messenger.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* static tag bytes (protocol control messages) */
  29. static char tag_msg = CEPH_MSGR_TAG_MSG;
  30. static char tag_ack = CEPH_MSGR_TAG_ACK;
  31. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  32. #ifdef CONFIG_LOCKDEP
  33. static struct lock_class_key socket_class;
  34. #endif
  35. /*
  36. * When skipping (ignoring) a block of input we read it into a "skip
  37. * buffer," which is this many bytes in size.
  38. */
  39. #define SKIP_BUF_SIZE 1024
  40. static void queue_con(struct ceph_connection *con);
  41. static void con_work(struct work_struct *);
  42. static void ceph_fault(struct ceph_connection *con);
  43. /*
  44. * Nicely render a sockaddr as a string. An array of formatted
  45. * strings is used, to approximate reentrancy.
  46. */
  47. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  48. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  49. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  50. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  51. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  52. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  53. static struct page *zero_page; /* used in certain error cases */
  54. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  55. {
  56. int i;
  57. char *s;
  58. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  59. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  60. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  61. s = addr_str[i];
  62. switch (ss->ss_family) {
  63. case AF_INET:
  64. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  65. ntohs(in4->sin_port));
  66. break;
  67. case AF_INET6:
  68. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  69. ntohs(in6->sin6_port));
  70. break;
  71. default:
  72. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  73. ss->ss_family);
  74. }
  75. return s;
  76. }
  77. EXPORT_SYMBOL(ceph_pr_addr);
  78. static void encode_my_addr(struct ceph_messenger *msgr)
  79. {
  80. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  81. ceph_encode_addr(&msgr->my_enc_addr);
  82. }
  83. /*
  84. * work queue for all reading and writing to/from the socket.
  85. */
  86. static struct workqueue_struct *ceph_msgr_wq;
  87. void _ceph_msgr_exit(void)
  88. {
  89. if (ceph_msgr_wq) {
  90. destroy_workqueue(ceph_msgr_wq);
  91. ceph_msgr_wq = NULL;
  92. }
  93. BUG_ON(zero_page == NULL);
  94. kunmap(zero_page);
  95. page_cache_release(zero_page);
  96. zero_page = NULL;
  97. }
  98. int ceph_msgr_init(void)
  99. {
  100. BUG_ON(zero_page != NULL);
  101. zero_page = ZERO_PAGE(0);
  102. page_cache_get(zero_page);
  103. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  104. if (ceph_msgr_wq)
  105. return 0;
  106. pr_err("msgr_init failed to create workqueue\n");
  107. _ceph_msgr_exit();
  108. return -ENOMEM;
  109. }
  110. EXPORT_SYMBOL(ceph_msgr_init);
  111. void ceph_msgr_exit(void)
  112. {
  113. BUG_ON(ceph_msgr_wq == NULL);
  114. _ceph_msgr_exit();
  115. }
  116. EXPORT_SYMBOL(ceph_msgr_exit);
  117. void ceph_msgr_flush(void)
  118. {
  119. flush_workqueue(ceph_msgr_wq);
  120. }
  121. EXPORT_SYMBOL(ceph_msgr_flush);
  122. /*
  123. * socket callback functions
  124. */
  125. /* data available on socket, or listen socket received a connect */
  126. static void ceph_data_ready(struct sock *sk, int count_unused)
  127. {
  128. struct ceph_connection *con = sk->sk_user_data;
  129. if (sk->sk_state != TCP_CLOSE_WAIT) {
  130. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  131. con, con->state);
  132. queue_con(con);
  133. }
  134. }
  135. /* socket has buffer space for writing */
  136. static void ceph_write_space(struct sock *sk)
  137. {
  138. struct ceph_connection *con = sk->sk_user_data;
  139. /* only queue to workqueue if there is data we want to write,
  140. * and there is sufficient space in the socket buffer to accept
  141. * more data. clear SOCK_NOSPACE so that ceph_write_space()
  142. * doesn't get called again until try_write() fills the socket
  143. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  144. * and net/core/stream.c:sk_stream_write_space().
  145. */
  146. if (test_bit(WRITE_PENDING, &con->state)) {
  147. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  148. dout("ceph_write_space %p queueing write work\n", con);
  149. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  150. queue_con(con);
  151. }
  152. } else {
  153. dout("ceph_write_space %p nothing to write\n", con);
  154. }
  155. }
  156. /* socket's state has changed */
  157. static void ceph_state_change(struct sock *sk)
  158. {
  159. struct ceph_connection *con = sk->sk_user_data;
  160. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  161. con, con->state, sk->sk_state);
  162. if (test_bit(CLOSED, &con->state))
  163. return;
  164. switch (sk->sk_state) {
  165. case TCP_CLOSE:
  166. dout("ceph_state_change TCP_CLOSE\n");
  167. case TCP_CLOSE_WAIT:
  168. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  169. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  170. if (test_bit(CONNECTING, &con->state))
  171. con->error_msg = "connection failed";
  172. else
  173. con->error_msg = "socket closed";
  174. queue_con(con);
  175. }
  176. break;
  177. case TCP_ESTABLISHED:
  178. dout("ceph_state_change TCP_ESTABLISHED\n");
  179. queue_con(con);
  180. break;
  181. default: /* Everything else is uninteresting */
  182. break;
  183. }
  184. }
  185. /*
  186. * set up socket callbacks
  187. */
  188. static void set_sock_callbacks(struct socket *sock,
  189. struct ceph_connection *con)
  190. {
  191. struct sock *sk = sock->sk;
  192. sk->sk_user_data = con;
  193. sk->sk_data_ready = ceph_data_ready;
  194. sk->sk_write_space = ceph_write_space;
  195. sk->sk_state_change = ceph_state_change;
  196. }
  197. /*
  198. * socket helpers
  199. */
  200. /*
  201. * initiate connection to a remote socket.
  202. */
  203. static int ceph_tcp_connect(struct ceph_connection *con)
  204. {
  205. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  206. struct socket *sock;
  207. int ret;
  208. BUG_ON(con->sock);
  209. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  210. IPPROTO_TCP, &sock);
  211. if (ret)
  212. return ret;
  213. sock->sk->sk_allocation = GFP_NOFS;
  214. #ifdef CONFIG_LOCKDEP
  215. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  216. #endif
  217. set_sock_callbacks(sock, con);
  218. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  219. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  220. O_NONBLOCK);
  221. if (ret == -EINPROGRESS) {
  222. dout("connect %s EINPROGRESS sk_state = %u\n",
  223. ceph_pr_addr(&con->peer_addr.in_addr),
  224. sock->sk->sk_state);
  225. } else if (ret < 0) {
  226. pr_err("connect %s error %d\n",
  227. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  228. sock_release(sock);
  229. con->error_msg = "connect error";
  230. return ret;
  231. }
  232. con->sock = sock;
  233. return 0;
  234. }
  235. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  236. {
  237. struct kvec iov = {buf, len};
  238. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  239. int r;
  240. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  241. if (r == -EAGAIN)
  242. r = 0;
  243. return r;
  244. }
  245. /*
  246. * write something. @more is true if caller will be sending more data
  247. * shortly.
  248. */
  249. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  250. size_t kvlen, size_t len, int more)
  251. {
  252. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  253. int r;
  254. if (more)
  255. msg.msg_flags |= MSG_MORE;
  256. else
  257. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  258. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  259. if (r == -EAGAIN)
  260. r = 0;
  261. return r;
  262. }
  263. static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
  264. int offset, size_t size, int more)
  265. {
  266. int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
  267. int ret;
  268. ret = kernel_sendpage(sock, page, offset, size, flags);
  269. if (ret == -EAGAIN)
  270. ret = 0;
  271. return ret;
  272. }
  273. /*
  274. * Shutdown/close the socket for the given connection.
  275. */
  276. static int con_close_socket(struct ceph_connection *con)
  277. {
  278. int rc;
  279. dout("con_close_socket on %p sock %p\n", con, con->sock);
  280. if (!con->sock)
  281. return 0;
  282. set_bit(SOCK_CLOSED, &con->state);
  283. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  284. sock_release(con->sock);
  285. con->sock = NULL;
  286. clear_bit(SOCK_CLOSED, &con->state);
  287. return rc;
  288. }
  289. /*
  290. * Reset a connection. Discard all incoming and outgoing messages
  291. * and clear *_seq state.
  292. */
  293. static void ceph_msg_remove(struct ceph_msg *msg)
  294. {
  295. list_del_init(&msg->list_head);
  296. ceph_msg_put(msg);
  297. }
  298. static void ceph_msg_remove_list(struct list_head *head)
  299. {
  300. while (!list_empty(head)) {
  301. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  302. list_head);
  303. ceph_msg_remove(msg);
  304. }
  305. }
  306. static void reset_connection(struct ceph_connection *con)
  307. {
  308. /* reset connection, out_queue, msg_ and connect_seq */
  309. /* discard existing out_queue and msg_seq */
  310. ceph_msg_remove_list(&con->out_queue);
  311. ceph_msg_remove_list(&con->out_sent);
  312. if (con->in_msg) {
  313. ceph_msg_put(con->in_msg);
  314. con->in_msg = NULL;
  315. }
  316. con->connect_seq = 0;
  317. con->out_seq = 0;
  318. if (con->out_msg) {
  319. ceph_msg_put(con->out_msg);
  320. con->out_msg = NULL;
  321. }
  322. con->in_seq = 0;
  323. con->in_seq_acked = 0;
  324. }
  325. /*
  326. * mark a peer down. drop any open connections.
