1650. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1651. newdup = 1;
  1652. } else if (np->fixed_mode & LPA_100HALF) {
  1653. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1654. newdup = 0;
  1655. } else if (np->fixed_mode & LPA_10FULL) {
  1656. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1657. newdup = 1;
  1658. } else {
  1659. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1660. newdup = 0;
  1661. }
  1662. retval = 1;
  1663. goto set_speed;
  1664. }
  1665. /* check auto negotiation is complete */
  1666. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1667. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1668. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1669. newdup = 0;
  1670. retval = 0;
  1671. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1672. goto set_speed;
  1673. }
  1674. retval = 1;
  1675. if (np->gigabit == PHY_GIGABIT) {
  1676. control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1677. status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
  1678. if ((control_1000 & ADVERTISE_1000FULL) &&
  1679. (status_1000 & LPA_1000FULL)) {
  1680. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1681. dev->name);
  1682. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1683. newdup = 1;
  1684. goto set_speed;
  1685. }
  1686. }
  1687. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1688. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1689. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1690. dev->name, adv, lpa);
  1691. /* FIXME: handle parallel detection properly */
  1692. lpa = lpa & adv;
  1693. if (lpa & LPA_100FULL) {
  1694. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1695. newdup = 1;
  1696. } else if (lpa & LPA_100HALF) {
  1697. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1698. newdup = 0;
  1699. } else if (lpa & LPA_10FULL) {
  1700. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1701. newdup = 1;
  1702. } else if (lpa & LPA_10HALF) {
  1703. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1704. newdup = 0;
  1705. } else {
  1706. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
  1707. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1708. newdup = 0;
  1709. }
  1710. set_speed:
  1711. if (np->duplex == newdup && np->linkspeed == newls)
  1712. return retval;
  1713. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1714. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1715. np->duplex = newdup;
  1716. np->linkspeed = newls;
  1717. if (np->gigabit == PHY_GIGABIT) {
  1718. phyreg = readl(base + NvRegRandomSeed);
  1719. phyreg &= ~(0x3FF00);
  1720. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  1721. phyreg |= NVREG_RNDSEED_FORCE3;
  1722. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  1723. phyreg |= NVREG_RNDSEED_FORCE2;
  1724. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  1725. phyreg |= NVREG_RNDSEED_FORCE;
  1726. writel(phyreg, base + NvRegRandomSeed);
  1727. }
  1728. phyreg = readl(base + NvRegPhyInterface);
  1729. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  1730. if (np->duplex == 0)
  1731. phyreg |= PHY_HALF;
  1732. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  1733. phyreg |= PHY_100;
  1734. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  1735. phyreg |= PHY_1000;
  1736. writel(phyreg, base + NvRegPhyInterface);
  1737. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  1738. base + NvRegMisc1);
  1739. pci_push(base);
  1740. writel(np->linkspeed, base + NvRegLinkSpeed);
  1741. pci_push(base);
  1742. return retval;
  1743. }
  1744. static void nv_linkchange(struct net_device *dev)
  1745. {
  1746. if (nv_update_linkspeed(dev)) {
  1747. if (!netif_carrier_ok(dev)) {
  1748. netif_carrier_on(dev);
  1749. printk(KERN_INFO "%s: link up.\n", dev->name);
  1750. nv_start_rx(dev);
  1751. }
  1752. } else {
  1753. if (netif_carrier_ok(dev)) {
  1754. netif_carrier_off(dev);
  1755. printk(KERN_INFO "%s: link down.\n", dev->name);
  1756. nv_stop_rx(dev);
  1757. }
  1758. }
  1759. }
  1760. static void nv_link_irq(struct net_device *dev)
  1761. {
  1762. u8 __iomem *base = get_hwbase(dev);
  1763. u32 miistat;
  1764. miistat = readl(base + NvRegMIIStatus);
  1765. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  1766. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  1767. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  1768. nv_linkchange(dev);
  1769. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  1770. }
  1771. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  1772. {
  1773. struct net_device *dev = (struct net_device *) data;
  1774. struct fe_priv *np = netdev_priv(dev);
  1775. u8 __iomem *base = get_hwbase(dev);
  1776. u32 events;
  1777. int i;
  1778. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  1779. for (i=0; ; i++) {
  1780. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  1781. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1782. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  1783. } else {
  1784. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1785. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  1786. }
  1787. pci_push(base);
  1788. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1789. if (!(events & np->irqmask))
  1790. break;
  1791. spin_lock(&np->lock);
  1792. nv_tx_done(dev);
  1793. spin_unlock(&np->lock);
  1794. nv_rx_process(dev);
  1795. if (nv_alloc_rx(dev)) {
  1796. spin_lock(&np->lock);
  1797. if (!np->in_shutdown)
  1798. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1799. spin_unlock(&np->lock);
  1800. }
  1801. if (events & NVREG_IRQ_LINK) {
  1802. spin_lock(&np->lock);
  1803. nv_link_irq(dev);
  1804. spin_unlock(&np->lock);
  1805. }
  1806. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1807. spin_lock(&np->lock);
  1808. nv_linkchange(dev);
