sched.c 180 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/kthread.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/sysctl.h>
  57. #include <linux/syscalls.h>
  58. #include <linux/times.h>
  59. #include <linux/tsacct_kern.h>
  60. #include <linux/kprobes.h>
  61. #include <linux/delayacct.h>
  62. #include <linux/reciprocal_div.h>
  63. #include <linux/unistd.h>
  64. #include <linux/pagemap.h>
  65. #include <asm/tlb.h>
  66. #include <asm/irq_regs.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. unsigned long shares;
  155. /* spinlock to serialize modification to shares */
  156. spinlock_t lock;
  157. struct rcu_head rcu;
  158. };
  159. /* Default task group's sched entity on each cpu */
  160. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  161. /* Default task group's cfs_rq on each cpu */
  162. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  163. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  164. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  165. /* Default task group.
  166. * Every task in system belong to this group at bootup.
  167. */
  168. struct task_group init_task_group = {
  169. .se = init_sched_entity_p,
  170. .cfs_rq = init_cfs_rq_p,
  171. };
  172. #ifdef CONFIG_FAIR_USER_SCHED
  173. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  174. #else
  175. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  176. #endif
  177. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  178. /* return group to which a task belongs */
  179. static inline struct task_group *task_group(struct task_struct *p)
  180. {
  181. struct task_group *tg;
  182. #ifdef CONFIG_FAIR_USER_SCHED
  183. tg = p->user->tg;
  184. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  185. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  186. struct task_group, css);
  187. #else
  188. tg = &init_task_group;
  189. #endif
  190. return tg;
  191. }
  192. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  193. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  194. {
  195. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  196. p->se.parent = task_group(p)->se[cpu];
  197. }
  198. #else
  199. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  200. #endif /* CONFIG_FAIR_GROUP_SCHED */
  201. /* CFS-related fields in a runqueue */
  202. struct cfs_rq {
  203. struct load_weight load;
  204. unsigned long nr_running;
  205. u64 exec_clock;
  206. u64 min_vruntime;
  207. struct rb_root tasks_timeline;
  208. struct rb_node *rb_leftmost;
  209. struct rb_node *rb_load_balance_curr;
  210. /* 'curr' points to currently running entity on this cfs_rq.
  211. * It is set to NULL otherwise (i.e when none are currently running).
  212. */
  213. struct sched_entity *curr;
  214. unsigned long nr_spread_over;
  215. #ifdef CONFIG_FAIR_GROUP_SCHED
  216. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  217. /*
  218. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  219. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  220. * (like users, containers etc.)
  221. *
  222. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  223. * list is used during load balance.
  224. */
  225. struct list_head leaf_cfs_rq_list;
  226. struct task_group *tg; /* group that "owns" this runqueue */
  227. #endif
  228. };
  229. /* Real-Time classes' related field in a runqueue: */
  230. struct rt_rq {
  231. struct rt_prio_array active;
  232. int rt_load_balance_idx;
  233. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  234. };
  235. /*
  236. * This is the main, per-CPU runqueue data structure.
  237. *
  238. * Locking rule: those places that want to lock multiple runqueues
  239. * (such as the load balancing or the thread migration code), lock
  240. * acquire operations must be ordered by ascending &runqueue.
  241. */
  242. struct rq {
  243. /* runqueue lock: */
  244. spinlock_t lock;
  245. /*
  246. * nr_running and cpu_load should be in the same cacheline because
  247. * remote CPUs use both these fields when doing load calculation.
  248. */
  249. unsigned long nr_running;
  250. #define CPU_LOAD_IDX_MAX 5
  251. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  252. unsigned char idle_at_tick;
  253. #ifdef CONFIG_NO_HZ
  254. unsigned char in_nohz_recently;
  255. #endif
  256. /* capture load from *all* tasks on this cpu: */
  257. struct load_weight load;
  258. unsigned long nr_load_updates;
  259. u64 nr_switches;
  260. struct cfs_rq cfs;
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. /* list of leaf cfs_rq on this cpu: */
  263. struct list_head leaf_cfs_rq_list;
  264. #endif
  265. struct rt_rq rt;
  266. /*
  267. * This is part of a global counter where only the total sum
  268. * over all CPUs matters. A task can increase this counter on
  269. * one CPU and if it got migrated afterwards it may decrease
  270. * it on another CPU. Always updated under the runqueue lock:
  271. */
  272. unsigned long nr_uninterruptible;
  273. struct task_struct *curr, *idle;
  274. unsigned long next_balance;
  275. struct mm_struct *prev_mm;
  276. u64 clock, prev_clock_raw;
  277. s64 clock_max_delta;
  278. unsigned int clock_warps, clock_overflows;
  279. u64 idle_clock;
  280. unsigned int clock_deep_idle_events;
  281. u64 tick_timestamp;
  282. atomic_t nr_iowait;
  283. #ifdef CONFIG_SMP
  284. struct sched_domain *sd;
  285. /* For active balancing */
  286. int active_balance;
  287. int push_cpu;
  288. /* cpu of this runqueue: */
  289. int cpu;
  290. struct task_struct *migration_thread;
  291. struct list_head migration_queue;
  292. #endif
  293. #ifdef CONFIG_SCHEDSTATS
  294. /* latency stats */
  295. struct sched_info rq_sched_info;
  296. /* sys_sched_yield() stats */
  297. unsigned int yld_exp_empty;
  298. unsigned int yld_act_empty;
  299. unsigned int yld_both_empty;
  300. unsigned int yld_count;
  301. /* schedule() stats */
  302. unsigned int sched_switch;
  303. unsigned int sched_count;
  304. unsigned int sched_goidle;
  305. /* try_to_wake_up() stats */
  306. unsigned int ttwu_count;
  307. unsigned int ttwu_local;
  308. /* BKL stats */
  309. unsigned int bkl_count;
  310. #endif
  311. struct lock_class_key rq_lock_key;
  312. };
  313. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  314. static DEFINE_MUTEX(sched_hotcpu_mutex);
  315. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  316. {
  317. rq->curr->sched_class->check_preempt_curr(rq, p);
  318. }
  319. static inline int cpu_of(struct rq *rq)
  320. {
  321. #ifdef CONFIG_SMP
  322. return rq->cpu;
  323. #else
  324. return 0;
  325. #endif
  326. }
  327. /*
  328. * Update the per-runqueue clock, as finegrained as the platform can give
  329. * us, but without assuming monotonicity, etc.:
  330. */
  331. static void __update_rq_clock(struct rq *rq)
  332. {
  333. u64 prev_raw = rq->prev_clock_raw;
  334. u64 now = sched_clock();
  335. s64 delta = now - prev_raw;
  336. u64 clock = rq->clock;
  337. #ifdef CONFIG_SCHED_DEBUG
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. #endif
  340. /*
  341. * Protect against sched_clock() occasionally going backwards:
  342. */
  343. if (unlikely(delta < 0)) {
  344. clock++;
  345. rq->clock_warps++;
  346. } else {
  347. /*
  348. * Catch too large forward jumps too:
  349. */
  350. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  351. if (clock < rq->tick_timestamp + TICK_NSEC)
  352. clock = rq->tick_timestamp + TICK_NSEC;
  353. else
  354. clock++;
  355. rq->clock_overflows++;
  356. } else {
  357. if (unlikely(delta > rq->clock_max_delta))
  358. rq->clock_max_delta = delta;
  359. clock += delta;
  360. }
  361. }
  362. rq->prev_clock_raw = now;
  363. rq->clock = clock;
  364. }
  365. static void update_rq_clock(struct rq *rq)
  366. {
  367. if (likely(smp_processor_id() == cpu_of(rq)))
  368. __update_rq_clock(rq);
  369. }
  370. /*
  371. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  372. * See detach_destroy_domains: synchronize_sched for details.
  373. *
  374. * The domain tree of any CPU may only be accessed from within
  375. * preempt-disabled sections.
  376. */
  377. #define for_each_domain(cpu, __sd) \
  378. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  379. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  380. #define this_rq() (&__get_cpu_var(runqueues))
  381. #define task_rq(p) cpu_rq(task_cpu(p))
  382. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  383. /*
  384. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  385. */
  386. #ifdef CONFIG_SCHED_DEBUG
  387. # define const_debug __read_mostly
  388. #else
  389. # define const_debug static const
  390. #endif
  391. /*
  392. * Debugging: various feature bits
  393. */
  394. enum {
  395. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  396. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  397. SCHED_FEAT_START_DEBIT = 4,
  398. SCHED_FEAT_TREE_AVG = 8,
  399. SCHED_FEAT_APPROX_AVG = 16,
  400. };
  401. const_debug unsigned int sysctl_sched_features =
  402. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  403. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  404. SCHED_FEAT_START_DEBIT * 1 |
  405. SCHED_FEAT_TREE_AVG * 0 |
  406. SCHED_FEAT_APPROX_AVG * 0;
  407. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  408. /*
  409. * Number of tasks to iterate in a single balance run.
  410. * Limited because this is done with IRQs disabled.
  411. */
  412. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  413. /*
  414. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  415. * clock constructed from sched_clock():
  416. */
  417. unsigned long long cpu_clock(int cpu)
  418. {
  419. unsigned long long now;
  420. unsigned long flags;
  421. struct rq *rq;
  422. local_irq_save(flags);
  423. rq = cpu_rq(cpu);
  424. update_rq_clock(rq);
  425. now = rq->clock;
  426. local_irq_restore(flags);
  427. return now;
  428. }
  429. EXPORT_SYMBOL_GPL(cpu_clock);
  430. #ifndef prepare_arch_switch
  431. # define prepare_arch_switch(next) do { } while (0)
  432. #endif
  433. #ifndef finish_arch_switch
  434. # define finish_arch_switch(prev) do { } while (0)
  435. #endif
  436. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  437. static inline int task_running(struct rq *rq, struct task_struct *p)
  438. {
  439. return rq->curr == p;
  440. }
  441. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  442. {
  443. }
  444. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  445. {
  446. #ifdef CONFIG_DEBUG_SPINLOCK
  447. /* this is a valid case when another task releases the spinlock */
  448. rq->lock.owner = current;
  449. #endif
  450. /*
  451. * If we are tracking spinlock dependencies then we have to
  452. * fix up the runqueue lock - which gets 'carried over' from
  453. * prev into current:
  454. */
  455. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  456. spin_unlock_irq(&rq->lock);
  457. }
  458. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  459. static inline int task_running(struct rq *rq, struct task_struct *p)
  460. {
  461. #ifdef CONFIG_SMP
  462. return p->oncpu;
  463. #else
  464. return rq->curr == p;
  465. #endif
  466. }
  467. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  468. {
  469. #ifdef CONFIG_SMP
  470. /*
  471. * We can optimise this out completely for !SMP, because the
  472. * SMP rebalancing from interrupt is the only thing that cares
  473. * here.
  474. */
  475. next->oncpu = 1;
  476. #endif
  477. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  478. spin_unlock_irq(&rq->lock);
  479. #else
  480. spin_unlock(&rq->lock);
  481. #endif
  482. }
  483. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  484. {
  485. #ifdef CONFIG_SMP
  486. /*
  487. * After ->oncpu is cleared, the task can be moved to a different CPU.
  488. * We must ensure this doesn't happen until the switch is completely
  489. * finished.
  490. */
  491. smp_wmb();
  492. prev->oncpu = 0;
  493. #endif
  494. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  495. local_irq_enable();
  496. #endif
  497. }
  498. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  499. /*
  500. * __task_rq_lock - lock the runqueue a given task resides on.
  501. * Must be called interrupts disabled.
  502. */
  503. static inline struct rq *__task_rq_lock(struct task_struct *p)
  504. __acquires(rq->lock)
  505. {
  506. for (;;) {
  507. struct rq *rq = task_rq(p);
  508. spin_lock(&rq->lock);
  509. if (likely(rq == task_rq(p)))
  510. return rq;
  511. spin_unlock(&rq->lock);
  512. }
  513. }
  514. /*
  515. * task_rq_lock - lock the runqueue a given task resides on and disable
  516. * interrupts. Note the ordering: we can safely lookup the task_rq without
  517. * explicitly disabling preemption.
  518. */
  519. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  520. __acquires(rq->lock)
  521. {
  522. struct rq *rq;
  523. for (;;) {
  524. local_irq_save(*flags);
  525. rq = task_rq(p);
  526. spin_lock(&rq->lock);
  527. if (likely(rq == task_rq(p)))
  528. return rq;
  529. spin_unlock_irqrestore(&rq->lock, *flags);
  530. }
  531. }
  532. static void __task_rq_unlock(struct rq *rq)
  533. __releases(rq->lock)
  534. {
  535. spin_unlock(&rq->lock);
  536. }
  537. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  538. __releases(rq->lock)
  539. {
  540. spin_unlock_irqrestore(&rq->lock, *flags);
  541. }
  542. /*
  543. * this_rq_lock - lock this runqueue and disable interrupts.
  544. */
  545. static struct rq *this_rq_lock(void)
  546. __acquires(rq->lock)
  547. {
  548. struct rq *rq;
  549. local_irq_disable();
  550. rq = this_rq();
  551. spin_lock(&rq->lock);
  552. return rq;
  553. }
  554. /*
  555. * We are going deep-idle (irqs are disabled):
  556. */
  557. void sched_clock_idle_sleep_event(void)
  558. {
  559. struct rq *rq = cpu_rq(smp_processor_id());
  560. spin_lock(&rq->lock);
  561. __update_rq_clock(rq);
  562. spin_unlock(&rq->lock);
  563. rq->clock_deep_idle_events++;
  564. }
  565. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  566. /*
  567. * We just idled delta nanoseconds (called with irqs disabled):
  568. */
  569. void sched_clock_idle_wakeup_event(u64 delta_ns)
  570. {
  571. struct rq *rq = cpu_rq(smp_processor_id());
  572. u64 now = sched_clock();
  573. rq->idle_clock += delta_ns;
  574. /*
  575. * Override the previous timestamp and ignore all
  576. * sched_clock() deltas that occured while we idled,
  577. * and use the PM-provided delta_ns to advance the
  578. * rq clock:
  579. */
  580. spin_lock(&rq->lock);
  581. rq->prev_clock_raw = now;
  582. rq->clock += delta_ns;
  583. spin_unlock(&rq->lock);
  584. }
  585. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  586. /*
  587. * resched_task - mark a task 'to be rescheduled now'.
  588. *
  589. * On UP this means the setting of the need_resched flag, on SMP it
  590. * might also involve a cross-CPU call to trigger the scheduler on
  591. * the target CPU.
  592. */
  593. #ifdef CONFIG_SMP
  594. #ifndef tsk_is_polling
  595. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  596. #endif
  597. static void resched_task(struct task_struct *p)
  598. {
  599. int cpu;
  600. assert_spin_locked(&task_rq(p)->lock);
  601. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  602. return;
  603. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  604. cpu = task_cpu(p);
  605. if (cpu == smp_processor_id())
  606. return;
  607. /* NEED_RESCHED must be visible before we test polling */
  608. smp_mb();
  609. if (!tsk_is_polling(p))
  610. smp_send_reschedule(cpu);
  611. }
  612. static void resched_cpu(int cpu)
  613. {
  614. struct rq *rq = cpu_rq(cpu);
  615. unsigned long flags;
  616. if (!spin_trylock_irqsave(&rq->lock, flags))
  617. return;
  618. resched_task(cpu_curr(cpu));
  619. spin_unlock_irqrestore(&rq->lock, flags);
  620. }
  621. #else
  622. static inline void resched_task(struct task_struct *p)
  623. {
  624. assert_spin_locked(&task_rq(p)->lock);
  625. set_tsk_need_resched(p);
  626. }
  627. #endif
  628. #if BITS_PER_LONG == 32
  629. # define WMULT_CONST (~0UL)
  630. #else
  631. # define WMULT_CONST (1UL << 32)
  632. #endif
  633. #define WMULT_SHIFT 32
  634. /*
  635. * Shift right and round:
  636. */
  637. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  638. static unsigned long
  639. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  640. struct load_weight *lw)
  641. {
  642. u64 tmp;
  643. if (unlikely(!lw->inv_weight))
  644. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  645. tmp = (u64)delta_exec * weight;
  646. /*
  647. * Check whether we'd overflow the 64-bit multiplication:
  648. */
  649. if (unlikely(tmp > WMULT_CONST))
  650. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  651. WMULT_SHIFT/2);
  652. else
  653. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  654. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  655. }
  656. static inline unsigned long
  657. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  658. {
  659. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  660. }
  661. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  662. {
  663. lw->weight += inc;
  664. }
  665. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  666. {
  667. lw->weight -= dec;
  668. }
  669. /*
  670. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  671. * of tasks with abnormal "nice" values across CPUs the contribution that
  672. * each task makes to its run queue's load is weighted according to its
  673. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  674. * scaled version of the new time slice allocation that they receive on time
  675. * slice expiry etc.
  676. */
  677. #define WEIGHT_IDLEPRIO 2
  678. #define WMULT_IDLEPRIO (1 << 31)
  679. /*
  680. * Nice levels are multiplicative, with a gentle 10% change for every
  681. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  682. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  683. * that remained on nice 0.
  684. *
  685. * The "10% effect" is relative and cumulative: from _any_ nice level,
  686. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  687. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  688. * If a task goes up by ~10% and another task goes down by ~10% then
  689. * the relative distance between them is ~25%.)
  690. */
  691. static const int prio_to_weight[40] = {
  692. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  693. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  694. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  695. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  696. /* 0 */ 1024, 820, 655, 526, 423,
  697. /* 5 */ 335, 272, 215, 172, 137,
  698. /* 10 */ 110, 87, 70, 56, 45,
  699. /* 15 */ 36, 29, 23, 18, 15,
  700. };
  701. /*
  702. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  703. *
  704. * In cases where the weight does not change often, we can use the
  705. * precalculated inverse to speed up arithmetics by turning divisions
  706. * into multiplications:
  707. */
  708. static const u32 prio_to_wmult[40] = {
  709. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  710. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  711. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  712. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  713. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  714. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  715. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  716. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  717. };
  718. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  719. /*
  720. * runqueue iterator, to support SMP load-balancing between different
  721. * scheduling classes, without having to expose their internal data
  722. * structures to the load-balancing proper:
  723. */
  724. struct rq_iterator {
  725. void *arg;
  726. struct task_struct *(*start)(void *);
  727. struct task_struct *(*next)(void *);
  728. };
  729. #ifdef CONFIG_SMP
  730. static unsigned long
  731. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  732. unsigned long max_load_move, struct sched_domain *sd,
  733. enum cpu_idle_type idle, int *all_pinned,
  734. int *this_best_prio, struct rq_iterator *iterator);
  735. static int
  736. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  737. struct sched_domain *sd, enum cpu_idle_type idle,
  738. struct rq_iterator *iterator);
  739. #endif
  740. #ifdef CONFIG_CGROUP_CPUACCT
  741. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  742. #else
  743. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  744. #endif
  745. #include "sched_stats.h"
  746. #include "sched_idletask.c"
  747. #include "sched_fair.c"
  748. #include "sched_rt.c"
  749. #ifdef CONFIG_SCHED_DEBUG
  750. # include "sched_debug.c"
  751. #endif
  752. #define sched_class_highest (&rt_sched_class)
  753. /*
  754. * Update delta_exec, delta_fair fields for rq.
  755. *
  756. * delta_fair clock advances at a rate inversely proportional to
  757. * total load (rq->load.weight) on the runqueue, while
  758. * delta_exec advances at the same rate as wall-clock (provided
  759. * cpu is not idle).
  760. *
  761. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  762. * runqueue over any given interval. This (smoothened) load is used
  763. * during load balance.
  764. *
  765. * This function is called /before/ updating rq->load
  766. * and when switching tasks.
  767. */
  768. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  769. {
  770. update_load_add(&rq->load, p->se.load.weight);
  771. }
  772. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  773. {
  774. update_load_sub(&rq->load, p->se.load.weight);
  775. }
  776. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  777. {
  778. rq->nr_running++;
  779. inc_load(rq, p);
  780. }
  781. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  782. {
  783. rq->nr_running--;
  784. dec_load(rq, p);
  785. }
  786. static void set_load_weight(struct task_struct *p)
  787. {
  788. if (task_has_rt_policy(p)) {
  789. p->se.load.weight = prio_to_weight[0] * 2;
  790. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  791. return;
  792. }
  793. /*
  794. * SCHED_IDLE tasks get minimal weight:
  795. */
  796. if (p->policy == SCHED_IDLE) {
  797. p->se.load.weight = WEIGHT_IDLEPRIO;
  798. p->se.load.inv_weight = WMULT_IDLEPRIO;
  799. return;
  800. }
  801. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  802. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  803. }
  804. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  805. {
  806. sched_info_queued(p);
  807. p->sched_class->enqueue_task(rq, p, wakeup);
  808. p->se.on_rq = 1;
  809. }
  810. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  811. {
  812. p->sched_class->dequeue_task(rq, p, sleep);
  813. p->se.on_rq = 0;
  814. }
  815. /*
  816. * __normal_prio - return the priority that is based on the static prio
  817. */
  818. static inline int __normal_prio(struct task_struct *p)
  819. {
  820. return p->static_prio;
  821. }
  822. /*
  823. * Calculate the expected normal priority: i.e. priority
  824. * without taking RT-inheritance into account. Might be
  825. * boosted by interactivity modifiers. Changes upon fork,
  826. * setprio syscalls, and whenever the interactivity
  827. * estimator recalculates.
  828. */
  829. static inline int normal_prio(struct task_struct *p)
  830. {
  831. int prio;
  832. if (task_has_rt_policy(p))
  833. prio = MAX_RT_PRIO-1 - p->rt_priority;
  834. else
  835. prio = __normal_prio(p);
  836. return prio;
  837. }
  838. /*
  839. * Calculate the current priority, i.e. the priority
  840. * taken into account by the scheduler. This value might
  841. * be boosted by RT tasks, or might be boosted by
  842. * interactivity modifiers. Will be RT if the task got
  843. * RT-boosted. If not then it returns p->normal_prio.
  844. */
  845. static int effective_prio(struct task_struct *p)
  846. {
  847. p->normal_prio = normal_prio(p);
  848. /*
  849. * If we are RT tasks or we were boosted to RT priority,
  850. * keep the priority unchanged. Otherwise, update priority
  851. * to the normal priority:
  852. */
  853. if (!rt_prio(p->prio))
  854. return p->normal_prio;
  855. return p->prio;
  856. }
  857. /*
  858. * activate_task - move a task to the runqueue.
  859. */
  860. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  861. {
  862. if (p->state == TASK_UNINTERRUPTIBLE)
  863. rq->nr_uninterruptible--;
  864. enqueue_task(rq, p, wakeup);
  865. inc_nr_running(p, rq);
  866. }
  867. /*
  868. * deactivate_task - remove a task from the runqueue.
  869. */
  870. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  871. {
  872. if (p->state == TASK_UNINTERRUPTIBLE)
  873. rq->nr_uninterruptible++;
  874. dequeue_task(rq, p, sleep);
  875. dec_nr_running(p, rq);
  876. }
  877. /**
  878. * task_curr - is this task currently executing on a CPU?
  879. * @p: the task in question.
  880. */
  881. inline int task_curr(const struct task_struct *p)
  882. {
  883. return cpu_curr(task_cpu(p)) == p;
  884. }
  885. /* Used instead of source_load when we know the type == 0 */
  886. unsigned long weighted_cpuload(const int cpu)
  887. {
  888. return cpu_rq(cpu)->load.weight;
  889. }
  890. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  891. {
  892. set_task_cfs_rq(p, cpu);
  893. #ifdef CONFIG_SMP
  894. /*
  895. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  896. * successfuly executed on another CPU. We must ensure that updates of
  897. * per-task data have been completed by this moment.
  898. */
  899. smp_wmb();
  900. task_thread_info(p)->cpu = cpu;
  901. #endif
  902. }
  903. #ifdef CONFIG_SMP
  904. /*
  905. * Is this task likely cache-hot:
  906. */
  907. static inline int
  908. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  909. {
  910. s64 delta;
  911. if (p->sched_class != &fair_sched_class)
  912. return 0;
  913. if (sysctl_sched_migration_cost == -1)
  914. return 1;
  915. if (sysctl_sched_migration_cost == 0)
  916. return 0;
  917. delta = now - p->se.exec_start;
  918. return delta < (s64)sysctl_sched_migration_cost;
  919. }
  920. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  921. {
  922. int old_cpu = task_cpu(p);
  923. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  924. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  925. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  926. u64 clock_offset;
  927. clock_offset = old_rq->clock - new_rq->clock;
  928. #ifdef CONFIG_SCHEDSTATS
  929. if (p->se.wait_start)
  930. p->se.wait_start -= clock_offset;
  931. if (p->se.sleep_start)
  932. p->se.sleep_start -= clock_offset;
  933. if (p->se.block_start)
  934. p->se.block_start -= clock_offset;
  935. if (old_cpu != new_cpu) {
  936. schedstat_inc(p, se.nr_migrations);
  937. if (task_hot(p, old_rq->clock, NULL))
  938. schedstat_inc(p, se.nr_forced2_migrations);
  939. }
  940. #endif
  941. p->se.vruntime -= old_cfsrq->min_vruntime -
  942. new_cfsrq->min_vruntime;
  943. __set_task_cpu(p, new_cpu);
  944. }
  945. struct migration_req {
  946. struct list_head list;
  947. struct task_struct *task;
  948. int dest_cpu;
  949. struct completion done;
  950. };
  951. /*
  952. * The task's runqueue lock must be held.
  953. * Returns true if you have to wait for migration thread.
  954. */
  955. static int
  956. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  957. {
  958. struct rq *rq = task_rq(p);
  959. /*
  960. * If the task is not on a runqueue (and not running), then
  961. * it is sufficient to simply update the task's cpu field.
  962. */
  963. if (!p->se.on_rq && !task_running(rq, p)) {
  964. set_task_cpu(p, dest_cpu);
  965. return 0;
  966. }
  967. init_completion(&req->done);
  968. req->task = p;
  969. req->dest_cpu = dest_cpu;
  970. list_add(&req->list, &rq->migration_queue);
  971. return 1;
  972. }
  973. /*
  974. * wait_task_inactive - wait for a thread to unschedule.
  975. *
  976. * The caller must ensure that the task *will* unschedule sometime soon,
  977. * else this function might spin for a *long* time. This function can't
  978. * be called with interrupts off, or it may introduce deadlock with
  979. * smp_call_function() if an IPI is sent by the same process we are
  980. * waiting to become inactive.
  981. */
  982. void wait_task_inactive(struct task_struct *p)
  983. {
  984. unsigned long flags;
  985. int running, on_rq;
  986. struct rq *rq;
  987. for (;;) {
  988. /*
  989. * We do the initial early heuristics without holding
  990. * any task-queue locks at all. We'll only try to get
  991. * the runqueue lock when things look like they will
  992. * work out!
  993. */
  994. rq = task_rq(p);
  995. /*
  996. * If the task is actively running on another CPU
  997. * still, just relax and busy-wait without holding
  998. * any locks.