  327. */
  328. void ceph_con_close(struct ceph_connection *con)
  329. {
  330. dout("con_close %p peer %s\n", con,
  331. ceph_pr_addr(&con->peer_addr.in_addr));
  332. set_bit(CLOSED, &con->state); /* in case there's queued work */
  333. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  334. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  335. clear_bit(KEEPALIVE_PENDING, &con->state);
  336. clear_bit(WRITE_PENDING, &con->state);
  337. mutex_lock(&con->mutex);
  338. reset_connection(con);
  339. con->peer_global_seq = 0;
  340. cancel_delayed_work(&con->work);
  341. mutex_unlock(&con->mutex);
  342. queue_con(con);
  343. }
  344. EXPORT_SYMBOL(ceph_con_close);
  345. /*
  346. * Reopen a closed connection, with a new peer address.
  347. */
  348. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  349. {
  350. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  351. set_bit(OPENING, &con->state);
  352. clear_bit(CLOSED, &con->state);
  353. memcpy(&con->peer_addr, addr, sizeof(*addr));
  354. con->delay = 0; /* reset backoff memory */
  355. queue_con(con);
  356. }
  357. EXPORT_SYMBOL(ceph_con_open);
  358. /*
  359. * return true if this connection ever successfully opened
  360. */
  361. bool ceph_con_opened(struct ceph_connection *con)
  362. {
  363. return con->connect_seq > 0;
  364. }
  365. /*
  366. * generic get/put
  367. */
  368. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  369. {
  370. int nref = __atomic_add_unless(&con->nref, 1, 0);
  371. dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
  372. return nref ? con : NULL;
  373. }
  374. void ceph_con_put(struct ceph_connection *con)
  375. {
  376. int nref = atomic_dec_return(&con->nref);
  377. BUG_ON(nref < 0);
  378. if (nref == 0) {
  379. BUG_ON(con->sock);
  380. kfree(con);
  381. }
  382. dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
  383. }
  384. /*
  385. * initialize a new connection.
  386. */
  387. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  388. {
  389. dout("con_init %p\n", con);
  390. memset(con, 0, sizeof(*con));
  391. atomic_set(&con->nref, 1);
  392. con->msgr = msgr;
  393. mutex_init(&con->mutex);
  394. INIT_LIST_HEAD(&con->out_queue);
  395. INIT_LIST_HEAD(&con->out_sent);
  396. INIT_DELAYED_WORK(&con->work, con_work);
  397. }
  398. EXPORT_SYMBOL(ceph_con_init);
  399. /*
  400. * We maintain a global counter to order connection attempts. Get
  401. * a unique seq greater than @gt.
  402. */
  403. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  404. {
  405. u32 ret;
  406. spin_lock(&msgr->global_seq_lock);
  407. if (msgr->global_seq < gt)
  408. msgr->global_seq = gt;
  409. ret = ++msgr->global_seq;
  410. spin_unlock(&msgr->global_seq_lock);
  411. return ret;
  412. }
  413. static void ceph_con_out_kvec_reset(struct ceph_connection *con)
  414. {
  415. con->out_kvec_left = 0;
  416. con->out_kvec_bytes = 0;
  417. con->out_kvec_cur = &con->out_kvec[0];
  418. }
  419. static void ceph_con_out_kvec_add(struct ceph_connection *con,
  420. size_t size, void *data)
  421. {
  422. int index;
  423. index = con->out_kvec_left;
  424. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  425. con->out_kvec[index].iov_len = size;
  426. con->out_kvec[index].iov_base = data;
  427. con->out_kvec_left++;
  428. con->out_kvec_bytes += size;
  429. }
  430. /*
  431. * Prepare footer for currently outgoing message, and finish things
  432. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  433. */
  434. static void prepare_write_message_footer(struct ceph_connection *con)
  435. {
  436. struct ceph_msg *m = con->out_msg;
  437. int v = con->out_kvec_left;
  438. dout("prepare_write_message_footer %p\n", con);
  439. con->out_kvec_is_msg = true;
  440. con->out_kvec[v].iov_base = &m->footer;
  441. con->out_kvec[v].iov_len = sizeof(m->footer);
  442. con->out_kvec_bytes += sizeof(m->footer);
  443. con->out_kvec_left++;
  444. con->out_more = m->more_to_follow;
  445. con->out_msg_done = true;
  446. }
  447. /*
  448. * Prepare headers for the next outgoing message.
  449. */
  450. static void prepare_write_message(struct ceph_connection *con)
  451. {
  452. struct ceph_msg *m;
  453. u32 crc;
  454. ceph_con_out_kvec_reset(con);
  455. con->out_kvec_is_msg = true;
  456. con->out_msg_done = false;
  457. /* Sneak an ack in there first? If we can get it into the same
  458. * TCP packet that's a good thing. */
  459. if (con->in_seq > con->in_seq_acked) {
  460. con->in_seq_acked = con->in_seq;
  461. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  462. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  463. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  464. &con->out_temp_ack);
  465. }
  466. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  467. con->out_msg = m;
  468. /* put message on sent list */
  469. ceph_msg_get(m);
  470. list_move_tail(&m->list_head, &con->out_sent);
  471. /*
  472. * only assign outgoing seq # if we haven't sent this message
  473. * yet. if it is requeued, resend with it's original seq.
  474. */
  475. if (m->needs_out_seq) {
  476. m->hdr.seq = cpu_to_le64(++con->out_seq);
  477. m->needs_out_seq = false;
  478. }
  479. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  480. m, con->out_seq, le16_to_cpu(m->hdr.type),
  481. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  482. le32_to_cpu(m->hdr.data_len),
  483. m->nr_pages);
  484. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  485. /* tag + hdr + front + middle */
  486. ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  487. ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  488. ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  489. if (m->middle)
  490. ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
  491. m->middle->vec.iov_base);
  492. /* fill in crc (except data pages), footer */
  493. crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
  494. con->out_msg->hdr.crc = cpu_to_le32(crc);
  495. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  496. crc = crc32c(0, m->front.iov_base, m->front.iov_len);
  497. con->out_msg->footer.front_crc = cpu_to_le32(crc);
  498. if (m->middle) {
  499. crc = crc32c(0, m->middle->vec.iov_base,
  500. m->middle->vec.iov_len);
  501. con->out_msg->footer.middle_crc = cpu_to_le32(crc);
  502. } else
  503. con->out_msg->footer.middle_crc = 0;
  504. con->out_msg->footer.data_crc = 0;
  505. dout("prepare_write_message front_crc %u data_crc %u\n",
  506. le32_to_cpu(con->out_msg->footer.front_crc),
  507. le32_to_cpu(con->out_msg->footer.middle_crc));
  508. /* is there a data payload? */
  509. if (le32_to_cpu(m->hdr.data_len) > 0) {
  510. /* initialize page iterator */
  511. con->out_msg_pos.page = 0;
  512. if (m->pages)
  513. con->out_msg_pos.page_pos = m->page_alignment;
  514. else
  515. con->out_msg_pos.page_pos = 0;
  516. con->out_msg_pos.data_pos = 0;
  517. con->out_msg_pos.did_page_crc = false;
  518. con->out_more = 1; /* data + footer will follow */
  519. } else {
  520. /* no, queue up footer too and be done */
  521. prepare_write_message_footer(con);
  522. }
  523. set_bit(WRITE_PENDING, &con->state);
  524. }
  525. /*
  526. * Prepare an ack.
  527. */
  528. static void prepare_write_ack(struct ceph_connection *con)
  529. {
  530. dout("prepare_write_ack %p %llu -> %llu\n", con,
  531. con->in_seq_acked, con->in_seq);
  532. con->in_seq_acked = con->in_seq;
  533. ceph_con_out_kvec_reset(con);
  534. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  535. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  536. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  537. &con->out_temp_ack);
  538. con->out_more = 1; /* more will follow.. eventually.. */
  539. set_bit(WRITE_PENDING, &con->state);
  540. }
  541. /*
  542. * Prepare to write keepalive byte.
  543. */
  544. static void prepare_write_keepalive(struct ceph_connection *con)
  545. {
  546. dout("prepare_write_keepalive %p\n", con);
  547. ceph_con_out_kvec_reset(con);
  548. ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  549. set_bit(WRITE_PENDING, &con->state);
  550. }
  551. /*
  552. * Connection negotiation.
  553. */
  554. static int prepare_connect_authorizer(struct ceph_connection *con)
  555. {
  556. void *auth_buf;
  557. int auth_len = 0;
  558. int auth_protocol = 0;
  559. mutex_unlock(&con->mutex);
  560. if (con->ops->get_authorizer)
  561. con->ops->get_authorizer(con, &auth_buf, &auth_len,
  562. &auth_protocol, &con->auth_reply_buf,
  563. &con->auth_reply_buf_len,
  564. con->auth_retry);
  565. mutex_lock(&con->mutex);
  566. if (test_bit(CLOSED, &con->state) ||
  567. test_bit(OPENING, &con->state))
  568. return -EAGAIN;
  569. con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
  570. con->out_connect.authorizer_len = cpu_to_le32(auth_len);
  571. if (auth_len)
  572. ceph_con_out_kvec_add(con, auth_len, auth_buf);
  573. return 0;
  574. }
  575. /*
  576. * We connected to a peer and are saying hello.