  1809. spin_unlock(&np->lock);
  1810. np->link_timeout = jiffies + LINK_TIMEOUT;
  1811. }
  1812. if (events & (NVREG_IRQ_TX_ERR)) {
  1813. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1814. dev->name, events);
  1815. }
  1816. if (events & (NVREG_IRQ_UNKNOWN)) {
  1817. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1818. dev->name, events);
  1819. }
  1820. if (i > max_interrupt_work) {
  1821. spin_lock(&np->lock);
  1822. /* disable interrupts on the nic */
  1823. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  1824. writel(0, base + NvRegIrqMask);
  1825. else
  1826. writel(np->irqmask, base + NvRegIrqMask);
  1827. pci_push(base);
  1828. if (!np->in_shutdown) {
  1829. np->nic_poll_irq = np->irqmask;
  1830. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1831. }
  1832. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  1833. spin_unlock(&np->lock);
  1834. break;
  1835. }
  1836. }
  1837. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  1838. return IRQ_RETVAL(i);
  1839. }
  1840. static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
  1841. {
  1842. struct net_device *dev = (struct net_device *) data;
  1843. struct fe_priv *np = netdev_priv(dev);
  1844. u8 __iomem *base = get_hwbase(dev);
  1845. u32 events;
  1846. int i;
  1847. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  1848. for (i=0; ; i++) {
  1849. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  1850. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  1851. pci_push(base);
  1852. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  1853. if (!(events & np->irqmask))
  1854. break;
  1855. spin_lock(&np->lock);
  1856. nv_tx_done(dev);
  1857. spin_unlock(&np->lock);
  1858. if (events & (NVREG_IRQ_TX_ERR)) {
  1859. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1860. dev->name, events);
  1861. }
  1862. if (i > max_interrupt_work) {
  1863. spin_lock(&np->lock);
  1864. /* disable interrupts on the nic */
  1865. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  1866. pci_push(base);
  1867. if (!np->in_shutdown) {
  1868. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  1869. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1870. }
  1871. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  1872. spin_unlock(&np->lock);
  1873. break;
  1874. }
  1875. }
  1876. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  1877. return IRQ_RETVAL(i);
  1878. }
  1879. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  1880. {
  1881. struct net_device *dev = (struct net_device *) data;
  1882. struct fe_priv *np = netdev_priv(dev);
  1883. u8 __iomem *base = get_hwbase(dev);
  1884. u32 events;
  1885. int i;
  1886. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  1887. for (i=0; ; i++) {
  1888. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  1889. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  1890. pci_push(base);
  1891. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  1892. if (!(events & np->irqmask))
  1893. break;
  1894. nv_rx_process(dev);
  1895. if (nv_alloc_rx(dev)) {
  1896. spin_lock(&np->lock);
  1897. if (!np->in_shutdown)
  1898. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1899. spin_unlock(&np->lock);
  1900. }
  1901. if (i > max_interrupt_work) {
  1902. spin_lock(&np->lock);
  1903. /* disable interrupts on the nic */
  1904. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  1905. pci_push(base);
  1906. if (!np->in_shutdown) {
  1907. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  1908. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1909. }
  1910. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  1911. spin_unlock(&np->lock);
  1912. break;
  1913. }
  1914. }
  1915. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  1916. return IRQ_RETVAL(i);
  1917. }
  1918. static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
  1919. {
  1920. struct net_device *dev = (struct net_device *) data;
  1921. struct fe_priv *np = netdev_priv(dev);
  1922. u8 __iomem *base = get_hwbase(dev);
  1923. u32 events;
  1924. int i;
  1925. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  1926. for (i=0; ; i++) {
  1927. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  1928. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  1929. pci_push(base);
  1930. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1931. if (!(events & np->irqmask))
  1932. break;
  1933. if (events & NVREG_IRQ_LINK) {
  1934. spin_lock(&np->lock);
  1935. nv_link_irq(dev);
  1936. spin_unlock(&np->lock);
  1937. }
  1938. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1939. spin_lock(&np->lock);
  1940. nv_linkchange(dev);
  1941. spin_unlock(&np->lock);
  1942. np->link_timeout = jiffies + LINK_TIMEOUT;
  1943. }
  1944. if (events & (NVREG_IRQ_UNKNOWN)) {
  1945. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1946. dev->name, events);
  1947. }
  1948. if (i > max_interrupt_work) {
  1949. spin_lock(&np->lock);
  1950. /* disable interrupts on the nic */
  1951. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  1952. pci_push(base);
  1953. if (!np->in_shutdown) {
  1954. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  1955. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1956. }
  1957. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  1958. spin_unlock(&np->lock);
  1959. break;
  1960. }
  1961. }
  1962. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  1963. return IRQ_RETVAL(i);
  1964. }
  1965. static void nv_do_nic_poll(unsigned long data)
  1966. {
  1967. struct net_device *dev = (struct net_device *) data;
  1968. struct fe_priv *np = netdev_priv(dev);
  1969. u8 __iomem *base = get_hwbase(dev);
  1970. u32 mask = 0;
  1971. /*
  1972. * First disable irq(s) and then
  1973. * reenable interrupts on the nic, we have to do this before calling
