slub.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/debugobjects.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/memory.h>
  24. #include <linux/math64.h>
  25. /*
  26. * Lock order:
  27. * 1. slab_lock(page)
  28. * 2. slab->list_lock
  29. *
  30. * The slab_lock protects operations on the object of a particular
  31. * slab and its metadata in the page struct. If the slab lock
  32. * has been taken then no allocations nor frees can be performed
  33. * on the objects in the slab nor can the slab be added or removed
  34. * from the partial or full lists since this would mean modifying
  35. * the page_struct of the slab.
  36. *
  37. * The list_lock protects the partial and full list on each node and
  38. * the partial slab counter. If taken then no new slabs may be added or
  39. * removed from the lists nor make the number of partial slabs be modified.
  40. * (Note that the total number of slabs is an atomic value that may be
  41. * modified without taking the list lock).
  42. *
  43. * The list_lock is a centralized lock and thus we avoid taking it as
  44. * much as possible. As long as SLUB does not have to handle partial
  45. * slabs, operations can continue without any centralized lock. F.e.
  46. * allocating a long series of objects that fill up slabs does not require
  47. * the list lock.
  48. *
  49. * The lock order is sometimes inverted when we are trying to get a slab
  50. * off a list. We take the list_lock and then look for a page on the list
  51. * to use. While we do that objects in the slabs may be freed. We can
  52. * only operate on the slab if we have also taken the slab_lock. So we use
  53. * a slab_trylock() on the slab. If trylock was successful then no frees
  54. * can occur anymore and we can use the slab for allocations etc. If the
  55. * slab_trylock() does not succeed then frees are in progress in the slab and
  56. * we must stay away from it for a while since we may cause a bouncing
  57. * cacheline if we try to acquire the lock. So go onto the next slab.
  58. * If all pages are busy then we may allocate a new slab instead of reusing
  59. * a partial slab. A new slab has noone operating on it and thus there is
  60. * no danger of cacheline contention.
  61. *
  62. * Interrupts are disabled during allocation and deallocation in order to
  63. * make the slab allocator safe to use in the context of an irq. In addition
  64. * interrupts are disabled to ensure that the processor does not change
  65. * while handling per_cpu slabs, due to kernel preemption.
  66. *
  67. * SLUB assigns one slab for allocation to each processor.
  68. * Allocations only occur from these slabs called cpu slabs.
  69. *
  70. * Slabs with free elements are kept on a partial list and during regular
  71. * operations no list for full slabs is used. If an object in a full slab is
  72. * freed then the slab will show up again on the partial lists.
  73. * We track full slabs for debugging purposes though because otherwise we
  74. * cannot scan all objects.
  75. *
  76. * Slabs are freed when they become empty. Teardown and setup is
  77. * minimal so we rely on the page allocators per cpu caches for
  78. * fast frees and allocs.
  79. *
  80. * Overloading of page flags that are otherwise used for LRU management.
  81. *
  82. * PageActive The slab is frozen and exempt from list processing.
  83. * This means that the slab is dedicated to a purpose
  84. * such as satisfying allocations for a specific
  85. * processor. Objects may be freed in the slab while
  86. * it is frozen but slab_free will then skip the usual
  87. * list operations. It is up to the processor holding
  88. * the slab to integrate the slab into the slab lists
  89. * when the slab is no longer needed.
  90. *
  91. * One use of this flag is to mark slabs that are
  92. * used for allocations. Then such a slab becomes a cpu
  93. * slab. The cpu slab may be equipped with an additional
  94. * freelist that allows lockless access to
  95. * free objects in addition to the regular freelist
  96. * that requires the slab lock.
  97. *
  98. * PageError Slab requires special handling due to debug
  99. * options set. This moves slab handling out of
  100. * the fast path and disables lockless freelists.
  101. */
  102. #define FROZEN (1 << PG_active)
  103. #ifdef CONFIG_SLUB_DEBUG
  104. #define SLABDEBUG (1 << PG_error)
  105. #else
  106. #define SLABDEBUG 0
  107. #endif
  108. static inline int SlabFrozen(struct page *page)
  109. {
  110. return page->flags & FROZEN;
  111. }
  112. static inline void SetSlabFrozen(struct page *page)
  113. {
  114. page->flags |= FROZEN;
  115. }
  116. static inline void ClearSlabFrozen(struct page *page)
  117. {
  118. page->flags &= ~FROZEN;
  119. }
  120. static inline int SlabDebug(struct page *page)
  121. {
  122. return page->flags & SLABDEBUG;
  123. }
  124. static inline void SetSlabDebug(struct page *page)
  125. {
  126. page->flags |= SLABDEBUG;
  127. }
  128. static inline void ClearSlabDebug(struct page *page)
  129. {
  130. page->flags &= ~SLABDEBUG;
  131. }
  132. /*
  133. * Issues still to be resolved:
  134. *
  135. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  136. *
  137. * - Variable sizing of the per node arrays
  138. */
  139. /* Enable to test recovery from slab corruption on boot */
  140. #undef SLUB_RESILIENCY_TEST
  141. /*
  142. * Mininum number of partial slabs. These will be left on the partial
  143. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  144. */
  145. #define MIN_PARTIAL 5
  146. /*
  147. * Maximum number of desirable partial slabs.