  577. */
  578. static void prepare_write_banner(struct ceph_messenger *msgr,
  579. struct ceph_connection *con)
  580. {
  581. ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  582. ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
  583. &msgr->my_enc_addr);
  584. con->out_more = 0;
  585. set_bit(WRITE_PENDING, &con->state);
  586. }
  587. static int prepare_write_connect(struct ceph_messenger *msgr,
  588. struct ceph_connection *con,
  589. int include_banner)
  590. {
  591. unsigned global_seq = get_global_seq(con->msgr, 0);
  592. int proto;
  593. switch (con->peer_name.type) {
  594. case CEPH_ENTITY_TYPE_MON:
  595. proto = CEPH_MONC_PROTOCOL;
  596. break;
  597. case CEPH_ENTITY_TYPE_OSD:
  598. proto = CEPH_OSDC_PROTOCOL;
  599. break;
  600. case CEPH_ENTITY_TYPE_MDS:
  601. proto = CEPH_MDSC_PROTOCOL;
  602. break;
  603. default:
  604. BUG();
  605. }
  606. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  607. con->connect_seq, global_seq, proto);
  608. con->out_connect.features = cpu_to_le64(msgr->supported_features);
  609. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  610. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  611. con->out_connect.global_seq = cpu_to_le32(global_seq);
  612. con->out_connect.protocol_version = cpu_to_le32(proto);
  613. con->out_connect.flags = 0;
  614. ceph_con_out_kvec_reset(con);
  615. if (include_banner)
  616. prepare_write_banner(msgr, con);
  617. ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
  618. con->out_more = 0;
  619. set_bit(WRITE_PENDING, &con->state);
  620. return prepare_connect_authorizer(con);
  621. }
  622. /*
  623. * write as much of pending kvecs to the socket as we can.
  624. * 1 -> done
  625. * 0 -> socket full, but more to do
  626. * <0 -> error
  627. */
  628. static int write_partial_kvec(struct ceph_connection *con)
  629. {
  630. int ret;
  631. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  632. while (con->out_kvec_bytes > 0) {
  633. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  634. con->out_kvec_left, con->out_kvec_bytes,
  635. con->out_more);
  636. if (ret <= 0)
  637. goto out;
  638. con->out_kvec_bytes -= ret;
  639. if (con->out_kvec_bytes == 0)
  640. break; /* done */
  641. /* account for full iov entries consumed */
  642. while (ret >= con->out_kvec_cur->iov_len) {
  643. BUG_ON(!con->out_kvec_left);
  644. ret -= con->out_kvec_cur->iov_len;
  645. con->out_kvec_cur++;
  646. con->out_kvec_left--;
  647. }
  648. /* and for a partially-consumed entry */
  649. if (ret) {
  650. con->out_kvec_cur->iov_len -= ret;
  651. con->out_kvec_cur->iov_base += ret;
  652. }
  653. }
  654. con->out_kvec_left = 0;
  655. con->out_kvec_is_msg = false;
  656. ret = 1;
  657. out:
  658. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  659. con->out_kvec_bytes, con->out_kvec_left, ret);
  660. return ret; /* done! */
  661. }
  662. #ifdef CONFIG_BLOCK
  663. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  664. {
  665. if (!bio) {
  666. *iter = NULL;
  667. *seg = 0;
  668. return;
  669. }
  670. *iter = bio;
  671. *seg = bio->bi_idx;
  672. }
  673. static void iter_bio_next(struct bio **bio_iter, int *seg)
  674. {
  675. if (*bio_iter == NULL)
  676. return;
  677. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  678. (*seg)++;
  679. if (*seg == (*bio_iter)->bi_vcnt)
  680. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  681. }
  682. #endif
  683. /*
  684. * Write as much message data payload as we can. If we finish, queue
  685. * up the footer.
  686. * 1 -> done, footer is now queued in out_kvec[].
  687. * 0 -> socket full, but more to do
  688. * <0 -> error
  689. */
  690. static int write_partial_msg_pages(struct ceph_connection *con)
  691. {
  692. struct ceph_msg *msg = con->out_msg;
  693. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  694. size_t len;
  695. bool do_datacrc = !con->msgr->nocrc;
  696. int ret;
  697. int total_max_write;
  698. int in_trail = 0;
  699. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  700. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  701. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  702. con->out_msg_pos.page_pos);
  703. #ifdef CONFIG_BLOCK
  704. if (msg->bio && !msg->bio_iter)
  705. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  706. #endif
  707. while (data_len > con->out_msg_pos.data_pos) {
  708. struct page *page = NULL;
  709. int max_write = PAGE_SIZE;
  710. int bio_offset = 0;
  711. total_max_write = data_len - trail_len -
  712. con->out_msg_pos.data_pos;
  713. /*
  714. * if we are calculating the data crc (the default), we need
  715. * to map the page. if our pages[] has been revoked, use the
  716. * zero page.
  717. */
  718. /* have we reached the trail part of the data? */
  719. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  720. in_trail = 1;
  721. total_max_write = data_len - con->out_msg_pos.data_pos;
  722. page = list_first_entry(&msg->trail->head,
  723. struct page, lru);
  724. max_write = PAGE_SIZE;
  725. } else if (msg->pages) {
  726. page = msg->pages[con->out_msg_pos.page];
  727. } else if (msg->pagelist) {
  728. page = list_first_entry(&msg->pagelist->head,
  729. struct page, lru);
  730. #ifdef CONFIG_BLOCK
  731. } else if (msg->bio) {
  732. struct bio_vec *bv;
  733. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  734. page = bv->bv_page;
  735. bio_offset = bv->bv_offset;
  736. max_write = bv->bv_len;
  737. #endif
  738. } else {
  739. page = zero_page;
  740. }
  741. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  742. total_max_write);
  743. if (do_datacrc && !con->out_msg_pos.did_page_crc) {
  744. void *base;
  745. u32 crc;
  746. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  747. char *kaddr;
  748. kaddr = kmap(page);
  749. BUG_ON(kaddr == NULL);
  750. base = kaddr + con->out_msg_pos.page_pos + bio_offset;
  751. crc = crc32c(tmpcrc, base, len);
  752. con->out_msg->footer.data_crc = cpu_to_le32(crc);
  753. con->out_msg_pos.did_page_crc = true;
  754. }
  755. ret = ceph_tcp_sendpage(con->sock, page,
  756. con->out_msg_pos.page_pos + bio_offset,
  757. len, 1);
  758. if (do_datacrc)
  759. kunmap(page);
  760. if (ret <= 0)
  761. goto out;
  762. con->out_msg_pos.data_pos += ret;
  763. con->out_msg_pos.page_pos += ret;
  764. if (ret == len) {
  765. con->out_msg_pos.page_pos = 0;
  766. con->out_msg_pos.page++;
  767. con->out_msg_pos.did_page_crc = false;
  768. if (in_trail)
  769. list_move_tail(&page->lru,
  770. &msg->trail->head);
  771. else if (msg->pagelist)
  772. list_move_tail(&page->lru,
  773. &msg->pagelist->head);
  774. #ifdef CONFIG_BLOCK
  775. else if (msg->bio)
  776. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  777. #endif
  778. }
  779. }
  780. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  781. /* prepare and queue up footer, too */
  782. if (!do_datacrc)
  783. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  784. ceph_con_out_kvec_reset(con);
  785. prepare_write_message_footer(con);
  786. ret = 1;
  787. out:
  788. return ret;
  789. }
  790. /*
  791. * write some zeros
  792. */
  793. static int write_partial_skip(struct ceph_connection *con)
  794. {
  795. int ret;
  796. while (con->out_skip > 0) {
  797. size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
  798. ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
  799. if (ret <= 0)
  800. goto out;
  801. con->out_skip -= ret;
  802. }
  803. ret = 1;
  804. out:
  805. return ret;
  806. }
  807. /*
  808. * Prepare to read connection handshake, or an ack.
  809. */
  810. static void prepare_read_banner(struct ceph_connection *con)
  811. {
  812. dout("prepare_read_banner %p\n", con);
  813. con->in_base_pos = 0;
  814. }
  815. static void prepare_read_connect(struct ceph_connection *con)
  816. {
  817. dout("prepare_read_connect %p\n", con);
  818. con->in_base_pos = 0;
  819. }
  820. static void prepare_read_ack(struct ceph_connection *con)
  821. {
  822. dout("prepare_read_ack %p\n", con);
  823. con->in_base_pos = 0;
  824. }
  825. static void prepare_read_tag(struct ceph_connection *con)
  826. {
  827. dout("prepare_read_tag %p\n", con);
  828. con->in_base_pos = 0;
  829. con->in_tag = CEPH_MSGR_TAG_READY;
  830. }
  831. /*
  832. * Prepare to read a message.
  833. */
  834. static int prepare_read_message(struct ceph_connection *con)
  835. {
  836. dout("prepare_read_message %p\n", con);
  837. BUG_ON(con->in_msg != NULL);
  838. con->in_base_pos = 0;
  839. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  840. return 0;
  841. }
  842. static int read_partial(struct ceph_connection *con,
  843. int end, int size, void *object)
  844. {
  845. while (con->in_base_pos < end) {
  846. int left = end - con->in_base_pos;
  847. int have = size - left;
  848. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  849. if (ret <= 0)
  850. return ret;
  851. con->in_base_pos += ret;
  852. }
  853. return 1;
  854. }
  855. /*
  856. * Read all or part of the connect-side handshake on a new connection
  857. */
  858. static int read_partial_banner(struct ceph_connection *con)
  859. {
  860. int size;
  861. int end;
  862. int ret;
  863. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  864. /* peer's banner */
  865. size = strlen(CEPH_BANNER);
  866. end = size;
  867. ret = read_partial(con, end, size, con->in_banner);
  868. if (ret <= 0)
  869. goto out;
  870. size = sizeof (con->actual_peer_addr);
  871. end += size;
  872. ret = read_partial(con, end, size, &con->actual_peer_addr);
  873. if (ret <= 0)
  874. goto out;
  875. size = sizeof (con->peer_addr_for_me);
  876. end += size;
  877. ret = read_partial(con, end, size, &con->peer_addr_for_me);
  878. if (ret <= 0)
  879. goto out;
  880. out:
  881. return ret;
  882. }
  883. static int read_partial_connect(struct ceph_connection *con)
  884. {
  885. int size;
  886. int end;
  887. int ret;
  888. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  889. size = sizeof (con->in_reply);
  890. end = size;
  891. ret = read_partial(con, end, size, &con->in_reply);
  892. if (ret <= 0)
  893. goto out;
  894. size = le32_to_cpu(con->in_reply.authorizer_len);
  895. end += size;
  896. ret = read_partial(con, end, size, con->auth_reply_buf);
  897. if (ret <= 0)
  898. goto out;
  899. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  900. con, (int)con->in_reply.tag,
  901. le32_to_cpu(con->in_reply.connect_seq),
  902. le32_to_cpu(con->in_reply.global_seq));
  903. out:
  904. return ret;
  905. }
  906. /*
  907. * Verify the hello banner looks okay.