  1974. * nv_nic_irq because that may decide to do otherwise
  1975. */
  1976. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  1977. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  1978. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  1979. disable_irq(dev->irq);
  1980. mask = np->irqmask;
  1981. } else {
  1982. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  1983. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1984. mask |= NVREG_IRQ_RX_ALL;
  1985. }
  1986. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  1987. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  1988. mask |= NVREG_IRQ_TX_ALL;
  1989. }
  1990. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  1991. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  1992. mask |= NVREG_IRQ_OTHER;
  1993. }
  1994. }
  1995. np->nic_poll_irq = 0;
  1996. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  1997. writel(mask, base + NvRegIrqMask);
  1998. pci_push(base);
  1999. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  2000. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  2001. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  2002. nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
  2003. enable_irq(dev->irq);
  2004. } else {
  2005. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2006. nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2007. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2008. }
  2009. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2010. nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2011. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2012. }
  2013. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2014. nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
  2015. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2016. }
  2017. }
  2018. }
  2019. #ifdef CONFIG_NET_POLL_CONTROLLER
  2020. static void nv_poll_controller(struct net_device *dev)
  2021. {
  2022. nv_do_nic_poll((unsigned long) dev);
  2023. }
  2024. #endif
  2025. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2026. {
  2027. struct fe_priv *np = netdev_priv(dev);
  2028. strcpy(info->driver, "forcedeth");
  2029. strcpy(info->version, FORCEDETH_VERSION);
  2030. strcpy(info->bus_info, pci_name(np->pci_dev));
  2031. }
  2032. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2033. {
  2034. struct fe_priv *np = netdev_priv(dev);
  2035. wolinfo->supported = WAKE_MAGIC;
  2036. spin_lock_irq(&np->lock);
  2037. if (np->wolenabled)
  2038. wolinfo->wolopts = WAKE_MAGIC;
  2039. spin_unlock_irq(&np->lock);
  2040. }
  2041. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2042. {
  2043. struct fe_priv *np = netdev_priv(dev);
  2044. u8 __iomem *base = get_hwbase(dev);
  2045. spin_lock_irq(&np->lock);
  2046. if (wolinfo->wolopts == 0) {
  2047. writel(0, base + NvRegWakeUpFlags);
  2048. np->wolenabled = 0;
  2049. }
  2050. if (wolinfo->wolopts & WAKE_MAGIC) {
  2051. writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
  2052. np->wolenabled = 1;
  2053. }
  2054. spin_unlock_irq(&np->lock);
  2055. return 0;
  2056. }
  2057. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2058. {
  2059. struct fe_priv *np = netdev_priv(dev);
  2060. int adv;
  2061. spin_lock_irq(&np->lock);
  2062. ecmd->port = PORT_MII;
  2063. if (!netif_running(dev)) {
  2064. /* We do not track link speed / duplex setting if the
  2065. * interface is disabled. Force a link check */
  2066. nv_update_linkspeed(dev);
  2067. }
  2068. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2069. case NVREG_LINKSPEED_10:
  2070. ecmd->speed = SPEED_10;
  2071. break;
  2072. case NVREG_LINKSPEED_100:
  2073. ecmd->speed = SPEED_100;
  2074. break;
  2075. case NVREG_LINKSPEED_1000:
  2076. ecmd->speed = SPEED_1000;
  2077. break;
  2078. }
  2079. ecmd->duplex = DUPLEX_HALF;
  2080. if (np->duplex)
  2081. ecmd->duplex = DUPLEX_FULL;
  2082. ecmd->autoneg = np->autoneg;
  2083. ecmd->advertising = ADVERTISED_MII;
  2084. if (np->autoneg) {
  2085. ecmd->advertising |= ADVERTISED_Autoneg;
  2086. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2087. } else {
  2088. adv = np->fixed_mode;
  2089. }
  2090. if (adv & ADVERTISE_10HALF)
  2091. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2092. if (adv & ADVERTISE_10FULL)
  2093. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2094. if (adv & ADVERTISE_100HALF)
  2095. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2096. if (adv & ADVERTISE_100FULL)
  2097. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2098. if (np->autoneg && np->gigabit == PHY_GIGABIT) {
  2099. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2100. if (adv & ADVERTISE_1000FULL)
  2101. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2102. }
  2103. ecmd->supported = (SUPPORTED_Autoneg |
  2104. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2105. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2106. SUPPORTED_MII);
  2107. if (np->gigabit == PHY_GIGABIT)
  2108. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2109. ecmd->phy_address = np->phyaddr;
  2110. ecmd->transceiver = XCVR_EXTERNAL;
  2111. /* ignore maxtxpkt, maxrxpkt for now */
  2112. spin_unlock_irq(&np->lock);
  2113. return 0;
  2114. }
  2115. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2116. {
  2117. struct fe_priv *np = netdev_priv(dev);
  2118. if (ecmd->port != PORT_MII)
  2119. return -EINVAL;
  2120. if (ecmd->transceiver != XCVR_EXTERNAL)
  2121. return -EINVAL;
  2122. if (ecmd->phy_address != np->phyaddr) {
  2123. /* TODO: support switching between multiple phys. Should be
  2124. * trivial, but not enabled due to lack of test hardware. */
  2125. return -EINVAL;
  2126. }
  2127. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2128. u32 mask;