  148. * The existence of more partial slabs makes kmem_cache_shrink
  149. * sort the partial list by the number of objects in the.
  150. */
  151. #define MAX_PARTIAL 10
  152. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  153. SLAB_POISON | SLAB_STORE_USER)
  154. /*
  155. * Set of flags that will prevent slab merging
  156. */
  157. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  158. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  159. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  160. SLAB_CACHE_DMA)
  161. #ifndef ARCH_KMALLOC_MINALIGN
  162. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  163. #endif
  164. #ifndef ARCH_SLAB_MINALIGN
  165. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  166. #endif
  167. /* Internal SLUB flags */
  168. #define __OBJECT_POISON 0x80000000 /* Poison object */
  169. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  170. static int kmem_size = sizeof(struct kmem_cache);
  171. #ifdef CONFIG_SMP
  172. static struct notifier_block slab_notifier;
  173. #endif
  174. static enum {
  175. DOWN, /* No slab functionality available */
  176. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  177. UP, /* Everything works but does not show up in sysfs */
  178. SYSFS /* Sysfs up */
  179. } slab_state = DOWN;
  180. /* A list of all slab caches on the system */
  181. static DECLARE_RWSEM(slub_lock);
  182. static LIST_HEAD(slab_caches);
  183. /*
  184. * Tracking user of a slab.
  185. */
  186. struct track {
  187. void *addr; /* Called from address */
  188. int cpu; /* Was running on cpu */
  189. int pid; /* Pid context */
  190. unsigned long when; /* When did the operation occur */
  191. };
  192. enum track_item { TRACK_ALLOC, TRACK_FREE };
  193. #ifdef CONFIG_SLUB_DEBUG
  194. static int sysfs_slab_add(struct kmem_cache *);
  195. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  196. static void sysfs_slab_remove(struct kmem_cache *);
  197. #else
  198. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  199. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  200. { return 0; }
  201. static inline void sysfs_slab_remove(struct kmem_cache *s)
  202. {
  203. kfree(s);
  204. }
  205. #endif
  206. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  207. {
  208. #ifdef CONFIG_SLUB_STATS
  209. c->stat[si]++;
  210. #endif
  211. }
  212. /********************************************************************
  213. * Core slab cache functions
  214. *******************************************************************/
  215. int slab_is_available(void)
  216. {
  217. return slab_state >= UP;
  218. }
  219. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  220. {
  221. #ifdef CONFIG_NUMA
  222. return s->node[node];
  223. #else
  224. return &s->local_node;
  225. #endif
  226. }
  227. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  228. {
  229. #ifdef CONFIG_SMP
  230. return s->cpu_slab[cpu];
  231. #else
  232. return &s->cpu_slab;
  233. #endif
  234. }
  235. /* Verify that a pointer has an address that is valid within a slab page */
  236. static inline int check_valid_pointer(struct kmem_cache *s,
  237. struct page *page, const void *object)
  238. {
  239. void *base;
  240. if (!object)
  241. return 1;
  242. base = page_address(page);
  243. if (object < base || object >= base + page->objects * s->size ||
  244. (object - base) % s->size) {
  245. return 0;
  246. }
  247. return 1;
  248. }
  249. /*
  250. * Slow version of get and set free pointer.
  251. *
  252. * This version requires touching the cache lines of kmem_cache which
  253. * we avoid to do in the fast alloc free paths. There we obtain the offset
  254. * from the page struct.