  908. */
  909. static int verify_hello(struct ceph_connection *con)
  910. {
  911. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  912. pr_err("connect to %s got bad banner\n",
  913. ceph_pr_addr(&con->peer_addr.in_addr));
  914. con->error_msg = "protocol error, bad banner";
  915. return -1;
  916. }
  917. return 0;
  918. }
  919. static bool addr_is_blank(struct sockaddr_storage *ss)
  920. {
  921. switch (ss->ss_family) {
  922. case AF_INET:
  923. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  924. case AF_INET6:
  925. return
  926. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  927. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  928. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  929. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  930. }
  931. return false;
  932. }
  933. static int addr_port(struct sockaddr_storage *ss)
  934. {
  935. switch (ss->ss_family) {
  936. case AF_INET:
  937. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  938. case AF_INET6:
  939. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  940. }
  941. return 0;
  942. }
  943. static void addr_set_port(struct sockaddr_storage *ss, int p)
  944. {
  945. switch (ss->ss_family) {
  946. case AF_INET:
  947. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  948. break;
  949. case AF_INET6:
  950. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  951. break;
  952. }
  953. }
  954. /*
  955. * Unlike other *_pton function semantics, zero indicates success.
  956. */
  957. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  958. char delim, const char **ipend)
  959. {
  960. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  961. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  962. memset(ss, 0, sizeof(*ss));
  963. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  964. ss->ss_family = AF_INET;
  965. return 0;
  966. }
  967. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  968. ss->ss_family = AF_INET6;
  969. return 0;
  970. }
  971. return -EINVAL;
  972. }
  973. /*
  974. * Extract hostname string and resolve using kernel DNS facility.
  975. */
  976. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  977. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  978. struct sockaddr_storage *ss, char delim, const char **ipend)
  979. {
  980. const char *end, *delim_p;
  981. char *colon_p, *ip_addr = NULL;
  982. int ip_len, ret;
  983. /*
  984. * The end of the hostname occurs immediately preceding the delimiter or
  985. * the port marker (':') where the delimiter takes precedence.
  986. */
  987. delim_p = memchr(name, delim, namelen);
  988. colon_p = memchr(name, ':', namelen);
  989. if (delim_p && colon_p)
  990. end = delim_p < colon_p ? delim_p : colon_p;
  991. else if (!delim_p && colon_p)
  992. end = colon_p;
  993. else {
  994. end = delim_p;
  995. if (!end) /* case: hostname:/ */
  996. end = name + namelen;
  997. }
  998. if (end <= name)
  999. return -EINVAL;
  1000. /* do dns_resolve upcall */
  1001. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  1002. if (ip_len > 0)
  1003. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1004. else
  1005. ret = -ESRCH;
  1006. kfree(ip_addr);
  1007. *ipend = end;
  1008. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1009. ret, ret ? "failed" : ceph_pr_addr(ss));
  1010. return ret;
  1011. }
  1012. #else
  1013. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1014. struct sockaddr_storage *ss, char delim, const char **ipend)
  1015. {
  1016. return -EINVAL;
  1017. }
  1018. #endif
  1019. /*
  1020. * Parse a server name (IP or hostname). If a valid IP address is not found
  1021. * then try to extract a hostname to resolve using userspace DNS upcall.
  1022. */
  1023. static int ceph_parse_server_name(const char *name, size_t namelen,
  1024. struct sockaddr_storage *ss, char delim, const char **ipend)
  1025. {
  1026. int ret;
  1027. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1028. if (ret)
  1029. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1030. return ret;
  1031. }
  1032. /*
  1033. * Parse an ip[:port] list into an addr array. Use the default
  1034. * monitor port if a port isn't specified.
  1035. */
  1036. int ceph_parse_ips(const char *c, const char *end,
  1037. struct ceph_entity_addr *addr,
  1038. int max_count, int *count)
  1039. {
  1040. int i, ret = -EINVAL;
  1041. const char *p = c;
  1042. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1043. for (i = 0; i < max_count; i++) {
  1044. const char *ipend;
  1045. struct sockaddr_storage *ss = &addr[i].in_addr;
  1046. int port;
  1047. char delim = ',';
  1048. if (*p == '[') {
  1049. delim = ']';
  1050. p++;
  1051. }
  1052. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1053. if (ret)
  1054. goto bad;
  1055. ret = -EINVAL;
  1056. p = ipend;
  1057. if (delim == ']') {
  1058. if (*p != ']') {
  1059. dout("missing matching ']'\n");
  1060. goto bad;
  1061. }
  1062. p++;
  1063. }
  1064. /* port? */
  1065. if (p < end && *p == ':') {
  1066. port = 0;
  1067. p++;
  1068. while (p < end && *p >= '0' && *p <= '9') {
  1069. port = (port * 10) + (*p - '0');
  1070. p++;
  1071. }
  1072. if (port > 65535 || port == 0)
  1073. goto bad;
  1074. } else {
  1075. port = CEPH_MON_PORT;
  1076. }
  1077. addr_set_port(ss, port);
  1078. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1079. if (p == end)
  1080. break;
  1081. if (*p != ',')
  1082. goto bad;
  1083. p++;
  1084. }
  1085. if (p != end)
  1086. goto bad;
  1087. if (count)
  1088. *count = i + 1;
  1089. return 0;
  1090. bad:
  1091. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1092. return ret;
  1093. }
  1094. EXPORT_SYMBOL(ceph_parse_ips);
  1095. static int process_banner(struct ceph_connection *con)
  1096. {
  1097. dout("process_banner on %p\n", con);
  1098. if (verify_hello(con) < 0)
  1099. return -1;
  1100. ceph_decode_addr(&con->actual_peer_addr);
  1101. ceph_decode_addr(&con->peer_addr_for_me);
  1102. /*
  1103. * Make sure the other end is who we wanted. note that the other
  1104. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1105. * them the benefit of the doubt.
  1106. */
  1107. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1108. sizeof(con->peer_addr)) != 0 &&
  1109. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1110. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1111. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1112. ceph_pr_addr(&con->peer_addr.in_addr),
  1113. (int)le32_to_cpu(con->peer_addr.nonce),
  1114. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1115. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1116. con->error_msg = "wrong peer at address";
  1117. return -1;
  1118. }
  1119. /*
  1120. * did we learn our address?
  1121. */
  1122. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1123. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1124. memcpy(&con->msgr->inst.addr.in_addr,
  1125. &con->peer_addr_for_me.in_addr,
  1126. sizeof(con->peer_addr_for_me.in_addr));
  1127. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1128. encode_my_addr(con->msgr);
  1129. dout("process_banner learned my addr is %s\n",
  1130. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1131. }
  1132. set_bit(NEGOTIATING, &con->state);
  1133. prepare_read_connect(con);
  1134. return 0;
  1135. }
  1136. static void fail_protocol(struct ceph_connection *con)
  1137. {
  1138. reset_connection(con);
  1139. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1140. mutex_unlock(&con->mutex);
  1141. if (con->ops->bad_proto)
  1142. con->ops->bad_proto(con);
  1143. mutex_lock(&con->mutex);
  1144. }
  1145. static int process_connect(struct ceph_connection *con)
  1146. {
  1147. u64 sup_feat = con->msgr->supported_features;
  1148. u64 req_feat = con->msgr->required_features;
  1149. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1150. int ret;
  1151. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1152. switch (con->in_reply.tag) {
  1153. case CEPH_MSGR_TAG_FEATURES:
  1154. pr_err("%s%lld %s feature set mismatch,"
  1155. " my %llx < server's %llx, missing %llx\n",
  1156. ENTITY_NAME(con->peer_name),
  1157. ceph_pr_addr(&con->peer_addr.in_addr),
  1158. sup_feat, server_feat, server_feat & ~sup_feat);
  1159. con->error_msg = "missing required protocol features";
  1160. fail_protocol(con);
  1161. return -1;
  1162. case CEPH_MSGR_TAG_BADPROTOVER:
  1163. pr_err("%s%lld %s protocol version mismatch,"
  1164. " my %d != server's %d\n",
  1165. ENTITY_NAME(con->peer_name),
  1166. ceph_pr_addr(&con->peer_addr.in_addr),
  1167. le32_to_cpu(con->out_connect.protocol_version),
  1168. le32_to_cpu(con->in_reply.protocol_version));
  1169. con->error_msg = "protocol version mismatch";
  1170. fail_protocol(con);
  1171. return -1;
  1172. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1173. con->auth_retry++;
  1174. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1175. con->auth_retry);
  1176. if (con->auth_retry == 2) {
  1177. con->error_msg = "connect authorization failure";
  1178. return -1;
  1179. }
  1180. con->auth_retry = 1;
  1181. ret = prepare_write_connect(con->msgr, con, 0);
  1182. if (ret < 0)
  1183. return ret;
  1184. prepare_read_connect(con);
  1185. break;
  1186. case CEPH_MSGR_TAG_RESETSESSION:
  1187. /*
  1188. * If we connected with a large connect_seq but the peer
  1189. * has no record of a session with us (no connection, or
  1190. * connect_seq == 0), they will send RESETSESION to indicate
  1191. * that they must have reset their session, and may have
  1192. * dropped messages.