  2129. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2130. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2131. if (np->gigabit == PHY_GIGABIT)
  2132. mask |= ADVERTISED_1000baseT_Full;
  2133. if ((ecmd->advertising & mask) == 0)
  2134. return -EINVAL;
  2135. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2136. /* Note: autonegotiation disable, speed 1000 intentionally
  2137. * forbidden - noone should need that. */
  2138. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2139. return -EINVAL;
  2140. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2141. return -EINVAL;
  2142. } else {
  2143. return -EINVAL;
  2144. }
  2145. spin_lock_irq(&np->lock);
  2146. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2147. int adv, bmcr;
  2148. np->autoneg = 1;
  2149. /* advertise only what has been requested */
  2150. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2151. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2152. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2153. adv |= ADVERTISE_10HALF;
  2154. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2155. adv |= ADVERTISE_10FULL;
  2156. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2157. adv |= ADVERTISE_100HALF;
  2158. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2159. adv |= ADVERTISE_100FULL;
  2160. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2161. if (np->gigabit == PHY_GIGABIT) {
  2162. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2163. adv &= ~ADVERTISE_1000FULL;
  2164. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2165. adv |= ADVERTISE_1000FULL;
  2166. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2167. }
  2168. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2169. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2170. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2171. } else {
  2172. int adv, bmcr;
  2173. np->autoneg = 0;
  2174. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2175. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2176. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2177. adv |= ADVERTISE_10HALF;
  2178. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2179. adv |= ADVERTISE_10FULL;
  2180. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2181. adv |= ADVERTISE_100HALF;
  2182. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2183. adv |= ADVERTISE_100FULL;
  2184. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2185. np->fixed_mode = adv;
  2186. if (np->gigabit == PHY_GIGABIT) {
  2187. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2188. adv &= ~ADVERTISE_1000FULL;
  2189. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2190. }
  2191. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2192. bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
  2193. if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2194. bmcr |= BMCR_FULLDPLX;
  2195. if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2196. bmcr |= BMCR_SPEED100;
  2197. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2198. if (netif_running(dev)) {
  2199. /* Wait a bit and then reconfigure the nic. */
  2200. udelay(10);
  2201. nv_linkchange(dev);
  2202. }
  2203. }
  2204. spin_unlock_irq(&np->lock);
  2205. return 0;
  2206. }
  2207. #define FORCEDETH_REGS_VER 1
  2208. #define FORCEDETH_REGS_SIZE 0x400 /* 256 32-bit registers */
  2209. static int nv_get_regs_len(struct net_device *dev)
  2210. {
  2211. return FORCEDETH_REGS_SIZE;
  2212. }
  2213. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2214. {
  2215. struct fe_priv *np = netdev_priv(dev);
  2216. u8 __iomem *base = get_hwbase(dev);
  2217. u32 *rbuf = buf;
  2218. int i;
  2219. regs->version = FORCEDETH_REGS_VER;
  2220. spin_lock_irq(&np->lock);
  2221. for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
  2222. rbuf[i] = readl(base + i*sizeof(u32));
  2223. spin_unlock_irq(&np->lock);
  2224. }
  2225. static int nv_nway_reset(struct net_device *dev)
  2226. {
  2227. struct fe_priv *np = netdev_priv(dev);
  2228. int ret;
  2229. spin_lock_irq(&np->lock);
  2230. if (np->autoneg) {
  2231. int bmcr;
  2232. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2233. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2234. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2235. ret = 0;
  2236. } else {
  2237. ret = -EINVAL;
  2238. }
  2239. spin_unlock_irq(&np->lock);
  2240. return ret;
  2241. }
  2242. static struct ethtool_ops ops = {
  2243. .get_drvinfo = nv_get_drvinfo,
  2244. .get_link = ethtool_op_get_link,
  2245. .get_wol = nv_get_wol,
  2246. .set_wol = nv_set_wol,
  2247. .get_settings = nv_get_settings,
  2248. .set_settings = nv_set_settings,
  2249. .get_regs_len = nv_get_regs_len,
  2250. .get_regs = nv_get_regs,
  2251. .nway_reset = nv_nway_reset,
  2252. .get_perm_addr = ethtool_op_get_perm_addr,
  2253. };
  2254. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  2255. {
  2256. struct fe_priv *np = get_nvpriv(dev);
  2257. spin_lock_irq(&np->lock);
  2258. /* save vlan group */
  2259. np->vlangrp = grp;
  2260. if (grp) {
  2261. /* enable vlan on MAC */
  2262. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  2263. } else {
  2264. /* disable vlan on MAC */
  2265. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  2266. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  2267. }
  2268. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2269. spin_unlock_irq(&np->lock);
  2270. };
  2271. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  2272. {
  2273. /* nothing to do */
  2274. };
  2275. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2276. {
  2277. u8 __iomem *base = get_hwbase(dev);
  2278. int i;
  2279. u32 msixmap = 0;
  2280. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2281. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2282. * the remaining 8 interrupts.