  255. */
  256. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  257. {
  258. return *(void **)(object + s->offset);
  259. }
  260. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  261. {
  262. *(void **)(object + s->offset) = fp;
  263. }
  264. /* Loop over all objects in a slab */
  265. #define for_each_object(__p, __s, __addr, __objects) \
  266. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  267. __p += (__s)->size)
  268. /* Scan freelist */
  269. #define for_each_free_object(__p, __s, __free) \
  270. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  271. /* Determine object index from a given position */
  272. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  273. {
  274. return (p - addr) / s->size;
  275. }
  276. static inline struct kmem_cache_order_objects oo_make(int order,
  277. unsigned long size)
  278. {
  279. struct kmem_cache_order_objects x = {
  280. (order << 16) + (PAGE_SIZE << order) / size
  281. };
  282. return x;
  283. }
  284. static inline int oo_order(struct kmem_cache_order_objects x)
  285. {
  286. return x.x >> 16;
  287. }
  288. static inline int oo_objects(struct kmem_cache_order_objects x)
  289. {
  290. return x.x & ((1 << 16) - 1);
  291. }
  292. #ifdef CONFIG_SLUB_DEBUG
  293. /*
  294. * Debug settings:
  295. */
  296. #ifdef CONFIG_SLUB_DEBUG_ON
  297. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  298. #else
  299. static int slub_debug;
  300. #endif
  301. static char *slub_debug_slabs;
  302. /*
  303. * Object debugging
  304. */
  305. static void print_section(char *text, u8 *addr, unsigned int length)
  306. {
  307. int i, offset;
  308. int newline = 1;
  309. char ascii[17];
  310. ascii[16] = 0;
  311. for (i = 0; i < length; i++) {
  312. if (newline) {
  313. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  314. newline = 0;
  315. }
  316. printk(KERN_CONT " %02x", addr[i]);
  317. offset = i % 16;
  318. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  319. if (offset == 15) {
  320. printk(KERN_CONT " %s\n", ascii);
  321. newline = 1;
  322. }
  323. }
  324. if (!newline) {
  325. i %= 16;
  326. while (i < 16) {
  327. printk(KERN_CONT " ");
  328. ascii[i] = ' ';
  329. i++;
  330. }
  331. printk(KERN_CONT " %s\n", ascii);
  332. }
  333. }
  334. static struct track *get_track(struct kmem_cache *s, void *object,
  335. enum track_item alloc)
  336. {
  337. struct track *p;
  338. if (s->offset)
  339. p = object + s->offset + sizeof(void *);
  340. else
  341. p = object + s->inuse;
  342. return p + alloc;
  343. }
  344. static void set_track(struct kmem_cache *s, void *object,
  345. enum track_item alloc, void *addr)
  346. {
  347. struct track *p;
  348. if (s->offset)
  349. p = object + s->offset + sizeof(void *);
  350. else
  351. p = object + s->inuse;
  352. p += alloc;
  353. if (addr) {
  354. p->addr = addr;
  355. p->cpu = smp_processor_id();
  356. p->pid = current ? current->pid : -1;
  357. p->when = jiffies;
  358. } else
  359. memset(p, 0, sizeof(struct track));
  360. }
  361. static void init_tracking(struct kmem_cache *s, void *object)
  362. {
  363. if (!(s->flags & SLAB_STORE_USER))
  364. return;
  365. set_track(s, object, TRACK_FREE, NULL);
  366. set_track(s, object, TRACK_ALLOC, NULL);
  367. }
  368. static void print_track(const char *s, struct track *t)
  369. {
  370. if (!t->addr)
  371. return;
  372. printk(KERN_ERR "INFO: %s in ", s);
  373. __print_symbol("%s", (unsigned long)t->addr);
  374. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  375. }
  376. static void print_tracking(struct kmem_cache *s, void *object)
  377. {
  378. if (!(s->flags & SLAB_STORE_USER))
  379. return;
  380. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  381. print_track("Freed", get_track(s, object, TRACK_FREE));
  382. }
  383. static void print_page_info(struct page *page)
  384. {
  385. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  386. page, page->objects, page->inuse, page->freelist, page->flags);
  387. }
  388. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  389. {
  390. va_list args;
  391. char buf[100];
  392. va_start(args, fmt);
  393. vsnprintf(buf, sizeof(buf), fmt, args);
  394. va_end(args);
  395. printk(KERN_ERR "========================================"
  396. "=====================================\n");
  397. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  398. printk(KERN_ERR "----------------------------------------"
  399. "-------------------------------------\n\n");
  400. }
  401. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  402. {
  403. va_list args;
  404. char buf[100];
  405. va_start(args, fmt);
  406. vsnprintf(buf, sizeof(buf), fmt, args);
  407. va_end(args);
  408. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  409. }
  410. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  411. {
  412. unsigned int off; /* Offset of last byte */
  413. u8 *addr = page_address(page);
  414. print_tracking(s, p);
  415. print_page_info(page);
  416. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  417. p, p - addr, get_freepointer(s, p));
  418. if (p > addr + 16)
  419. print_section("Bytes b4", p - 16, 16);
  420. print_section("Object", p, min(s->objsize, 128));
  421. if (s->flags & SLAB_RED_ZONE)
  422. print_section("Redzone", p + s->objsize,
  423. s->inuse - s->objsize);
  424. if (s->offset)
  425. off = s->offset + sizeof(void *);
  426. else
  427. off = s->inuse;
  428. if (s->flags & SLAB_STORE_USER)
  429. off += 2 * sizeof(struct track);
  430. if (off != s->size)
  431. /* Beginning of the filler is the free pointer */
  432. print_section("Padding", p + off, s->size - off);