  1193. */
  1194. dout("process_connect got RESET peer seq %u\n",
  1195. le32_to_cpu(con->in_connect.connect_seq));
  1196. pr_err("%s%lld %s connection reset\n",
  1197. ENTITY_NAME(con->peer_name),
  1198. ceph_pr_addr(&con->peer_addr.in_addr));
  1199. reset_connection(con);
  1200. prepare_write_connect(con->msgr, con, 0);
  1201. prepare_read_connect(con);
  1202. /* Tell ceph about it. */
  1203. mutex_unlock(&con->mutex);
  1204. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1205. if (con->ops->peer_reset)
  1206. con->ops->peer_reset(con);
  1207. mutex_lock(&con->mutex);
  1208. if (test_bit(CLOSED, &con->state) ||
  1209. test_bit(OPENING, &con->state))
  1210. return -EAGAIN;
  1211. break;
  1212. case CEPH_MSGR_TAG_RETRY_SESSION:
  1213. /*
  1214. * If we sent a smaller connect_seq than the peer has, try
  1215. * again with a larger value.
  1216. */
  1217. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1218. le32_to_cpu(con->out_connect.connect_seq),
  1219. le32_to_cpu(con->in_connect.connect_seq));
  1220. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1221. prepare_write_connect(con->msgr, con, 0);
  1222. prepare_read_connect(con);
  1223. break;
  1224. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1225. /*
  1226. * If we sent a smaller global_seq than the peer has, try
  1227. * again with a larger value.
  1228. */
  1229. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1230. con->peer_global_seq,
  1231. le32_to_cpu(con->in_connect.global_seq));
  1232. get_global_seq(con->msgr,
  1233. le32_to_cpu(con->in_connect.global_seq));
  1234. prepare_write_connect(con->msgr, con, 0);
  1235. prepare_read_connect(con);
  1236. break;
  1237. case CEPH_MSGR_TAG_READY:
  1238. if (req_feat & ~server_feat) {
  1239. pr_err("%s%lld %s protocol feature mismatch,"
  1240. " my required %llx > server's %llx, need %llx\n",
  1241. ENTITY_NAME(con->peer_name),
  1242. ceph_pr_addr(&con->peer_addr.in_addr),
  1243. req_feat, server_feat, req_feat & ~server_feat);
  1244. con->error_msg = "missing required protocol features";
  1245. fail_protocol(con);
  1246. return -1;
  1247. }
  1248. clear_bit(CONNECTING, &con->state);
  1249. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1250. con->connect_seq++;
  1251. con->peer_features = server_feat;
  1252. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1253. con->peer_global_seq,
  1254. le32_to_cpu(con->in_reply.connect_seq),
  1255. con->connect_seq);
  1256. WARN_ON(con->connect_seq !=
  1257. le32_to_cpu(con->in_reply.connect_seq));
  1258. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1259. set_bit(LOSSYTX, &con->state);
  1260. prepare_read_tag(con);
  1261. break;
  1262. case CEPH_MSGR_TAG_WAIT:
  1263. /*
  1264. * If there is a connection race (we are opening
  1265. * connections to each other), one of us may just have
  1266. * to WAIT. This shouldn't happen if we are the
  1267. * client.
  1268. */
  1269. pr_err("process_connect got WAIT as client\n");
  1270. con->error_msg = "protocol error, got WAIT as client";
  1271. return -1;
  1272. default:
  1273. pr_err("connect protocol error, will retry\n");
  1274. con->error_msg = "protocol error, garbage tag during connect";
  1275. return -1;
  1276. }
  1277. return 0;
  1278. }
  1279. /*
  1280. * read (part of) an ack
  1281. */
  1282. static int read_partial_ack(struct ceph_connection *con)
  1283. {
  1284. int size = sizeof (con->in_temp_ack);
  1285. int end = size;
  1286. return read_partial(con, end, size, &con->in_temp_ack);
  1287. }
  1288. /*
  1289. * We can finally discard anything that's been acked.
  1290. */
  1291. static void process_ack(struct ceph_connection *con)
  1292. {
  1293. struct ceph_msg *m;
  1294. u64 ack = le64_to_cpu(con->in_temp_ack);
  1295. u64 seq;
  1296. while (!list_empty(&con->out_sent)) {
  1297. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1298. list_head);
  1299. seq = le64_to_cpu(m->hdr.seq);
  1300. if (seq > ack)
  1301. break;
  1302. dout("got ack for seq %llu type %d at %p\n", seq,
  1303. le16_to_cpu(m->hdr.type), m);
  1304. m->ack_stamp = jiffies;
  1305. ceph_msg_remove(m);
  1306. }
  1307. prepare_read_tag(con);
  1308. }
  1309. static int read_partial_message_section(struct ceph_connection *con,
  1310. struct kvec *section,
  1311. unsigned int sec_len, u32 *crc)
  1312. {
  1313. int ret, left;
  1314. BUG_ON(!section);
  1315. while (section->iov_len < sec_len) {
  1316. BUG_ON(section->iov_base == NULL);
  1317. left = sec_len - section->iov_len;
  1318. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1319. section->iov_len, left);
  1320. if (ret <= 0)
  1321. return ret;
  1322. section->iov_len += ret;
  1323. }
  1324. if (section->iov_len == sec_len)
  1325. *crc = crc32c(0, section->iov_base, section->iov_len);
  1326. return 1;
  1327. }
  1328. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1329. struct ceph_msg_header *hdr,
  1330. int *skip);
  1331. static int read_partial_message_pages(struct ceph_connection *con,
  1332. struct page **pages,
  1333. unsigned data_len, bool do_datacrc)
  1334. {
  1335. void *p;
  1336. int ret;
  1337. int left;
  1338. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1339. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1340. /* (page) data */
  1341. BUG_ON(pages == NULL);
  1342. p = kmap(pages[con->in_msg_pos.page]);
  1343. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1344. left);
  1345. if (ret > 0 && do_datacrc)
  1346. con->in_data_crc =
  1347. crc32c(con->in_data_crc,
  1348. p + con->in_msg_pos.page_pos, ret);
  1349. kunmap(pages[con->in_msg_pos.page]);
  1350. if (ret <= 0)
  1351. return ret;
  1352. con->in_msg_pos.data_pos += ret;
  1353. con->in_msg_pos.page_pos += ret;
  1354. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1355. con->in_msg_pos.page_pos = 0;
  1356. con->in_msg_pos.page++;
  1357. }
  1358. return ret;
  1359. }
  1360. #ifdef CONFIG_BLOCK
  1361. static int read_partial_message_bio(struct ceph_connection *con,
  1362. struct bio **bio_iter, int *bio_seg,
  1363. unsigned data_len, bool do_datacrc)
  1364. {
  1365. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1366. void *p;
  1367. int ret, left;
  1368. if (IS_ERR(bv))
  1369. return PTR_ERR(bv);
  1370. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1371. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1372. p = kmap(bv->bv_page) + bv->bv_offset;
  1373. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1374. left);
  1375. if (ret > 0 && do_datacrc)
  1376. con->in_data_crc =
  1377. crc32c(con->in_data_crc,
  1378. p + con->in_msg_pos.page_pos, ret);
  1379. kunmap(bv->bv_page);
  1380. if (ret <= 0)
  1381. return ret;
  1382. con->in_msg_pos.data_pos += ret;
  1383. con->in_msg_pos.page_pos += ret;
  1384. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1385. con->in_msg_pos.page_pos = 0;
  1386. iter_bio_next(bio_iter, bio_seg);
  1387. }
  1388. return ret;
  1389. }
  1390. #endif
  1391. /*
  1392. * read (part of) a message.