  999. *
  1000. * NOTE! Since we don't hold any locks, it's not
  1001. * even sure that "rq" stays as the right runqueue!
  1002. * But we don't care, since "task_running()" will
  1003. * return false if the runqueue has changed and p
  1004. * is actually now running somewhere else!
  1005. */
  1006. while (task_running(rq, p))
  1007. cpu_relax();
  1008. /*
  1009. * Ok, time to look more closely! We need the rq
  1010. * lock now, to be *sure*. If we're wrong, we'll
  1011. * just go back and repeat.
  1012. */
  1013. rq = task_rq_lock(p, &flags);
  1014. running = task_running(rq, p);
  1015. on_rq = p->se.on_rq;
  1016. task_rq_unlock(rq, &flags);
  1017. /*
  1018. * Was it really running after all now that we
  1019. * checked with the proper locks actually held?
  1020. *
  1021. * Oops. Go back and try again..
  1022. */
  1023. if (unlikely(running)) {
  1024. cpu_relax();
  1025. continue;
  1026. }
  1027. /*
  1028. * It's not enough that it's not actively running,
  1029. * it must be off the runqueue _entirely_, and not
  1030. * preempted!
  1031. *
  1032. * So if it wa still runnable (but just not actively
  1033. * running right now), it's preempted, and we should
  1034. * yield - it could be a while.
  1035. */
  1036. if (unlikely(on_rq)) {
  1037. schedule_timeout_uninterruptible(1);
  1038. continue;
  1039. }
  1040. /*
  1041. * Ahh, all good. It wasn't running, and it wasn't
  1042. * runnable, which means that it will never become
  1043. * running in the future either. We're all done!
  1044. */
  1045. break;
  1046. }
  1047. }
  1048. /***
  1049. * kick_process - kick a running thread to enter/exit the kernel
  1050. * @p: the to-be-kicked thread
  1051. *
  1052. * Cause a process which is running on another CPU to enter
  1053. * kernel-mode, without any delay. (to get signals handled.)
  1054. *
  1055. * NOTE: this function doesnt have to take the runqueue lock,
  1056. * because all it wants to ensure is that the remote task enters
  1057. * the kernel. If the IPI races and the task has been migrated
  1058. * to another CPU then no harm is done and the purpose has been
  1059. * achieved as well.
  1060. */
  1061. void kick_process(struct task_struct *p)
  1062. {
  1063. int cpu;
  1064. preempt_disable();
  1065. cpu = task_cpu(p);
  1066. if ((cpu != smp_processor_id()) && task_curr(p))
  1067. smp_send_reschedule(cpu);
  1068. preempt_enable();
  1069. }
  1070. /*
  1071. * Return a low guess at the load of a migration-source cpu weighted
  1072. * according to the scheduling class and "nice" value.
  1073. *
  1074. * We want to under-estimate the load of migration sources, to
  1075. * balance conservatively.
  1076. */
  1077. static unsigned long source_load(int cpu, int type)
  1078. {
  1079. struct rq *rq = cpu_rq(cpu);
  1080. unsigned long total = weighted_cpuload(cpu);
  1081. if (type == 0)
  1082. return total;
  1083. return min(rq->cpu_load[type-1], total);
  1084. }
  1085. /*
  1086. * Return a high guess at the load of a migration-target cpu weighted
  1087. * according to the scheduling class and "nice" value.
  1088. */
  1089. static unsigned long target_load(int cpu, int type)
  1090. {
  1091. struct rq *rq = cpu_rq(cpu);
  1092. unsigned long total = weighted_cpuload(cpu);
  1093. if (type == 0)
  1094. return total;
  1095. return max(rq->cpu_load[type-1], total);
  1096. }
  1097. /*
  1098. * Return the average load per task on the cpu's run queue
  1099. */
  1100. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1101. {
  1102. struct rq *rq = cpu_rq(cpu);
  1103. unsigned long total = weighted_cpuload(cpu);
  1104. unsigned long n = rq->nr_running;
  1105. return n ? total / n : SCHED_LOAD_SCALE;
  1106. }
  1107. /*
  1108. * find_idlest_group finds and returns the least busy CPU group within the
  1109. * domain.
  1110. */
  1111. static struct sched_group *
  1112. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1113. {
  1114. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1115. unsigned long min_load = ULONG_MAX, this_load = 0;
  1116. int load_idx = sd->forkexec_idx;
  1117. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1118. do {
  1119. unsigned long load, avg_load;
  1120. int local_group;
  1121. int i;
  1122. /* Skip over this group if it has no CPUs allowed */
  1123. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1124. continue;
  1125. local_group = cpu_isset(this_cpu, group->cpumask);
  1126. /* Tally up the load of all CPUs in the group */
  1127. avg_load = 0;
  1128. for_each_cpu_mask(i, group->cpumask) {
  1129. /* Bias balancing toward cpus of our domain */
  1130. if (local_group)
  1131. load = source_load(i, load_idx);
  1132. else
  1133. load = target_load(i, load_idx);
  1134. avg_load += load;
  1135. }
  1136. /* Adjust by relative CPU power of the group */
  1137. avg_load = sg_div_cpu_power(group,
  1138. avg_load * SCHED_LOAD_SCALE);
  1139. if (local_group) {
  1140. this_load = avg_load;
  1141. this = group;
  1142. } else if (avg_load < min_load) {
  1143. min_load = avg_load;
  1144. idlest = group;
  1145. }
  1146. } while (group = group->next, group != sd->groups);
  1147. if (!idlest || 100*this_load < imbalance*min_load)
  1148. return NULL;
  1149. return idlest;
  1150. }
  1151. /*
  1152. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1153. */
  1154. static int
  1155. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1156. {
  1157. cpumask_t tmp;
  1158. unsigned long load, min_load = ULONG_MAX;
  1159. int idlest = -1;
  1160. int i;
  1161. /* Traverse only the allowed CPUs */
  1162. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1163. for_each_cpu_mask(i, tmp) {
  1164. load = weighted_cpuload(i);
  1165. if (load < min_load || (load == min_load && i == this_cpu)) {
  1166. min_load = load;
  1167. idlest = i;
  1168. }
  1169. }
  1170. return idlest;
  1171. }
  1172. /*
  1173. * sched_balance_self: balance the current task (running on cpu) in domains
  1174. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1175. * SD_BALANCE_EXEC.
  1176. *
  1177. * Balance, ie. select the least loaded group.
  1178. *
  1179. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1180. *
  1181. * preempt must be disabled.
  1182. */
  1183. static int sched_balance_self(int cpu, int flag)
  1184. {
  1185. struct task_struct *t = current;
  1186. struct sched_domain *tmp, *sd = NULL;
  1187. for_each_domain(cpu, tmp) {
  1188. /*
  1189. * If power savings logic is enabled for a domain, stop there.
  1190. */
  1191. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1192. break;
  1193. if (tmp->flags & flag)
  1194. sd = tmp;
  1195. }
  1196. while (sd) {
  1197. cpumask_t span;
  1198. struct sched_group *group;
  1199. int new_cpu, weight;
  1200. if (!(sd->flags & flag)) {
  1201. sd = sd->child;
  1202. continue;
  1203. }
  1204. span = sd->span;
  1205. group = find_idlest_group(sd, t, cpu);
  1206. if (!group) {
  1207. sd = sd->child;
  1208. continue;
  1209. }
  1210. new_cpu = find_idlest_cpu(group, t, cpu);
  1211. if (new_cpu == -1 || new_cpu == cpu) {
  1212. /* Now try balancing at a lower domain level of cpu */
  1213. sd = sd->child;
  1214. continue;
  1215. }
  1216. /* Now try balancing at a lower domain level of new_cpu */
  1217. cpu = new_cpu;
  1218. sd = NULL;
  1219. weight = cpus_weight(span);
  1220. for_each_domain(cpu, tmp) {
  1221. if (weight <= cpus_weight(tmp->span))
  1222. break;
  1223. if (tmp->flags & flag)
  1224. sd = tmp;
  1225. }
  1226. /* while loop will break here if sd == NULL */
  1227. }
  1228. return cpu;
  1229. }
  1230. #endif /* CONFIG_SMP */
  1231. /*
  1232. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1233. * not idle and an idle cpu is available. The span of cpus to
  1234. * search starts with cpus closest then further out as needed,
  1235. * so we always favor a closer, idle cpu.
  1236. *
  1237. * Returns the CPU we should wake onto.
  1238. */
  1239. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1240. static int wake_idle(int cpu, struct task_struct *p)
  1241. {
  1242. cpumask_t tmp;
  1243. struct sched_domain *sd;
  1244. int i;
  1245. /*
  1246. * If it is idle, then it is the best cpu to run this task.
  1247. *
  1248. * This cpu is also the best, if it has more than one task already.
  1249. * Siblings must be also busy(in most cases) as they didn't already
  1250. * pickup the extra load from this cpu and hence we need not check
  1251. * sibling runqueue info. This will avoid the checks and cache miss
  1252. * penalities associated with that.
  1253. */
  1254. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1255. return cpu;
  1256. for_each_domain(cpu, sd) {
  1257. if (sd->flags & SD_WAKE_IDLE) {
  1258. cpus_and(tmp, sd->span, p->cpus_allowed);
  1259. for_each_cpu_mask(i, tmp) {
  1260. if (idle_cpu(i)) {
  1261. if (i != task_cpu(p)) {
  1262. schedstat_inc(p,
  1263. se.nr_wakeups_idle);
  1264. }
  1265. return i;
  1266. }
  1267. }
  1268. } else {
  1269. break;
  1270. }
  1271. }
  1272. return cpu;
  1273. }
  1274. #else
  1275. static inline int wake_idle(int cpu, struct task_struct *p)
  1276. {
  1277. return cpu;
  1278. }
  1279. #endif
  1280. /***
  1281. * try_to_wake_up - wake up a thread
  1282. * @p: the to-be-woken-up thread
  1283. * @state: the mask of task states that can be woken
  1284. * @sync: do a synchronous wakeup?
  1285. *
  1286. * Put it on the run-queue if it's not already there. The "current"
  1287. * thread is always on the run-queue (except when the actual
  1288. * re-schedule is in progress), and as such you're allowed to do
  1289. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1290. * runnable without the overhead of this.
  1291. *
  1292. * returns failure only if the task is already active.
  1293. */
  1294. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1295. {
  1296. int cpu, orig_cpu, this_cpu, success = 0;
  1297. unsigned long flags;
  1298. long old_state;
  1299. struct rq *rq;
  1300. #ifdef CONFIG_SMP
  1301. struct sched_domain *sd, *this_sd = NULL;
  1302. unsigned long load, this_load;
  1303. int new_cpu;
  1304. #endif
  1305. rq = task_rq_lock(p, &flags);
  1306. old_state = p->state;
  1307. if (!(old_state & state))
  1308. goto out;
  1309. if (p->se.on_rq)
  1310. goto out_running;
  1311. cpu = task_cpu(p);
  1312. orig_cpu = cpu;
  1313. this_cpu = smp_processor_id();
  1314. #ifdef CONFIG_SMP
  1315. if (unlikely(task_running(rq, p)))
  1316. goto out_activate;
  1317. new_cpu = cpu;
  1318. schedstat_inc(rq, ttwu_count);
  1319. if (cpu == this_cpu) {
  1320. schedstat_inc(rq, ttwu_local);
  1321. goto out_set_cpu;
  1322. }
  1323. for_each_domain(this_cpu, sd) {
  1324. if (cpu_isset(cpu, sd->span)) {
  1325. schedstat_inc(sd, ttwu_wake_remote);
  1326. this_sd = sd;
  1327. break;
  1328. }
  1329. }
  1330. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1331. goto out_set_cpu;
  1332. /*
  1333. * Check for affine wakeup and passive balancing possibilities.
  1334. */
  1335. if (this_sd) {
  1336. int idx = this_sd->wake_idx;
  1337. unsigned int imbalance;
  1338. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1339. load = source_load(cpu, idx);
  1340. this_load = target_load(this_cpu, idx);
  1341. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1342. if (this_sd->flags & SD_WAKE_AFFINE) {
  1343. unsigned long tl = this_load;
  1344. unsigned long tl_per_task;
  1345. /*
  1346. * Attract cache-cold tasks on sync wakeups:
  1347. */
  1348. if (sync && !task_hot(p, rq->clock, this_sd))
  1349. goto out_set_cpu;
  1350. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1351. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1352. /*
  1353. * If sync wakeup then subtract the (maximum possible)
  1354. * effect of the currently running task from the load
  1355. * of the current CPU:
  1356. */
  1357. if (sync)
  1358. tl -= current->se.load.weight;
  1359. if ((tl <= load &&
  1360. tl + target_load(cpu, idx) <= tl_per_task) ||
  1361. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1362. /*
  1363. * This domain has SD_WAKE_AFFINE and
  1364. * p is cache cold in this domain, and
  1365. * there is no bad imbalance.
  1366. */
  1367. schedstat_inc(this_sd, ttwu_move_affine);
  1368. schedstat_inc(p, se.nr_wakeups_affine);
  1369. goto out_set_cpu;
  1370. }
  1371. }
  1372. /*
  1373. * Start passive balancing when half the imbalance_pct
  1374. * limit is reached.
  1375. */
  1376. if (this_sd->flags & SD_WAKE_BALANCE) {
  1377. if (imbalance*this_load <= 100*load) {
  1378. schedstat_inc(this_sd, ttwu_move_balance);
  1379. schedstat_inc(p, se.nr_wakeups_passive);
  1380. goto out_set_cpu;
  1381. }
  1382. }
  1383. }
  1384. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1385. out_set_cpu:
  1386. new_cpu = wake_idle(new_cpu, p);
  1387. if (new_cpu != cpu) {
  1388. set_task_cpu(p, new_cpu);
  1389. task_rq_unlock(rq, &flags);
  1390. /* might preempt at this point */
  1391. rq = task_rq_lock(p, &flags);
  1392. old_state = p->state;
  1393. if (!(old_state & state))
  1394. goto out;
  1395. if (p->se.on_rq)
  1396. goto out_running;
  1397. this_cpu = smp_processor_id();
  1398. cpu = task_cpu(p);
  1399. }
  1400. out_activate:
  1401. #endif /* CONFIG_SMP */
  1402. schedstat_inc(p, se.nr_wakeups);
  1403. if (sync)
  1404. schedstat_inc(p, se.nr_wakeups_sync);
  1405. if (orig_cpu != cpu)
  1406. schedstat_inc(p, se.nr_wakeups_migrate);
  1407. if (cpu == this_cpu)
  1408. schedstat_inc(p, se.nr_wakeups_local);
  1409. else
  1410. schedstat_inc(p, se.nr_wakeups_remote);
  1411. update_rq_clock(rq);
  1412. activate_task(rq, p, 1);
  1413. check_preempt_curr(rq, p);
  1414. success = 1;
  1415. out_running:
  1416. p->state = TASK_RUNNING;
  1417. out:
  1418. task_rq_unlock(rq, &flags);
  1419. return success;
  1420. }
  1421. int fastcall wake_up_process(struct task_struct *p)
  1422. {
  1423. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1424. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1425. }
  1426. EXPORT_SYMBOL(wake_up_process);
  1427. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1428. {
  1429. return try_to_wake_up(p, state, 0);
  1430. }
  1431. /*
  1432. * Perform scheduler related setup for a newly forked process p.
  1433. * p is forked by current.
  1434. *
  1435. * __sched_fork() is basic setup used by init_idle() too:
  1436. */
  1437. static void __sched_fork(struct task_struct *p)
  1438. {
  1439. p->se.exec_start = 0;
  1440. p->se.sum_exec_runtime = 0;
  1441. p->se.prev_sum_exec_runtime = 0;
  1442. #ifdef CONFIG_SCHEDSTATS
  1443. p->se.wait_start = 0;
  1444. p->se.sum_sleep_runtime = 0;
  1445. p->se.sleep_start = 0;
  1446. p->se.block_start = 0;
  1447. p->se.sleep_max = 0;
  1448. p->se.block_max = 0;
  1449. p->se.exec_max = 0;
  1450. p->se.slice_max = 0;
  1451. p->se.wait_max = 0;
  1452. #endif
  1453. INIT_LIST_HEAD(&p->run_list);
  1454. p->se.on_rq = 0;
  1455. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1456. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1457. #endif
  1458. /*
  1459. * We mark the process as running here, but have not actually
  1460. * inserted it onto the runqueue yet. This guarantees that
  1461. * nobody will actually run it, and a signal or other external
  1462. * event cannot wake it up and insert it on the runqueue either.
  1463. */
  1464. p->state = TASK_RUNNING;
  1465. }
  1466. /*
  1467. * fork()/clone()-time setup:
  1468. */
  1469. void sched_fork(struct task_struct *p, int clone_flags)
  1470. {
  1471. int cpu = get_cpu();
  1472. __sched_fork(p);
  1473. #ifdef CONFIG_SMP
  1474. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1475. #endif
  1476. set_task_cpu(p, cpu);
  1477. /*
  1478. * Make sure we do not leak PI boosting priority to the child:
  1479. */
  1480. p->prio = current->normal_prio;
  1481. if (!rt_prio(p->prio))
  1482. p->sched_class = &fair_sched_class;
  1483. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1484. if (likely(sched_info_on()))
  1485. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1486. #endif
  1487. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1488. p->oncpu = 0;
  1489. #endif
  1490. #ifdef CONFIG_PREEMPT
  1491. /* Want to start with kernel preemption disabled. */
  1492. task_thread_info(p)->preempt_count = 1;
  1493. #endif
  1494. put_cpu();
  1495. }
  1496. /*
  1497. * wake_up_new_task - wake up a newly created task for the first time.
  1498. *
  1499. * This function will do some initial scheduler statistics housekeeping
  1500. * that must be done for every newly created context, then puts the task
  1501. * on the runqueue and wakes it.
  1502. */
  1503. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1504. {
  1505. unsigned long flags;
  1506. struct rq *rq;
  1507. rq = task_rq_lock(p, &flags);
  1508. BUG_ON(p->state != TASK_RUNNING);
  1509. update_rq_clock(rq);
  1510. p->prio = effective_prio(p);
  1511. if (!p->sched_class->task_new || !current->se.on_rq) {
  1512. activate_task(rq, p, 0);
  1513. } else {
  1514. /*
  1515. * Let the scheduling class do new task startup
  1516. * management (if any):
  1517. */
  1518. p->sched_class->task_new(rq, p);
  1519. inc_nr_running(p, rq);
  1520. }
  1521. check_preempt_curr(rq, p);
  1522. task_rq_unlock(rq, &flags);
  1523. }
  1524. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1525. /**
  1526. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1527. * @notifier: notifier struct to register
  1528. */
  1529. void preempt_notifier_register(struct preempt_notifier *notifier)
  1530. {
  1531. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1532. }
  1533. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1534. /**
  1535. * preempt_notifier_unregister - no longer interested in preemption notifications
  1536. * @notifier: notifier struct to unregister
  1537. *
  1538. * This is safe to call from within a preemption notifier.
  1539. */
  1540. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1541. {
  1542. hlist_del(&notifier->link);
  1543. }
  1544. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1545. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1546. {
  1547. struct preempt_notifier *notifier;
  1548. struct hlist_node *node;
  1549. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1550. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1551. }
  1552. static void
  1553. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1554. struct task_struct *next)
  1555. {
  1556. struct preempt_notifier *notifier;
  1557. struct hlist_node *node;
  1558. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1559. notifier->ops->sched_out(notifier, next);
  1560. }
  1561. #else
  1562. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1563. {
  1564. }
  1565. static void
  1566. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1567. struct task_struct *next)
  1568. {
  1569. }
  1570. #endif
  1571. /**
  1572. * prepare_task_switch - prepare to switch tasks
  1573. * @rq: the runqueue preparing to switch
  1574. * @prev: the current task that is being switched out
  1575. * @next: the task we are going to switch to.
  1576. *
  1577. * This is called with the rq lock held and interrupts off. It must
  1578. * be paired with a subsequent finish_task_switch after the context
  1579. * switch.
  1580. *
  1581. * prepare_task_switch sets up locking and calls architecture specific
  1582. * hooks.
  1583. */
  1584. static inline void
  1585. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1586. struct task_struct *next)
  1587. {
  1588. fire_sched_out_preempt_notifiers(prev, next);
  1589. prepare_lock_switch(rq, next);
  1590. prepare_arch_switch(next);
  1591. }
  1592. /**
  1593. * finish_task_switch - clean up after a task-switch
  1594. * @rq: runqueue associated with task-switch
  1595. * @prev: the thread we just switched away from.
  1596. *
  1597. * finish_task_switch must be called after the context switch, paired
  1598. * with a prepare_task_switch call before the context switch.
  1599. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1600. * and do any other architecture-specific cleanup actions.
  1601. *
  1602. * Note that we may have delayed dropping an mm in context_switch(). If
  1603. * so, we finish that here outside of the runqueue lock. (Doing it
  1604. * with the lock held can cause deadlocks; see schedule() for
  1605. * details.)
  1606. */
  1607. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1608. __releases(rq->lock)
  1609. {
  1610. struct mm_struct *mm = rq->prev_mm;
  1611. long prev_state;
  1612. rq->prev_mm = NULL;
  1613. /*
  1614. * A task struct has one reference for the use as "current".
  1615. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1616. * schedule one last time. The schedule call will never return, and
  1617. * the scheduled task must drop that reference.
  1618. * The test for TASK_DEAD must occur while the runqueue locks are
  1619. * still held, otherwise prev could be scheduled on another cpu, die
  1620. * there before we look at prev->state, and then the reference would
  1621. * be dropped twice.
  1622. * Manfred Spraul <manfred@colorfullife.com>
  1623. */
  1624. prev_state = prev->state;
  1625. finish_arch_switch(prev);
  1626. finish_lock_switch(rq, prev);
  1627. fire_sched_in_preempt_notifiers(current);
  1628. if (mm)
  1629. mmdrop(mm);
  1630. if (unlikely(prev_state == TASK_DEAD)) {
  1631. /*
  1632. * Remove function-return probe instances associated with this
  1633. * task and put them back on the free list.
  1634. */
  1635. kprobe_flush_task(prev);
  1636. put_task_struct(prev);
  1637. }
  1638. }
  1639. /**
  1640. * schedule_tail - first thing a freshly forked thread must call.
  1641. * @prev: the thread we just switched away from.
  1642. */
  1643. asmlinkage void schedule_tail(struct task_struct *prev)
  1644. __releases(rq->lock)
  1645. {
  1646. struct rq *rq = this_rq();
  1647. finish_task_switch(rq, prev);
  1648. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1649. /* In this case, finish_task_switch does not reenable preemption */
  1650. preempt_enable();
  1651. #endif
  1652. if (current->set_child_tid)
  1653. put_user(task_pid_vnr(current), current->set_child_tid);
  1654. }
  1655. /*
  1656. * context_switch - switch to the new MM and the new
  1657. * thread's register state.
  1658. */
  1659. static inline void
  1660. context_switch(struct rq *rq, struct task_struct *prev,
  1661. struct task_struct *next)
  1662. {
  1663. struct mm_struct *mm, *oldmm;
  1664. prepare_task_switch(rq, prev, next);
  1665. mm = next->mm;
  1666. oldmm = prev->active_mm;
  1667. /*
  1668. * For paravirt, this is coupled with an exit in switch_to to
  1669. * combine the page table reload and the switch backend into
  1670. * one hypercall.
  1671. */
  1672. arch_enter_lazy_cpu_mode();
  1673. if (unlikely(!mm)) {
  1674. next->active_mm = oldmm;
  1675. atomic_inc(&oldmm->mm_count);
  1676. enter_lazy_tlb(oldmm, next);
  1677. } else
  1678. switch_mm(oldmm, mm, next);
  1679. if (unlikely(!prev->mm)) {
  1680. prev->active_mm = NULL;
  1681. rq->prev_mm = oldmm;
  1682. }
  1683. /*
  1684. * Since the runqueue lock will be released by the next
  1685. * task (which is an invalid locking op but in the case
  1686. * of the scheduler it's an obvious special-case), so we
  1687. * do an early lockdep release here:
  1688. */
  1689. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1690. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1691. #endif
  1692. /* Here we just switch the register state and the stack. */
  1693. switch_to(prev, next, prev);
  1694. barrier();
  1695. /*
  1696. * this_rq must be evaluated again because prev may have moved
  1697. * CPUs since it called schedule(), thus the 'rq' on its stack
  1698. * frame will be invalid.
  1699. */
  1700. finish_task_switch(this_rq(), prev);
  1701. }
  1702. /*
  1703. * nr_running, nr_uninterruptible and nr_context_switches:
  1704. *
  1705. * externally visible scheduler statistics: current number of runnable
  1706. * threads, current number of uninterruptible-sleeping threads, total
  1707. * number of context switches performed since bootup.
  1708. */
  1709. unsigned long nr_running(void)
  1710. {
  1711. unsigned long i, sum = 0;
  1712. for_each_online_cpu(i)
  1713. sum += cpu_rq(i)->nr_running;
  1714. return sum;
  1715. }
  1716. unsigned long nr_uninterruptible(void)
  1717. {
  1718. unsigned long i, sum = 0;
  1719. for_each_possible_cpu(i)
  1720. sum += cpu_rq(i)->nr_uninterruptible;
  1721. /*
  1722. * Since we read the counters lockless, it might be slightly
  1723. * inaccurate. Do not allow it to go below zero though:
  1724. */
  1725. if (unlikely((long)sum < 0))
  1726. sum = 0;
  1727. return sum;
  1728. }
  1729. unsigned long long nr_context_switches(void)
  1730. {
  1731. int i;
  1732. unsigned long long sum = 0;
  1733. for_each_possible_cpu(i)
  1734. sum += cpu_rq(i)->nr_switches;
  1735. return sum;
  1736. }
  1737. unsigned long nr_iowait(void)
  1738. {
  1739. unsigned long i, sum = 0;
  1740. for_each_possible_cpu(i)
  1741. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1742. return sum;
  1743. }
  1744. unsigned long nr_active(void)
  1745. {
  1746. unsigned long i, running = 0, uninterruptible = 0;
  1747. for_each_online_cpu(i) {
  1748. running += cpu_rq(i)->nr_running;
  1749. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1750. }
  1751. if (unlikely((long)uninterruptible < 0))
  1752. uninterruptible = 0;
  1753. return running + uninterruptible;
  1754. }
  1755. /*
  1756. * Update rq->cpu_load[] statistics. This function is usually called every
  1757. * scheduler tick (TICK_NSEC).
  1758. */
  1759. static void update_cpu_load(struct rq *this_rq)
  1760. {
  1761. unsigned long this_load = this_rq->load.weight;
  1762. int i, scale;
  1763. this_rq->nr_load_updates++;
  1764. /* Update our load: */
  1765. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1766. unsigned long old_load, new_load;
  1767. /* scale is effectively 1 << i now, and >> i divides by scale */
  1768. old_load = this_rq->cpu_load[i];
  1769. new_load = this_load;
  1770. /*
  1771. * Round up the averaging division if load is increasing. This
  1772. * prevents us from getting stuck on 9 if the load is 10, for
  1773. * example.