  433. dump_stack();
  434. }
  435. static void object_err(struct kmem_cache *s, struct page *page,
  436. u8 *object, char *reason)
  437. {
  438. slab_bug(s, "%s", reason);
  439. print_trailer(s, page, object);
  440. }
  441. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  442. {
  443. va_list args;
  444. char buf[100];
  445. va_start(args, fmt);
  446. vsnprintf(buf, sizeof(buf), fmt, args);
  447. va_end(args);
  448. slab_bug(s, "%s", buf);
  449. print_page_info(page);
  450. dump_stack();
  451. }
  452. static void init_object(struct kmem_cache *s, void *object, int active)
  453. {
  454. u8 *p = object;
  455. if (s->flags & __OBJECT_POISON) {
  456. memset(p, POISON_FREE, s->objsize - 1);
  457. p[s->objsize - 1] = POISON_END;
  458. }
  459. if (s->flags & SLAB_RED_ZONE)
  460. memset(p + s->objsize,
  461. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  462. s->inuse - s->objsize);
  463. }
  464. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  465. {
  466. while (bytes) {
  467. if (*start != (u8)value)
  468. return start;
  469. start++;
  470. bytes--;
  471. }
  472. return NULL;
  473. }
  474. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  475. void *from, void *to)
  476. {
  477. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  478. memset(from, data, to - from);
  479. }
  480. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  481. u8 *object, char *what,
  482. u8 *start, unsigned int value, unsigned int bytes)
  483. {
  484. u8 *fault;
  485. u8 *end;
  486. fault = check_bytes(start, value, bytes);
  487. if (!fault)
  488. return 1;
  489. end = start + bytes;
  490. while (end > fault && end[-1] == value)
  491. end--;
  492. slab_bug(s, "%s overwritten", what);
  493. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  494. fault, end - 1, fault[0], value);
  495. print_trailer(s, page, object);
  496. restore_bytes(s, what, value, fault, end);
  497. return 0;
  498. }
  499. /*
  500. * Object layout:
  501. *
  502. * object address
  503. * Bytes of the object to be managed.
  504. * If the freepointer may overlay the object then the free
  505. * pointer is the first word of the object.
  506. *
  507. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  508. * 0xa5 (POISON_END)
  509. *
  510. * object + s->objsize
  511. * Padding to reach word boundary. This is also used for Redzoning.
  512. * Padding is extended by another word if Redzoning is enabled and
  513. * objsize == inuse.
  514. *
  515. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  516. * 0xcc (RED_ACTIVE) for objects in use.
  517. *
  518. * object + s->inuse
  519. * Meta data starts here.
  520. *
  521. * A. Free pointer (if we cannot overwrite object on free)
  522. * B. Tracking data for SLAB_STORE_USER
  523. * C. Padding to reach required alignment boundary or at mininum
  524. * one word if debugging is on to be able to detect writes
  525. * before the word boundary.
  526. *
  527. * Padding is done using 0x5a (POISON_INUSE)
  528. *
  529. * object + s->size
  530. * Nothing is used beyond s->size.
  531. *
  532. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  533. * ignored. And therefore no slab options that rely on these boundaries
  534. * may be used with merged slabcaches.
  535. */
  536. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  537. {
  538. unsigned long off = s->inuse; /* The end of info */
  539. if (s->offset)
  540. /* Freepointer is placed after the object. */
  541. off += sizeof(void *);
  542. if (s->flags & SLAB_STORE_USER)
  543. /* We also have user information there */
  544. off += 2 * sizeof(struct track);
  545. if (s->size == off)
  546. return 1;
  547. return check_bytes_and_report(s, page, p, "Object padding",
  548. p + off, POISON_INUSE, s->size - off);
  549. }
  550. /* Check the pad bytes at the end of a slab page */
  551. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  552. {
  553. u8 *start;
  554. u8 *fault;
  555. u8 *end;
  556. int length;
  557. int remainder;
  558. if (!(s->flags & SLAB_POISON))
  559. return 1;
  560. start = page_address(page);
  561. length = (PAGE_SIZE << compound_order(page));
  562. end = start + length;
  563. remainder = length % s->size;
  564. if (!remainder)
  565. return 1;
  566. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  567. if (!fault)
  568. return 1;
  569. while (end > fault && end[-1] == POISON_INUSE)
  570. end--;
  571. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  572. print_section("Padding", end - remainder, remainder);
  573. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  574. return 0;
  575. }
  576. static int check_object(struct kmem_cache *s, struct page *page,
  577. void *object, int active)
  578. {
  579. u8 *p = object;
  580. u8 *endobject = object + s->objsize;
  581. if (s->flags & SLAB_RED_ZONE) {
  582. unsigned int red =
  583. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  584. if (!check_bytes_and_report(s, page, object, "Redzone",
  585. endobject, red, s->inuse - s->objsize))
  586. return 0;
  587. } else {
  588. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  589. check_bytes_and_report(s, page, p, "Alignment padding",
  590. endobject, POISON_INUSE, s->inuse - s->objsize);
  591. }
  592. }
  593. if (s->flags & SLAB_POISON) {
  594. if (!active && (s->flags & __OBJECT_POISON) &&
  595. (!check_bytes_and_report(s, page, p, "Poison", p,
  596. POISON_FREE, s->objsize - 1) ||
  597. !check_bytes_and_report(s, page, p, "Poison",
  598. p + s->objsize - 1, POISON_END, 1)))
  599. return 0;
  600. /*
  601. * check_pad_bytes cleans up on its own.