  2283. */
  2284. for (i = 0; i < 8; i++) {
  2285. if ((irqmask >> i) & 0x1) {
  2286. msixmap |= vector << (i << 2);
  2287. }
  2288. }
  2289. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2290. msixmap = 0;
  2291. for (i = 0; i < 8; i++) {
  2292. if ((irqmask >> (i + 8)) & 0x1) {
  2293. msixmap |= vector << (i << 2);
  2294. }
  2295. }
  2296. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2297. }
  2298. static int nv_open(struct net_device *dev)
  2299. {
  2300. struct fe_priv *np = netdev_priv(dev);
  2301. u8 __iomem *base = get_hwbase(dev);
  2302. int ret = 1;
  2303. int oom, i;
  2304. dprintk(KERN_DEBUG "nv_open: begin\n");
  2305. /* 1) erase previous misconfiguration */
  2306. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  2307. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2308. writel(0, base + NvRegMulticastAddrB);
  2309. writel(0, base + NvRegMulticastMaskA);
  2310. writel(0, base + NvRegMulticastMaskB);
  2311. writel(0, base + NvRegPacketFilterFlags);
  2312. writel(0, base + NvRegTransmitterControl);
  2313. writel(0, base + NvRegReceiverControl);
  2314. writel(0, base + NvRegAdapterControl);
  2315. /* 2) initialize descriptor rings */
  2316. set_bufsize(dev);
  2317. oom = nv_init_ring(dev);
  2318. writel(0, base + NvRegLinkSpeed);
  2319. writel(0, base + NvRegUnknownTransmitterReg);
  2320. nv_txrx_reset(dev);
  2321. writel(0, base + NvRegUnknownSetupReg6);
  2322. np->in_shutdown = 0;
  2323. /* 3) set mac address */
  2324. nv_copy_mac_to_hw(dev);
  2325. /* 4) give hw rings */
  2326. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2327. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  2328. base + NvRegRingSizes);
  2329. /* 5) continue setup */
  2330. writel(np->linkspeed, base + NvRegLinkSpeed);
  2331. writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
  2332. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  2333. writel(np->vlanctl_bits, base + NvRegVlanControl);
  2334. pci_push(base);
  2335. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  2336. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  2337. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  2338. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  2339. writel(0, base + NvRegUnknownSetupReg4);
  2340. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2341. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2342. /* 6) continue setup */
  2343. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  2344. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  2345. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  2346. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2347. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  2348. get_random_bytes(&i, sizeof(i));
  2349. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  2350. writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
  2351. writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
  2352. if (poll_interval == -1) {
  2353. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2354. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  2355. else
  2356. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  2357. }
  2358. else
  2359. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  2360. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  2361. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  2362. base + NvRegAdapterControl);
  2363. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  2364. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  2365. writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
  2366. i = readl(base + NvRegPowerState);
  2367. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  2368. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  2369. pci_push(base);
  2370. udelay(10);
  2371. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  2372. writel(0, base + NvRegIrqMask);
  2373. pci_push(base);
  2374. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2375. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2376. pci_push(base);
  2377. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2378. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2379. np->msi_x_entry[i].entry = i;
  2380. }
  2381. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2382. np->msi_flags |= NV_MSI_X_ENABLED;
  2383. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2384. /* Request irq for rx handling */
  2385. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
  2386. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2387. pci_disable_msix(np->pci_dev);
  2388. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2389. goto out_drain;
  2390. }
  2391. /* Request irq for tx handling */
  2392. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
  2393. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2394. pci_disable_msix(np->pci_dev);
  2395. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2396. goto out_drain;
  2397. }
  2398. /* Request irq for link and timer handling */
  2399. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
  2400. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2401. pci_disable_msix(np->pci_dev);
  2402. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2403. goto out_drain;
  2404. }
  2405. /* map interrupts to their respective vector */
  2406. writel(0, base + NvRegMSIXMap0);
  2407. writel(0, base + NvRegMSIXMap1);
  2408. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2409. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2410. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2411. } else {
  2412. /* Request irq for all interrupts */
  2413. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2414. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2415. pci_disable_msix(np->pci_dev);
  2416. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2417. goto out_drain;
  2418. }
  2419. /* map interrupts to vector 0 */
  2420. writel(0, base + NvRegMSIXMap0);
  2421. writel(0, base + NvRegMSIXMap1);
  2422. }
  2423. }
  2424. }
  2425. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2426. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2427. np->msi_flags |= NV_MSI_ENABLED;
  2428. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2429. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2430. pci_disable_msi(np->pci_dev);
  2431. np->msi_flags &= ~NV_MSI_ENABLED;
  2432. goto out_drain;
  2433. }
  2434. /* map interrupts to vector 0 */
  2435. writel(0, base + NvRegMSIMap0);
  2436. writel(0, base + NvRegMSIMap1);
  2437. /* enable msi vector 0 */
  2438. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2439. }
  2440. }
  2441. if (ret != 0) {
  2442. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
  2443. goto out_drain;
  2444. }
  2445. /* ask for interrupts */
  2446. writel(np->irqmask, base + NvRegIrqMask);
  2447. spin_lock_irq(&np->lock);
  2448. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2449. writel(0, base + NvRegMulticastAddrB);
  2450. writel(0, base + NvRegMulticastMaskA);
  2451. writel(0, base + NvRegMulticastMaskB);
  2452. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  2453. /* One manual link speed update: Interrupts are enabled, future link
  2454. * speed changes cause interrupts and are handled by nv_link_irq().