  1774. */
  1775. if (new_load > old_load)
  1776. new_load += scale-1;
  1777. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1778. }
  1779. }
  1780. #ifdef CONFIG_SMP
  1781. /*
  1782. * double_rq_lock - safely lock two runqueues
  1783. *
  1784. * Note this does not disable interrupts like task_rq_lock,
  1785. * you need to do so manually before calling.
  1786. */
  1787. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1788. __acquires(rq1->lock)
  1789. __acquires(rq2->lock)
  1790. {
  1791. BUG_ON(!irqs_disabled());
  1792. if (rq1 == rq2) {
  1793. spin_lock(&rq1->lock);
  1794. __acquire(rq2->lock); /* Fake it out ;) */
  1795. } else {
  1796. if (rq1 < rq2) {
  1797. spin_lock(&rq1->lock);
  1798. spin_lock(&rq2->lock);
  1799. } else {
  1800. spin_lock(&rq2->lock);
  1801. spin_lock(&rq1->lock);
  1802. }
  1803. }
  1804. update_rq_clock(rq1);
  1805. update_rq_clock(rq2);
  1806. }
  1807. /*
  1808. * double_rq_unlock - safely unlock two runqueues
  1809. *
  1810. * Note this does not restore interrupts like task_rq_unlock,
  1811. * you need to do so manually after calling.
  1812. */
  1813. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1814. __releases(rq1->lock)
  1815. __releases(rq2->lock)
  1816. {
  1817. spin_unlock(&rq1->lock);
  1818. if (rq1 != rq2)
  1819. spin_unlock(&rq2->lock);
  1820. else
  1821. __release(rq2->lock);
  1822. }
  1823. /*
  1824. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1825. */
  1826. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1827. __releases(this_rq->lock)
  1828. __acquires(busiest->lock)
  1829. __acquires(this_rq->lock)
  1830. {
  1831. if (unlikely(!irqs_disabled())) {
  1832. /* printk() doesn't work good under rq->lock */
  1833. spin_unlock(&this_rq->lock);
  1834. BUG_ON(1);
  1835. }
  1836. if (unlikely(!spin_trylock(&busiest->lock))) {
  1837. if (busiest < this_rq) {
  1838. spin_unlock(&this_rq->lock);
  1839. spin_lock(&busiest->lock);
  1840. spin_lock(&this_rq->lock);
  1841. } else
  1842. spin_lock(&busiest->lock);
  1843. }
  1844. }
  1845. /*
  1846. * If dest_cpu is allowed for this process, migrate the task to it.
  1847. * This is accomplished by forcing the cpu_allowed mask to only
  1848. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1849. * the cpu_allowed mask is restored.
  1850. */
  1851. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1852. {
  1853. struct migration_req req;
  1854. unsigned long flags;
  1855. struct rq *rq;
  1856. rq = task_rq_lock(p, &flags);
  1857. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1858. || unlikely(cpu_is_offline(dest_cpu)))
  1859. goto out;
  1860. /* force the process onto the specified CPU */
  1861. if (migrate_task(p, dest_cpu, &req)) {
  1862. /* Need to wait for migration thread (might exit: take ref). */
  1863. struct task_struct *mt = rq->migration_thread;
  1864. get_task_struct(mt);
  1865. task_rq_unlock(rq, &flags);
  1866. wake_up_process(mt);
  1867. put_task_struct(mt);
  1868. wait_for_completion(&req.done);
  1869. return;
  1870. }
  1871. out:
  1872. task_rq_unlock(rq, &flags);
  1873. }
  1874. /*
  1875. * sched_exec - execve() is a valuable balancing opportunity, because at
  1876. * this point the task has the smallest effective memory and cache footprint.
  1877. */
  1878. void sched_exec(void)
  1879. {
  1880. int new_cpu, this_cpu = get_cpu();
  1881. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1882. put_cpu();
  1883. if (new_cpu != this_cpu)
  1884. sched_migrate_task(current, new_cpu);
  1885. }
  1886. /*
  1887. * pull_task - move a task from a remote runqueue to the local runqueue.
  1888. * Both runqueues must be locked.
  1889. */
  1890. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1891. struct rq *this_rq, int this_cpu)
  1892. {
  1893. deactivate_task(src_rq, p, 0);
  1894. set_task_cpu(p, this_cpu);
  1895. activate_task(this_rq, p, 0);
  1896. /*
  1897. * Note that idle threads have a prio of MAX_PRIO, for this test
  1898. * to be always true for them.
  1899. */
  1900. check_preempt_curr(this_rq, p);
  1901. }
  1902. /*
  1903. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1904. */
  1905. static
  1906. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1907. struct sched_domain *sd, enum cpu_idle_type idle,
  1908. int *all_pinned)
  1909. {
  1910. /*
  1911. * We do not migrate tasks that are:
  1912. * 1) running (obviously), or
  1913. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1914. * 3) are cache-hot on their current CPU.
  1915. */
  1916. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1917. schedstat_inc(p, se.nr_failed_migrations_affine);
  1918. return 0;
  1919. }
  1920. *all_pinned = 0;
  1921. if (task_running(rq, p)) {
  1922. schedstat_inc(p, se.nr_failed_migrations_running);
  1923. return 0;
  1924. }
  1925. /*
  1926. * Aggressive migration if:
  1927. * 1) task is cache cold, or
  1928. * 2) too many balance attempts have failed.
  1929. */
  1930. if (!task_hot(p, rq->clock, sd) ||
  1931. sd->nr_balance_failed > sd->cache_nice_tries) {
  1932. #ifdef CONFIG_SCHEDSTATS
  1933. if (task_hot(p, rq->clock, sd)) {
  1934. schedstat_inc(sd, lb_hot_gained[idle]);
  1935. schedstat_inc(p, se.nr_forced_migrations);
  1936. }
  1937. #endif
  1938. return 1;
  1939. }
  1940. if (task_hot(p, rq->clock, sd)) {
  1941. schedstat_inc(p, se.nr_failed_migrations_hot);
  1942. return 0;
  1943. }
  1944. return 1;
  1945. }
  1946. static unsigned long
  1947. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1948. unsigned long max_load_move, struct sched_domain *sd,
  1949. enum cpu_idle_type idle, int *all_pinned,
  1950. int *this_best_prio, struct rq_iterator *iterator)
  1951. {
  1952. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1953. struct task_struct *p;
  1954. long rem_load_move = max_load_move;
  1955. if (max_load_move == 0)
  1956. goto out;
  1957. pinned = 1;
  1958. /*
  1959. * Start the load-balancing iterator:
  1960. */
  1961. p = iterator->start(iterator->arg);
  1962. next:
  1963. if (!p || loops++ > sysctl_sched_nr_migrate)
  1964. goto out;
  1965. /*
  1966. * To help distribute high priority tasks across CPUs we don't
  1967. * skip a task if it will be the highest priority task (i.e. smallest
  1968. * prio value) on its new queue regardless of its load weight
  1969. */
  1970. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1971. SCHED_LOAD_SCALE_FUZZ;
  1972. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1973. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1974. p = iterator->next(iterator->arg);
  1975. goto next;
  1976. }
  1977. pull_task(busiest, p, this_rq, this_cpu);
  1978. pulled++;
  1979. rem_load_move -= p->se.load.weight;
  1980. /*
  1981. * We only want to steal up to the prescribed amount of weighted load.
  1982. */
  1983. if (rem_load_move > 0) {
  1984. if (p->prio < *this_best_prio)
  1985. *this_best_prio = p->prio;
  1986. p = iterator->next(iterator->arg);
  1987. goto next;
  1988. }
  1989. out:
  1990. /*
  1991. * Right now, this is one of only two places pull_task() is called,
  1992. * so we can safely collect pull_task() stats here rather than
  1993. * inside pull_task().
  1994. */
  1995. schedstat_add(sd, lb_gained[idle], pulled);
  1996. if (all_pinned)
  1997. *all_pinned = pinned;
  1998. return max_load_move - rem_load_move;
  1999. }
  2000. /*
  2001. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2002. * this_rq, as part of a balancing operation within domain "sd".
  2003. * Returns 1 if successful and 0 otherwise.
  2004. *
  2005. * Called with both runqueues locked.
  2006. */
  2007. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2008. unsigned long max_load_move,
  2009. struct sched_domain *sd, enum cpu_idle_type idle,
  2010. int *all_pinned)
  2011. {
  2012. const struct sched_class *class = sched_class_highest;
  2013. unsigned long total_load_moved = 0;
  2014. int this_best_prio = this_rq->curr->prio;
  2015. do {
  2016. total_load_moved +=
  2017. class->load_balance(this_rq, this_cpu, busiest,
  2018. max_load_move - total_load_moved,
  2019. sd, idle, all_pinned, &this_best_prio);
  2020. class = class->next;
  2021. } while (class && max_load_move > total_load_moved);
  2022. return total_load_moved > 0;
  2023. }
  2024. static int
  2025. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2026. struct sched_domain *sd, enum cpu_idle_type idle,
  2027. struct rq_iterator *iterator)
  2028. {
  2029. struct task_struct *p = iterator->start(iterator->arg);
  2030. int pinned = 0;
  2031. while (p) {
  2032. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2033. pull_task(busiest, p, this_rq, this_cpu);
  2034. /*
  2035. * Right now, this is only the second place pull_task()
  2036. * is called, so we can safely collect pull_task()
  2037. * stats here rather than inside pull_task().
  2038. */
  2039. schedstat_inc(sd, lb_gained[idle]);
  2040. return 1;
  2041. }
  2042. p = iterator->next(iterator->arg);
  2043. }
  2044. return 0;
  2045. }
  2046. /*
  2047. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2048. * part of active balancing operations within "domain".
  2049. * Returns 1 if successful and 0 otherwise.
  2050. *
  2051. * Called with both runqueues locked.
  2052. */
  2053. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2054. struct sched_domain *sd, enum cpu_idle_type idle)
  2055. {
  2056. const struct sched_class *class;
  2057. for (class = sched_class_highest; class; class = class->next)
  2058. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2059. return 1;
  2060. return 0;
  2061. }
  2062. /*
  2063. * find_busiest_group finds and returns the busiest CPU group within the
  2064. * domain. It calculates and returns the amount of weighted load which
  2065. * should be moved to restore balance via the imbalance parameter.
  2066. */
  2067. static struct sched_group *
  2068. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2069. unsigned long *imbalance, enum cpu_idle_type idle,
  2070. int *sd_idle, cpumask_t *cpus, int *balance)
  2071. {
  2072. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2073. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2074. unsigned long max_pull;
  2075. unsigned long busiest_load_per_task, busiest_nr_running;
  2076. unsigned long this_load_per_task, this_nr_running;
  2077. int load_idx, group_imb = 0;
  2078. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2079. int power_savings_balance = 1;
  2080. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2081. unsigned long min_nr_running = ULONG_MAX;
  2082. struct sched_group *group_min = NULL, *group_leader = NULL;
  2083. #endif
  2084. max_load = this_load = total_load = total_pwr = 0;
  2085. busiest_load_per_task = busiest_nr_running = 0;
  2086. this_load_per_task = this_nr_running = 0;
  2087. if (idle == CPU_NOT_IDLE)
  2088. load_idx = sd->busy_idx;
  2089. else if (idle == CPU_NEWLY_IDLE)
  2090. load_idx = sd->newidle_idx;
  2091. else
  2092. load_idx = sd->idle_idx;
  2093. do {
  2094. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2095. int local_group;
  2096. int i;
  2097. int __group_imb = 0;
  2098. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2099. unsigned long sum_nr_running, sum_weighted_load;
  2100. local_group = cpu_isset(this_cpu, group->cpumask);
  2101. if (local_group)
  2102. balance_cpu = first_cpu(group->cpumask);
  2103. /* Tally up the load of all CPUs in the group */
  2104. sum_weighted_load = sum_nr_running = avg_load = 0;
  2105. max_cpu_load = 0;
  2106. min_cpu_load = ~0UL;
  2107. for_each_cpu_mask(i, group->cpumask) {
  2108. struct rq *rq;
  2109. if (!cpu_isset(i, *cpus))
  2110. continue;
  2111. rq = cpu_rq(i);
  2112. if (*sd_idle && rq->nr_running)
  2113. *sd_idle = 0;
  2114. /* Bias balancing toward cpus of our domain */
  2115. if (local_group) {
  2116. if (idle_cpu(i) && !first_idle_cpu) {
  2117. first_idle_cpu = 1;
  2118. balance_cpu = i;
  2119. }
  2120. load = target_load(i, load_idx);
  2121. } else {
  2122. load = source_load(i, load_idx);
  2123. if (load > max_cpu_load)
  2124. max_cpu_load = load;
  2125. if (min_cpu_load > load)
  2126. min_cpu_load = load;
  2127. }
  2128. avg_load += load;
  2129. sum_nr_running += rq->nr_running;
  2130. sum_weighted_load += weighted_cpuload(i);
  2131. }
  2132. /*
  2133. * First idle cpu or the first cpu(busiest) in this sched group
  2134. * is eligible for doing load balancing at this and above
  2135. * domains. In the newly idle case, we will allow all the cpu's
  2136. * to do the newly idle load balance.
  2137. */
  2138. if (idle != CPU_NEWLY_IDLE && local_group &&
  2139. balance_cpu != this_cpu && balance) {
  2140. *balance = 0;
  2141. goto ret;
  2142. }
  2143. total_load += avg_load;
  2144. total_pwr += group->__cpu_power;
  2145. /* Adjust by relative CPU power of the group */
  2146. avg_load = sg_div_cpu_power(group,
  2147. avg_load * SCHED_LOAD_SCALE);
  2148. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2149. __group_imb = 1;
  2150. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2151. if (local_group) {
  2152. this_load = avg_load;
  2153. this = group;
  2154. this_nr_running = sum_nr_running;
  2155. this_load_per_task = sum_weighted_load;
  2156. } else if (avg_load > max_load &&
  2157. (sum_nr_running > group_capacity || __group_imb)) {
  2158. max_load = avg_load;
  2159. busiest = group;
  2160. busiest_nr_running = sum_nr_running;
  2161. busiest_load_per_task = sum_weighted_load;
  2162. group_imb = __group_imb;
  2163. }
  2164. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2165. /*
  2166. * Busy processors will not participate in power savings
  2167. * balance.
  2168. */
  2169. if (idle == CPU_NOT_IDLE ||
  2170. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2171. goto group_next;
  2172. /*
  2173. * If the local group is idle or completely loaded
  2174. * no need to do power savings balance at this domain
  2175. */
  2176. if (local_group && (this_nr_running >= group_capacity ||
  2177. !this_nr_running))
  2178. power_savings_balance = 0;
  2179. /*
  2180. * If a group is already running at full capacity or idle,
  2181. * don't include that group in power savings calculations
  2182. */
  2183. if (!power_savings_balance || sum_nr_running >= group_capacity
  2184. || !sum_nr_running)
  2185. goto group_next;
  2186. /*
  2187. * Calculate the group which has the least non-idle load.
  2188. * This is the group from where we need to pick up the load
  2189. * for saving power
  2190. */
  2191. if ((sum_nr_running < min_nr_running) ||
  2192. (sum_nr_running == min_nr_running &&
  2193. first_cpu(group->cpumask) <
  2194. first_cpu(group_min->cpumask))) {
  2195. group_min = group;
  2196. min_nr_running = sum_nr_running;
  2197. min_load_per_task = sum_weighted_load /
  2198. sum_nr_running;
  2199. }
  2200. /*
  2201. * Calculate the group which is almost near its
  2202. * capacity but still has some space to pick up some load
  2203. * from other group and save more power
  2204. */
  2205. if (sum_nr_running <= group_capacity - 1) {
  2206. if (sum_nr_running > leader_nr_running ||
  2207. (sum_nr_running == leader_nr_running &&
  2208. first_cpu(group->cpumask) >
  2209. first_cpu(group_leader->cpumask))) {
  2210. group_leader = group;
  2211. leader_nr_running = sum_nr_running;
  2212. }
  2213. }
  2214. group_next:
  2215. #endif
  2216. group = group->next;
  2217. } while (group != sd->groups);
  2218. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2219. goto out_balanced;
  2220. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2221. if (this_load >= avg_load ||
  2222. 100*max_load <= sd->imbalance_pct*this_load)
  2223. goto out_balanced;
  2224. busiest_load_per_task /= busiest_nr_running;
  2225. if (group_imb)
  2226. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2227. /*
  2228. * We're trying to get all the cpus to the average_load, so we don't
  2229. * want to push ourselves above the average load, nor do we wish to
  2230. * reduce the max loaded cpu below the average load, as either of these
  2231. * actions would just result in more rebalancing later, and ping-pong
  2232. * tasks around. Thus we look for the minimum possible imbalance.
  2233. * Negative imbalances (*we* are more loaded than anyone else) will
  2234. * be counted as no imbalance for these purposes -- we can't fix that
  2235. * by pulling tasks to us. Be careful of negative numbers as they'll
  2236. * appear as very large values with unsigned longs.
  2237. */
  2238. if (max_load <= busiest_load_per_task)
  2239. goto out_balanced;
  2240. /*
  2241. * In the presence of smp nice balancing, certain scenarios can have
  2242. * max load less than avg load(as we skip the groups at or below
  2243. * its cpu_power, while calculating max_load..)
  2244. */
  2245. if (max_load < avg_load) {
  2246. *imbalance = 0;
  2247. goto small_imbalance;
  2248. }
  2249. /* Don't want to pull so many tasks that a group would go idle */
  2250. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2251. /* How much load to actually move to equalise the imbalance */
  2252. *imbalance = min(max_pull * busiest->__cpu_power,
  2253. (avg_load - this_load) * this->__cpu_power)
  2254. / SCHED_LOAD_SCALE;
  2255. /*
  2256. * if *imbalance is less than the average load per runnable task
  2257. * there is no gaurantee that any tasks will be moved so we'll have
  2258. * a think about bumping its value to force at least one task to be
  2259. * moved
  2260. */
  2261. if (*imbalance < busiest_load_per_task) {
  2262. unsigned long tmp, pwr_now, pwr_move;
  2263. unsigned int imbn;
  2264. small_imbalance:
  2265. pwr_move = pwr_now = 0;
  2266. imbn = 2;
  2267. if (this_nr_running) {
  2268. this_load_per_task /= this_nr_running;
  2269. if (busiest_load_per_task > this_load_per_task)
  2270. imbn = 1;
  2271. } else
  2272. this_load_per_task = SCHED_LOAD_SCALE;
  2273. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2274. busiest_load_per_task * imbn) {
  2275. *imbalance = busiest_load_per_task;
  2276. return busiest;
  2277. }
  2278. /*
  2279. * OK, we don't have enough imbalance to justify moving tasks,
  2280. * however we may be able to increase total CPU power used by
  2281. * moving them.
  2282. */
  2283. pwr_now += busiest->__cpu_power *
  2284. min(busiest_load_per_task, max_load);
  2285. pwr_now += this->__cpu_power *
  2286. min(this_load_per_task, this_load);
  2287. pwr_now /= SCHED_LOAD_SCALE;
  2288. /* Amount of load we'd subtract */
  2289. tmp = sg_div_cpu_power(busiest,
  2290. busiest_load_per_task * SCHED_LOAD_SCALE);
  2291. if (max_load > tmp)
  2292. pwr_move += busiest->__cpu_power *
  2293. min(busiest_load_per_task, max_load - tmp);
  2294. /* Amount of load we'd add */
  2295. if (max_load * busiest->__cpu_power <
  2296. busiest_load_per_task * SCHED_LOAD_SCALE)
  2297. tmp = sg_div_cpu_power(this,
  2298. max_load * busiest->__cpu_power);
  2299. else
  2300. tmp = sg_div_cpu_power(this,
  2301. busiest_load_per_task * SCHED_LOAD_SCALE);
  2302. pwr_move += this->__cpu_power *
  2303. min(this_load_per_task, this_load + tmp);
  2304. pwr_move /= SCHED_LOAD_SCALE;
  2305. /* Move if we gain throughput */
  2306. if (pwr_move > pwr_now)
  2307. *imbalance = busiest_load_per_task;
  2308. }
  2309. return busiest;
  2310. out_balanced:
  2311. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2312. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2313. goto ret;
  2314. if (this == group_leader && group_leader != group_min) {
  2315. *imbalance = min_load_per_task;
  2316. return group_min;
  2317. }
  2318. #endif
  2319. ret:
  2320. *imbalance = 0;
  2321. return NULL;
  2322. }
  2323. /*
  2324. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2325. */
  2326. static struct rq *
  2327. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2328. unsigned long imbalance, cpumask_t *cpus)
  2329. {
  2330. struct rq *busiest = NULL, *rq;
  2331. unsigned long max_load = 0;
  2332. int i;
  2333. for_each_cpu_mask(i, group->cpumask) {
  2334. unsigned long wl;
  2335. if (!cpu_isset(i, *cpus))
  2336. continue;
  2337. rq = cpu_rq(i);
  2338. wl = weighted_cpuload(i);
  2339. if (rq->nr_running == 1 && wl > imbalance)
  2340. continue;
  2341. if (wl > max_load) {
  2342. max_load = wl;
  2343. busiest = rq;
  2344. }
  2345. }
  2346. return busiest;
  2347. }
  2348. /*
  2349. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2350. * so long as it is large enough.
  2351. */
  2352. #define MAX_PINNED_INTERVAL 512
  2353. /*
  2354. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2355. * tasks if there is an imbalance.
  2356. */
  2357. static int load_balance(int this_cpu, struct rq *this_rq,
  2358. struct sched_domain *sd, enum cpu_idle_type idle,
  2359. int *balance)
  2360. {
  2361. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2362. struct sched_group *group;
  2363. unsigned long imbalance;
  2364. struct rq *busiest;
  2365. cpumask_t cpus = CPU_MASK_ALL;
  2366. unsigned long flags;
  2367. /*
  2368. * When power savings policy is enabled for the parent domain, idle
  2369. * sibling can pick up load irrespective of busy siblings. In this case,
  2370. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2371. * portraying it as CPU_NOT_IDLE.
  2372. */
  2373. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2374. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2375. sd_idle = 1;
  2376. schedstat_inc(sd, lb_count[idle]);
  2377. redo:
  2378. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2379. &cpus, balance);
  2380. if (*balance == 0)
  2381. goto out_balanced;
  2382. if (!group) {
  2383. schedstat_inc(sd, lb_nobusyg[idle]);
  2384. goto out_balanced;
  2385. }
  2386. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2387. if (!busiest) {
  2388. schedstat_inc(sd, lb_nobusyq[idle]);
  2389. goto out_balanced;
  2390. }
  2391. BUG_ON(busiest == this_rq);
  2392. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2393. ld_moved = 0;
  2394. if (busiest->nr_running > 1) {
  2395. /*
  2396. * Attempt to move tasks. If find_busiest_group has found
  2397. * an imbalance but busiest->nr_running <= 1, the group is
  2398. * still unbalanced. ld_moved simply stays zero, so it is
  2399. * correctly treated as an imbalance.
  2400. */
  2401. local_irq_save(flags);
  2402. double_rq_lock(this_rq, busiest);
  2403. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2404. imbalance, sd, idle, &all_pinned);
  2405. double_rq_unlock(this_rq, busiest);
  2406. local_irq_restore(flags);
  2407. /*
  2408. * some other cpu did the load balance for us.
  2409. */
  2410. if (ld_moved && this_cpu != smp_processor_id())
  2411. resched_cpu(this_cpu);
  2412. /* All tasks on this runqueue were pinned by CPU affinity */
  2413. if (unlikely(all_pinned)) {
  2414. cpu_clear(cpu_of(busiest), cpus);
  2415. if (!cpus_empty(cpus))
  2416. goto redo;
  2417. goto out_balanced;
  2418. }
  2419. }
  2420. if (!ld_moved) {
  2421. schedstat_inc(sd, lb_failed[idle]);
  2422. sd->nr_balance_failed++;
  2423. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2424. spin_lock_irqsave(&busiest->lock, flags);
  2425. /* don't kick the migration_thread, if the curr
  2426. * task on busiest cpu can't be moved to this_cpu
  2427. */
  2428. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2429. spin_unlock_irqrestore(&busiest->lock, flags);
  2430. all_pinned = 1;
  2431. goto out_one_pinned;
  2432. }
  2433. if (!busiest->active_balance) {
  2434. busiest->active_balance = 1;
  2435. busiest->push_cpu = this_cpu;
  2436. active_balance = 1;
  2437. }
  2438. spin_unlock_irqrestore(&busiest->lock, flags);
  2439. if (active_balance)
  2440. wake_up_process(busiest->migration_thread);
  2441. /*
  2442. * We've kicked active balancing, reset the failure
  2443. * counter.
  2444. */
  2445. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2446. }
  2447. } else
  2448. sd->nr_balance_failed = 0;
  2449. if (likely(!active_balance)) {
  2450. /* We were unbalanced, so reset the balancing interval */
  2451. sd->balance_interval = sd->min_interval;
  2452. } else {
  2453. /*
  2454. * If we've begun active balancing, start to back off. This
  2455. * case may not be covered by the all_pinned logic if there
  2456. * is only 1 task on the busy runqueue (because we don't call
  2457. * move_tasks).
  2458. */
  2459. if (sd->balance_interval < sd->max_interval)
  2460. sd->balance_interval *= 2;
  2461. }
  2462. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2463. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2464. return -1;
  2465. return ld_moved;
  2466. out_balanced:
  2467. schedstat_inc(sd, lb_balanced[idle]);
  2468. sd->nr_balance_failed = 0;
  2469. out_one_pinned:
  2470. /* tune up the balancing interval */
  2471. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2472. (sd->balance_interval < sd->max_interval))
  2473. sd->balance_interval *= 2;
  2474. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2475. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2476. return -1;
  2477. return 0;
  2478. }
  2479. /*
  2480. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2481. * tasks if there is an imbalance.
  2482. *
  2483. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2484. * this_rq is locked.
  2485. */
  2486. static int
  2487. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2488. {
  2489. struct sched_group *group;
  2490. struct rq *busiest = NULL;
  2491. unsigned long imbalance;
  2492. int ld_moved = 0;
  2493. int sd_idle = 0;
  2494. int all_pinned = 0;
  2495. cpumask_t cpus = CPU_MASK_ALL;
  2496. /*
  2497. * When power savings policy is enabled for the parent domain, idle
  2498. * sibling can pick up load irrespective of busy siblings. In this case,
  2499. * let the state of idle sibling percolate up as IDLE, instead of
  2500. * portraying it as CPU_NOT_IDLE.