  602. */
  603. check_pad_bytes(s, page, p);
  604. }
  605. if (!s->offset && active)
  606. /*
  607. * Object and freepointer overlap. Cannot check
  608. * freepointer while object is allocated.
  609. */
  610. return 1;
  611. /* Check free pointer validity */
  612. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  613. object_err(s, page, p, "Freepointer corrupt");
  614. /*
  615. * No choice but to zap it and thus loose the remainder
  616. * of the free objects in this slab. May cause
  617. * another error because the object count is now wrong.
  618. */
  619. set_freepointer(s, p, NULL);
  620. return 0;
  621. }
  622. return 1;
  623. }
  624. static int check_slab(struct kmem_cache *s, struct page *page)
  625. {
  626. int maxobj;
  627. VM_BUG_ON(!irqs_disabled());
  628. if (!PageSlab(page)) {
  629. slab_err(s, page, "Not a valid slab page");
  630. return 0;
  631. }
  632. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  633. if (page->objects > maxobj) {
  634. slab_err(s, page, "objects %u > max %u",
  635. s->name, page->objects, maxobj);
  636. return 0;
  637. }
  638. if (page->inuse > page->objects) {
  639. slab_err(s, page, "inuse %u > max %u",
  640. s->name, page->inuse, page->objects);
  641. return 0;
  642. }
  643. /* Slab_pad_check fixes things up after itself */
  644. slab_pad_check(s, page);
  645. return 1;
  646. }
  647. /*
  648. * Determine if a certain object on a page is on the freelist. Must hold the
  649. * slab lock to guarantee that the chains are in a consistent state.
  650. */
  651. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  652. {
  653. int nr = 0;
  654. void *fp = page->freelist;
  655. void *object = NULL;
  656. unsigned long max_objects;
  657. while (fp && nr <= page->objects) {
  658. if (fp == search)
  659. return 1;
  660. if (!check_valid_pointer(s, page, fp)) {
  661. if (object) {
  662. object_err(s, page, object,
  663. "Freechain corrupt");
  664. set_freepointer(s, object, NULL);
  665. break;
  666. } else {
  667. slab_err(s, page, "Freepointer corrupt");
  668. page->freelist = NULL;
  669. page->inuse = page->objects;
  670. slab_fix(s, "Freelist cleared");
  671. return 0;
  672. }
  673. break;
  674. }
  675. object = fp;
  676. fp = get_freepointer(s, object);
  677. nr++;
  678. }
  679. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  680. if (max_objects > 65535)
  681. max_objects = 65535;
  682. if (page->objects != max_objects) {
  683. slab_err(s, page, "Wrong number of objects. Found %d but "
  684. "should be %d", page->objects, max_objects);
  685. page->objects = max_objects;
  686. slab_fix(s, "Number of objects adjusted.");
  687. }
  688. if (page->inuse != page->objects - nr) {
  689. slab_err(s, page, "Wrong object count. Counter is %d but "
  690. "counted were %d", page->inuse, page->objects - nr);
  691. page->inuse = page->objects - nr;
  692. slab_fix(s, "Object count adjusted.");
  693. }
  694. return search == NULL;
  695. }
  696. static void trace(struct kmem_cache *s, struct page *page, void *object,
  697. int alloc)
  698. {
  699. if (s->flags & SLAB_TRACE) {
  700. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  701. s->name,
  702. alloc ? "alloc" : "free",
  703. object, page->inuse,
  704. page->freelist);
  705. if (!alloc)
  706. print_section("Object", (void *)object, s->objsize);
  707. dump_stack();
  708. }
  709. }
  710. /*
  711. * Tracking of fully allocated slabs for debugging purposes.