  2455. */
  2456. {
  2457. u32 miistat;
  2458. miistat = readl(base + NvRegMIIStatus);
  2459. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2460. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  2461. }
  2462. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  2463. * to init hw */
  2464. np->linkspeed = 0;
  2465. ret = nv_update_linkspeed(dev);
  2466. nv_start_rx(dev);
  2467. nv_start_tx(dev);
  2468. netif_start_queue(dev);
  2469. if (ret) {
  2470. netif_carrier_on(dev);
  2471. } else {
  2472. printk("%s: no link during initialization.\n", dev->name);
  2473. netif_carrier_off(dev);
  2474. }
  2475. if (oom)
  2476. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2477. spin_unlock_irq(&np->lock);
  2478. return 0;
  2479. out_drain:
  2480. drain_ring(dev);
  2481. return ret;
  2482. }
  2483. static int nv_close(struct net_device *dev)
  2484. {
  2485. struct fe_priv *np = netdev_priv(dev);
  2486. u8 __iomem *base;
  2487. int i;
  2488. spin_lock_irq(&np->lock);
  2489. np->in_shutdown = 1;
  2490. spin_unlock_irq(&np->lock);
  2491. synchronize_irq(dev->irq);
  2492. del_timer_sync(&np->oom_kick);
  2493. del_timer_sync(&np->nic_poll);
  2494. netif_stop_queue(dev);
  2495. spin_lock_irq(&np->lock);
  2496. nv_stop_tx(dev);
  2497. nv_stop_rx(dev);
  2498. nv_txrx_reset(dev);
  2499. /* disable interrupts on the nic or we will lock up */
  2500. base = get_hwbase(dev);
  2501. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2502. writel(np->irqmask, base + NvRegIrqMask);
  2503. } else {
  2504. if (np->msi_flags & NV_MSI_ENABLED)
  2505. writel(0, base + NvRegMSIIrqMask);
  2506. writel(0, base + NvRegIrqMask);
  2507. }
  2508. pci_push(base);
  2509. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  2510. spin_unlock_irq(&np->lock);
  2511. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2512. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2513. free_irq(np->msi_x_entry[i].vector, dev);
  2514. }
  2515. pci_disable_msix(np->pci_dev);
  2516. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2517. } else {
  2518. free_irq(np->pci_dev->irq, dev);
  2519. if (np->msi_flags & NV_MSI_ENABLED) {
  2520. pci_disable_msi(np->pci_dev);
  2521. np->msi_flags &= ~NV_MSI_ENABLED;
  2522. }
  2523. }
  2524. drain_ring(dev);
  2525. if (np->wolenabled)
  2526. nv_start_rx(dev);
  2527. /* special op: write back the misordered MAC address - otherwise
  2528. * the next nv_probe would see a wrong address.
  2529. */
  2530. writel(np->orig_mac[0], base + NvRegMacAddrA);
  2531. writel(np->orig_mac[1], base + NvRegMacAddrB);
  2532. /* FIXME: power down nic */
  2533. return 0;
  2534. }
  2535. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  2536. {
  2537. struct net_device *dev;
  2538. struct fe_priv *np;
  2539. unsigned long addr;
  2540. u8 __iomem *base;
  2541. int err, i;
  2542. dev = alloc_etherdev(sizeof(struct fe_priv));
  2543. err = -ENOMEM;
  2544. if (!dev)
  2545. goto out;
  2546. np = netdev_priv(dev);
  2547. np->pci_dev = pci_dev;
  2548. spin_lock_init(&np->lock);
  2549. SET_MODULE_OWNER(dev);
  2550. SET_NETDEV_DEV(dev, &pci_dev->dev);
  2551. init_timer(&np->oom_kick);
  2552. np->oom_kick.data = (unsigned long) dev;
  2553. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  2554. init_timer(&np->nic_poll);
  2555. np->nic_poll.data = (unsigned long) dev;
  2556. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  2557. err = pci_enable_device(pci_dev);
  2558. if (err) {
  2559. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  2560. err, pci_name(pci_dev));
  2561. goto out_free;
  2562. }
  2563. pci_set_master(pci_dev);
  2564. err = pci_request_regions(pci_dev, DRV_NAME);
  2565. if (err < 0)
  2566. goto out_disable;
  2567. err = -EINVAL;
  2568. addr = 0;
  2569. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  2570. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  2571. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  2572. pci_resource_len(pci_dev, i),
  2573. pci_resource_flags(pci_dev, i));
  2574. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  2575. pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
  2576. addr = pci_resource_start(pci_dev, i);
  2577. break;
  2578. }
  2579. }
  2580. if (i == DEVICE_COUNT_RESOURCE) {
  2581. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  2582. pci_name(pci_dev));
  2583. goto out_relreg;
  2584. }
  2585. /* handle different descriptor versions */
  2586. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  2587. /* packet format 3: supports 40-bit addressing */
  2588. np->desc_ver = DESC_VER_3;
  2589. if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  2590. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  2591. pci_name(pci_dev));
  2592. } else {
  2593. if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  2594. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
  2595. pci_name(pci_dev));
  2596. goto out_relreg;
  2597. } else {
  2598. dev->features |= NETIF_F_HIGHDMA;
  2599. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  2600. }
  2601. }
  2602. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  2603. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  2604. /* packet format 2: supports jumbo frames */
  2605. np->desc_ver = DESC_VER_2;
  2606. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  2607. } else {
  2608. /* original packet format */
  2609. np->desc_ver = DESC_VER_1;
  2610. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  2611. }
  2612. np->pkt_limit = NV_PKTLIMIT_1;
  2613. if (id->driver_data & DEV_HAS_LARGEDESC)