  2501. */
  2502. if (sd->flags & SD_SHARE_CPUPOWER &&
  2503. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2504. sd_idle = 1;
  2505. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2506. redo:
  2507. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2508. &sd_idle, &cpus, NULL);
  2509. if (!group) {
  2510. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2511. goto out_balanced;
  2512. }
  2513. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2514. &cpus);
  2515. if (!busiest) {
  2516. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2517. goto out_balanced;
  2518. }
  2519. BUG_ON(busiest == this_rq);
  2520. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2521. ld_moved = 0;
  2522. if (busiest->nr_running > 1) {
  2523. /* Attempt to move tasks */
  2524. double_lock_balance(this_rq, busiest);
  2525. /* this_rq->clock is already updated */
  2526. update_rq_clock(busiest);
  2527. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2528. imbalance, sd, CPU_NEWLY_IDLE,
  2529. &all_pinned);
  2530. spin_unlock(&busiest->lock);
  2531. if (unlikely(all_pinned)) {
  2532. cpu_clear(cpu_of(busiest), cpus);
  2533. if (!cpus_empty(cpus))
  2534. goto redo;
  2535. }
  2536. }
  2537. if (!ld_moved) {
  2538. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2539. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2540. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2541. return -1;
  2542. } else
  2543. sd->nr_balance_failed = 0;
  2544. return ld_moved;
  2545. out_balanced:
  2546. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2547. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2548. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2549. return -1;
  2550. sd->nr_balance_failed = 0;
  2551. return 0;
  2552. }
  2553. /*
  2554. * idle_balance is called by schedule() if this_cpu is about to become
  2555. * idle. Attempts to pull tasks from other CPUs.
  2556. */
  2557. static void idle_balance(int this_cpu, struct rq *this_rq)
  2558. {
  2559. struct sched_domain *sd;
  2560. int pulled_task = -1;
  2561. unsigned long next_balance = jiffies + HZ;
  2562. for_each_domain(this_cpu, sd) {
  2563. unsigned long interval;
  2564. if (!(sd->flags & SD_LOAD_BALANCE))
  2565. continue;
  2566. if (sd->flags & SD_BALANCE_NEWIDLE)
  2567. /* If we've pulled tasks over stop searching: */
  2568. pulled_task = load_balance_newidle(this_cpu,
  2569. this_rq, sd);
  2570. interval = msecs_to_jiffies(sd->balance_interval);
  2571. if (time_after(next_balance, sd->last_balance + interval))
  2572. next_balance = sd->last_balance + interval;
  2573. if (pulled_task)
  2574. break;
  2575. }
  2576. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2577. /*
  2578. * We are going idle. next_balance may be set based on
  2579. * a busy processor. So reset next_balance.
  2580. */
  2581. this_rq->next_balance = next_balance;
  2582. }
  2583. }
  2584. /*
  2585. * active_load_balance is run by migration threads. It pushes running tasks
  2586. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2587. * running on each physical CPU where possible, and avoids physical /
  2588. * logical imbalances.
  2589. *
  2590. * Called with busiest_rq locked.
  2591. */
  2592. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2593. {
  2594. int target_cpu = busiest_rq->push_cpu;
  2595. struct sched_domain *sd;
  2596. struct rq *target_rq;
  2597. /* Is there any task to move? */
  2598. if (busiest_rq->nr_running <= 1)
  2599. return;
  2600. target_rq = cpu_rq(target_cpu);
  2601. /*
  2602. * This condition is "impossible", if it occurs
  2603. * we need to fix it. Originally reported by
  2604. * Bjorn Helgaas on a 128-cpu setup.
  2605. */
  2606. BUG_ON(busiest_rq == target_rq);
  2607. /* move a task from busiest_rq to target_rq */
  2608. double_lock_balance(busiest_rq, target_rq);
  2609. update_rq_clock(busiest_rq);
  2610. update_rq_clock(target_rq);
  2611. /* Search for an sd spanning us and the target CPU. */
  2612. for_each_domain(target_cpu, sd) {
  2613. if ((sd->flags & SD_LOAD_BALANCE) &&
  2614. cpu_isset(busiest_cpu, sd->span))
  2615. break;
  2616. }
  2617. if (likely(sd)) {
  2618. schedstat_inc(sd, alb_count);
  2619. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2620. sd, CPU_IDLE))
  2621. schedstat_inc(sd, alb_pushed);
  2622. else
  2623. schedstat_inc(sd, alb_failed);
  2624. }
  2625. spin_unlock(&target_rq->lock);
  2626. }
  2627. #ifdef CONFIG_NO_HZ
  2628. static struct {
  2629. atomic_t load_balancer;
  2630. cpumask_t cpu_mask;
  2631. } nohz ____cacheline_aligned = {
  2632. .load_balancer = ATOMIC_INIT(-1),
  2633. .cpu_mask = CPU_MASK_NONE,
  2634. };
  2635. /*
  2636. * This routine will try to nominate the ilb (idle load balancing)
  2637. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2638. * load balancing on behalf of all those cpus. If all the cpus in the system
  2639. * go into this tickless mode, then there will be no ilb owner (as there is
  2640. * no need for one) and all the cpus will sleep till the next wakeup event
  2641. * arrives...
  2642. *
  2643. * For the ilb owner, tick is not stopped. And this tick will be used
  2644. * for idle load balancing. ilb owner will still be part of
  2645. * nohz.cpu_mask..
  2646. *
  2647. * While stopping the tick, this cpu will become the ilb owner if there
  2648. * is no other owner. And will be the owner till that cpu becomes busy
  2649. * or if all cpus in the system stop their ticks at which point
  2650. * there is no need for ilb owner.
  2651. *
  2652. * When the ilb owner becomes busy, it nominates another owner, during the
  2653. * next busy scheduler_tick()
  2654. */
  2655. int select_nohz_load_balancer(int stop_tick)
  2656. {
  2657. int cpu = smp_processor_id();
  2658. if (stop_tick) {
  2659. cpu_set(cpu, nohz.cpu_mask);
  2660. cpu_rq(cpu)->in_nohz_recently = 1;
  2661. /*
  2662. * If we are going offline and still the leader, give up!
  2663. */
  2664. if (cpu_is_offline(cpu) &&
  2665. atomic_read(&nohz.load_balancer) == cpu) {
  2666. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2667. BUG();
  2668. return 0;
  2669. }
  2670. /* time for ilb owner also to sleep */
  2671. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2672. if (atomic_read(&nohz.load_balancer) == cpu)
  2673. atomic_set(&nohz.load_balancer, -1);
  2674. return 0;
  2675. }
  2676. if (atomic_read(&nohz.load_balancer) == -1) {
  2677. /* make me the ilb owner */
  2678. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2679. return 1;
  2680. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2681. return 1;
  2682. } else {
  2683. if (!cpu_isset(cpu, nohz.cpu_mask))
  2684. return 0;
  2685. cpu_clear(cpu, nohz.cpu_mask);
  2686. if (atomic_read(&nohz.load_balancer) == cpu)
  2687. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2688. BUG();
  2689. }
  2690. return 0;
  2691. }
  2692. #endif
  2693. static DEFINE_SPINLOCK(balancing);
  2694. /*
  2695. * It checks each scheduling domain to see if it is due to be balanced,
  2696. * and initiates a balancing operation if so.
  2697. *
  2698. * Balancing parameters are set up in arch_init_sched_domains.
  2699. */
  2700. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2701. {
  2702. int balance = 1;
  2703. struct rq *rq = cpu_rq(cpu);
  2704. unsigned long interval;
  2705. struct sched_domain *sd;
  2706. /* Earliest time when we have to do rebalance again */
  2707. unsigned long next_balance = jiffies + 60*HZ;
  2708. int update_next_balance = 0;
  2709. for_each_domain(cpu, sd) {
  2710. if (!(sd->flags & SD_LOAD_BALANCE))
  2711. continue;
  2712. interval = sd->balance_interval;
  2713. if (idle != CPU_IDLE)
  2714. interval *= sd->busy_factor;
  2715. /* scale ms to jiffies */
  2716. interval = msecs_to_jiffies(interval);
  2717. if (unlikely(!interval))
  2718. interval = 1;
  2719. if (interval > HZ*NR_CPUS/10)
  2720. interval = HZ*NR_CPUS/10;
  2721. if (sd->flags & SD_SERIALIZE) {
  2722. if (!spin_trylock(&balancing))
  2723. goto out;
  2724. }
  2725. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2726. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2727. /*
  2728. * We've pulled tasks over so either we're no
  2729. * longer idle, or one of our SMT siblings is
  2730. * not idle.
  2731. */
  2732. idle = CPU_NOT_IDLE;
  2733. }
  2734. sd->last_balance = jiffies;
  2735. }
  2736. if (sd->flags & SD_SERIALIZE)
  2737. spin_unlock(&balancing);
  2738. out:
  2739. if (time_after(next_balance, sd->last_balance + interval)) {
  2740. next_balance = sd->last_balance + interval;
  2741. update_next_balance = 1;
  2742. }
  2743. /*
  2744. * Stop the load balance at this level. There is another
  2745. * CPU in our sched group which is doing load balancing more
  2746. * actively.
  2747. */
  2748. if (!balance)
  2749. break;
  2750. }
  2751. /*
  2752. * next_balance will be updated only when there is a need.
  2753. * When the cpu is attached to null domain for ex, it will not be
  2754. * updated.
  2755. */
  2756. if (likely(update_next_balance))
  2757. rq->next_balance = next_balance;
  2758. }
  2759. /*
  2760. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2761. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2762. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2763. */
  2764. static void run_rebalance_domains(struct softirq_action *h)
  2765. {
  2766. int this_cpu = smp_processor_id();
  2767. struct rq *this_rq = cpu_rq(this_cpu);
  2768. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2769. CPU_IDLE : CPU_NOT_IDLE;
  2770. rebalance_domains(this_cpu, idle);
  2771. #ifdef CONFIG_NO_HZ
  2772. /*
  2773. * If this cpu is the owner for idle load balancing, then do the
  2774. * balancing on behalf of the other idle cpus whose ticks are
  2775. * stopped.
  2776. */
  2777. if (this_rq->idle_at_tick &&
  2778. atomic_read(&nohz.load_balancer) == this_cpu) {
  2779. cpumask_t cpus = nohz.cpu_mask;
  2780. struct rq *rq;
  2781. int balance_cpu;
  2782. cpu_clear(this_cpu, cpus);
  2783. for_each_cpu_mask(balance_cpu, cpus) {
  2784. /*
  2785. * If this cpu gets work to do, stop the load balancing
  2786. * work being done for other cpus. Next load
  2787. * balancing owner will pick it up.
  2788. */
  2789. if (need_resched())
  2790. break;
  2791. rebalance_domains(balance_cpu, CPU_IDLE);
  2792. rq = cpu_rq(balance_cpu);
  2793. if (time_after(this_rq->next_balance, rq->next_balance))
  2794. this_rq->next_balance = rq->next_balance;
  2795. }
  2796. }
  2797. #endif
  2798. }
  2799. /*
  2800. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2801. *
  2802. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2803. * idle load balancing owner or decide to stop the periodic load balancing,
  2804. * if the whole system is idle.
  2805. */
  2806. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2807. {
  2808. #ifdef CONFIG_NO_HZ
  2809. /*
  2810. * If we were in the nohz mode recently and busy at the current
  2811. * scheduler tick, then check if we need to nominate new idle
  2812. * load balancer.
  2813. */
  2814. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2815. rq->in_nohz_recently = 0;
  2816. if (atomic_read(&nohz.load_balancer) == cpu) {
  2817. cpu_clear(cpu, nohz.cpu_mask);
  2818. atomic_set(&nohz.load_balancer, -1);
  2819. }
  2820. if (atomic_read(&nohz.load_balancer) == -1) {
  2821. /*
  2822. * simple selection for now: Nominate the
  2823. * first cpu in the nohz list to be the next
  2824. * ilb owner.
  2825. *
  2826. * TBD: Traverse the sched domains and nominate
  2827. * the nearest cpu in the nohz.cpu_mask.
  2828. */
  2829. int ilb = first_cpu(nohz.cpu_mask);
  2830. if (ilb != NR_CPUS)
  2831. resched_cpu(ilb);
  2832. }
  2833. }
  2834. /*
  2835. * If this cpu is idle and doing idle load balancing for all the
  2836. * cpus with ticks stopped, is it time for that to stop?
  2837. */
  2838. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2839. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2840. resched_cpu(cpu);
  2841. return;
  2842. }
  2843. /*
  2844. * If this cpu is idle and the idle load balancing is done by
  2845. * someone else, then no need raise the SCHED_SOFTIRQ
  2846. */
  2847. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2848. cpu_isset(cpu, nohz.cpu_mask))
  2849. return;
  2850. #endif
  2851. if (time_after_eq(jiffies, rq->next_balance))
  2852. raise_softirq(SCHED_SOFTIRQ);
  2853. }
  2854. #else /* CONFIG_SMP */
  2855. /*
  2856. * on UP we do not need to balance between CPUs:
  2857. */
  2858. static inline void idle_balance(int cpu, struct rq *rq)
  2859. {
  2860. }
  2861. #endif
  2862. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2863. EXPORT_PER_CPU_SYMBOL(kstat);
  2864. /*
  2865. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2866. * that have not yet been banked in case the task is currently running.
  2867. */
  2868. unsigned long long task_sched_runtime(struct task_struct *p)
  2869. {
  2870. unsigned long flags;
  2871. u64 ns, delta_exec;
  2872. struct rq *rq;
  2873. rq = task_rq_lock(p, &flags);
  2874. ns = p->se.sum_exec_runtime;
  2875. if (rq->curr == p) {
  2876. update_rq_clock(rq);
  2877. delta_exec = rq->clock - p->se.exec_start;
  2878. if ((s64)delta_exec > 0)
  2879. ns += delta_exec;
  2880. }
  2881. task_rq_unlock(rq, &flags);
  2882. return ns;
  2883. }
  2884. /*
  2885. * Account user cpu time to a process.
  2886. * @p: the process that the cpu time gets accounted to
  2887. * @cputime: the cpu time spent in user space since the last update
  2888. */
  2889. void account_user_time(struct task_struct *p, cputime_t cputime)
  2890. {
  2891. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2892. cputime64_t tmp;
  2893. p->utime = cputime_add(p->utime, cputime);
  2894. /* Add user time to cpustat. */
  2895. tmp = cputime_to_cputime64(cputime);
  2896. if (TASK_NICE(p) > 0)
  2897. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2898. else
  2899. cpustat->user = cputime64_add(cpustat->user, tmp);
  2900. }
  2901. /*
  2902. * Account guest cpu time to a process.
  2903. * @p: the process that the cpu time gets accounted to
  2904. * @cputime: the cpu time spent in virtual machine since the last update
  2905. */
  2906. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2907. {
  2908. cputime64_t tmp;
  2909. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2910. tmp = cputime_to_cputime64(cputime);
  2911. p->utime = cputime_add(p->utime, cputime);
  2912. p->gtime = cputime_add(p->gtime, cputime);
  2913. cpustat->user = cputime64_add(cpustat->user, tmp);
  2914. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2915. }
  2916. /*
  2917. * Account scaled user cpu time to a process.
  2918. * @p: the process that the cpu time gets accounted to
  2919. * @cputime: the cpu time spent in user space since the last update
  2920. */
  2921. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2922. {
  2923. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2924. }
  2925. /*
  2926. * Account system cpu time to a process.
  2927. * @p: the process that the cpu time gets accounted to
  2928. * @hardirq_offset: the offset to subtract from hardirq_count()
  2929. * @cputime: the cpu time spent in kernel space since the last update
  2930. */
  2931. void account_system_time(struct task_struct *p, int hardirq_offset,
  2932. cputime_t cputime)
  2933. {
  2934. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2935. struct rq *rq = this_rq();
  2936. cputime64_t tmp;
  2937. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2938. return account_guest_time(p, cputime);
  2939. p->stime = cputime_add(p->stime, cputime);
  2940. /* Add system time to cpustat. */
  2941. tmp = cputime_to_cputime64(cputime);
  2942. if (hardirq_count() - hardirq_offset)
  2943. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2944. else if (softirq_count())
  2945. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2946. else if (p != rq->idle)
  2947. cpustat->system = cputime64_add(cpustat->system, tmp);
  2948. else if (atomic_read(&rq->nr_iowait) > 0)
  2949. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2950. else
  2951. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2952. /* Account for system time used */
  2953. acct_update_integrals(p);
  2954. }
  2955. /*
  2956. * Account scaled system cpu time to a process.
  2957. * @p: the process that the cpu time gets accounted to
  2958. * @hardirq_offset: the offset to subtract from hardirq_count()
  2959. * @cputime: the cpu time spent in kernel space since the last update
  2960. */
  2961. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2962. {
  2963. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2964. }
  2965. /*
  2966. * Account for involuntary wait time.
  2967. * @p: the process from which the cpu time has been stolen
  2968. * @steal: the cpu time spent in involuntary wait
  2969. */
  2970. void account_steal_time(struct task_struct *p, cputime_t steal)
  2971. {
  2972. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2973. cputime64_t tmp = cputime_to_cputime64(steal);
  2974. struct rq *rq = this_rq();
  2975. if (p == rq->idle) {
  2976. p->stime = cputime_add(p->stime, steal);
  2977. if (atomic_read(&rq->nr_iowait) > 0)
  2978. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2979. else
  2980. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2981. } else
  2982. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2983. }
  2984. /*
  2985. * This function gets called by the timer code, with HZ frequency.
  2986. * We call it with interrupts disabled.
  2987. *
  2988. * It also gets called by the fork code, when changing the parent's
  2989. * timeslices.
  2990. */
  2991. void scheduler_tick(void)
  2992. {
  2993. int cpu = smp_processor_id();
  2994. struct rq *rq = cpu_rq(cpu);
  2995. struct task_struct *curr = rq->curr;
  2996. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2997. spin_lock(&rq->lock);
  2998. __update_rq_clock(rq);
  2999. /*
  3000. * Let rq->clock advance by at least TICK_NSEC:
  3001. */
  3002. if (unlikely(rq->clock < next_tick))
  3003. rq->clock = next_tick;
  3004. rq->tick_timestamp = rq->clock;
  3005. update_cpu_load(rq);
  3006. if (curr != rq->idle) /* FIXME: needed? */
  3007. curr->sched_class->task_tick(rq, curr);
  3008. spin_unlock(&rq->lock);
  3009. #ifdef CONFIG_SMP
  3010. rq->idle_at_tick = idle_cpu(cpu);
  3011. trigger_load_balance(rq, cpu);
  3012. #endif
  3013. }
  3014. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3015. void fastcall add_preempt_count(int val)
  3016. {
  3017. /*
  3018. * Underflow?
  3019. */
  3020. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3021. return;
  3022. preempt_count() += val;
  3023. /*
  3024. * Spinlock count overflowing soon?
  3025. */
  3026. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3027. PREEMPT_MASK - 10);
  3028. }
  3029. EXPORT_SYMBOL(add_preempt_count);
  3030. void fastcall sub_preempt_count(int val)
  3031. {
  3032. /*
  3033. * Underflow?
  3034. */
  3035. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3036. return;
  3037. /*
  3038. * Is the spinlock portion underflowing?
  3039. */
  3040. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3041. !(preempt_count() & PREEMPT_MASK)))
  3042. return;
  3043. preempt_count() -= val;
  3044. }
  3045. EXPORT_SYMBOL(sub_preempt_count);
  3046. #endif
  3047. /*
  3048. * Print scheduling while atomic bug:
  3049. */
  3050. static noinline void __schedule_bug(struct task_struct *prev)
  3051. {
  3052. struct pt_regs *regs = get_irq_regs();
  3053. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3054. prev->comm, prev->pid, preempt_count());
  3055. debug_show_held_locks(prev);
  3056. if (irqs_disabled())
  3057. print_irqtrace_events(prev);
  3058. if (regs)
  3059. show_regs(regs);
  3060. else
  3061. dump_stack();
  3062. }
  3063. /*
  3064. * Various schedule()-time debugging checks and statistics:
  3065. */
  3066. static inline void schedule_debug(struct task_struct *prev)
  3067. {
  3068. /*
  3069. * Test if we are atomic. Since do_exit() needs to call into
  3070. * schedule() atomically, we ignore that path for now.
  3071. * Otherwise, whine if we are scheduling when we should not be.
  3072. */
  3073. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3074. __schedule_bug(prev);
  3075. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3076. schedstat_inc(this_rq(), sched_count);
  3077. #ifdef CONFIG_SCHEDSTATS
  3078. if (unlikely(prev->lock_depth >= 0)) {
  3079. schedstat_inc(this_rq(), bkl_count);
  3080. schedstat_inc(prev, sched_info.bkl_count);
  3081. }
  3082. #endif
  3083. }
  3084. /*
  3085. * Pick up the highest-prio task:
  3086. */
  3087. static inline struct task_struct *
  3088. pick_next_task(struct rq *rq, struct task_struct *prev)
  3089. {
  3090. const struct sched_class *class;
  3091. struct task_struct *p;
  3092. /*
  3093. * Optimization: we know that if all tasks are in
  3094. * the fair class we can call that function directly:
  3095. */
  3096. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3097. p = fair_sched_class.pick_next_task(rq);
  3098. if (likely(p))
  3099. return p;
  3100. }
  3101. class = sched_class_highest;
  3102. for ( ; ; ) {
  3103. p = class->pick_next_task(rq);
  3104. if (p)
  3105. return p;
  3106. /*
  3107. * Will never be NULL as the idle class always
  3108. * returns a non-NULL p:
  3109. */
  3110. class = class->next;
  3111. }
  3112. }
  3113. /*
  3114. * schedule() is the main scheduler function.
  3115. */
  3116. asmlinkage void __sched schedule(void)
  3117. {
  3118. struct task_struct *prev, *next;
  3119. long *switch_count;
  3120. struct rq *rq;
  3121. int cpu;
  3122. need_resched:
  3123. preempt_disable();
  3124. cpu = smp_processor_id();
  3125. rq = cpu_rq(cpu);
  3126. rcu_qsctr_inc(cpu);
  3127. prev = rq->curr;
  3128. switch_count = &prev->nivcsw;
  3129. release_kernel_lock(prev);
  3130. need_resched_nonpreemptible:
  3131. schedule_debug(prev);
  3132. /*
  3133. * Do the rq-clock update outside the rq lock:
  3134. */
  3135. local_irq_disable();
  3136. __update_rq_clock(rq);
  3137. spin_lock(&rq->lock);
  3138. clear_tsk_need_resched(prev);
  3139. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3140. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3141. unlikely(signal_pending(prev)))) {
  3142. prev->state = TASK_RUNNING;
  3143. } else {
  3144. deactivate_task(rq, prev, 1);
  3145. }
  3146. switch_count = &prev->nvcsw;
  3147. }
  3148. if (unlikely(!rq->nr_running))
  3149. idle_balance(cpu, rq);
  3150. prev->sched_class->put_prev_task(rq, prev);
  3151. next = pick_next_task(rq, prev);
  3152. sched_info_switch(prev, next);
  3153. if (likely(prev != next)) {
  3154. rq->nr_switches++;
  3155. rq->curr = next;
  3156. ++*switch_count;
  3157. context_switch(rq, prev, next); /* unlocks the rq */
  3158. } else
  3159. spin_unlock_irq(&rq->lock);
  3160. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3161. cpu = smp_processor_id();
  3162. rq = cpu_rq(cpu);
  3163. goto need_resched_nonpreemptible;
  3164. }
  3165. preempt_enable_no_resched();
  3166. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3167. goto need_resched;
  3168. }
  3169. EXPORT_SYMBOL(schedule);
  3170. #ifdef CONFIG_PREEMPT
  3171. /*
  3172. * this is the entry point to schedule() from in-kernel preemption
  3173. * off of preempt_enable. Kernel preemptions off return from interrupt
  3174. * occur there and call schedule directly.
  3175. */
  3176. asmlinkage void __sched preempt_schedule(void)
  3177. {
  3178. struct thread_info *ti = current_thread_info();
  3179. #ifdef CONFIG_PREEMPT_BKL
  3180. struct task_struct *task = current;
  3181. int saved_lock_depth;
  3182. #endif
  3183. /*
  3184. * If there is a non-zero preempt_count or interrupts are disabled,
  3185. * we do not want to preempt the current task. Just return..
  3186. */
  3187. if (likely(ti->preempt_count || irqs_disabled()))
  3188. return;
  3189. do {
  3190. add_preempt_count(PREEMPT_ACTIVE);
  3191. /*
  3192. * We keep the big kernel semaphore locked, but we
  3193. * clear ->lock_depth so that schedule() doesnt
  3194. * auto-release the semaphore:
  3195. */
  3196. #ifdef CONFIG_PREEMPT_BKL
  3197. saved_lock_depth = task->lock_depth;
  3198. task->lock_depth = -1;
  3199. #endif
  3200. schedule();
  3201. #ifdef CONFIG_PREEMPT_BKL
  3202. task->lock_depth = saved_lock_depth;
  3203. #endif
  3204. sub_preempt_count(PREEMPT_ACTIVE);
  3205. /*
  3206. * Check again in case we missed a preemption opportunity
  3207. * between schedule and now.
  3208. */
  3209. barrier();
  3210. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3211. }
  3212. EXPORT_SYMBOL(preempt_schedule);
  3213. /*
  3214. * this is the entry point to schedule() from kernel preemption
  3215. * off of irq context.
  3216. * Note, that this is called and return with irqs disabled. This will
  3217. * protect us against recursive calling from irq.
  3218. */
  3219. asmlinkage void __sched preempt_schedule_irq(void)
  3220. {
  3221. struct thread_info *ti = current_thread_info();
  3222. #ifdef CONFIG_PREEMPT_BKL
  3223. struct task_struct *task = current;
  3224. int saved_lock_depth;
  3225. #endif
  3226. /* Catch callers which need to be fixed */
  3227. BUG_ON(ti->preempt_count || !irqs_disabled());
  3228. do {
  3229. add_preempt_count(PREEMPT_ACTIVE);
  3230. /*
  3231. * We keep the big kernel semaphore locked, but we
  3232. * clear ->lock_depth so that schedule() doesnt
  3233. * auto-release the semaphore:
  3234. */
  3235. #ifdef CONFIG_PREEMPT_BKL
  3236. saved_lock_depth = task->lock_depth;
  3237. task->lock_depth = -1;
  3238. #endif
  3239. local_irq_enable();
  3240. schedule();
  3241. local_irq_disable();
  3242. #ifdef CONFIG_PREEMPT_BKL
  3243. task->lock_depth = saved_lock_depth;
  3244. #endif
  3245. sub_preempt_count(PREEMPT_ACTIVE);
  3246. /*
  3247. * Check again in case we missed a preemption opportunity
  3248. * between schedule and now.
  3249. */
  3250. barrier();
  3251. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3252. }
  3253. #endif /* CONFIG_PREEMPT */
  3254. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3255. void *key)
  3256. {
  3257. return try_to_wake_up(curr->private, mode, sync);
  3258. }
  3259. EXPORT_SYMBOL(default_wake_function);
  3260. /*
  3261. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3262. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3263. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3264. *
  3265. * There are circumstances in which we can try to wake a task which has already
  3266. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3267. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3268. */
  3269. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3270. int nr_exclusive, int sync, void *key)
  3271. {
  3272. wait_queue_t *curr, *next;
  3273. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3274. unsigned flags = curr->flags;
  3275. if (curr->func(curr, mode, sync, key) &&
  3276. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3277. break;
  3278. }
  3279. }
  3280. /**
  3281. * __wake_up - wake up threads blocked on a waitqueue.