  712. */
  713. static void add_full(struct kmem_cache_node *n, struct page *page)
  714. {
  715. spin_lock(&n->list_lock);
  716. list_add(&page->lru, &n->full);
  717. spin_unlock(&n->list_lock);
  718. }
  719. static void remove_full(struct kmem_cache *s, struct page *page)
  720. {
  721. struct kmem_cache_node *n;
  722. if (!(s->flags & SLAB_STORE_USER))
  723. return;
  724. n = get_node(s, page_to_nid(page));
  725. spin_lock(&n->list_lock);
  726. list_del(&page->lru);
  727. spin_unlock(&n->list_lock);
  728. }
  729. /* Tracking of the number of slabs for debugging purposes */
  730. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  731. {
  732. struct kmem_cache_node *n = get_node(s, node);
  733. return atomic_long_read(&n->nr_slabs);
  734. }
  735. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  736. {
  737. struct kmem_cache_node *n = get_node(s, node);
  738. /*
  739. * May be called early in order to allocate a slab for the
  740. * kmem_cache_node structure. Solve the chicken-egg
  741. * dilemma by deferring the increment of the count during
  742. * bootstrap (see early_kmem_cache_node_alloc).
  743. */
  744. if (!NUMA_BUILD || n) {
  745. atomic_long_inc(&n->nr_slabs);
  746. atomic_long_add(objects, &n->total_objects);
  747. }
  748. }
  749. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  750. {
  751. struct kmem_cache_node *n = get_node(s, node);
  752. atomic_long_dec(&n->nr_slabs);
  753. atomic_long_sub(objects, &n->total_objects);
  754. }
  755. /* Object debug checks for alloc/free paths */
  756. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  757. void *object)
  758. {
  759. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  760. return;
  761. init_object(s, object, 0);
  762. init_tracking(s, object);
  763. }
  764. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  765. void *object, void *addr)
  766. {
  767. if (!check_slab(s, page))
  768. goto bad;
  769. if (!on_freelist(s, page, object)) {
  770. object_err(s, page, object, "Object already allocated");
  771. goto bad;
  772. }
  773. if (!check_valid_pointer(s, page, object)) {
  774. object_err(s, page, object, "Freelist Pointer check fails");
  775. goto bad;
  776. }
  777. if (!check_object(s, page, object, 0))
  778. goto bad;
  779. /* Success perform special debug activities for allocs */
  780. if (s->flags & SLAB_STORE_USER)
  781. set_track(s, object, TRACK_ALLOC, addr);
  782. trace(s, page, object, 1);
  783. init_object(s, object, 1);
  784. return 1;
  785. bad:
  786. if (PageSlab(page)) {
  787. /*
  788. * If this is a slab page then lets do the best we can
  789. * to avoid issues in the future. Marking all objects
  790. * as used avoids touching the remaining objects.
  791. */
  792. slab_fix(s, "Marking all objects used");
  793. page->inuse = page->objects;
  794. page->freelist = NULL;
  795. }
  796. return 0;
  797. }
  798. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  799. void *object, void *addr)
  800. {
  801. if (!check_slab(s, page))
  802. goto fail;
  803. if (!check_valid_pointer(s, page, object)) {
  804. slab_err(s, page, "Invalid object pointer 0x%p", object);
  805. goto fail;
  806. }
  807. if (on_freelist(s, page, object)) {
  808. object_err(s, page, object, "Object already free");
  809. goto fail;
  810. }
  811. if (!check_object(s, page, object, 1))
  812. return 0;
  813. if (unlikely(s != page->slab)) {
  814. if (!PageSlab(page)) {
  815. slab_err(s, page, "Attempt to free object(0x%p) "
  816. "outside of slab", object);
  817. } else if (!page->slab) {
  818. printk(KERN_ERR
  819. "SLUB <none>: no slab for object 0x%p.\n",
  820. object);
  821. dump_stack();
  822. } else
  823. object_err(s, page, object,
  824. "page slab pointer corrupt.");
  825. goto fail;
  826. }
  827. /* Special debug activities for freeing objects */
  828. if (!SlabFrozen(page) && !page->freelist)
  829. remove_full(s, page);
  830. if (s->flags & SLAB_STORE_USER)
  831. set_track(s, object, TRACK_FREE, addr);
  832. trace(s, page, object, 0);
  833. init_object(s, object, 0);
  834. return 1;
  835. fail:
  836. slab_fix(s, "Object at 0x%p not freed", object);
  837. return 0;
  838. }
  839. static int __init setup_slub_debug(char *str)
  840. {
  841. slub_debug = DEBUG_DEFAULT_FLAGS;
  842. if (*str++ != '=' || !*str)
  843. /*
  844. * No options specified. Switch on full debugging.
  845. */
  846. goto out;
  847. if (*str == ',')
  848. /*
  849. * No options but restriction on slabs. This means full
  850. * debugging for slabs matching a pattern.