  2614. np->pkt_limit = NV_PKTLIMIT_2;
  2615. if (id->driver_data & DEV_HAS_CHECKSUM) {
  2616. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  2617. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  2618. #ifdef NETIF_F_TSO
  2619. dev->features |= NETIF_F_TSO;
  2620. #endif
  2621. }
  2622. np->vlanctl_bits = 0;
  2623. if (id->driver_data & DEV_HAS_VLAN) {
  2624. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  2625. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  2626. dev->vlan_rx_register = nv_vlan_rx_register;
  2627. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  2628. }
  2629. np->msi_flags = 0;
  2630. if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
  2631. np->msi_flags |= NV_MSI_CAPABLE;
  2632. }
  2633. if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
  2634. np->msi_flags |= NV_MSI_X_CAPABLE;
  2635. }
  2636. err = -ENOMEM;
  2637. np->base = ioremap(addr, NV_PCI_REGSZ);
  2638. if (!np->base)
  2639. goto out_relreg;
  2640. dev->base_addr = (unsigned long)np->base;
  2641. dev->irq = pci_dev->irq;
  2642. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2643. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  2644. sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2645. &np->ring_addr);
  2646. if (!np->rx_ring.orig)
  2647. goto out_unmap;
  2648. np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
  2649. } else {
  2650. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  2651. sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2652. &np->ring_addr);
  2653. if (!np->rx_ring.ex)
  2654. goto out_unmap;
  2655. np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
  2656. }
  2657. dev->open = nv_open;
  2658. dev->stop = nv_close;
  2659. dev->hard_start_xmit = nv_start_xmit;
  2660. dev->get_stats = nv_get_stats;
  2661. dev->change_mtu = nv_change_mtu;
  2662. dev->set_mac_address = nv_set_mac_address;
  2663. dev->set_multicast_list = nv_set_multicast;
  2664. #ifdef CONFIG_NET_POLL_CONTROLLER
  2665. dev->poll_controller = nv_poll_controller;
  2666. #endif
  2667. SET_ETHTOOL_OPS(dev, &ops);
  2668. dev->tx_timeout = nv_tx_timeout;
  2669. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  2670. pci_set_drvdata(pci_dev, dev);
  2671. /* read the mac address */
  2672. base = get_hwbase(dev);
  2673. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  2674. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  2675. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  2676. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  2677. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  2678. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  2679. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  2680. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  2681. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2682. if (!is_valid_ether_addr(dev->perm_addr)) {
  2683. /*
  2684. * Bad mac address. At least one bios sets the mac address
  2685. * to 01:23:45:67:89:ab
  2686. */
  2687. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  2688. pci_name(pci_dev),
  2689. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2690. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2691. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  2692. dev->dev_addr[0] = 0x00;
  2693. dev->dev_addr[1] = 0x00;
  2694. dev->dev_addr[2] = 0x6c;
  2695. get_random_bytes(&dev->dev_addr[3], 3);
  2696. }
  2697. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  2698. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2699. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2700. /* disable WOL */
  2701. writel(0, base + NvRegWakeUpFlags);
  2702. np->wolenabled = 0;
  2703. if (np->desc_ver == DESC_VER_1) {
  2704. np->tx_flags = NV_TX_VALID;
  2705. } else {
  2706. np->tx_flags = NV_TX2_VALID;
  2707. }
  2708. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2709. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  2710. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2711. np->msi_flags |= 0x0003;
  2712. } else {
  2713. np->irqmask = NVREG_IRQMASK_CPU;
  2714. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2715. np->msi_flags |= 0x0001;
  2716. }
  2717. if (id->driver_data & DEV_NEED_TIMERIRQ)
  2718. np->irqmask |= NVREG_IRQ_TIMER;
  2719. if (id->driver_data & DEV_NEED_LINKTIMER) {
  2720. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  2721. np->need_linktimer = 1;
  2722. np->link_timeout = jiffies + LINK_TIMEOUT;
  2723. } else {
  2724. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  2725. np->need_linktimer = 0;
  2726. }
  2727. /* find a suitable phy */
  2728. for (i = 1; i <= 32; i++) {
  2729. int id1, id2;
  2730. int phyaddr = i & 0x1F;
  2731. spin_lock_irq(&np->lock);
  2732. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  2733. spin_unlock_irq(&np->lock);
  2734. if (id1 < 0 || id1 == 0xffff)
  2735. continue;
  2736. spin_lock_irq(&np->lock);
  2737. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  2738. spin_unlock_irq(&np->lock);
  2739. if (id2 < 0 || id2 == 0xffff)
  2740. continue;
  2741. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  2742. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  2743. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  2744. pci_name(pci_dev), id1, id2, phyaddr);
  2745. np->phyaddr = phyaddr;
  2746. np->phy_oui = id1 | id2;
  2747. break;
  2748. }
  2749. if (i == 33) {
  2750. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  2751. pci_name(pci_dev));
  2752. goto out_freering;
  2753. }