  1393. */
  1394. static int read_partial_message(struct ceph_connection *con)
  1395. {
  1396. struct ceph_msg *m = con->in_msg;
  1397. int size;
  1398. int end;
  1399. int ret;
  1400. unsigned front_len, middle_len, data_len;
  1401. bool do_datacrc = !con->msgr->nocrc;
  1402. int skip;
  1403. u64 seq;
  1404. u32 crc;
  1405. dout("read_partial_message con %p msg %p\n", con, m);
  1406. /* header */
  1407. size = sizeof (con->in_hdr);
  1408. end = size;
  1409. ret = read_partial(con, end, size, &con->in_hdr);
  1410. if (ret <= 0)
  1411. return ret;
  1412. crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
  1413. if (cpu_to_le32(crc) != con->in_hdr.crc) {
  1414. pr_err("read_partial_message bad hdr "
  1415. " crc %u != expected %u\n",
  1416. crc, con->in_hdr.crc);
  1417. return -EBADMSG;
  1418. }
  1419. front_len = le32_to_cpu(con->in_hdr.front_len);
  1420. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1421. return -EIO;
  1422. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1423. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1424. return -EIO;
  1425. data_len = le32_to_cpu(con->in_hdr.data_len);
  1426. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1427. return -EIO;
  1428. /* verify seq# */
  1429. seq = le64_to_cpu(con->in_hdr.seq);
  1430. if ((s64)seq - (s64)con->in_seq < 1) {
  1431. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1432. ENTITY_NAME(con->peer_name),
  1433. ceph_pr_addr(&con->peer_addr.in_addr),
  1434. seq, con->in_seq + 1);
  1435. con->in_base_pos = -front_len - middle_len - data_len -
  1436. sizeof(m->footer);
  1437. con->in_tag = CEPH_MSGR_TAG_READY;
  1438. return 0;
  1439. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1440. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1441. seq, con->in_seq + 1);
  1442. con->error_msg = "bad message sequence # for incoming message";
  1443. return -EBADMSG;
  1444. }
  1445. /* allocate message? */
  1446. if (!con->in_msg) {
  1447. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1448. con->in_hdr.front_len, con->in_hdr.data_len);
  1449. skip = 0;
  1450. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1451. if (skip) {
  1452. /* skip this message */
  1453. dout("alloc_msg said skip message\n");
  1454. BUG_ON(con->in_msg);
  1455. con->in_base_pos = -front_len - middle_len - data_len -
  1456. sizeof(m->footer);
  1457. con->in_tag = CEPH_MSGR_TAG_READY;
  1458. con->in_seq++;
  1459. return 0;
  1460. }
  1461. if (!con->in_msg) {
  1462. con->error_msg =
  1463. "error allocating memory for incoming message";
  1464. return -ENOMEM;
  1465. }
  1466. m = con->in_msg;
  1467. m->front.iov_len = 0; /* haven't read it yet */
  1468. if (m->middle)
  1469. m->middle->vec.iov_len = 0;
  1470. con->in_msg_pos.page = 0;
  1471. if (m->pages)
  1472. con->in_msg_pos.page_pos = m->page_alignment;
  1473. else
  1474. con->in_msg_pos.page_pos = 0;
  1475. con->in_msg_pos.data_pos = 0;
  1476. }
  1477. /* front */
  1478. ret = read_partial_message_section(con, &m->front, front_len,
  1479. &con->in_front_crc);
  1480. if (ret <= 0)
  1481. return ret;
  1482. /* middle */
  1483. if (m->middle) {
  1484. ret = read_partial_message_section(con, &m->middle->vec,
  1485. middle_len,
  1486. &con->in_middle_crc);
  1487. if (ret <= 0)
  1488. return ret;
  1489. }
  1490. #ifdef CONFIG_BLOCK
  1491. if (m->bio && !m->bio_iter)
  1492. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1493. #endif
  1494. /* (page) data */
  1495. while (con->in_msg_pos.data_pos < data_len) {
  1496. if (m->pages) {
  1497. ret = read_partial_message_pages(con, m->pages,
  1498. data_len, do_datacrc);
  1499. if (ret <= 0)
  1500. return ret;
  1501. #ifdef CONFIG_BLOCK
  1502. } else if (m->bio) {
  1503. ret = read_partial_message_bio(con,
  1504. &m->bio_iter, &m->bio_seg,
  1505. data_len, do_datacrc);
  1506. if (ret <= 0)
  1507. return ret;
  1508. #endif
  1509. } else {
  1510. BUG_ON(1);
  1511. }
  1512. }
  1513. /* footer */
  1514. size = sizeof (m->footer);
  1515. end += size;
  1516. ret = read_partial(con, end, size, &m->footer);
  1517. if (ret <= 0)
  1518. return ret;
  1519. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1520. m, front_len, m->footer.front_crc, middle_len,
  1521. m->footer.middle_crc, data_len, m->footer.data_crc);
  1522. /* crc ok? */
  1523. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1524. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1525. m, con->in_front_crc, m->footer.front_crc);
  1526. return -EBADMSG;
  1527. }
  1528. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1529. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1530. m, con->in_middle_crc, m->footer.middle_crc);
  1531. return -EBADMSG;
  1532. }
  1533. if (do_datacrc &&
  1534. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1535. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1536. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1537. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1538. return -EBADMSG;
  1539. }
  1540. return 1; /* done! */
  1541. }
  1542. /*
  1543. * Process message. This happens in the worker thread. The callback should
  1544. * be careful not to do anything that waits on other incoming messages or it
  1545. * may deadlock.
  1546. */
  1547. static void process_message(struct ceph_connection *con)
  1548. {
  1549. struct ceph_msg *msg;
  1550. msg = con->in_msg;
  1551. con->in_msg = NULL;
  1552. /* if first message, set peer_name */
  1553. if (con->peer_name.type == 0)
  1554. con->peer_name = msg->hdr.src;
  1555. con->in_seq++;
  1556. mutex_unlock(&con->mutex);
  1557. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1558. msg, le64_to_cpu(msg->hdr.seq),
  1559. ENTITY_NAME(msg->hdr.src),
  1560. le16_to_cpu(msg->hdr.type),
  1561. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1562. le32_to_cpu(msg->hdr.front_len),
  1563. le32_to_cpu(msg->hdr.data_len),
  1564. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1565. con->ops->dispatch(con, msg);
  1566. mutex_lock(&con->mutex);
  1567. prepare_read_tag(con);
  1568. }
  1569. /*
  1570. * Write something to the socket. Called in a worker thread when the
  1571. * socket appears to be writeable and we have something ready to send.
  1572. */
  1573. static int try_write(struct ceph_connection *con)
  1574. {
  1575. struct ceph_messenger *msgr = con->msgr;
  1576. int ret = 1;
  1577. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1578. atomic_read(&con->nref));
  1579. more:
  1580. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1581. /* open the socket first? */
  1582. if (con->sock == NULL) {
  1583. prepare_write_connect(msgr, con, 1);
  1584. prepare_read_banner(con);
  1585. set_bit(CONNECTING, &con->state);
  1586. clear_bit(NEGOTIATING, &con->state);
  1587. BUG_ON(con->in_msg);
  1588. con->in_tag = CEPH_MSGR_TAG_READY;
  1589. dout("try_write initiating connect on %p new state %lu\n",
  1590. con, con->state);
  1591. ret = ceph_tcp_connect(con);
  1592. if (ret < 0) {
  1593. con->error_msg = "connect error";
  1594. goto out;
  1595. }
  1596. }
  1597. more_kvec:
  1598. /* kvec data queued? */
  1599. if (con->out_skip) {
  1600. ret = write_partial_skip(con);
  1601. if (ret <= 0)
  1602. goto out;
  1603. }
  1604. if (con->out_kvec_left) {
  1605. ret = write_partial_kvec(con);
  1606. if (ret <= 0)
  1607. goto out;
  1608. }
  1609. /* msg pages? */
  1610. if (con->out_msg) {
  1611. if (con->out_msg_done) {
  1612. ceph_msg_put(con->out_msg);
  1613. con->out_msg = NULL; /* we're done with this one */
  1614. goto do_next;
  1615. }
  1616. ret = write_partial_msg_pages(con);
  1617. if (ret == 1)
  1618. goto more_kvec; /* we need to send the footer, too! */
  1619. if (ret == 0)
  1620. goto out;
  1621. if (ret < 0) {
  1622. dout("try_write write_partial_msg_pages err %d\n",
  1623. ret);
  1624. goto out;
  1625. }
  1626. }
  1627. do_next:
  1628. if (!test_bit(CONNECTING, &con->state)) {
  1629. /* is anything else pending? */
  1630. if (!list_empty(&con->out_queue)) {
  1631. prepare_write_message(con);
  1632. goto more;
  1633. }
  1634. if (con->in_seq > con->in_seq_acked) {
  1635. prepare_write_ack(con);
  1636. goto more;
  1637. }
  1638. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1639. prepare_write_keepalive(con);
  1640. goto more;
  1641. }
  1642. }
  1643. /* Nothing to do! */
  1644. clear_bit(WRITE_PENDING, &con->state);
  1645. dout("try_write nothing else to write.\n");
  1646. ret = 0;
  1647. out:
  1648. dout("try_write done on %p ret %d\n", con, ret);
  1649. return ret;
  1650. }
  1651. /*
  1652. * Read what we can from the socket.
  1653. */
  1654. static int try_read(struct ceph_connection *con)
  1655. {
  1656. int ret = -1;
  1657. if (!con->sock)
  1658. return 0;
  1659. if (test_bit(STANDBY, &con->state))
  1660. return 0;
  1661. dout("try_read start on %p\n", con);
  1662. more:
  1663. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1664. con->in_base_pos);
  1665. /*
  1666. * process_connect and process_message drop and re-take
  1667. * con->mutex. make sure we handle a racing close or reopen.
  1668. */
  1669. if (test_bit(CLOSED, &con->state) ||
  1670. test_bit(OPENING, &con->state)) {
  1671. ret = -EAGAIN;
  1672. goto out;
  1673. }
  1674. if (test_bit(CONNECTING, &con->state)) {
  1675. if (!test_bit(NEGOTIATING, &con->state)) {
  1676. dout("try_read connecting\n");
  1677. ret = read_partial_banner(con);
  1678. if (ret <= 0)
  1679. goto out;
  1680. ret = process_banner(con);
  1681. if (ret < 0)
  1682. goto out;
  1683. }
  1684. ret = read_partial_connect(con);
  1685. if (ret <= 0)
  1686. goto out;
  1687. ret = process_connect(con);
  1688. if (ret < 0)
  1689. goto out;
  1690. goto more;
  1691. }
  1692. if (con->in_base_pos < 0) {
  1693. /*
  1694. * skipping + discarding content.
  1695. *
  1696. * FIXME: there must be a better way to do this!