  3282. * @q: the waitqueue
  3283. * @mode: which threads
  3284. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3285. * @key: is directly passed to the wakeup function
  3286. */
  3287. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3288. int nr_exclusive, void *key)
  3289. {
  3290. unsigned long flags;
  3291. spin_lock_irqsave(&q->lock, flags);
  3292. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3293. spin_unlock_irqrestore(&q->lock, flags);
  3294. }
  3295. EXPORT_SYMBOL(__wake_up);
  3296. /*
  3297. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3298. */
  3299. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3300. {
  3301. __wake_up_common(q, mode, 1, 0, NULL);
  3302. }
  3303. /**
  3304. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3305. * @q: the waitqueue
  3306. * @mode: which threads
  3307. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3308. *
  3309. * The sync wakeup differs that the waker knows that it will schedule
  3310. * away soon, so while the target thread will be woken up, it will not
  3311. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3312. * with each other. This can prevent needless bouncing between CPUs.
  3313. *
  3314. * On UP it can prevent extra preemption.
  3315. */
  3316. void fastcall
  3317. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3318. {
  3319. unsigned long flags;
  3320. int sync = 1;
  3321. if (unlikely(!q))
  3322. return;
  3323. if (unlikely(!nr_exclusive))
  3324. sync = 0;
  3325. spin_lock_irqsave(&q->lock, flags);
  3326. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3327. spin_unlock_irqrestore(&q->lock, flags);
  3328. }
  3329. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3330. void complete(struct completion *x)
  3331. {
  3332. unsigned long flags;
  3333. spin_lock_irqsave(&x->wait.lock, flags);
  3334. x->done++;
  3335. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3336. 1, 0, NULL);
  3337. spin_unlock_irqrestore(&x->wait.lock, flags);
  3338. }
  3339. EXPORT_SYMBOL(complete);
  3340. void complete_all(struct completion *x)
  3341. {
  3342. unsigned long flags;
  3343. spin_lock_irqsave(&x->wait.lock, flags);
  3344. x->done += UINT_MAX/2;
  3345. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3346. 0, 0, NULL);
  3347. spin_unlock_irqrestore(&x->wait.lock, flags);
  3348. }
  3349. EXPORT_SYMBOL(complete_all);
  3350. static inline long __sched
  3351. do_wait_for_common(struct completion *x, long timeout, int state)
  3352. {
  3353. if (!x->done) {
  3354. DECLARE_WAITQUEUE(wait, current);
  3355. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3356. __add_wait_queue_tail(&x->wait, &wait);
  3357. do {
  3358. if (state == TASK_INTERRUPTIBLE &&
  3359. signal_pending(current)) {
  3360. __remove_wait_queue(&x->wait, &wait);
  3361. return -ERESTARTSYS;
  3362. }
  3363. __set_current_state(state);
  3364. spin_unlock_irq(&x->wait.lock);
  3365. timeout = schedule_timeout(timeout);
  3366. spin_lock_irq(&x->wait.lock);
  3367. if (!timeout) {
  3368. __remove_wait_queue(&x->wait, &wait);
  3369. return timeout;
  3370. }
  3371. } while (!x->done);
  3372. __remove_wait_queue(&x->wait, &wait);
  3373. }
  3374. x->done--;
  3375. return timeout;
  3376. }
  3377. static long __sched
  3378. wait_for_common(struct completion *x, long timeout, int state)
  3379. {
  3380. might_sleep();
  3381. spin_lock_irq(&x->wait.lock);
  3382. timeout = do_wait_for_common(x, timeout, state);
  3383. spin_unlock_irq(&x->wait.lock);
  3384. return timeout;
  3385. }
  3386. void __sched wait_for_completion(struct completion *x)
  3387. {
  3388. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3389. }
  3390. EXPORT_SYMBOL(wait_for_completion);
  3391. unsigned long __sched
  3392. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3393. {
  3394. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3395. }
  3396. EXPORT_SYMBOL(wait_for_completion_timeout);
  3397. int __sched wait_for_completion_interruptible(struct completion *x)
  3398. {
  3399. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3400. if (t == -ERESTARTSYS)
  3401. return t;
  3402. return 0;
  3403. }
  3404. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3405. unsigned long __sched
  3406. wait_for_completion_interruptible_timeout(struct completion *x,
  3407. unsigned long timeout)
  3408. {
  3409. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3410. }
  3411. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3412. static long __sched
  3413. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3414. {
  3415. unsigned long flags;
  3416. wait_queue_t wait;
  3417. init_waitqueue_entry(&wait, current);
  3418. __set_current_state(state);
  3419. spin_lock_irqsave(&q->lock, flags);
  3420. __add_wait_queue(q, &wait);
  3421. spin_unlock(&q->lock);
  3422. timeout = schedule_timeout(timeout);
  3423. spin_lock_irq(&q->lock);
  3424. __remove_wait_queue(q, &wait);
  3425. spin_unlock_irqrestore(&q->lock, flags);
  3426. return timeout;
  3427. }
  3428. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3429. {
  3430. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3431. }
  3432. EXPORT_SYMBOL(interruptible_sleep_on);
  3433. long __sched
  3434. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3435. {
  3436. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3437. }
  3438. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3439. void __sched sleep_on(wait_queue_head_t *q)
  3440. {
  3441. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3442. }
  3443. EXPORT_SYMBOL(sleep_on);
  3444. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3445. {
  3446. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3447. }
  3448. EXPORT_SYMBOL(sleep_on_timeout);
  3449. #ifdef CONFIG_RT_MUTEXES
  3450. /*
  3451. * rt_mutex_setprio - set the current priority of a task
  3452. * @p: task
  3453. * @prio: prio value (kernel-internal form)
  3454. *
  3455. * This function changes the 'effective' priority of a task. It does
  3456. * not touch ->normal_prio like __setscheduler().
  3457. *
  3458. * Used by the rt_mutex code to implement priority inheritance logic.
  3459. */
  3460. void rt_mutex_setprio(struct task_struct *p, int prio)
  3461. {
  3462. unsigned long flags;
  3463. int oldprio, on_rq, running;
  3464. struct rq *rq;
  3465. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3466. rq = task_rq_lock(p, &flags);
  3467. update_rq_clock(rq);
  3468. oldprio = p->prio;
  3469. on_rq = p->se.on_rq;
  3470. running = task_running(rq, p);
  3471. if (on_rq) {
  3472. dequeue_task(rq, p, 0);
  3473. if (running)
  3474. p->sched_class->put_prev_task(rq, p);
  3475. }
  3476. if (rt_prio(prio))
  3477. p->sched_class = &rt_sched_class;
  3478. else
  3479. p->sched_class = &fair_sched_class;
  3480. p->prio = prio;
  3481. if (on_rq) {
  3482. if (running)
  3483. p->sched_class->set_curr_task(rq);
  3484. enqueue_task(rq, p, 0);
  3485. /*
  3486. * Reschedule if we are currently running on this runqueue and
  3487. * our priority decreased, or if we are not currently running on
  3488. * this runqueue and our priority is higher than the current's
  3489. */
  3490. if (running) {
  3491. if (p->prio > oldprio)
  3492. resched_task(rq->curr);
  3493. } else {
  3494. check_preempt_curr(rq, p);
  3495. }
  3496. }
  3497. task_rq_unlock(rq, &flags);
  3498. }
  3499. #endif
  3500. void set_user_nice(struct task_struct *p, long nice)
  3501. {
  3502. int old_prio, delta, on_rq;
  3503. unsigned long flags;
  3504. struct rq *rq;
  3505. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3506. return;
  3507. /*
  3508. * We have to be careful, if called from sys_setpriority(),
  3509. * the task might be in the middle of scheduling on another CPU.
  3510. */
  3511. rq = task_rq_lock(p, &flags);
  3512. update_rq_clock(rq);
  3513. /*
  3514. * The RT priorities are set via sched_setscheduler(), but we still
  3515. * allow the 'normal' nice value to be set - but as expected
  3516. * it wont have any effect on scheduling until the task is
  3517. * SCHED_FIFO/SCHED_RR:
  3518. */
  3519. if (task_has_rt_policy(p)) {
  3520. p->static_prio = NICE_TO_PRIO(nice);
  3521. goto out_unlock;
  3522. }
  3523. on_rq = p->se.on_rq;
  3524. if (on_rq) {
  3525. dequeue_task(rq, p, 0);
  3526. dec_load(rq, p);
  3527. }
  3528. p->static_prio = NICE_TO_PRIO(nice);
  3529. set_load_weight(p);
  3530. old_prio = p->prio;
  3531. p->prio = effective_prio(p);
  3532. delta = p->prio - old_prio;
  3533. if (on_rq) {
  3534. enqueue_task(rq, p, 0);
  3535. inc_load(rq, p);
  3536. /*
  3537. * If the task increased its priority or is running and
  3538. * lowered its priority, then reschedule its CPU:
  3539. */
  3540. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3541. resched_task(rq->curr);
  3542. }
  3543. out_unlock:
  3544. task_rq_unlock(rq, &flags);
  3545. }
  3546. EXPORT_SYMBOL(set_user_nice);
  3547. /*
  3548. * can_nice - check if a task can reduce its nice value
  3549. * @p: task
  3550. * @nice: nice value
  3551. */
  3552. int can_nice(const struct task_struct *p, const int nice)
  3553. {
  3554. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3555. int nice_rlim = 20 - nice;
  3556. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3557. capable(CAP_SYS_NICE));
  3558. }
  3559. #ifdef __ARCH_WANT_SYS_NICE
  3560. /*
  3561. * sys_nice - change the priority of the current process.
  3562. * @increment: priority increment
  3563. *
  3564. * sys_setpriority is a more generic, but much slower function that
  3565. * does similar things.
  3566. */
  3567. asmlinkage long sys_nice(int increment)
  3568. {
  3569. long nice, retval;
  3570. /*
  3571. * Setpriority might change our priority at the same moment.
  3572. * We don't have to worry. Conceptually one call occurs first
  3573. * and we have a single winner.
  3574. */
  3575. if (increment < -40)
  3576. increment = -40;
  3577. if (increment > 40)
  3578. increment = 40;
  3579. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3580. if (nice < -20)
  3581. nice = -20;
  3582. if (nice > 19)
  3583. nice = 19;
  3584. if (increment < 0 && !can_nice(current, nice))
  3585. return -EPERM;
  3586. retval = security_task_setnice(current, nice);
  3587. if (retval)
  3588. return retval;
  3589. set_user_nice(current, nice);
  3590. return 0;
  3591. }
  3592. #endif
  3593. /**
  3594. * task_prio - return the priority value of a given task.
  3595. * @p: the task in question.
  3596. *
  3597. * This is the priority value as seen by users in /proc.
  3598. * RT tasks are offset by -200. Normal tasks are centered
  3599. * around 0, value goes from -16 to +15.
  3600. */
  3601. int task_prio(const struct task_struct *p)
  3602. {
  3603. return p->prio - MAX_RT_PRIO;
  3604. }
  3605. /**
  3606. * task_nice - return the nice value of a given task.
  3607. * @p: the task in question.
  3608. */
  3609. int task_nice(const struct task_struct *p)
  3610. {
  3611. return TASK_NICE(p);
  3612. }
  3613. EXPORT_SYMBOL_GPL(task_nice);
  3614. /**
  3615. * idle_cpu - is a given cpu idle currently?
  3616. * @cpu: the processor in question.
  3617. */
  3618. int idle_cpu(int cpu)
  3619. {
  3620. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3621. }
  3622. /**
  3623. * idle_task - return the idle task for a given cpu.
  3624. * @cpu: the processor in question.
  3625. */
  3626. struct task_struct *idle_task(int cpu)
  3627. {
  3628. return cpu_rq(cpu)->idle;
  3629. }
  3630. /**
  3631. * find_process_by_pid - find a process with a matching PID value.
  3632. * @pid: the pid in question.
  3633. */
  3634. static struct task_struct *find_process_by_pid(pid_t pid)
  3635. {
  3636. return pid ? find_task_by_vpid(pid) : current;
  3637. }
  3638. /* Actually do priority change: must hold rq lock. */
  3639. static void
  3640. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3641. {
  3642. BUG_ON(p->se.on_rq);
  3643. p->policy = policy;
  3644. switch (p->policy) {
  3645. case SCHED_NORMAL:
  3646. case SCHED_BATCH:
  3647. case SCHED_IDLE:
  3648. p->sched_class = &fair_sched_class;
  3649. break;
  3650. case SCHED_FIFO:
  3651. case SCHED_RR:
  3652. p->sched_class = &rt_sched_class;
  3653. break;
  3654. }
  3655. p->rt_priority = prio;
  3656. p->normal_prio = normal_prio(p);
  3657. /* we are holding p->pi_lock already */
  3658. p->prio = rt_mutex_getprio(p);
  3659. set_load_weight(p);
  3660. }
  3661. /**
  3662. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3663. * @p: the task in question.
  3664. * @policy: new policy.
  3665. * @param: structure containing the new RT priority.
  3666. *
  3667. * NOTE that the task may be already dead.
  3668. */
  3669. int sched_setscheduler(struct task_struct *p, int policy,
  3670. struct sched_param *param)
  3671. {
  3672. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3673. unsigned long flags;
  3674. struct rq *rq;
  3675. /* may grab non-irq protected spin_locks */
  3676. BUG_ON(in_interrupt());
  3677. recheck:
  3678. /* double check policy once rq lock held */
  3679. if (policy < 0)
  3680. policy = oldpolicy = p->policy;
  3681. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3682. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3683. policy != SCHED_IDLE)
  3684. return -EINVAL;
  3685. /*
  3686. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3687. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3688. * SCHED_BATCH and SCHED_IDLE is 0.
  3689. */
  3690. if (param->sched_priority < 0 ||
  3691. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3692. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3693. return -EINVAL;
  3694. if (rt_policy(policy) != (param->sched_priority != 0))
  3695. return -EINVAL;
  3696. /*
  3697. * Allow unprivileged RT tasks to decrease priority:
  3698. */
  3699. if (!capable(CAP_SYS_NICE)) {
  3700. if (rt_policy(policy)) {
  3701. unsigned long rlim_rtprio;
  3702. if (!lock_task_sighand(p, &flags))
  3703. return -ESRCH;
  3704. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3705. unlock_task_sighand(p, &flags);
  3706. /* can't set/change the rt policy */
  3707. if (policy != p->policy && !rlim_rtprio)
  3708. return -EPERM;
  3709. /* can't increase priority */
  3710. if (param->sched_priority > p->rt_priority &&
  3711. param->sched_priority > rlim_rtprio)
  3712. return -EPERM;
  3713. }
  3714. /*
  3715. * Like positive nice levels, dont allow tasks to
  3716. * move out of SCHED_IDLE either:
  3717. */
  3718. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3719. return -EPERM;
  3720. /* can't change other user's priorities */
  3721. if ((current->euid != p->euid) &&
  3722. (current->euid != p->uid))
  3723. return -EPERM;
  3724. }
  3725. retval = security_task_setscheduler(p, policy, param);
  3726. if (retval)
  3727. return retval;
  3728. /*
  3729. * make sure no PI-waiters arrive (or leave) while we are
  3730. * changing the priority of the task:
  3731. */
  3732. spin_lock_irqsave(&p->pi_lock, flags);
  3733. /*
  3734. * To be able to change p->policy safely, the apropriate
  3735. * runqueue lock must be held.
  3736. */
  3737. rq = __task_rq_lock(p);
  3738. /* recheck policy now with rq lock held */
  3739. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3740. policy = oldpolicy = -1;
  3741. __task_rq_unlock(rq);
  3742. spin_unlock_irqrestore(&p->pi_lock, flags);
  3743. goto recheck;
  3744. }
  3745. update_rq_clock(rq);
  3746. on_rq = p->se.on_rq;
  3747. running = task_running(rq, p);
  3748. if (on_rq) {
  3749. deactivate_task(rq, p, 0);
  3750. if (running)
  3751. p->sched_class->put_prev_task(rq, p);
  3752. }
  3753. oldprio = p->prio;
  3754. __setscheduler(rq, p, policy, param->sched_priority);
  3755. if (on_rq) {
  3756. if (running)
  3757. p->sched_class->set_curr_task(rq);
  3758. activate_task(rq, p, 0);
  3759. /*
  3760. * Reschedule if we are currently running on this runqueue and
  3761. * our priority decreased, or if we are not currently running on
  3762. * this runqueue and our priority is higher than the current's
  3763. */
  3764. if (running) {
  3765. if (p->prio > oldprio)
  3766. resched_task(rq->curr);
  3767. } else {
  3768. check_preempt_curr(rq, p);
  3769. }
  3770. }
  3771. __task_rq_unlock(rq);
  3772. spin_unlock_irqrestore(&p->pi_lock, flags);
  3773. rt_mutex_adjust_pi(p);
  3774. return 0;
  3775. }
  3776. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3777. static int
  3778. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3779. {
  3780. struct sched_param lparam;
  3781. struct task_struct *p;
  3782. int retval;
  3783. if (!param || pid < 0)
  3784. return -EINVAL;
  3785. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3786. return -EFAULT;
  3787. rcu_read_lock();
  3788. retval = -ESRCH;
  3789. p = find_process_by_pid(pid);
  3790. if (p != NULL)
  3791. retval = sched_setscheduler(p, policy, &lparam);
  3792. rcu_read_unlock();
  3793. return retval;
  3794. }
  3795. /**
  3796. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3797. * @pid: the pid in question.
  3798. * @policy: new policy.
  3799. * @param: structure containing the new RT priority.
  3800. */
  3801. asmlinkage long
  3802. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3803. {
  3804. /* negative values for policy are not valid */
  3805. if (policy < 0)
  3806. return -EINVAL;
  3807. return do_sched_setscheduler(pid, policy, param);
  3808. }
  3809. /**
  3810. * sys_sched_setparam - set/change the RT priority of a thread
  3811. * @pid: the pid in question.
  3812. * @param: structure containing the new RT priority.
  3813. */
  3814. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3815. {
  3816. return do_sched_setscheduler(pid, -1, param);
  3817. }
  3818. /**
  3819. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3820. * @pid: the pid in question.
  3821. */
  3822. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3823. {
  3824. struct task_struct *p;
  3825. int retval;
  3826. if (pid < 0)
  3827. return -EINVAL;
  3828. retval = -ESRCH;
  3829. read_lock(&tasklist_lock);
  3830. p = find_process_by_pid(pid);
  3831. if (p) {
  3832. retval = security_task_getscheduler(p);
  3833. if (!retval)
  3834. retval = p->policy;
  3835. }
  3836. read_unlock(&tasklist_lock);
  3837. return retval;
  3838. }
  3839. /**
  3840. * sys_sched_getscheduler - get the RT priority of a thread
  3841. * @pid: the pid in question.
  3842. * @param: structure containing the RT priority.
  3843. */
  3844. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3845. {
  3846. struct sched_param lp;
  3847. struct task_struct *p;
  3848. int retval;
  3849. if (!param || pid < 0)
  3850. return -EINVAL;
  3851. read_lock(&tasklist_lock);
  3852. p = find_process_by_pid(pid);
  3853. retval = -ESRCH;
  3854. if (!p)
  3855. goto out_unlock;
  3856. retval = security_task_getscheduler(p);
  3857. if (retval)
  3858. goto out_unlock;
  3859. lp.sched_priority = p->rt_priority;
  3860. read_unlock(&tasklist_lock);
  3861. /*
  3862. * This one might sleep, we cannot do it with a spinlock held ...
  3863. */
  3864. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3865. return retval;
  3866. out_unlock:
  3867. read_unlock(&tasklist_lock);
  3868. return retval;
  3869. }
  3870. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3871. {
  3872. cpumask_t cpus_allowed;
  3873. struct task_struct *p;
  3874. int retval;
  3875. mutex_lock(&sched_hotcpu_mutex);
  3876. read_lock(&tasklist_lock);
  3877. p = find_process_by_pid(pid);
  3878. if (!p) {
  3879. read_unlock(&tasklist_lock);
  3880. mutex_unlock(&sched_hotcpu_mutex);
  3881. return -ESRCH;
  3882. }
  3883. /*
  3884. * It is not safe to call set_cpus_allowed with the
  3885. * tasklist_lock held. We will bump the task_struct's
  3886. * usage count and then drop tasklist_lock.
  3887. */
  3888. get_task_struct(p);
  3889. read_unlock(&tasklist_lock);
  3890. retval = -EPERM;
  3891. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3892. !capable(CAP_SYS_NICE))
  3893. goto out_unlock;
  3894. retval = security_task_setscheduler(p, 0, NULL);
  3895. if (retval)
  3896. goto out_unlock;
  3897. cpus_allowed = cpuset_cpus_allowed(p);
  3898. cpus_and(new_mask, new_mask, cpus_allowed);
  3899. again:
  3900. retval = set_cpus_allowed(p, new_mask);
  3901. if (!retval) {
  3902. cpus_allowed = cpuset_cpus_allowed(p);
  3903. if (!cpus_subset(new_mask, cpus_allowed)) {
  3904. /*
  3905. * We must have raced with a concurrent cpuset
  3906. * update. Just reset the cpus_allowed to the
  3907. * cpuset's cpus_allowed
  3908. */
  3909. new_mask = cpus_allowed;
  3910. goto again;
  3911. }
  3912. }
  3913. out_unlock:
  3914. put_task_struct(p);
  3915. mutex_unlock(&sched_hotcpu_mutex);
  3916. return retval;
  3917. }
  3918. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3919. cpumask_t *new_mask)
  3920. {
  3921. if (len < sizeof(cpumask_t)) {
  3922. memset(new_mask, 0, sizeof(cpumask_t));
  3923. } else if (len > sizeof(cpumask_t)) {
  3924. len = sizeof(cpumask_t);
  3925. }
  3926. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3927. }
  3928. /**
  3929. * sys_sched_setaffinity - set the cpu affinity of a process
  3930. * @pid: pid of the process
  3931. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3932. * @user_mask_ptr: user-space pointer to the new cpu mask
  3933. */
  3934. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3935. unsigned long __user *user_mask_ptr)
  3936. {
  3937. cpumask_t new_mask;
  3938. int retval;
  3939. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3940. if (retval)
  3941. return retval;
  3942. return sched_setaffinity(pid, new_mask);
  3943. }
  3944. /*
  3945. * Represents all cpu's present in the system
  3946. * In systems capable of hotplug, this map could dynamically grow
  3947. * as new cpu's are detected in the system via any platform specific
  3948. * method, such as ACPI for e.g.
  3949. */
  3950. cpumask_t cpu_present_map __read_mostly;
  3951. EXPORT_SYMBOL(cpu_present_map);
  3952. #ifndef CONFIG_SMP
  3953. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3954. EXPORT_SYMBOL(cpu_online_map);
  3955. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3956. EXPORT_SYMBOL(cpu_possible_map);
  3957. #endif
  3958. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3959. {
  3960. struct task_struct *p;
  3961. int retval;
  3962. mutex_lock(&sched_hotcpu_mutex);
  3963. read_lock(&tasklist_lock);
  3964. retval = -ESRCH;
  3965. p = find_process_by_pid(pid);
  3966. if (!p)
  3967. goto out_unlock;
  3968. retval = security_task_getscheduler(p);
  3969. if (retval)
  3970. goto out_unlock;
  3971. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3972. out_unlock:
  3973. read_unlock(&tasklist_lock);
  3974. mutex_unlock(&sched_hotcpu_mutex);
  3975. return retval;
  3976. }
  3977. /**
  3978. * sys_sched_getaffinity - get the cpu affinity of a process
  3979. * @pid: pid of the process
  3980. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3981. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3982. */
  3983. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3984. unsigned long __user *user_mask_ptr)
  3985. {
  3986. int ret;
  3987. cpumask_t mask;
  3988. if (len < sizeof(cpumask_t))
  3989. return -EINVAL;
  3990. ret = sched_getaffinity(pid, &mask);
  3991. if (ret < 0)
  3992. return ret;
  3993. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3994. return -EFAULT;
  3995. return sizeof(cpumask_t);
  3996. }
  3997. /**
  3998. * sys_sched_yield - yield the current processor to other threads.
  3999. *
  4000. * This function yields the current CPU to other tasks. If there are no
  4001. * other threads running on this CPU then this function will return.
  4002. */
  4003. asmlinkage long sys_sched_yield(void)
  4004. {
  4005. struct rq *rq = this_rq_lock();
  4006. schedstat_inc(rq, yld_count);
  4007. current->sched_class->yield_task(rq);
  4008. /*
  4009. * Since we are going to call schedule() anyway, there's
  4010. * no need to preempt or enable interrupts:
  4011. */
  4012. __release(rq->lock);
  4013. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4014. _raw_spin_unlock(&rq->lock);
  4015. preempt_enable_no_resched();
  4016. schedule();
  4017. return 0;
  4018. }
  4019. static void __cond_resched(void)
  4020. {
  4021. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4022. __might_sleep(__FILE__, __LINE__);
  4023. #endif
  4024. /*
  4025. * The BKS might be reacquired before we have dropped
  4026. * PREEMPT_ACTIVE, which could trigger a second
  4027. * cond_resched() call.
  4028. */
  4029. do {
  4030. add_preempt_count(PREEMPT_ACTIVE);
  4031. schedule();
  4032. sub_preempt_count(PREEMPT_ACTIVE);
  4033. } while (need_resched());
  4034. }
  4035. int __sched cond_resched(void)
  4036. {
  4037. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4038. system_state == SYSTEM_RUNNING) {
  4039. __cond_resched();
  4040. return 1;
  4041. }
  4042. return 0;
  4043. }
  4044. EXPORT_SYMBOL(cond_resched);
  4045. /*
  4046. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4047. * call schedule, and on return reacquire the lock.
  4048. *
  4049. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4050. * operations here to prevent schedule() from being called twice (once via
  4051. * spin_unlock(), once by hand).
  4052. */
  4053. int cond_resched_lock(spinlock_t *lock)
  4054. {
  4055. int ret = 0;
  4056. if (need_lockbreak(lock)) {
  4057. spin_unlock(lock);
  4058. cpu_relax();
  4059. ret = 1;
  4060. spin_lock(lock);
  4061. }
  4062. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4063. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4064. _raw_spin_unlock(lock);
  4065. preempt_enable_no_resched();
  4066. __cond_resched();
  4067. ret = 1;
  4068. spin_lock(lock);
  4069. }
  4070. return ret;
  4071. }
  4072. EXPORT_SYMBOL(cond_resched_lock);
  4073. int __sched cond_resched_softirq(void)
  4074. {
  4075. BUG_ON(!in_softirq());
  4076. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4077. local_bh_enable();
  4078. __cond_resched();
  4079. local_bh_disable();
  4080. return 1;
  4081. }
  4082. return 0;
  4083. }
  4084. EXPORT_SYMBOL(cond_resched_softirq);
  4085. /**
  4086. * yield - yield the current processor to other threads.