  851. */
  852. goto check_slabs;
  853. slub_debug = 0;
  854. if (*str == '-')
  855. /*
  856. * Switch off all debugging measures.
  857. */
  858. goto out;
  859. /*
  860. * Determine which debug features should be switched on
  861. */
  862. for (; *str && *str != ','; str++) {
  863. switch (tolower(*str)) {
  864. case 'f':
  865. slub_debug |= SLAB_DEBUG_FREE;
  866. break;
  867. case 'z':
  868. slub_debug |= SLAB_RED_ZONE;
  869. break;
  870. case 'p':
  871. slub_debug |= SLAB_POISON;
  872. break;
  873. case 'u':
  874. slub_debug |= SLAB_STORE_USER;
  875. break;
  876. case 't':
  877. slub_debug |= SLAB_TRACE;
  878. break;
  879. default:
  880. printk(KERN_ERR "slub_debug option '%c' "
  881. "unknown. skipped\n", *str);
  882. }
  883. }
  884. check_slabs:
  885. if (*str == ',')
  886. slub_debug_slabs = str + 1;
  887. out:
  888. return 1;
  889. }
  890. __setup("slub_debug", setup_slub_debug);
  891. static unsigned long kmem_cache_flags(unsigned long objsize,
  892. unsigned long flags, const char *name,
  893. void (*ctor)(struct kmem_cache *, void *))
  894. {
  895. /*
  896. * Enable debugging if selected on the kernel commandline.
  897. */
  898. if (slub_debug && (!slub_debug_slabs ||
  899. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  900. flags |= slub_debug;
  901. return flags;
  902. }
  903. #else
  904. static inline void setup_object_debug(struct kmem_cache *s,
  905. struct page *page, void *object) {}
  906. static inline int alloc_debug_processing(struct kmem_cache *s,
  907. struct page *page, void *object, void *addr) { return 0; }
  908. static inline int free_debug_processing(struct kmem_cache *s,
  909. struct page *page, void *object, void *addr) { return 0; }
  910. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  911. { return 1; }
  912. static inline int check_object(struct kmem_cache *s, struct page *page,
  913. void *object, int active) { return 1; }
  914. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  915. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  916. unsigned long flags, const char *name,
  917. void (*ctor)(struct kmem_cache *, void *))
  918. {
  919. return flags;
  920. }
  921. #define slub_debug 0
  922. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  923. { return 0; }
  924. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  925. int objects) {}
  926. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  927. int objects) {}
  928. #endif
  929. /*
  930. * Slab allocation and freeing
  931. */
  932. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  933. struct kmem_cache_order_objects oo)
  934. {
  935. int order = oo_order(oo);
  936. if (node == -1)
  937. return alloc_pages(flags, order);
  938. else
  939. return alloc_pages_node(node, flags, order);
  940. }
  941. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  942. {
  943. struct page *page;
  944. struct kmem_cache_order_objects oo = s->oo;
  945. flags |= s->allocflags;
  946. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  947. oo);
  948. if (unlikely(!page)) {
  949. oo = s->min;
  950. /*
  951. * Allocation may have failed due to fragmentation.
  952. * Try a lower order alloc if possible
  953. */
  954. page = alloc_slab_page(flags, node, oo);
  955. if (!page)
  956. return NULL;
  957. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  958. }
  959. page->objects = oo_objects(oo);
  960. mod_zone_page_state(page_zone(page),
  961. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  962. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  963. 1 << oo_order(oo));
  964. return page;
  965. }
  966. static void setup_object(struct kmem_cache *s, struct page *page,
  967. void *object)
  968. {
  969. setup_object_debug(s, page, object);
  970. if (unlikely(s->ctor))
  971. s->ctor(s, object);
  972. }
  973. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  974. {
  975. struct page *page;
  976. void *start;
  977. void *last;
  978. void *p;
  979. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  980. page = allocate_slab(s,
  981. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  982. if (!page)
  983. goto out;
  984. inc_slabs_node(s, page_to_nid(page), page->objects);
  985. page->slab = s;
  986. page->flags |= 1 << PG_slab;
  987. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  988. SLAB_STORE_USER | SLAB_TRACE))
  989. SetSlabDebug(page);
  990. start = page_address(page);
  991. if (unlikely(s->flags & SLAB_POISON))
  992. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  993. last = start;