  1697. */
  1698. static char buf[SKIP_BUF_SIZE];
  1699. int skip = min((int) sizeof (buf), -con->in_base_pos);
  1700. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1701. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1702. if (ret <= 0)
  1703. goto out;
  1704. con->in_base_pos += ret;
  1705. if (con->in_base_pos)
  1706. goto more;
  1707. }
  1708. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1709. /*
  1710. * what's next?
  1711. */
  1712. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1713. if (ret <= 0)
  1714. goto out;
  1715. dout("try_read got tag %d\n", (int)con->in_tag);
  1716. switch (con->in_tag) {
  1717. case CEPH_MSGR_TAG_MSG:
  1718. prepare_read_message(con);
  1719. break;
  1720. case CEPH_MSGR_TAG_ACK:
  1721. prepare_read_ack(con);
  1722. break;
  1723. case CEPH_MSGR_TAG_CLOSE:
  1724. set_bit(CLOSED, &con->state); /* fixme */
  1725. goto out;
  1726. default:
  1727. goto bad_tag;
  1728. }
  1729. }
  1730. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1731. ret = read_partial_message(con);
  1732. if (ret <= 0) {
  1733. switch (ret) {
  1734. case -EBADMSG:
  1735. con->error_msg = "bad crc";
  1736. ret = -EIO;
  1737. break;
  1738. case -EIO:
  1739. con->error_msg = "io error";
  1740. break;
  1741. }
  1742. goto out;
  1743. }
  1744. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1745. goto more;
  1746. process_message(con);
  1747. goto more;
  1748. }
  1749. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1750. ret = read_partial_ack(con);
  1751. if (ret <= 0)
  1752. goto out;
  1753. process_ack(con);
  1754. goto more;
  1755. }
  1756. out:
  1757. dout("try_read done on %p ret %d\n", con, ret);
  1758. return ret;
  1759. bad_tag:
  1760. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1761. con->error_msg = "protocol error, garbage tag";
  1762. ret = -1;
  1763. goto out;
  1764. }
  1765. /*
  1766. * Atomically queue work on a connection. Bump @con reference to
  1767. * avoid races with connection teardown.
  1768. */
  1769. static void queue_con(struct ceph_connection *con)
  1770. {
  1771. if (test_bit(DEAD, &con->state)) {
  1772. dout("queue_con %p ignoring: DEAD\n",
  1773. con);
  1774. return;
  1775. }
  1776. if (!con->ops->get(con)) {
  1777. dout("queue_con %p ref count 0\n", con);
  1778. return;
  1779. }
  1780. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1781. dout("queue_con %p - already queued\n", con);
  1782. con->ops->put(con);
  1783. } else {
  1784. dout("queue_con %p\n", con);
  1785. }
  1786. }
  1787. /*
  1788. * Do some work on a connection. Drop a connection ref when we're done.
  1789. */
  1790. static void con_work(struct work_struct *work)
  1791. {
  1792. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1793. work.work);
  1794. int ret;
  1795. mutex_lock(&con->mutex);
  1796. restart:
  1797. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1798. dout("con_work %p backing off\n", con);
  1799. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1800. round_jiffies_relative(con->delay))) {
  1801. dout("con_work %p backoff %lu\n", con, con->delay);
  1802. mutex_unlock(&con->mutex);
  1803. return;
  1804. } else {
  1805. con->ops->put(con);
  1806. dout("con_work %p FAILED to back off %lu\n", con,
  1807. con->delay);
  1808. }
  1809. }
  1810. if (test_bit(STANDBY, &con->state)) {
  1811. dout("con_work %p STANDBY\n", con);
  1812. goto done;
  1813. }
  1814. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1815. dout("con_work CLOSED\n");
  1816. con_close_socket(con);
  1817. goto done;
  1818. }
  1819. if (test_and_clear_bit(OPENING, &con->state)) {
  1820. /* reopen w/ new peer */
  1821. dout("con_work OPENING\n");
  1822. con_close_socket(con);
  1823. }
  1824. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1825. goto fault;
  1826. ret = try_read(con);
  1827. if (ret == -EAGAIN)
  1828. goto restart;
  1829. if (ret < 0)
  1830. goto fault;
  1831. ret = try_write(con);
  1832. if (ret == -EAGAIN)
  1833. goto restart;
  1834. if (ret < 0)
  1835. goto fault;
  1836. done:
  1837. mutex_unlock(&con->mutex);
  1838. done_unlocked:
  1839. con->ops->put(con);
  1840. return;
  1841. fault:
  1842. mutex_unlock(&con->mutex);
  1843. ceph_fault(con); /* error/fault path */
  1844. goto done_unlocked;
  1845. }
  1846. /*
  1847. * Generic error/fault handler. A retry mechanism is used with
  1848. * exponential backoff
  1849. */
  1850. static void ceph_fault(struct ceph_connection *con)
  1851. {
  1852. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1853. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1854. dout("fault %p state %lu to peer %s\n",
  1855. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1856. if (test_bit(LOSSYTX, &con->state)) {
  1857. dout("fault on LOSSYTX channel\n");
  1858. goto out;
  1859. }
  1860. mutex_lock(&con->mutex);
  1861. if (test_bit(CLOSED, &con->state))
  1862. goto out_unlock;
  1863. con_close_socket(con);
  1864. if (con->in_msg) {
  1865. ceph_msg_put(con->in_msg);
  1866. con->in_msg = NULL;
  1867. }
  1868. /* Requeue anything that hasn't been acked */
  1869. list_splice_init(&con->out_sent, &con->out_queue);
  1870. /* If there are no messages queued or keepalive pending, place
  1871. * the connection in a STANDBY state */
  1872. if (list_empty(&con->out_queue) &&
  1873. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1874. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1875. clear_bit(WRITE_PENDING, &con->state);
  1876. set_bit(STANDBY, &con->state);
  1877. } else {
  1878. /* retry after a delay. */
  1879. if (con->delay == 0)
  1880. con->delay = BASE_DELAY_INTERVAL;
  1881. else if (con->delay < MAX_DELAY_INTERVAL)
  1882. con->delay *= 2;
  1883. con->ops->get(con);
  1884. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1885. round_jiffies_relative(con->delay))) {
  1886. dout("fault queued %p delay %lu\n", con, con->delay);
  1887. } else {
  1888. con->ops->put(con);
  1889. dout("fault failed to queue %p delay %lu, backoff\n",
  1890. con, con->delay);
  1891. /*
  1892. * In many cases we see a socket state change
  1893. * while con_work is running and end up
  1894. * queuing (non-delayed) work, such that we
  1895. * can't backoff with a delay. Set a flag so
  1896. * that when con_work restarts we schedule the
  1897. * delay then.
  1898. */
  1899. set_bit(BACKOFF, &con->state);
  1900. }
  1901. }
  1902. out_unlock:
  1903. mutex_unlock(&con->mutex);
  1904. out:
  1905. /*
  1906. * in case we faulted due to authentication, invalidate our
  1907. * current tickets so that we can get new ones.
  1908. */
  1909. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1910. dout("calling invalidate_authorizer()\n");
  1911. con->ops->invalidate_authorizer(con);
  1912. }
  1913. if (con->ops->fault)
  1914. con->ops->fault(con);
  1915. }
  1916. /*
  1917. * create a new messenger instance
  1918. */
  1919. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1920. u32 supported_features,
  1921. u32 required_features)
  1922. {
  1923. struct ceph_messenger *msgr;
  1924. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1925. if (msgr == NULL)
  1926. return ERR_PTR(-ENOMEM);
  1927. msgr->supported_features = supported_features;
  1928. msgr->required_features = required_features;
  1929. spin_lock_init(&msgr->global_seq_lock);
  1930. if (myaddr)
  1931. msgr->inst.addr = *myaddr;
  1932. /* select a random nonce */
  1933. msgr->inst.addr.type = 0;
  1934. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1935. encode_my_addr(msgr);
  1936. dout("messenger_create %p\n", msgr);
  1937. return msgr;
  1938. }
  1939. EXPORT_SYMBOL(ceph_messenger_create);
  1940. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1941. {
  1942. dout("destroy %p\n", msgr);
  1943. kfree(msgr);
  1944. dout("destroyed messenger %p\n", msgr);
  1945. }
  1946. EXPORT_SYMBOL(ceph_messenger_destroy);
  1947. static void clear_standby(struct ceph_connection *con)
  1948. {
  1949. /* come back from STANDBY? */
  1950. if (test_and_clear_bit(STANDBY, &con->state)) {
  1951. mutex_lock(&con->mutex);
  1952. dout("clear_standby %p and ++connect_seq\n", con);
  1953. con->connect_seq++;
  1954. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1955. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1956. mutex_unlock(&con->mutex);
  1957. }
  1958. }
  1959. /*
  1960. * Queue up an outgoing message on the given connection.