  4087. *
  4088. * This is a shortcut for kernel-space yielding - it marks the
  4089. * thread runnable and calls sys_sched_yield().
  4090. */
  4091. void __sched yield(void)
  4092. {
  4093. set_current_state(TASK_RUNNING);
  4094. sys_sched_yield();
  4095. }
  4096. EXPORT_SYMBOL(yield);
  4097. /*
  4098. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4099. * that process accounting knows that this is a task in IO wait state.
  4100. *
  4101. * But don't do that if it is a deliberate, throttling IO wait (this task
  4102. * has set its backing_dev_info: the queue against which it should throttle)
  4103. */
  4104. void __sched io_schedule(void)
  4105. {
  4106. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4107. delayacct_blkio_start();
  4108. atomic_inc(&rq->nr_iowait);
  4109. schedule();
  4110. atomic_dec(&rq->nr_iowait);
  4111. delayacct_blkio_end();
  4112. }
  4113. EXPORT_SYMBOL(io_schedule);
  4114. long __sched io_schedule_timeout(long timeout)
  4115. {
  4116. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4117. long ret;
  4118. delayacct_blkio_start();
  4119. atomic_inc(&rq->nr_iowait);
  4120. ret = schedule_timeout(timeout);
  4121. atomic_dec(&rq->nr_iowait);
  4122. delayacct_blkio_end();
  4123. return ret;
  4124. }
  4125. /**
  4126. * sys_sched_get_priority_max - return maximum RT priority.
  4127. * @policy: scheduling class.
  4128. *
  4129. * this syscall returns the maximum rt_priority that can be used
  4130. * by a given scheduling class.
  4131. */
  4132. asmlinkage long sys_sched_get_priority_max(int policy)
  4133. {
  4134. int ret = -EINVAL;
  4135. switch (policy) {
  4136. case SCHED_FIFO:
  4137. case SCHED_RR:
  4138. ret = MAX_USER_RT_PRIO-1;
  4139. break;
  4140. case SCHED_NORMAL:
  4141. case SCHED_BATCH:
  4142. case SCHED_IDLE:
  4143. ret = 0;
  4144. break;
  4145. }
  4146. return ret;
  4147. }
  4148. /**
  4149. * sys_sched_get_priority_min - return minimum RT priority.
  4150. * @policy: scheduling class.
  4151. *
  4152. * this syscall returns the minimum rt_priority that can be used
  4153. * by a given scheduling class.
  4154. */
  4155. asmlinkage long sys_sched_get_priority_min(int policy)
  4156. {
  4157. int ret = -EINVAL;
  4158. switch (policy) {
  4159. case SCHED_FIFO:
  4160. case SCHED_RR:
  4161. ret = 1;
  4162. break;
  4163. case SCHED_NORMAL:
  4164. case SCHED_BATCH:
  4165. case SCHED_IDLE:
  4166. ret = 0;
  4167. }
  4168. return ret;
  4169. }
  4170. /**
  4171. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4172. * @pid: pid of the process.
  4173. * @interval: userspace pointer to the timeslice value.
  4174. *
  4175. * this syscall writes the default timeslice value of a given process
  4176. * into the user-space timespec buffer. A value of '0' means infinity.
  4177. */
  4178. asmlinkage
  4179. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4180. {
  4181. struct task_struct *p;
  4182. unsigned int time_slice;
  4183. int retval;
  4184. struct timespec t;
  4185. if (pid < 0)
  4186. return -EINVAL;
  4187. retval = -ESRCH;
  4188. read_lock(&tasklist_lock);
  4189. p = find_process_by_pid(pid);
  4190. if (!p)
  4191. goto out_unlock;
  4192. retval = security_task_getscheduler(p);
  4193. if (retval)
  4194. goto out_unlock;
  4195. /*
  4196. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4197. * tasks that are on an otherwise idle runqueue:
  4198. */
  4199. time_slice = 0;
  4200. if (p->policy == SCHED_RR) {
  4201. time_slice = DEF_TIMESLICE;
  4202. } else {
  4203. struct sched_entity *se = &p->se;
  4204. unsigned long flags;
  4205. struct rq *rq;
  4206. rq = task_rq_lock(p, &flags);
  4207. if (rq->cfs.load.weight)
  4208. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4209. task_rq_unlock(rq, &flags);
  4210. }
  4211. read_unlock(&tasklist_lock);
  4212. jiffies_to_timespec(time_slice, &t);
  4213. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4214. return retval;
  4215. out_unlock:
  4216. read_unlock(&tasklist_lock);
  4217. return retval;
  4218. }
  4219. static const char stat_nam[] = "RSDTtZX";
  4220. static void show_task(struct task_struct *p)
  4221. {
  4222. unsigned long free = 0;
  4223. unsigned state;
  4224. state = p->state ? __ffs(p->state) + 1 : 0;
  4225. printk(KERN_INFO "%-13.13s %c", p->comm,
  4226. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4227. #if BITS_PER_LONG == 32
  4228. if (state == TASK_RUNNING)
  4229. printk(KERN_CONT " running ");
  4230. else
  4231. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4232. #else
  4233. if (state == TASK_RUNNING)
  4234. printk(KERN_CONT " running task ");
  4235. else
  4236. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4237. #endif
  4238. #ifdef CONFIG_DEBUG_STACK_USAGE
  4239. {
  4240. unsigned long *n = end_of_stack(p);
  4241. while (!*n)
  4242. n++;
  4243. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4244. }
  4245. #endif
  4246. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4247. task_pid_nr(p), task_pid_nr(p->parent));
  4248. if (state != TASK_RUNNING)
  4249. show_stack(p, NULL);
  4250. }
  4251. void show_state_filter(unsigned long state_filter)
  4252. {
  4253. struct task_struct *g, *p;
  4254. #if BITS_PER_LONG == 32
  4255. printk(KERN_INFO
  4256. " task PC stack pid father\n");
  4257. #else
  4258. printk(KERN_INFO
  4259. " task PC stack pid father\n");
  4260. #endif
  4261. read_lock(&tasklist_lock);
  4262. do_each_thread(g, p) {
  4263. /*
  4264. * reset the NMI-timeout, listing all files on a slow
  4265. * console might take alot of time:
  4266. */
  4267. touch_nmi_watchdog();
  4268. if (!state_filter || (p->state & state_filter))
  4269. show_task(p);
  4270. } while_each_thread(g, p);
  4271. touch_all_softlockup_watchdogs();
  4272. #ifdef CONFIG_SCHED_DEBUG
  4273. sysrq_sched_debug_show();
  4274. #endif
  4275. read_unlock(&tasklist_lock);
  4276. /*
  4277. * Only show locks if all tasks are dumped:
  4278. */
  4279. if (state_filter == -1)
  4280. debug_show_all_locks();
  4281. }
  4282. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4283. {
  4284. idle->sched_class = &idle_sched_class;
  4285. }
  4286. /**
  4287. * init_idle - set up an idle thread for a given CPU
  4288. * @idle: task in question
  4289. * @cpu: cpu the idle task belongs to
  4290. *
  4291. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4292. * flag, to make booting more robust.
  4293. */
  4294. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4295. {
  4296. struct rq *rq = cpu_rq(cpu);
  4297. unsigned long flags;
  4298. __sched_fork(idle);
  4299. idle->se.exec_start = sched_clock();
  4300. idle->prio = idle->normal_prio = MAX_PRIO;
  4301. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4302. __set_task_cpu(idle, cpu);
  4303. spin_lock_irqsave(&rq->lock, flags);
  4304. rq->curr = rq->idle = idle;
  4305. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4306. idle->oncpu = 1;
  4307. #endif
  4308. spin_unlock_irqrestore(&rq->lock, flags);
  4309. /* Set the preempt count _outside_ the spinlocks! */
  4310. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4311. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4312. #else
  4313. task_thread_info(idle)->preempt_count = 0;
  4314. #endif
  4315. /*
  4316. * The idle tasks have their own, simple scheduling class:
  4317. */
  4318. idle->sched_class = &idle_sched_class;
  4319. }
  4320. /*
  4321. * In a system that switches off the HZ timer nohz_cpu_mask
  4322. * indicates which cpus entered this state. This is used
  4323. * in the rcu update to wait only for active cpus. For system
  4324. * which do not switch off the HZ timer nohz_cpu_mask should
  4325. * always be CPU_MASK_NONE.
  4326. */
  4327. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4328. /*
  4329. * Increase the granularity value when there are more CPUs,
  4330. * because with more CPUs the 'effective latency' as visible
  4331. * to users decreases. But the relationship is not linear,
  4332. * so pick a second-best guess by going with the log2 of the
  4333. * number of CPUs.
  4334. *
  4335. * This idea comes from the SD scheduler of Con Kolivas:
  4336. */
  4337. static inline void sched_init_granularity(void)
  4338. {
  4339. unsigned int factor = 1 + ilog2(num_online_cpus());
  4340. const unsigned long limit = 200000000;
  4341. sysctl_sched_min_granularity *= factor;
  4342. if (sysctl_sched_min_granularity > limit)
  4343. sysctl_sched_min_granularity = limit;
  4344. sysctl_sched_latency *= factor;
  4345. if (sysctl_sched_latency > limit)
  4346. sysctl_sched_latency = limit;
  4347. sysctl_sched_wakeup_granularity *= factor;
  4348. sysctl_sched_batch_wakeup_granularity *= factor;
  4349. }
  4350. #ifdef CONFIG_SMP
  4351. /*
  4352. * This is how migration works:
  4353. *
  4354. * 1) we queue a struct migration_req structure in the source CPU's
  4355. * runqueue and wake up that CPU's migration thread.
  4356. * 2) we down() the locked semaphore => thread blocks.
  4357. * 3) migration thread wakes up (implicitly it forces the migrated
  4358. * thread off the CPU)
  4359. * 4) it gets the migration request and checks whether the migrated
  4360. * task is still in the wrong runqueue.
  4361. * 5) if it's in the wrong runqueue then the migration thread removes
  4362. * it and puts it into the right queue.
  4363. * 6) migration thread up()s the semaphore.
  4364. * 7) we wake up and the migration is done.
  4365. */
  4366. /*
  4367. * Change a given task's CPU affinity. Migrate the thread to a
  4368. * proper CPU and schedule it away if the CPU it's executing on
  4369. * is removed from the allowed bitmask.
  4370. *
  4371. * NOTE: the caller must have a valid reference to the task, the
  4372. * task must not exit() & deallocate itself prematurely. The
  4373. * call is not atomic; no spinlocks may be held.
  4374. */
  4375. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4376. {
  4377. struct migration_req req;
  4378. unsigned long flags;
  4379. struct rq *rq;
  4380. int ret = 0;
  4381. rq = task_rq_lock(p, &flags);
  4382. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4383. ret = -EINVAL;
  4384. goto out;
  4385. }
  4386. p->cpus_allowed = new_mask;
  4387. /* Can the task run on the task's current CPU? If so, we're done */
  4388. if (cpu_isset(task_cpu(p), new_mask))
  4389. goto out;
  4390. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4391. /* Need help from migration thread: drop lock and wait. */
  4392. task_rq_unlock(rq, &flags);
  4393. wake_up_process(rq->migration_thread);
  4394. wait_for_completion(&req.done);
  4395. tlb_migrate_finish(p->mm);
  4396. return 0;
  4397. }
  4398. out:
  4399. task_rq_unlock(rq, &flags);
  4400. return ret;
  4401. }
  4402. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4403. /*
  4404. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4405. * this because either it can't run here any more (set_cpus_allowed()
  4406. * away from this CPU, or CPU going down), or because we're
  4407. * attempting to rebalance this task on exec (sched_exec).
  4408. *
  4409. * So we race with normal scheduler movements, but that's OK, as long
  4410. * as the task is no longer on this CPU.
  4411. *
  4412. * Returns non-zero if task was successfully migrated.
  4413. */
  4414. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4415. {
  4416. struct rq *rq_dest, *rq_src;
  4417. int ret = 0, on_rq;
  4418. if (unlikely(cpu_is_offline(dest_cpu)))
  4419. return ret;
  4420. rq_src = cpu_rq(src_cpu);
  4421. rq_dest = cpu_rq(dest_cpu);
  4422. double_rq_lock(rq_src, rq_dest);
  4423. /* Already moved. */
  4424. if (task_cpu(p) != src_cpu)
  4425. goto out;
  4426. /* Affinity changed (again). */
  4427. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4428. goto out;
  4429. on_rq = p->se.on_rq;
  4430. if (on_rq)
  4431. deactivate_task(rq_src, p, 0);
  4432. set_task_cpu(p, dest_cpu);
  4433. if (on_rq) {
  4434. activate_task(rq_dest, p, 0);
  4435. check_preempt_curr(rq_dest, p);
  4436. }
  4437. ret = 1;
  4438. out:
  4439. double_rq_unlock(rq_src, rq_dest);
  4440. return ret;
  4441. }
  4442. /*
  4443. * migration_thread - this is a highprio system thread that performs
  4444. * thread migration by bumping thread off CPU then 'pushing' onto
  4445. * another runqueue.
  4446. */
  4447. static int migration_thread(void *data)
  4448. {
  4449. int cpu = (long)data;
  4450. struct rq *rq;
  4451. rq = cpu_rq(cpu);
  4452. BUG_ON(rq->migration_thread != current);
  4453. set_current_state(TASK_INTERRUPTIBLE);
  4454. while (!kthread_should_stop()) {
  4455. struct migration_req *req;
  4456. struct list_head *head;
  4457. spin_lock_irq(&rq->lock);
  4458. if (cpu_is_offline(cpu)) {
  4459. spin_unlock_irq(&rq->lock);
  4460. goto wait_to_die;
  4461. }
  4462. if (rq->active_balance) {
  4463. active_load_balance(rq, cpu);
  4464. rq->active_balance = 0;
  4465. }
  4466. head = &rq->migration_queue;
  4467. if (list_empty(head)) {
  4468. spin_unlock_irq(&rq->lock);
  4469. schedule();
  4470. set_current_state(TASK_INTERRUPTIBLE);
  4471. continue;
  4472. }
  4473. req = list_entry(head->next, struct migration_req, list);
  4474. list_del_init(head->next);
  4475. spin_unlock(&rq->lock);
  4476. __migrate_task(req->task, cpu, req->dest_cpu);
  4477. local_irq_enable();
  4478. complete(&req->done);
  4479. }
  4480. __set_current_state(TASK_RUNNING);
  4481. return 0;
  4482. wait_to_die:
  4483. /* Wait for kthread_stop */
  4484. set_current_state(TASK_INTERRUPTIBLE);
  4485. while (!kthread_should_stop()) {
  4486. schedule();
  4487. set_current_state(TASK_INTERRUPTIBLE);
  4488. }
  4489. __set_current_state(TASK_RUNNING);
  4490. return 0;
  4491. }
  4492. #ifdef CONFIG_HOTPLUG_CPU
  4493. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4494. {
  4495. int ret;
  4496. local_irq_disable();
  4497. ret = __migrate_task(p, src_cpu, dest_cpu);
  4498. local_irq_enable();
  4499. return ret;
  4500. }
  4501. /*
  4502. * Figure out where task on dead CPU should go, use force if necessary.
  4503. * NOTE: interrupts should be disabled by the caller
  4504. */
  4505. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4506. {
  4507. unsigned long flags;
  4508. cpumask_t mask;
  4509. struct rq *rq;
  4510. int dest_cpu;
  4511. do {
  4512. /* On same node? */
  4513. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4514. cpus_and(mask, mask, p->cpus_allowed);
  4515. dest_cpu = any_online_cpu(mask);
  4516. /* On any allowed CPU? */
  4517. if (dest_cpu == NR_CPUS)
  4518. dest_cpu = any_online_cpu(p->cpus_allowed);
  4519. /* No more Mr. Nice Guy. */
  4520. if (dest_cpu == NR_CPUS) {
  4521. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4522. /*
  4523. * Try to stay on the same cpuset, where the
  4524. * current cpuset may be a subset of all cpus.
  4525. * The cpuset_cpus_allowed_locked() variant of
  4526. * cpuset_cpus_allowed() will not block. It must be
  4527. * called within calls to cpuset_lock/cpuset_unlock.
  4528. */
  4529. rq = task_rq_lock(p, &flags);
  4530. p->cpus_allowed = cpus_allowed;
  4531. dest_cpu = any_online_cpu(p->cpus_allowed);
  4532. task_rq_unlock(rq, &flags);
  4533. /*
  4534. * Don't tell them about moving exiting tasks or
  4535. * kernel threads (both mm NULL), since they never
  4536. * leave kernel.
  4537. */
  4538. if (p->mm && printk_ratelimit()) {
  4539. printk(KERN_INFO "process %d (%s) no "
  4540. "longer affine to cpu%d\n",
  4541. task_pid_nr(p), p->comm, dead_cpu);
  4542. }
  4543. }
  4544. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4545. }
  4546. /*
  4547. * While a dead CPU has no uninterruptible tasks queued at this point,
  4548. * it might still have a nonzero ->nr_uninterruptible counter, because
  4549. * for performance reasons the counter is not stricly tracking tasks to
  4550. * their home CPUs. So we just add the counter to another CPU's counter,
  4551. * to keep the global sum constant after CPU-down:
  4552. */
  4553. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4554. {
  4555. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4556. unsigned long flags;
  4557. local_irq_save(flags);
  4558. double_rq_lock(rq_src, rq_dest);
  4559. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4560. rq_src->nr_uninterruptible = 0;
  4561. double_rq_unlock(rq_src, rq_dest);
  4562. local_irq_restore(flags);
  4563. }
  4564. /* Run through task list and migrate tasks from the dead cpu. */
  4565. static void migrate_live_tasks(int src_cpu)
  4566. {
  4567. struct task_struct *p, *t;
  4568. read_lock(&tasklist_lock);
  4569. do_each_thread(t, p) {
  4570. if (p == current)
  4571. continue;
  4572. if (task_cpu(p) == src_cpu)
  4573. move_task_off_dead_cpu(src_cpu, p);
  4574. } while_each_thread(t, p);
  4575. read_unlock(&tasklist_lock);
  4576. }
  4577. /*
  4578. * Schedules idle task to be the next runnable task on current CPU.
  4579. * It does so by boosting its priority to highest possible.
  4580. * Used by CPU offline code.
  4581. */
  4582. void sched_idle_next(void)
  4583. {
  4584. int this_cpu = smp_processor_id();
  4585. struct rq *rq = cpu_rq(this_cpu);
  4586. struct task_struct *p = rq->idle;
  4587. unsigned long flags;
  4588. /* cpu has to be offline */
  4589. BUG_ON(cpu_online(this_cpu));
  4590. /*
  4591. * Strictly not necessary since rest of the CPUs are stopped by now
  4592. * and interrupts disabled on the current cpu.
  4593. */
  4594. spin_lock_irqsave(&rq->lock, flags);
  4595. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4596. update_rq_clock(rq);
  4597. activate_task(rq, p, 0);
  4598. spin_unlock_irqrestore(&rq->lock, flags);
  4599. }
  4600. /*
  4601. * Ensures that the idle task is using init_mm right before its cpu goes
  4602. * offline.
  4603. */
  4604. void idle_task_exit(void)
  4605. {
  4606. struct mm_struct *mm = current->active_mm;
  4607. BUG_ON(cpu_online(smp_processor_id()));
  4608. if (mm != &init_mm)
  4609. switch_mm(mm, &init_mm, current);
  4610. mmdrop(mm);
  4611. }
  4612. /* called under rq->lock with disabled interrupts */
  4613. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4614. {
  4615. struct rq *rq = cpu_rq(dead_cpu);
  4616. /* Must be exiting, otherwise would be on tasklist. */
  4617. BUG_ON(!p->exit_state);
  4618. /* Cannot have done final schedule yet: would have vanished. */
  4619. BUG_ON(p->state == TASK_DEAD);
  4620. get_task_struct(p);
  4621. /*
  4622. * Drop lock around migration; if someone else moves it,
  4623. * that's OK. No task can be added to this CPU, so iteration is
  4624. * fine.
  4625. */
  4626. spin_unlock_irq(&rq->lock);
  4627. move_task_off_dead_cpu(dead_cpu, p);
  4628. spin_lock_irq(&rq->lock);
  4629. put_task_struct(p);
  4630. }
  4631. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4632. static void migrate_dead_tasks(unsigned int dead_cpu)
  4633. {
  4634. struct rq *rq = cpu_rq(dead_cpu);
  4635. struct task_struct *next;
  4636. for ( ; ; ) {
  4637. if (!rq->nr_running)
  4638. break;
  4639. update_rq_clock(rq);
  4640. next = pick_next_task(rq, rq->curr);
  4641. if (!next)
  4642. break;
  4643. migrate_dead(dead_cpu, next);
  4644. }
  4645. }
  4646. #endif /* CONFIG_HOTPLUG_CPU */
  4647. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4648. static struct ctl_table sd_ctl_dir[] = {
  4649. {
  4650. .procname = "sched_domain",
  4651. .mode = 0555,
  4652. },
  4653. {0, },
  4654. };
  4655. static struct ctl_table sd_ctl_root[] = {
  4656. {
  4657. .ctl_name = CTL_KERN,
  4658. .procname = "kernel",
  4659. .mode = 0555,
  4660. .child = sd_ctl_dir,
  4661. },
  4662. {0, },
  4663. };
  4664. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4665. {
  4666. struct ctl_table *entry =
  4667. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4668. return entry;
  4669. }
  4670. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4671. {
  4672. struct ctl_table *entry;
  4673. /*
  4674. * In the intermediate directories, both the child directory and
  4675. * procname are dynamically allocated and could fail but the mode
  4676. * will always be set. In the lowest directory the names are
  4677. * static strings and all have proc handlers.
  4678. */
  4679. for (entry = *tablep; entry->mode; entry++) {
  4680. if (entry->child)
  4681. sd_free_ctl_entry(&entry->child);
  4682. if (entry->proc_handler == NULL)
  4683. kfree(entry->procname);
  4684. }
  4685. kfree(*tablep);
  4686. *tablep = NULL;
  4687. }
  4688. static void
  4689. set_table_entry(struct ctl_table *entry,
  4690. const char *procname, void *data, int maxlen,
  4691. mode_t mode, proc_handler *proc_handler)
  4692. {
  4693. entry->procname = procname;
  4694. entry->data = data;
  4695. entry->maxlen = maxlen;
  4696. entry->mode = mode;
  4697. entry->proc_handler = proc_handler;
  4698. }
  4699. static struct ctl_table *
  4700. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4701. {
  4702. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4703. if (table == NULL)
  4704. return NULL;
  4705. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4706. sizeof(long), 0644, proc_doulongvec_minmax);
  4707. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4708. sizeof(long), 0644, proc_doulongvec_minmax);
  4709. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4710. sizeof(int), 0644, proc_dointvec_minmax);
  4711. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4712. sizeof(int), 0644, proc_dointvec_minmax);
  4713. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4714. sizeof(int), 0644, proc_dointvec_minmax);
  4715. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4716. sizeof(int), 0644, proc_dointvec_minmax);
  4717. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4718. sizeof(int), 0644, proc_dointvec_minmax);
  4719. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4720. sizeof(int), 0644, proc_dointvec_minmax);
  4721. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4722. sizeof(int), 0644, proc_dointvec_minmax);
  4723. set_table_entry(&table[9], "cache_nice_tries",
  4724. &sd->cache_nice_tries,
  4725. sizeof(int), 0644, proc_dointvec_minmax);
  4726. set_table_entry(&table[10], "flags", &sd->flags,
  4727. sizeof(int), 0644, proc_dointvec_minmax);
  4728. /* &table[11] is terminator */
  4729. return table;
  4730. }
  4731. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4732. {
  4733. struct ctl_table *entry, *table;
  4734. struct sched_domain *sd;
  4735. int domain_num = 0, i;
  4736. char buf[32];
  4737. for_each_domain(cpu, sd)
  4738. domain_num++;
  4739. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4740. if (table == NULL)
  4741. return NULL;
  4742. i = 0;
  4743. for_each_domain(cpu, sd) {
  4744. snprintf(buf, 32, "domain%d", i);
  4745. entry->procname = kstrdup(buf, GFP_KERNEL);
  4746. entry->mode = 0555;
  4747. entry->child = sd_alloc_ctl_domain_table(sd);
  4748. entry++;
  4749. i++;
  4750. }
  4751. return table;
  4752. }
  4753. static struct ctl_table_header *sd_sysctl_header;
  4754. static void register_sched_domain_sysctl(void)
  4755. {
  4756. int i, cpu_num = num_online_cpus();
  4757. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4758. char buf[32];
  4759. WARN_ON(sd_ctl_dir[0].child);
  4760. sd_ctl_dir[0].child = entry;
  4761. if (entry == NULL)
  4762. return;
  4763. for_each_online_cpu(i) {
  4764. snprintf(buf, 32, "cpu%d", i);
  4765. entry->procname = kstrdup(buf, GFP_KERNEL);
  4766. entry->mode = 0555;
  4767. entry->child = sd_alloc_ctl_cpu_table(i);
  4768. entry++;
  4769. }
  4770. WARN_ON(sd_sysctl_header);
  4771. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4772. }
  4773. /* may be called multiple times per register */
  4774. static void unregister_sched_domain_sysctl(void)
  4775. {
  4776. if (sd_sysctl_header)
  4777. unregister_sysctl_table(sd_sysctl_header);
  4778. sd_sysctl_header = NULL;
  4779. if (sd_ctl_dir[0].child)
  4780. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4781. }
  4782. #else
  4783. static void register_sched_domain_sysctl(void)
  4784. {
  4785. }
  4786. static void unregister_sched_domain_sysctl(void)
  4787. {
  4788. }
  4789. #endif
  4790. /*
  4791. * migration_call - callback that gets triggered when a CPU is added.
  4792. * Here we can start up the necessary migration thread for the new CPU.