  2754. /* reset it */
  2755. phy_init(dev);
  2756. /* set default link speed settings */
  2757. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2758. np->duplex = 0;
  2759. np->autoneg = 1;
  2760. err = register_netdev(dev);
  2761. if (err) {
  2762. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  2763. goto out_freering;
  2764. }
  2765. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  2766. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  2767. pci_name(pci_dev));
  2768. return 0;
  2769. out_freering:
  2770. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2771. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2772. np->rx_ring.orig, np->ring_addr);
  2773. else
  2774. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2775. np->rx_ring.ex, np->ring_addr);
  2776. pci_set_drvdata(pci_dev, NULL);
  2777. out_unmap:
  2778. iounmap(get_hwbase(dev));
  2779. out_relreg:
  2780. pci_release_regions(pci_dev);
  2781. out_disable:
  2782. pci_disable_device(pci_dev);
  2783. out_free:
  2784. free_netdev(dev);
  2785. out:
  2786. return err;
  2787. }
  2788. static void __devexit nv_remove(struct pci_dev *pci_dev)
  2789. {
  2790. struct net_device *dev = pci_get_drvdata(pci_dev);
  2791. struct fe_priv *np = netdev_priv(dev);
  2792. unregister_netdev(dev);
  2793. /* free all structures */
  2794. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2795. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
  2796. else
  2797. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
  2798. iounmap(get_hwbase(dev));
  2799. pci_release_regions(pci_dev);
  2800. pci_disable_device(pci_dev);
  2801. free_netdev(dev);
  2802. pci_set_drvdata(pci_dev, NULL);
  2803. }
  2804. static struct pci_device_id pci_tbl[] = {
  2805. { /* nForce Ethernet Controller */
  2806. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  2807. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2808. },
  2809. { /* nForce2 Ethernet Controller */
  2810. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  2811. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2812. },
  2813. { /* nForce3 Ethernet Controller */
  2814. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  2815. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2816. },
  2817. { /* nForce3 Ethernet Controller */
  2818. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  2819. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2820. },
  2821. { /* nForce3 Ethernet Controller */
  2822. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  2823. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2824. },
  2825. { /* nForce3 Ethernet Controller */
  2826. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  2827. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2828. },
  2829. { /* nForce3 Ethernet Controller */
  2830. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  2831. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2832. },
  2833. { /* CK804 Ethernet Controller */
  2834. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  2835. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2836. },
  2837. { /* CK804 Ethernet Controller */
  2838. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  2839. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2840. },
  2841. { /* MCP04 Ethernet Controller */
  2842. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  2843. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2844. },
  2845. { /* MCP04 Ethernet Controller */
  2846. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  2847. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2848. },
  2849. { /* MCP51 Ethernet Controller */
  2850. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  2851. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
  2852. },
  2853. { /* MCP51 Ethernet Controller */
  2854. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  2855. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
  2856. },
  2857. { /* MCP55 Ethernet Controller */
  2858. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  2859. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X,
  2860. },
  2861. { /* MCP55 Ethernet Controller */
  2862. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  2863. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X,
  2864. },
  2865. {0,},
  2866. };
  2867. static struct pci_driver driver = {
  2868. .name = "forcedeth",
  2869. .id_table = pci_tbl,
  2870. .probe = nv_probe,
  2871. .remove = __devexit_p(nv_remove),
  2872. };
  2873. static int __init init_nic(void)
  2874. {
  2875. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  2876. return pci_module_init(&driver);
  2877. }
  2878. static void __exit exit_nic(void)
  2879. {
  2880. pci_unregister_driver(&driver);
  2881. }
  2882. module_param(max_interrupt_work, int, 0);
  2883. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  2884. module_param(optimization_mode, int, 0);
  2885. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  2886. module_param(poll_interval, int, 0);
  2887. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  2888. module_param(disable_msi, int, 0);
  2889. MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
  2890. module_param(disable_msix, int, 0);
  2891. MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
  2892. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  2893. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  2894. MODULE_LICENSE("GPL");
  2895. MODULE_DEVICE_TABLE(pci, pci_tbl);
  2896. module_init(init_nic);
  2897. module_exit(exit_nic);