  1961. */
  1962. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1963. {
  1964. if (test_bit(CLOSED, &con->state)) {
  1965. dout("con_send %p closed, dropping %p\n", con, msg);
  1966. ceph_msg_put(msg);
  1967. return;
  1968. }
  1969. /* set src+dst */
  1970. msg->hdr.src = con->msgr->inst.name;
  1971. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1972. msg->needs_out_seq = true;
  1973. /* queue */
  1974. mutex_lock(&con->mutex);
  1975. BUG_ON(!list_empty(&msg->list_head));
  1976. list_add_tail(&msg->list_head, &con->out_queue);
  1977. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  1978. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  1979. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1980. le32_to_cpu(msg->hdr.front_len),
  1981. le32_to_cpu(msg->hdr.middle_len),
  1982. le32_to_cpu(msg->hdr.data_len));
  1983. mutex_unlock(&con->mutex);
  1984. /* if there wasn't anything waiting to send before, queue
  1985. * new work */
  1986. clear_standby(con);
  1987. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  1988. queue_con(con);
  1989. }
  1990. EXPORT_SYMBOL(ceph_con_send);
  1991. /*
  1992. * Revoke a message that was previously queued for send
  1993. */
  1994. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  1995. {
  1996. mutex_lock(&con->mutex);
  1997. if (!list_empty(&msg->list_head)) {
  1998. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  1999. list_del_init(&msg->list_head);
  2000. ceph_msg_put(msg);
  2001. msg->hdr.seq = 0;
  2002. }
  2003. if (con->out_msg == msg) {
  2004. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2005. con->out_msg = NULL;
  2006. if (con->out_kvec_is_msg) {
  2007. con->out_skip = con->out_kvec_bytes;
  2008. con->out_kvec_is_msg = false;
  2009. }
  2010. ceph_msg_put(msg);
  2011. msg->hdr.seq = 0;
  2012. }
  2013. mutex_unlock(&con->mutex);
  2014. }
  2015. /*
  2016. * Revoke a message that we may be reading data into
  2017. */
  2018. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2019. {
  2020. mutex_lock(&con->mutex);
  2021. if (con->in_msg && con->in_msg == msg) {
  2022. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2023. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2024. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2025. /* skip rest of message */
  2026. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2027. con->in_base_pos = con->in_base_pos -
  2028. sizeof(struct ceph_msg_header) -
  2029. front_len -
  2030. middle_len -
  2031. data_len -
  2032. sizeof(struct ceph_msg_footer);
  2033. ceph_msg_put(con->in_msg);
  2034. con->in_msg = NULL;
  2035. con->in_tag = CEPH_MSGR_TAG_READY;
  2036. con->in_seq++;
  2037. } else {
  2038. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2039. con, con->in_msg, msg);
  2040. }
  2041. mutex_unlock(&con->mutex);
  2042. }
  2043. /*
  2044. * Queue a keepalive byte to ensure the tcp connection is alive.
  2045. */
  2046. void ceph_con_keepalive(struct ceph_connection *con)
  2047. {
  2048. dout("con_keepalive %p\n", con);
  2049. clear_standby(con);
  2050. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  2051. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2052. queue_con(con);
  2053. }
  2054. EXPORT_SYMBOL(ceph_con_keepalive);
  2055. /*
  2056. * construct a new message with given type, size
  2057. * the new msg has a ref count of 1.
  2058. */
  2059. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2060. bool can_fail)
  2061. {
  2062. struct ceph_msg *m;
  2063. m = kmalloc(sizeof(*m), flags);
  2064. if (m == NULL)
  2065. goto out;
  2066. kref_init(&m->kref);
  2067. INIT_LIST_HEAD(&m->list_head);
  2068. m->hdr.tid = 0;
  2069. m->hdr.type = cpu_to_le16(type);
  2070. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2071. m->hdr.version = 0;
  2072. m->hdr.front_len = cpu_to_le32(front_len);
  2073. m->hdr.middle_len = 0;
  2074. m->hdr.data_len = 0;
  2075. m->hdr.data_off = 0;
  2076. m->hdr.reserved = 0;
  2077. m->footer.front_crc = 0;
  2078. m->footer.middle_crc = 0;
  2079. m->footer.data_crc = 0;
  2080. m->footer.flags = 0;
  2081. m->front_max = front_len;
  2082. m->front_is_vmalloc = false;
  2083. m->more_to_follow = false;
  2084. m->ack_stamp = 0;
  2085. m->pool = NULL;
  2086. /* middle */
  2087. m->middle = NULL;
  2088. /* data */
  2089. m->nr_pages = 0;
  2090. m->page_alignment = 0;
  2091. m->pages = NULL;
  2092. m->pagelist = NULL;
  2093. m->bio = NULL;
  2094. m->bio_iter = NULL;
  2095. m->bio_seg = 0;
  2096. m->trail = NULL;
  2097. /* front */
  2098. if (front_len) {
  2099. if (front_len > PAGE_CACHE_SIZE) {
  2100. m->front.iov_base = __vmalloc(front_len, flags,
  2101. PAGE_KERNEL);
  2102. m->front_is_vmalloc = true;
  2103. } else {
  2104. m->front.iov_base = kmalloc(front_len, flags);
  2105. }
  2106. if (m->front.iov_base == NULL) {
  2107. dout("ceph_msg_new can't allocate %d bytes\n",
  2108. front_len);
  2109. goto out2;
  2110. }
  2111. } else {
  2112. m->front.iov_base = NULL;
  2113. }
  2114. m->front.iov_len = front_len;
  2115. dout("ceph_msg_new %p front %d\n", m, front_len);
  2116. return m;
  2117. out2:
  2118. ceph_msg_put(m);
  2119. out:
  2120. if (!can_fail) {
  2121. pr_err("msg_new can't create type %d front %d\n", type,
  2122. front_len);
  2123. WARN_ON(1);
  2124. } else {
  2125. dout("msg_new can't create type %d front %d\n", type,
  2126. front_len);
  2127. }
  2128. return NULL;
  2129. }
  2130. EXPORT_SYMBOL(ceph_msg_new);
  2131. /*
  2132. * Allocate "middle" portion of a message, if it is needed and wasn't
  2133. * allocated by alloc_msg. This allows us to read a small fixed-size
  2134. * per-type header in the front and then gracefully fail (i.e.,
  2135. * propagate the error to the caller based on info in the front) when
  2136. * the middle is too large.
  2137. */
  2138. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2139. {
  2140. int type = le16_to_cpu(msg->hdr.type);
  2141. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2142. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2143. ceph_msg_type_name(type), middle_len);
  2144. BUG_ON(!middle_len);
  2145. BUG_ON(msg->middle);
  2146. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2147. if (!msg->middle)
  2148. return -ENOMEM;
  2149. return 0;
  2150. }
  2151. /*
  2152. * Generic message allocator, for incoming messages.
  2153. */
  2154. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2155. struct ceph_msg_header *hdr,
  2156. int *skip)
  2157. {
  2158. int type = le16_to_cpu(hdr->type);
  2159. int front_len = le32_to_cpu(hdr->front_len);
  2160. int middle_len = le32_to_cpu(hdr->middle_len);
  2161. struct ceph_msg *msg = NULL;
  2162. int ret;
  2163. if (con->ops->alloc_msg) {
  2164. mutex_unlock(&con->mutex);
  2165. msg = con->ops->alloc_msg(con, hdr, skip);
  2166. mutex_lock(&con->mutex);
  2167. if (!msg || *skip)
  2168. return NULL;
  2169. }
  2170. if (!msg) {
  2171. *skip = 0;
  2172. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2173. if (!msg) {
  2174. pr_err("unable to allocate msg type %d len %d\n",
  2175. type, front_len);
  2176. return NULL;
  2177. }
  2178. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2179. }
  2180. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2181. if (middle_len && !msg->middle) {
  2182. ret = ceph_alloc_middle(con, msg);
  2183. if (ret < 0) {
  2184. ceph_msg_put(msg);
  2185. return NULL;
  2186. }
  2187. }
  2188. return msg;
  2189. }
  2190. /*
  2191. * Free a generically kmalloc'd message.
  2192. */
  2193. void ceph_msg_kfree(struct ceph_msg *m)
  2194. {
  2195. dout("msg_kfree %p\n", m);
  2196. if (m->front_is_vmalloc)
  2197. vfree(m->front.iov_base);
  2198. else
  2199. kfree(m->front.iov_base);
  2200. kfree(m);
  2201. }
  2202. /*
  2203. * Drop a msg ref. Destroy as needed.
  2204. */
  2205. void ceph_msg_last_put(struct kref *kref)
  2206. {
  2207. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2208. dout("ceph_msg_put last one on %p\n", m);
  2209. WARN_ON(!list_empty(&m->list_head));
  2210. /* drop middle, data, if any */
  2211. if (m->middle) {
  2212. ceph_buffer_put(m->middle);
  2213. m->middle = NULL;
  2214. }
  2215. m->nr_pages = 0;
  2216. m->pages = NULL;
  2217. if (m->pagelist) {
  2218. ceph_pagelist_release(m->pagelist);
  2219. kfree(m->pagelist);
  2220. m->pagelist = NULL;
  2221. }
  2222. m->trail = NULL;
  2223. if (m->pool)
  2224. ceph_msgpool_put(m->pool, m);
  2225. else
  2226. ceph_msg_kfree(m);
  2227. }
  2228. EXPORT_SYMBOL(ceph_msg_last_put);
  2229. void ceph_msg_dump(struct ceph_msg *msg)
  2230. {
  2231. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2232. msg->front_max, msg->nr_pages);
  2233. print_hex_dump(KERN_DEBUG, "header: ",
  2234. DUMP_PREFIX_OFFSET, 16, 1,
  2235. &msg->hdr, sizeof(msg->hdr), true);
  2236. print_hex_dump(KERN_DEBUG, " front: ",
  2237. DUMP_PREFIX_OFFSET, 16, 1,
  2238. msg->front.iov_base, msg->front.iov_len, true);
  2239. if (msg->middle)
  2240. print_hex_dump(KERN_DEBUG, "middle: ",
  2241. DUMP_PREFIX_OFFSET, 16, 1,
  2242. msg->middle->vec.iov_base,
  2243. msg->middle->vec.iov_len, true);
  2244. print_hex_dump(KERN_DEBUG, "footer: ",
  2245. DUMP_PREFIX_OFFSET, 16, 1,
  2246. &msg->footer, sizeof(msg->footer), true);
  2247. }
  2248. EXPORT_SYMBOL(ceph_msg_dump);