  4793. */
  4794. static int __cpuinit
  4795. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4796. {
  4797. struct task_struct *p;
  4798. int cpu = (long)hcpu;
  4799. unsigned long flags;
  4800. struct rq *rq;
  4801. switch (action) {
  4802. case CPU_LOCK_ACQUIRE:
  4803. mutex_lock(&sched_hotcpu_mutex);
  4804. break;
  4805. case CPU_UP_PREPARE:
  4806. case CPU_UP_PREPARE_FROZEN:
  4807. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4808. if (IS_ERR(p))
  4809. return NOTIFY_BAD;
  4810. kthread_bind(p, cpu);
  4811. /* Must be high prio: stop_machine expects to yield to it. */
  4812. rq = task_rq_lock(p, &flags);
  4813. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4814. task_rq_unlock(rq, &flags);
  4815. cpu_rq(cpu)->migration_thread = p;
  4816. break;
  4817. case CPU_ONLINE:
  4818. case CPU_ONLINE_FROZEN:
  4819. /* Strictly unnecessary, as first user will wake it. */
  4820. wake_up_process(cpu_rq(cpu)->migration_thread);
  4821. break;
  4822. #ifdef CONFIG_HOTPLUG_CPU
  4823. case CPU_UP_CANCELED:
  4824. case CPU_UP_CANCELED_FROZEN:
  4825. if (!cpu_rq(cpu)->migration_thread)
  4826. break;
  4827. /* Unbind it from offline cpu so it can run. Fall thru. */
  4828. kthread_bind(cpu_rq(cpu)->migration_thread,
  4829. any_online_cpu(cpu_online_map));
  4830. kthread_stop(cpu_rq(cpu)->migration_thread);
  4831. cpu_rq(cpu)->migration_thread = NULL;
  4832. break;
  4833. case CPU_DEAD:
  4834. case CPU_DEAD_FROZEN:
  4835. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4836. migrate_live_tasks(cpu);
  4837. rq = cpu_rq(cpu);
  4838. kthread_stop(rq->migration_thread);
  4839. rq->migration_thread = NULL;
  4840. /* Idle task back to normal (off runqueue, low prio) */
  4841. spin_lock_irq(&rq->lock);
  4842. update_rq_clock(rq);
  4843. deactivate_task(rq, rq->idle, 0);
  4844. rq->idle->static_prio = MAX_PRIO;
  4845. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4846. rq->idle->sched_class = &idle_sched_class;
  4847. migrate_dead_tasks(cpu);
  4848. spin_unlock_irq(&rq->lock);
  4849. cpuset_unlock();
  4850. migrate_nr_uninterruptible(rq);
  4851. BUG_ON(rq->nr_running != 0);
  4852. /*
  4853. * No need to migrate the tasks: it was best-effort if
  4854. * they didn't take sched_hotcpu_mutex. Just wake up
  4855. * the requestors.
  4856. */
  4857. spin_lock_irq(&rq->lock);
  4858. while (!list_empty(&rq->migration_queue)) {
  4859. struct migration_req *req;
  4860. req = list_entry(rq->migration_queue.next,
  4861. struct migration_req, list);
  4862. list_del_init(&req->list);
  4863. complete(&req->done);
  4864. }
  4865. spin_unlock_irq(&rq->lock);
  4866. break;
  4867. #endif
  4868. case CPU_LOCK_RELEASE:
  4869. mutex_unlock(&sched_hotcpu_mutex);
  4870. break;
  4871. }
  4872. return NOTIFY_OK;
  4873. }
  4874. /* Register at highest priority so that task migration (migrate_all_tasks)
  4875. * happens before everything else.
  4876. */
  4877. static struct notifier_block __cpuinitdata migration_notifier = {
  4878. .notifier_call = migration_call,
  4879. .priority = 10
  4880. };
  4881. void __init migration_init(void)
  4882. {
  4883. void *cpu = (void *)(long)smp_processor_id();
  4884. int err;
  4885. /* Start one for the boot CPU: */
  4886. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4887. BUG_ON(err == NOTIFY_BAD);
  4888. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4889. register_cpu_notifier(&migration_notifier);
  4890. }
  4891. #endif
  4892. #ifdef CONFIG_SMP
  4893. /* Number of possible processor ids */
  4894. int nr_cpu_ids __read_mostly = NR_CPUS;
  4895. EXPORT_SYMBOL(nr_cpu_ids);
  4896. #ifdef CONFIG_SCHED_DEBUG
  4897. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4898. {
  4899. struct sched_group *group = sd->groups;
  4900. cpumask_t groupmask;
  4901. char str[NR_CPUS];
  4902. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4903. cpus_clear(groupmask);
  4904. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4905. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4906. printk("does not load-balance\n");
  4907. if (sd->parent)
  4908. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4909. " has parent");
  4910. return -1;
  4911. }
  4912. printk(KERN_CONT "span %s\n", str);
  4913. if (!cpu_isset(cpu, sd->span)) {
  4914. printk(KERN_ERR "ERROR: domain->span does not contain "
  4915. "CPU%d\n", cpu);
  4916. }
  4917. if (!cpu_isset(cpu, group->cpumask)) {
  4918. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4919. " CPU%d\n", cpu);
  4920. }
  4921. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4922. do {
  4923. if (!group) {
  4924. printk("\n");
  4925. printk(KERN_ERR "ERROR: group is NULL\n");
  4926. break;
  4927. }
  4928. if (!group->__cpu_power) {
  4929. printk(KERN_CONT "\n");
  4930. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4931. "set\n");
  4932. break;
  4933. }
  4934. if (!cpus_weight(group->cpumask)) {
  4935. printk(KERN_CONT "\n");
  4936. printk(KERN_ERR "ERROR: empty group\n");
  4937. break;
  4938. }
  4939. if (cpus_intersects(groupmask, group->cpumask)) {
  4940. printk(KERN_CONT "\n");
  4941. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4942. break;
  4943. }
  4944. cpus_or(groupmask, groupmask, group->cpumask);
  4945. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4946. printk(KERN_CONT " %s", str);
  4947. group = group->next;
  4948. } while (group != sd->groups);
  4949. printk(KERN_CONT "\n");
  4950. if (!cpus_equal(sd->span, groupmask))
  4951. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4952. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4953. printk(KERN_ERR "ERROR: parent span is not a superset "
  4954. "of domain->span\n");
  4955. return 0;
  4956. }
  4957. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4958. {
  4959. int level = 0;
  4960. if (!sd) {
  4961. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4962. return;
  4963. }
  4964. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4965. for (;;) {
  4966. if (sched_domain_debug_one(sd, cpu, level))
  4967. break;
  4968. level++;
  4969. sd = sd->parent;
  4970. if (!sd)
  4971. break;
  4972. }
  4973. }
  4974. #else
  4975. # define sched_domain_debug(sd, cpu) do { } while (0)
  4976. #endif
  4977. static int sd_degenerate(struct sched_domain *sd)
  4978. {
  4979. if (cpus_weight(sd->span) == 1)
  4980. return 1;
  4981. /* Following flags need at least 2 groups */
  4982. if (sd->flags & (SD_LOAD_BALANCE |
  4983. SD_BALANCE_NEWIDLE |
  4984. SD_BALANCE_FORK |
  4985. SD_BALANCE_EXEC |
  4986. SD_SHARE_CPUPOWER |
  4987. SD_SHARE_PKG_RESOURCES)) {
  4988. if (sd->groups != sd->groups->next)
  4989. return 0;
  4990. }
  4991. /* Following flags don't use groups */
  4992. if (sd->flags & (SD_WAKE_IDLE |
  4993. SD_WAKE_AFFINE |
  4994. SD_WAKE_BALANCE))
  4995. return 0;
  4996. return 1;
  4997. }
  4998. static int
  4999. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5000. {
  5001. unsigned long cflags = sd->flags, pflags = parent->flags;
  5002. if (sd_degenerate(parent))
  5003. return 1;
  5004. if (!cpus_equal(sd->span, parent->span))
  5005. return 0;
  5006. /* Does parent contain flags not in child? */
  5007. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5008. if (cflags & SD_WAKE_AFFINE)
  5009. pflags &= ~SD_WAKE_BALANCE;
  5010. /* Flags needing groups don't count if only 1 group in parent */
  5011. if (parent->groups == parent->groups->next) {
  5012. pflags &= ~(SD_LOAD_BALANCE |
  5013. SD_BALANCE_NEWIDLE |
  5014. SD_BALANCE_FORK |
  5015. SD_BALANCE_EXEC |
  5016. SD_SHARE_CPUPOWER |
  5017. SD_SHARE_PKG_RESOURCES);
  5018. }
  5019. if (~cflags & pflags)
  5020. return 0;
  5021. return 1;
  5022. }
  5023. /*
  5024. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5025. * hold the hotplug lock.
  5026. */
  5027. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5028. {
  5029. struct rq *rq = cpu_rq(cpu);
  5030. struct sched_domain *tmp;
  5031. /* Remove the sched domains which do not contribute to scheduling. */
  5032. for (tmp = sd; tmp; tmp = tmp->parent) {
  5033. struct sched_domain *parent = tmp->parent;
  5034. if (!parent)
  5035. break;
  5036. if (sd_parent_degenerate(tmp, parent)) {
  5037. tmp->parent = parent->parent;
  5038. if (parent->parent)
  5039. parent->parent->child = tmp;
  5040. }
  5041. }
  5042. if (sd && sd_degenerate(sd)) {
  5043. sd = sd->parent;
  5044. if (sd)
  5045. sd->child = NULL;
  5046. }
  5047. sched_domain_debug(sd, cpu);
  5048. rcu_assign_pointer(rq->sd, sd);
  5049. }
  5050. /* cpus with isolated domains */
  5051. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5052. /* Setup the mask of cpus configured for isolated domains */
  5053. static int __init isolated_cpu_setup(char *str)
  5054. {
  5055. int ints[NR_CPUS], i;
  5056. str = get_options(str, ARRAY_SIZE(ints), ints);
  5057. cpus_clear(cpu_isolated_map);
  5058. for (i = 1; i <= ints[0]; i++)
  5059. if (ints[i] < NR_CPUS)
  5060. cpu_set(ints[i], cpu_isolated_map);
  5061. return 1;
  5062. }
  5063. __setup("isolcpus=", isolated_cpu_setup);
  5064. /*
  5065. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5066. * to a function which identifies what group(along with sched group) a CPU
  5067. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5068. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5069. *
  5070. * init_sched_build_groups will build a circular linked list of the groups
  5071. * covered by the given span, and will set each group's ->cpumask correctly,
  5072. * and ->cpu_power to 0.
  5073. */
  5074. static void
  5075. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5076. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5077. struct sched_group **sg))
  5078. {
  5079. struct sched_group *first = NULL, *last = NULL;
  5080. cpumask_t covered = CPU_MASK_NONE;
  5081. int i;
  5082. for_each_cpu_mask(i, span) {
  5083. struct sched_group *sg;
  5084. int group = group_fn(i, cpu_map, &sg);
  5085. int j;
  5086. if (cpu_isset(i, covered))
  5087. continue;
  5088. sg->cpumask = CPU_MASK_NONE;
  5089. sg->__cpu_power = 0;
  5090. for_each_cpu_mask(j, span) {
  5091. if (group_fn(j, cpu_map, NULL) != group)
  5092. continue;
  5093. cpu_set(j, covered);
  5094. cpu_set(j, sg->cpumask);
  5095. }
  5096. if (!first)
  5097. first = sg;
  5098. if (last)
  5099. last->next = sg;
  5100. last = sg;
  5101. }
  5102. last->next = first;
  5103. }
  5104. #define SD_NODES_PER_DOMAIN 16
  5105. #ifdef CONFIG_NUMA
  5106. /**
  5107. * find_next_best_node - find the next node to include in a sched_domain
  5108. * @node: node whose sched_domain we're building
  5109. * @used_nodes: nodes already in the sched_domain
  5110. *
  5111. * Find the next node to include in a given scheduling domain. Simply
  5112. * finds the closest node not already in the @used_nodes map.
  5113. *
  5114. * Should use nodemask_t.
  5115. */
  5116. static int find_next_best_node(int node, unsigned long *used_nodes)
  5117. {
  5118. int i, n, val, min_val, best_node = 0;
  5119. min_val = INT_MAX;
  5120. for (i = 0; i < MAX_NUMNODES; i++) {
  5121. /* Start at @node */
  5122. n = (node + i) % MAX_NUMNODES;
  5123. if (!nr_cpus_node(n))
  5124. continue;
  5125. /* Skip already used nodes */
  5126. if (test_bit(n, used_nodes))
  5127. continue;
  5128. /* Simple min distance search */
  5129. val = node_distance(node, n);
  5130. if (val < min_val) {
  5131. min_val = val;
  5132. best_node = n;
  5133. }
  5134. }
  5135. set_bit(best_node, used_nodes);
  5136. return best_node;
  5137. }
  5138. /**
  5139. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5140. * @node: node whose cpumask we're constructing
  5141. * @size: number of nodes to include in this span
  5142. *
  5143. * Given a node, construct a good cpumask for its sched_domain to span. It
  5144. * should be one that prevents unnecessary balancing, but also spreads tasks
  5145. * out optimally.
  5146. */
  5147. static cpumask_t sched_domain_node_span(int node)
  5148. {
  5149. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5150. cpumask_t span, nodemask;
  5151. int i;
  5152. cpus_clear(span);
  5153. bitmap_zero(used_nodes, MAX_NUMNODES);
  5154. nodemask = node_to_cpumask(node);
  5155. cpus_or(span, span, nodemask);
  5156. set_bit(node, used_nodes);
  5157. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5158. int next_node = find_next_best_node(node, used_nodes);
  5159. nodemask = node_to_cpumask(next_node);
  5160. cpus_or(span, span, nodemask);
  5161. }
  5162. return span;
  5163. }
  5164. #endif
  5165. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5166. /*
  5167. * SMT sched-domains:
  5168. */
  5169. #ifdef CONFIG_SCHED_SMT
  5170. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5171. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5172. static int
  5173. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5174. {
  5175. if (sg)
  5176. *sg = &per_cpu(sched_group_cpus, cpu);
  5177. return cpu;
  5178. }
  5179. #endif
  5180. /*
  5181. * multi-core sched-domains:
  5182. */
  5183. #ifdef CONFIG_SCHED_MC
  5184. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5185. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5186. #endif
  5187. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5188. static int
  5189. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5190. {
  5191. int group;
  5192. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5193. cpus_and(mask, mask, *cpu_map);
  5194. group = first_cpu(mask);
  5195. if (sg)
  5196. *sg = &per_cpu(sched_group_core, group);
  5197. return group;
  5198. }
  5199. #elif defined(CONFIG_SCHED_MC)
  5200. static int
  5201. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5202. {
  5203. if (sg)
  5204. *sg = &per_cpu(sched_group_core, cpu);
  5205. return cpu;
  5206. }
  5207. #endif
  5208. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5209. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5210. static int
  5211. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5212. {
  5213. int group;
  5214. #ifdef CONFIG_SCHED_MC
  5215. cpumask_t mask = cpu_coregroup_map(cpu);
  5216. cpus_and(mask, mask, *cpu_map);
  5217. group = first_cpu(mask);
  5218. #elif defined(CONFIG_SCHED_SMT)
  5219. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5220. cpus_and(mask, mask, *cpu_map);
  5221. group = first_cpu(mask);
  5222. #else
  5223. group = cpu;
  5224. #endif
  5225. if (sg)
  5226. *sg = &per_cpu(sched_group_phys, group);
  5227. return group;
  5228. }
  5229. #ifdef CONFIG_NUMA
  5230. /*
  5231. * The init_sched_build_groups can't handle what we want to do with node
  5232. * groups, so roll our own. Now each node has its own list of groups which
  5233. * gets dynamically allocated.
  5234. */
  5235. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5236. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5237. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5238. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5239. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5240. struct sched_group **sg)
  5241. {
  5242. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5243. int group;
  5244. cpus_and(nodemask, nodemask, *cpu_map);
  5245. group = first_cpu(nodemask);
  5246. if (sg)
  5247. *sg = &per_cpu(sched_group_allnodes, group);
  5248. return group;
  5249. }
  5250. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5251. {
  5252. struct sched_group *sg = group_head;
  5253. int j;
  5254. if (!sg)
  5255. return;
  5256. do {
  5257. for_each_cpu_mask(j, sg->cpumask) {
  5258. struct sched_domain *sd;
  5259. sd = &per_cpu(phys_domains, j);
  5260. if (j != first_cpu(sd->groups->cpumask)) {
  5261. /*
  5262. * Only add "power" once for each
  5263. * physical package.
  5264. */
  5265. continue;
  5266. }
  5267. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5268. }
  5269. sg = sg->next;
  5270. } while (sg != group_head);
  5271. }
  5272. #endif
  5273. #ifdef CONFIG_NUMA
  5274. /* Free memory allocated for various sched_group structures */
  5275. static void free_sched_groups(const cpumask_t *cpu_map)
  5276. {
  5277. int cpu, i;
  5278. for_each_cpu_mask(cpu, *cpu_map) {
  5279. struct sched_group **sched_group_nodes
  5280. = sched_group_nodes_bycpu[cpu];
  5281. if (!sched_group_nodes)
  5282. continue;
  5283. for (i = 0; i < MAX_NUMNODES; i++) {
  5284. cpumask_t nodemask = node_to_cpumask(i);
  5285. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5286. cpus_and(nodemask, nodemask, *cpu_map);
  5287. if (cpus_empty(nodemask))
  5288. continue;
  5289. if (sg == NULL)
  5290. continue;
  5291. sg = sg->next;
  5292. next_sg:
  5293. oldsg = sg;
  5294. sg = sg->next;
  5295. kfree(oldsg);
  5296. if (oldsg != sched_group_nodes[i])
  5297. goto next_sg;
  5298. }
  5299. kfree(sched_group_nodes);
  5300. sched_group_nodes_bycpu[cpu] = NULL;
  5301. }
  5302. }
  5303. #else
  5304. static void free_sched_groups(const cpumask_t *cpu_map)
  5305. {
  5306. }
  5307. #endif
  5308. /*
  5309. * Initialize sched groups cpu_power.
  5310. *
  5311. * cpu_power indicates the capacity of sched group, which is used while
  5312. * distributing the load between different sched groups in a sched domain.
  5313. * Typically cpu_power for all the groups in a sched domain will be same unless
  5314. * there are asymmetries in the topology. If there are asymmetries, group
  5315. * having more cpu_power will pickup more load compared to the group having
  5316. * less cpu_power.
  5317. *
  5318. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5319. * the maximum number of tasks a group can handle in the presence of other idle
  5320. * or lightly loaded groups in the same sched domain.
  5321. */
  5322. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5323. {
  5324. struct sched_domain *child;
  5325. struct sched_group *group;
  5326. WARN_ON(!sd || !sd->groups);
  5327. if (cpu != first_cpu(sd->groups->cpumask))
  5328. return;
  5329. child = sd->child;
  5330. sd->groups->__cpu_power = 0;
  5331. /*
  5332. * For perf policy, if the groups in child domain share resources
  5333. * (for example cores sharing some portions of the cache hierarchy
  5334. * or SMT), then set this domain groups cpu_power such that each group
  5335. * can handle only one task, when there are other idle groups in the
  5336. * same sched domain.
  5337. */
  5338. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5339. (child->flags &
  5340. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5341. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5342. return;
  5343. }
  5344. /*
  5345. * add cpu_power of each child group to this groups cpu_power
  5346. */
  5347. group = child->groups;
  5348. do {
  5349. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5350. group = group->next;
  5351. } while (group != child->groups);
  5352. }
  5353. /*
  5354. * Build sched domains for a given set of cpus and attach the sched domains
  5355. * to the individual cpus
  5356. */
  5357. static int build_sched_domains(const cpumask_t *cpu_map)
  5358. {
  5359. int i;
  5360. #ifdef CONFIG_NUMA
  5361. struct sched_group **sched_group_nodes = NULL;
  5362. int sd_allnodes = 0;
  5363. /*
  5364. * Allocate the per-node list of sched groups
  5365. */
  5366. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5367. GFP_KERNEL);
  5368. if (!sched_group_nodes) {
  5369. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5370. return -ENOMEM;
  5371. }
  5372. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5373. #endif
  5374. /*
  5375. * Set up domains for cpus specified by the cpu_map.
  5376. */
  5377. for_each_cpu_mask(i, *cpu_map) {
  5378. struct sched_domain *sd = NULL, *p;
  5379. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5380. cpus_and(nodemask, nodemask, *cpu_map);
  5381. #ifdef CONFIG_NUMA
  5382. if (cpus_weight(*cpu_map) >
  5383. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5384. sd = &per_cpu(allnodes_domains, i);
  5385. *sd = SD_ALLNODES_INIT;
  5386. sd->span = *cpu_map;
  5387. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5388. p = sd;
  5389. sd_allnodes = 1;
  5390. } else
  5391. p = NULL;
  5392. sd = &per_cpu(node_domains, i);
  5393. *sd = SD_NODE_INIT;
  5394. sd->span = sched_domain_node_span(cpu_to_node(i));
  5395. sd->parent = p;
  5396. if (p)
  5397. p->child = sd;
  5398. cpus_and(sd->span, sd->span, *cpu_map);
  5399. #endif
  5400. p = sd;
  5401. sd = &per_cpu(phys_domains, i);
  5402. *sd = SD_CPU_INIT;
  5403. sd->span = nodemask;
  5404. sd->parent = p;
  5405. if (p)
  5406. p->child = sd;
  5407. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5408. #ifdef CONFIG_SCHED_MC
  5409. p = sd;
  5410. sd = &per_cpu(core_domains, i);
  5411. *sd = SD_MC_INIT;
  5412. sd->span = cpu_coregroup_map(i);
  5413. cpus_and(sd->span, sd->span, *cpu_map);
  5414. sd->parent = p;
  5415. p->child = sd;
  5416. cpu_to_core_group(i, cpu_map, &sd->groups);
  5417. #endif
  5418. #ifdef CONFIG_SCHED_SMT
  5419. p = sd;
  5420. sd = &per_cpu(cpu_domains, i);
  5421. *sd = SD_SIBLING_INIT;
  5422. sd->span = per_cpu(cpu_sibling_map, i);
  5423. cpus_and(sd->span, sd->span, *cpu_map);
  5424. sd->parent = p;
  5425. p->child = sd;
  5426. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5427. #endif
  5428. }
  5429. #ifdef CONFIG_SCHED_SMT
  5430. /* Set up CPU (sibling) groups */
  5431. for_each_cpu_mask(i, *cpu_map) {
  5432. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5433. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5434. if (i != first_cpu(this_sibling_map))
  5435. continue;
  5436. init_sched_build_groups(this_sibling_map, cpu_map,
  5437. &cpu_to_cpu_group);
  5438. }
  5439. #endif
  5440. #ifdef CONFIG_SCHED_MC
  5441. /* Set up multi-core groups */
  5442. for_each_cpu_mask(i, *cpu_map) {
  5443. cpumask_t this_core_map = cpu_coregroup_map(i);
  5444. cpus_and(this_core_map, this_core_map, *cpu_map);
  5445. if (i != first_cpu(this_core_map))
  5446. continue;
  5447. init_sched_build_groups(this_core_map, cpu_map,
  5448. &cpu_to_core_group);
  5449. }
  5450. #endif
  5451. /* Set up physical groups */
  5452. for (i = 0; i < MAX_NUMNODES; i++) {
  5453. cpumask_t nodemask = node_to_cpumask(i);
  5454. cpus_and(nodemask, nodemask, *cpu_map);
  5455. if (cpus_empty(nodemask))
  5456. continue;
  5457. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5458. }
  5459. #ifdef CONFIG_NUMA
  5460. /* Set up node groups */
  5461. if (sd_allnodes)
  5462. init_sched_build_groups(*cpu_map, cpu_map,
  5463. &cpu_to_allnodes_group);
  5464. for (i = 0; i < MAX_NUMNODES; i++) {
  5465. /* Set up node groups */
  5466. struct sched_group *sg, *prev;
  5467. cpumask_t nodemask = node_to_cpumask(i);
  5468. cpumask_t domainspan;
  5469. cpumask_t covered = CPU_MASK_NONE;
  5470. int j;
  5471. cpus_and(nodemask, nodemask, *cpu_map);
  5472. if (cpus_empty(nodemask)) {
  5473. sched_group_nodes[i] = NULL;
  5474. continue;
  5475. }
  5476. domainspan = sched_domain_node_span(i);
  5477. cpus_and(domainspan, domainspan, *cpu_map);
  5478. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5479. if (!sg) {
  5480. printk(KERN_WARNING "Can not alloc domain group for "
  5481. "node %d\n", i);
  5482. goto error;
  5483. }
  5484. sched_group_nodes[i] = sg;
  5485. for_each_cpu_mask(j, nodemask) {
  5486. struct sched_domain *sd;
  5487. sd = &per_cpu(node_domains, j);
  5488. sd->groups = sg;
  5489. }
  5490. sg->__cpu_power = 0;
  5491. sg->cpumask = nodemask;
  5492. sg->next = sg;
  5493. cpus_or(covered, covered, nodemask);
  5494. prev = sg;
  5495. for (j = 0; j < MAX_NUMNODES; j++) {
  5496. cpumask_t tmp, notcovered;
  5497. int n = (i + j) % MAX_NUMNODES;
  5498. cpus_complement(notcovered, covered);
  5499. cpus_and(tmp, notcovered, *cpu_map);
  5500. cpus_and(tmp, tmp, domainspan);
  5501. if (cpus_empty(tmp))
  5502. break;
  5503. nodemask = node_to_cpumask(n);
  5504. cpus_and(tmp, tmp, nodemask);
  5505. if (cpus_empty(tmp))
  5506. continue;
  5507. sg = kmalloc_node(sizeof(struct sched_group),
  5508. GFP_KERNEL, i);
  5509. if (!sg) {
  5510. printk(KERN_WARNING
  5511. "Can not alloc domain group for node %d\n", j);
  5512. goto error;
  5513. }
  5514. sg->__cpu_power = 0;
  5515. sg->cpumask = tmp;
  5516. sg->next = prev->next;
  5517. cpus_or(covered, covered, tmp);
  5518. prev->next = sg;
  5519. prev = sg;
  5520. }
  5521. }
  5522. #endif
  5523. /* Calculate CPU power for physical packages and nodes */
  5524. #ifdef CONFIG_SCHED_SMT
  5525. for_each_cpu_mask(i, *cpu_map) {
  5526. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5527. init_sched_groups_power(i, sd);
  5528. }
  5529. #endif
  5530. #ifdef CONFIG_SCHED_MC
  5531. for_each_cpu_mask(i, *cpu_map) {
  5532. struct sched_domain *sd = &per_cpu(core_domains, i);
  5533. init_sched_groups_power(i, sd);
  5534. }
  5535. #endif
  5536. for_each_cpu_mask(i, *cpu_map) {
  5537. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5538. init_sched_groups_power(i, sd);
  5539. }
  5540. #ifdef CONFIG_NUMA
  5541. for (i = 0; i < MAX_NUMNODES; i++)
  5542. init_numa_sched_groups_power(sched_group_nodes[i]);
  5543. if (sd_allnodes) {
  5544. struct sched_group *sg;
  5545. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5546. init_numa_sched_groups_power(sg);
  5547. }
  5548. #endif
  5549. /* Attach the domains */
  5550. for_each_cpu_mask(i, *cpu_map) {
  5551. struct sched_domain *sd;
  5552. #ifdef CONFIG_SCHED_SMT
  5553. sd = &per_cpu(cpu_domains, i);
  5554. #elif defined(CONFIG_SCHED_MC)
  5555. sd = &per_cpu(core_domains, i);
  5556. #else
  5557. sd = &per_cpu(phys_domains, i);
  5558. #endif
  5559. cpu_attach_domain(sd, i);
  5560. }
  5561. return 0;
  5562. #ifdef CONFIG_NUMA
  5563. error:
  5564. free_sched_groups(cpu_map);
  5565. return -ENOMEM;
  5566. #endif
  5567. }
  5568. static cpumask_t *doms_cur; /* current sched domains */
  5569. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5570. /*
  5571. * Special case: If a kmalloc of a doms_cur partition (array of
  5572. * cpumask_t) fails, then fallback to a single sched domain,
  5573. * as determined by the single cpumask_t fallback_doms.
  5574. */
  5575. static cpumask_t fallback_doms;
  5576. /*
  5577. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5578. * For now this just excludes isolated cpus, but could be used to
  5579. * exclude other special cases in the future.
  5580. */
  5581. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5582. {
  5583. int err;
  5584. ndoms_cur = 1;
  5585. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5586. if (!doms_cur)
  5587. doms_cur = &fallback_doms;
  5588. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5589. err = build_sched_domains(doms_cur);
  5590. register_sched_domain_sysctl();
  5591. return err;
  5592. }
  5593. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5594. {
  5595. free_sched_groups(cpu_map);
  5596. }
  5597. /*
  5598. * Detach sched domains from a group of cpus specified in cpu_map
  5599. * These cpus will now be attached to the NULL domain
  5600. */
  5601. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5602. {
  5603. int i;
  5604. unregister_sched_domain_sysctl();
  5605. for_each_cpu_mask(i, *cpu_map)
  5606. cpu_attach_domain(NULL, i);
  5607. synchronize_sched();
  5608. arch_destroy_sched_domains(cpu_map);
  5609. }
  5610. /*
  5611. * Partition sched domains as specified by the 'ndoms_new'
  5612. * cpumasks in the array doms_new[] of cpumasks. This compares
  5613. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5614. * It destroys each deleted domain and builds each new domain.
  5615. *
  5616. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5617. * The masks don't intersect (don't overlap.) We should setup one
  5618. * sched domain for each mask. CPUs not in any of the cpumasks will
  5619. * not be load balanced. If the same cpumask appears both in the
  5620. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5621. * it as it is.
  5622. *
  5623. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5624. * ownership of it and will kfree it when done with it. If the caller
  5625. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5626. * and partition_sched_domains() will fallback to the single partition
  5627. * 'fallback_doms'.
  5628. *
  5629. * Call with hotplug lock held
  5630. */
  5631. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5632. {
  5633. int i, j;
  5634. /* always unregister in case we don't destroy any domains */
  5635. unregister_sched_domain_sysctl();
  5636. if (doms_new == NULL) {
  5637. ndoms_new = 1;
  5638. doms_new = &fallback_doms;
  5639. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5640. }
  5641. /* Destroy deleted domains */
  5642. for (i = 0; i < ndoms_cur; i++) {
  5643. for (j = 0; j < ndoms_new; j++) {
  5644. if (cpus_equal(doms_cur[i], doms_new[j]))
  5645. goto match1;
  5646. }
  5647. /* no match - a current sched domain not in new doms_new[] */
  5648. detach_destroy_domains(doms_cur + i);
  5649. match1:
  5650. ;
  5651. }
  5652. /* Build new domains */
  5653. for (i = 0; i < ndoms_new; i++) {
  5654. for (j = 0; j < ndoms_cur; j++) {
  5655. if (cpus_equal(doms_new[i], doms_cur[j]))
  5656. goto match2;
  5657. }
  5658. /* no match - add a new doms_new */
  5659. build_sched_domains(doms_new + i);
  5660. match2:
  5661. ;
  5662. }
  5663. /* Remember the new sched domains */
  5664. if (doms_cur != &fallback_doms)
  5665. kfree(doms_cur);
  5666. doms_cur = doms_new;
  5667. ndoms_cur = ndoms_new;
  5668. register_sched_domain_sysctl();
  5669. }
  5670. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5671. static int arch_reinit_sched_domains(void)
  5672. {
  5673. int err;
  5674. mutex_lock(&sched_hotcpu_mutex);
  5675. detach_destroy_domains(&cpu_online_map);
  5676. err = arch_init_sched_domains(&cpu_online_map);
  5677. mutex_unlock(&sched_hotcpu_mutex);
  5678. return err;
  5679. }
  5680. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5681. {
  5682. int ret;
  5683. if (buf[0] != '0' && buf[0] != '1')
  5684. return -EINVAL;
  5685. if (smt)
  5686. sched_smt_power_savings = (buf[0] == '1');
  5687. else
  5688. sched_mc_power_savings = (buf[0] == '1');
  5689. ret = arch_reinit_sched_domains();
  5690. return ret ? ret : count;
  5691. }
  5692. #ifdef CONFIG_SCHED_MC
  5693. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5694. {
  5695. return sprintf(page, "%u\n", sched_mc_power_savings);
  5696. }
  5697. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5698. const char *buf, size_t count)
  5699. {
  5700. return sched_power_savings_store(buf, count, 0);
  5701. }
  5702. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5703. sched_mc_power_savings_store);
  5704. #endif
  5705. #ifdef CONFIG_SCHED_SMT
  5706. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5707. {
  5708. return sprintf(page, "%u\n", sched_smt_power_savings);
  5709. }
  5710. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5711. const char *buf, size_t count)
  5712. {
  5713. return sched_power_savings_store(buf, count, 1);
  5714. }
  5715. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5716. sched_smt_power_savings_store);
  5717. #endif
  5718. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5719. {
  5720. int err = 0;
  5721. #ifdef CONFIG_SCHED_SMT
  5722. if (smt_capable())
  5723. err = sysfs_create_file(&cls->kset.kobj,
  5724. &attr_sched_smt_power_savings.attr);
  5725. #endif
  5726. #ifdef CONFIG_SCHED_MC
  5727. if (!err && mc_capable())
  5728. err = sysfs_create_file(&cls->kset.kobj,
  5729. &attr_sched_mc_power_savings.attr);
  5730. #endif
  5731. return err;
  5732. }
  5733. #endif
  5734. /*
  5735. * Force a reinitialization of the sched domains hierarchy. The domains
  5736. * and groups cannot be updated in place without racing with the balancing
  5737. * code, so we temporarily attach all running cpus to the NULL domain
  5738. * which will prevent rebalancing while the sched domains are recalculated.
  5739. */
  5740. static int update_sched_domains(struct notifier_block *nfb,
  5741. unsigned long action, void *hcpu)
  5742. {
  5743. switch (action) {
  5744. case CPU_UP_PREPARE:
  5745. case CPU_UP_PREPARE_FROZEN:
  5746. case CPU_DOWN_PREPARE:
  5747. case CPU_DOWN_PREPARE_FROZEN:
  5748. detach_destroy_domains(&cpu_online_map);
  5749. return NOTIFY_OK;
  5750. case CPU_UP_CANCELED:
  5751. case CPU_UP_CANCELED_FROZEN:
  5752. case CPU_DOWN_FAILED:
  5753. case CPU_DOWN_FAILED_FROZEN:
  5754. case CPU_ONLINE:
  5755. case CPU_ONLINE_FROZEN:
  5756. case CPU_DEAD:
  5757. case CPU_DEAD_FROZEN:
  5758. /*
  5759. * Fall through and re-initialise the domains.
  5760. */
  5761. break;
  5762. default:
  5763. return NOTIFY_DONE;
  5764. }
  5765. /* The hotplug lock is already held by cpu_up/cpu_down */
  5766. arch_init_sched_domains(&cpu_online_map);
  5767. return NOTIFY_OK;
  5768. }
  5769. void __init sched_init_smp(void)
  5770. {
  5771. cpumask_t non_isolated_cpus;
  5772. mutex_lock(&sched_hotcpu_mutex);
  5773. arch_init_sched_domains(&cpu_online_map);
  5774. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5775. if (cpus_empty(non_isolated_cpus))
  5776. cpu_set(smp_processor_id(), non_isolated_cpus);
  5777. mutex_unlock(&sched_hotcpu_mutex);
  5778. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5779. hotcpu_notifier(update_sched_domains, 0);
  5780. /* Move init over to a non-isolated CPU */
  5781. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5782. BUG();
  5783. sched_init_granularity();
  5784. }
  5785. #else
  5786. void __init sched_init_smp(void)
  5787. {
  5788. sched_init_granularity();
  5789. }
  5790. #endif /* CONFIG_SMP */
  5791. int in_sched_functions(unsigned long addr)
  5792. {
  5793. return in_lock_functions(addr) ||
  5794. (addr >= (unsigned long)__sched_text_start
  5795. && addr < (unsigned long)__sched_text_end);
  5796. }
  5797. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5798. {
  5799. cfs_rq->tasks_timeline = RB_ROOT;
  5800. #ifdef CONFIG_FAIR_GROUP_SCHED
  5801. cfs_rq->rq = rq;
  5802. #endif
  5803. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5804. }
  5805. void __init sched_init(void)
  5806. {
  5807. int highest_cpu = 0;
  5808. int i, j;
  5809. for_each_possible_cpu(i) {
  5810. struct rt_prio_array *array;
  5811. struct rq *rq;
  5812. rq = cpu_rq(i);
  5813. spin_lock_init(&rq->lock);
  5814. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5815. rq->nr_running = 0;
  5816. rq->clock = 1;
  5817. init_cfs_rq(&rq->cfs, rq);
  5818. #ifdef CONFIG_FAIR_GROUP_SCHED
  5819. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5820. {
  5821. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5822. struct sched_entity *se =
  5823. &per_cpu(init_sched_entity, i);
  5824. init_cfs_rq_p[i] = cfs_rq;
  5825. init_cfs_rq(cfs_rq, rq);
  5826. cfs_rq->tg = &init_task_group;
  5827. list_add(&cfs_rq->leaf_cfs_rq_list,
  5828. &rq->leaf_cfs_rq_list);
  5829. init_sched_entity_p[i] = se;
  5830. se->cfs_rq = &rq->cfs;
  5831. se->my_q = cfs_rq;
  5832. se->load.weight = init_task_group_load;
  5833. se->load.inv_weight =
  5834. div64_64(1ULL<<32, init_task_group_load);
  5835. se->parent = NULL;
  5836. }
  5837. init_task_group.shares = init_task_group_load;
  5838. spin_lock_init(&init_task_group.lock);
  5839. #endif
  5840. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5841. rq->cpu_load[j] = 0;
  5842. #ifdef CONFIG_SMP
  5843. rq->sd = NULL;
  5844. rq->active_balance = 0;
  5845. rq->next_balance = jiffies;
  5846. rq->push_cpu = 0;
  5847. rq->cpu = i;
  5848. rq->migration_thread = NULL;
  5849. INIT_LIST_HEAD(&rq->migration_queue);
  5850. #endif
  5851. atomic_set(&rq->nr_iowait, 0);
  5852. array = &rq->rt.active;
  5853. for (j = 0; j < MAX_RT_PRIO; j++) {
  5854. INIT_LIST_HEAD(array->queue + j);
  5855. __clear_bit(j, array->bitmap);
  5856. }
  5857. highest_cpu = i;
  5858. /* delimiter for bitsearch: */
  5859. __set_bit(MAX_RT_PRIO, array->bitmap);
  5860. }
  5861. set_load_weight(&init_task);
  5862. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5863. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5864. #endif
  5865. #ifdef CONFIG_SMP
  5866. nr_cpu_ids = highest_cpu + 1;
  5867. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5868. #endif
  5869. #ifdef CONFIG_RT_MUTEXES
  5870. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5871. #endif
  5872. /*
  5873. * The boot idle thread does lazy MMU switching as well:
  5874. */
  5875. atomic_inc(&init_mm.mm_count);
  5876. enter_lazy_tlb(&init_mm, current);
  5877. /*
  5878. * Make us the idle thread. Technically, schedule() should not be
  5879. * called from this thread, however somewhere below it might be,
  5880. * but because we are the idle thread, we just pick up running again
  5881. * when this runqueue becomes "idle".
  5882. */
  5883. init_idle(current, smp_processor_id());
  5884. /*
  5885. * During early bootup we pretend to be a normal task:
  5886. */
  5887. current->sched_class = &fair_sched_class;
  5888. }
  5889. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5890. void __might_sleep(char *file, int line)
  5891. {
  5892. #ifdef in_atomic
  5893. static unsigned long prev_jiffy; /* ratelimiting */
  5894. if ((in_atomic() || irqs_disabled()) &&
  5895. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5896. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5897. return;
  5898. prev_jiffy = jiffies;
  5899. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5900. " context at %s:%d\n", file, line);
  5901. printk("in_atomic():%d, irqs_disabled():%d\n",
  5902. in_atomic(), irqs_disabled());
  5903. debug_show_held_locks(current);
  5904. if (irqs_disabled())
  5905. print_irqtrace_events(current);
  5906. dump_stack();
  5907. }
  5908. #endif
  5909. }
  5910. EXPORT_SYMBOL(__might_sleep);
  5911. #endif
  5912. #ifdef CONFIG_MAGIC_SYSRQ
  5913. static void normalize_task(struct rq *rq, struct task_struct *p)
  5914. {
  5915. int on_rq;
  5916. update_rq_clock(rq);
  5917. on_rq = p->se.on_rq;
  5918. if (on_rq)
  5919. deactivate_task(rq, p, 0);
  5920. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5921. if (on_rq) {
  5922. activate_task(rq, p, 0);
  5923. resched_task(rq->curr);
  5924. }
  5925. }
  5926. void normalize_rt_tasks(void)
  5927. {
  5928. struct task_struct *g, *p;
  5929. unsigned long flags;
  5930. struct rq *rq;
  5931. read_lock_irq(&tasklist_lock);
  5932. do_each_thread(g, p) {
  5933. /*
  5934. * Only normalize user tasks:
  5935. */
  5936. if (!p->mm)
  5937. continue;
  5938. p->se.exec_start = 0;
  5939. #ifdef CONFIG_SCHEDSTATS
  5940. p->se.wait_start = 0;
  5941. p->se.sleep_start = 0;
  5942. p->se.block_start = 0;
  5943. #endif
  5944. task_rq(p)->clock = 0;
  5945. if (!rt_task(p)) {
  5946. /*
  5947. * Renice negative nice level userspace
  5948. * tasks back to 0:
  5949. */
  5950. if (TASK_NICE(p) < 0 && p->mm)
  5951. set_user_nice(p, 0);
  5952. continue;
  5953. }
  5954. spin_lock_irqsave(&p->pi_lock, flags);
  5955. rq = __task_rq_lock(p);
  5956. normalize_task(rq, p);
  5957. __task_rq_unlock(rq);
  5958. spin_unlock_irqrestore(&p->pi_lock, flags);
  5959. } while_each_thread(g, p);
  5960. read_unlock_irq(&tasklist_lock);
  5961. }
  5962. #endif /* CONFIG_MAGIC_SYSRQ */
  5963. #ifdef CONFIG_IA64
  5964. /*
  5965. * These functions are only useful for the IA64 MCA handling.
  5966. *
  5967. * They can only be called when the whole system has been
  5968. * stopped - every CPU needs to be quiescent, and no scheduling
  5969. * activity can take place. Using them for anything else would
  5970. * be a serious bug, and as a result, they aren't even visible
  5971. * under any other configuration.
  5972. */
  5973. /**
  5974. * curr_task - return the current task for a given cpu.
  5975. * @cpu: the processor in question.
  5976. *
  5977. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5978. */
  5979. struct task_struct *curr_task(int cpu)
  5980. {
  5981. return cpu_curr(cpu);
  5982. }
  5983. /**
  5984. * set_curr_task - set the current task for a given cpu.
  5985. * @cpu: the processor in question.
  5986. * @p: the task pointer to set.
  5987. *
  5988. * Description: This function must only be used when non-maskable interrupts
  5989. * are serviced on a separate stack. It allows the architecture to switch the
  5990. * notion of the current task on a cpu in a non-blocking manner. This function
  5991. * must be called with all CPU's synchronized, and interrupts disabled, the
  5992. * and caller must save the original value of the current task (see
  5993. * curr_task() above) and restore that value before reenabling interrupts and
  5994. * re-starting the system.
  5995. *
  5996. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5997. */
  5998. void set_curr_task(int cpu, struct task_struct *p)
  5999. {
  6000. cpu_curr(cpu) = p;
  6001. }
  6002. #endif
  6003. #ifdef CONFIG_FAIR_GROUP_SCHED
  6004. /* allocate runqueue etc for a new task group */
  6005. struct task_group *sched_create_group(void)
  6006. {
  6007. struct task_group *tg;
  6008. struct cfs_rq *cfs_rq;
  6009. struct sched_entity *se;
  6010. struct rq *rq;
  6011. int i;
  6012. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6013. if (!tg)
  6014. return ERR_PTR(-ENOMEM);
  6015. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6016. if (!tg->cfs_rq)
  6017. goto err;
  6018. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6019. if (!tg->se)
  6020. goto err;
  6021. for_each_possible_cpu(i) {
  6022. rq = cpu_rq(i);
  6023. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6024. cpu_to_node(i));
  6025. if (!cfs_rq)
  6026. goto err;
  6027. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6028. cpu_to_node(i));
  6029. if (!se)
  6030. goto err;
  6031. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6032. memset(se, 0, sizeof(struct sched_entity));
  6033. tg->cfs_rq[i] = cfs_rq;
  6034. init_cfs_rq(cfs_rq, rq);
  6035. cfs_rq->tg = tg;
  6036. tg->se[i] = se;
  6037. se->cfs_rq = &rq->cfs;
  6038. se->my_q = cfs_rq;
  6039. se->load.weight = NICE_0_LOAD;
  6040. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6041. se->parent = NULL;
  6042. }
  6043. for_each_possible_cpu(i) {
  6044. rq = cpu_rq(i);
  6045. cfs_rq = tg->cfs_rq[i];
  6046. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6047. }
  6048. tg->shares = NICE_0_LOAD;
  6049. spin_lock_init(&tg->lock);
  6050. return tg;
  6051. err:
  6052. for_each_possible_cpu(i) {
  6053. if (tg->cfs_rq)
  6054. kfree(tg->cfs_rq[i]);
  6055. if (tg->se)
  6056. kfree(tg->se[i]);
  6057. }
  6058. kfree(tg->cfs_rq);
  6059. kfree(tg->se);
  6060. kfree(tg);
  6061. return ERR_PTR(-ENOMEM);
  6062. }
  6063. /* rcu callback to free various structures associated with a task group */
  6064. static void free_sched_group(struct rcu_head *rhp)
  6065. {
  6066. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6067. struct cfs_rq *cfs_rq;
  6068. struct sched_entity *se;
  6069. int i;
  6070. /* now it should be safe to free those cfs_rqs */
  6071. for_each_possible_cpu(i) {
  6072. cfs_rq = tg->cfs_rq[i];
  6073. kfree(cfs_rq);
  6074. se = tg->se[i];
  6075. kfree(se);
  6076. }
  6077. kfree(tg->cfs_rq);
  6078. kfree(tg->se);
  6079. kfree(tg);
  6080. }
  6081. /* Destroy runqueue etc associated with a task group */
  6082. void sched_destroy_group(struct task_group *tg)
  6083. {
  6084. struct cfs_rq *cfs_rq = NULL;
  6085. int i;
  6086. for_each_possible_cpu(i) {
  6087. cfs_rq = tg->cfs_rq[i];
  6088. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6089. }
  6090. BUG_ON(!cfs_rq);
  6091. /* wait for possible concurrent references to cfs_rqs complete */
  6092. call_rcu(&tg->rcu, free_sched_group);
  6093. }
  6094. /* change task's runqueue when it moves between groups.
  6095. * The caller of this function should have put the task in its new group
  6096. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6097. * reflect its new group.
  6098. */
  6099. void sched_move_task(struct task_struct *tsk)
  6100. {
  6101. int on_rq, running;
  6102. unsigned long flags;
  6103. struct rq *rq;
  6104. rq = task_rq_lock(tsk, &flags);
  6105. if (tsk->sched_class != &fair_sched_class) {
  6106. set_task_cfs_rq(tsk, task_cpu(tsk));
  6107. goto done;
  6108. }
  6109. update_rq_clock(rq);
  6110. running = task_running(rq, tsk);
  6111. on_rq = tsk->se.on_rq;
  6112. if (on_rq) {
  6113. dequeue_task(rq, tsk, 0);
  6114. if (unlikely(running))
  6115. tsk->sched_class->put_prev_task(rq, tsk);
  6116. }
  6117. set_task_cfs_rq(tsk, task_cpu(tsk));
  6118. if (on_rq) {
  6119. if (unlikely(running))
  6120. tsk->sched_class->set_curr_task(rq);
  6121. enqueue_task(rq, tsk, 0);
  6122. }
  6123. done:
  6124. task_rq_unlock(rq, &flags);
  6125. }
  6126. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6127. {
  6128. struct cfs_rq *cfs_rq = se->cfs_rq;
  6129. struct rq *rq = cfs_rq->rq;
  6130. int on_rq;
  6131. spin_lock_irq(&rq->lock);
  6132. on_rq = se->on_rq;
  6133. if (on_rq)
  6134. dequeue_entity(cfs_rq, se, 0);
  6135. se->load.weight = shares;
  6136. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6137. if (on_rq)
  6138. enqueue_entity(cfs_rq, se, 0);
  6139. spin_unlock_irq(&rq->lock);
  6140. }
  6141. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6142. {
  6143. int i;
  6144. spin_lock(&tg->lock);
  6145. if (tg->shares == shares)
  6146. goto done;
  6147. tg->shares = shares;
  6148. for_each_possible_cpu(i)
  6149. set_se_shares(tg->se[i], shares);
  6150. done:
  6151. spin_unlock(&tg->lock);
  6152. return 0;
  6153. }
  6154. unsigned long sched_group_shares(struct task_group *tg)
  6155. {
  6156. return tg->shares;
  6157. }
  6158. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6159. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6160. /* return corresponding task_group object of a cgroup */
  6161. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6162. {
  6163. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6164. struct task_group, css);
  6165. }
  6166. static struct cgroup_subsys_state *
  6167. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6168. {
  6169. struct task_group *tg;
  6170. if (!cgrp->parent) {
  6171. /* This is early initialization for the top cgroup */
  6172. init_task_group.css.cgroup = cgrp;
  6173. return &init_task_group.css;
  6174. }
  6175. /* we support only 1-level deep hierarchical scheduler atm */
  6176. if (cgrp->parent->parent)
  6177. return ERR_PTR(-EINVAL);
  6178. tg = sched_create_group();
  6179. if (IS_ERR(tg))
  6180. return ERR_PTR(-ENOMEM);
  6181. /* Bind the cgroup to task_group object we just created */
  6182. tg->css.cgroup = cgrp;
  6183. return &tg->css;
  6184. }
  6185. static void
  6186. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6187. {
  6188. struct task_group *tg = cgroup_tg(cgrp);
  6189. sched_destroy_group(tg);
  6190. }
  6191. static int
  6192. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6193. struct task_struct *tsk)
  6194. {
  6195. /* We don't support RT-tasks being in separate groups */
  6196. if (tsk->sched_class != &fair_sched_class)
  6197. return -EINVAL;
  6198. return 0;
  6199. }
  6200. static void
  6201. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6202. struct cgroup *old_cont, struct task_struct *tsk)
  6203. {
  6204. sched_move_task(tsk);
  6205. }
  6206. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6207. u64 shareval)
  6208. {
  6209. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6210. }
  6211. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6212. {
  6213. struct task_group *tg = cgroup_tg(cgrp);
  6214. return (u64) tg->shares;
  6215. }
  6216. static struct cftype cpu_files[] = {
  6217. {
  6218. .name = "shares",
  6219. .read_uint = cpu_shares_read_uint,
  6220. .write_uint = cpu_shares_write_uint,
  6221. },
  6222. };
  6223. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6224. {
  6225. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6226. }
  6227. struct cgroup_subsys cpu_cgroup_subsys = {
  6228. .name = "cpu",
  6229. .create = cpu_cgroup_create,
  6230. .destroy = cpu_cgroup_destroy,
  6231. .can_attach = cpu_cgroup_can_attach,
  6232. .attach = cpu_cgroup_attach,
  6233. .populate = cpu_cgroup_populate,
  6234. .subsys_id = cpu_cgroup_subsys_id,
  6235. .early_init = 1,
  6236. };
  6237. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6238. #ifdef CONFIG_CGROUP_CPUACCT
  6239. /*
  6240. * CPU accounting code for task groups.
  6241. *
  6242. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6243. * (balbir@in.ibm.com).
  6244. */
  6245. /* track cpu usage of a group of tasks */
  6246. struct cpuacct {
  6247. struct cgroup_subsys_state css;
  6248. /* cpuusage holds pointer to a u64-type object on every cpu */
  6249. u64 *cpuusage;
  6250. };
  6251. struct cgroup_subsys cpuacct_subsys;
  6252. /* return cpu accounting group corresponding to this container */
  6253. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6254. {
  6255. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6256. struct cpuacct, css);
  6257. }
  6258. /* return cpu accounting group to which this task belongs */
  6259. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6260. {
  6261. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6262. struct cpuacct, css);
  6263. }
  6264. /* create a new cpu accounting group */
  6265. static struct cgroup_subsys_state *cpuacct_create(
  6266. struct cgroup_subsys *ss, struct cgroup *cont)
  6267. {
  6268. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6269. if (!ca)
  6270. return ERR_PTR(-ENOMEM);
  6271. ca->cpuusage = alloc_percpu(u64);
  6272. if (!ca->cpuusage) {
  6273. kfree(ca);
  6274. return ERR_PTR(-ENOMEM);
  6275. }
  6276. return &ca->css;
  6277. }
  6278. /* destroy an existing cpu accounting group */
  6279. static void
  6280. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6281. {
  6282. struct cpuacct *ca = cgroup_ca(cont);
  6283. free_percpu(ca->cpuusage);
  6284. kfree(ca);
  6285. }
  6286. /* return total cpu usage (in nanoseconds) of a group */
  6287. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6288. {
  6289. struct cpuacct *ca = cgroup_ca(cont);
  6290. u64 totalcpuusage = 0;
  6291. int i;
  6292. for_each_possible_cpu(i) {
  6293. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6294. /*
  6295. * Take rq->lock to make 64-bit addition safe on 32-bit
  6296. * platforms.
  6297. */
  6298. spin_lock_irq(&cpu_rq(i)->lock);
  6299. totalcpuusage += *cpuusage;
  6300. spin_unlock_irq(&cpu_rq(i)->lock);
  6301. }
  6302. return totalcpuusage;
  6303. }
  6304. static struct cftype files[] = {
  6305. {
  6306. .name = "usage",
  6307. .read_uint = cpuusage_read,
  6308. },
  6309. };
  6310. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6311. {
  6312. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6313. }
  6314. /*
  6315. * charge this task's execution time to its accounting group.
  6316. *
  6317. * called with rq->lock held.
  6318. */
  6319. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6320. {
  6321. struct cpuacct *ca;
  6322. if (!cpuacct_subsys.active)
  6323. return;
  6324. ca = task_ca(tsk);
  6325. if (ca) {
  6326. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6327. *cpuusage += cputime;
  6328. }
  6329. }
  6330. struct cgroup_subsys cpuacct_subsys = {
  6331. .name = "cpuacct",
  6332. .create = cpuacct_create,
  6333. .destroy = cpuacct_destroy,
  6334. .populate = cpuacct_populate,
  6335. .subsys_id = cpuacct_subsys_id,
  6336. };
  6337. #endif /* CONFIG_CGROUP_CPUACCT */