  994. for_each_object(p, s, start, page->objects) {
  995. setup_object(s, page, last);
  996. set_freepointer(s, last, p);
  997. last = p;
  998. }
  999. setup_object(s, page, last);
  1000. set_freepointer(s, last, NULL);
  1001. page->freelist = start;
  1002. page->inuse = 0;
  1003. out:
  1004. return page;
  1005. }
  1006. static void __free_slab(struct kmem_cache *s, struct page *page)
  1007. {
  1008. int order = compound_order(page);
  1009. int pages = 1 << order;
  1010. if (unlikely(SlabDebug(page))) {
  1011. void *p;
  1012. slab_pad_check(s, page);
  1013. for_each_object(p, s, page_address(page),
  1014. page->objects)
  1015. check_object(s, page, p, 0);
  1016. ClearSlabDebug(page);
  1017. }
  1018. mod_zone_page_state(page_zone(page),
  1019. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1020. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1021. -pages);
  1022. __ClearPageSlab(page);
  1023. reset_page_mapcount(page);
  1024. __free_pages(page, order);
  1025. }
  1026. static void rcu_free_slab(struct rcu_head *h)
  1027. {
  1028. struct page *page;
  1029. page = container_of((struct list_head *)h, struct page, lru);
  1030. __free_slab(page->slab, page);
  1031. }
  1032. static void free_slab(struct kmem_cache *s, struct page *page)
  1033. {
  1034. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1035. /*
  1036. * RCU free overloads the RCU head over the LRU
  1037. */
  1038. struct rcu_head *head = (void *)&page->lru;
  1039. call_rcu(head, rcu_free_slab);
  1040. } else
  1041. __free_slab(s, page);
  1042. }
  1043. static void discard_slab(struct kmem_cache *s, struct page *page)
  1044. {
  1045. dec_slabs_node(s, page_to_nid(page), page->objects);
  1046. free_slab(s, page);
  1047. }
  1048. /*
  1049. * Per slab locking using the pagelock
  1050. */
  1051. static __always_inline void slab_lock(struct page *page)
  1052. {
  1053. bit_spin_lock(PG_locked, &page->flags);
  1054. }
  1055. static __always_inline void slab_unlock(struct page *page)
  1056. {
  1057. __bit_spin_unlock(PG_locked, &page->flags);
  1058. }
  1059. static __always_inline int slab_trylock(struct page *page)
  1060. {
  1061. int rc = 1;
  1062. rc = bit_spin_trylock(PG_locked, &page->flags);
  1063. return rc;
  1064. }
  1065. /*
  1066. * Management of partially allocated slabs
  1067. */
  1068. static void add_partial(struct kmem_cache_node *n,
  1069. struct page *page, int tail)
  1070. {
  1071. spin_lock(&n->list_lock);
  1072. n->nr_partial++;
  1073. if (tail)
  1074. list_add_tail(&page->lru, &n->partial);
  1075. else
  1076. list_add(&page->lru, &n->partial);
  1077. spin_unlock(&n->list_lock);
  1078. }
  1079. static void remove_partial(struct kmem_cache *s, struct page *page)
  1080. {
  1081. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1082. spin_lock(&n->list_lock);
  1083. list_del(&page->lru);
  1084. n->nr_partial--;
  1085. spin_unlock(&n->list_lock);
  1086. }
  1087. /*
  1088. * Lock slab and remove from the partial list.
  1089. *
  1090. * Must hold list_lock.
  1091. */
  1092. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1093. struct page *page)
  1094. {
  1095. if (slab_trylock(page)) {
  1096. list_del(&page->lru);
  1097. n->nr_partial--;
  1098. SetSlabFrozen(page);
  1099. return 1;
  1100. }
  1101. return 0;
  1102. }
  1103. /*
  1104. * Try to allocate a partial slab from a specific node.
  1105. */
  1106. static struct page *get_partial_node(struct kmem_cache_node *n)
  1107. {
  1108. struct page *page;
  1109. /*
  1110. * Racy check. If we mistakenly see no partial slabs then we
  1111. * just allocate an empty slab. If we mistakenly try to get a
  1112. * partial slab and there is none available then get_partials()
  1113. * will return NULL.
  1114. */
  1115. if (!n || !n->nr_partial)
  1116. return NULL;
  1117. spin_lock(&n->list_lock);
  1118. list_for_each_entry(page, &n->partial, lru)
  1119. if (lock_and_freeze_slab(n, page))
  1120. goto out;
  1121. page = NULL;
  1122. out:
  1123. spin_unlock(&n->list_lock);
  1124. return page;
  1125. }
  1126. /*
  1127. * Get a page from somewhere. Search in increasing NUMA distances.
  1128. */
  1129. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1130. {
  1131. #ifdef CONFIG_NUMA
  1132. struct zonelist *zonelist;
  1133. struct zoneref *z;
  1134. struct zone *zone;
  1135. enum zone_type high_zoneidx = gfp_zone(flags);
  1136. struct page *page;
  1137. /*
  1138. * The defrag ratio allows a configuration of the tradeoffs between
  1139. * inter node defragmentation and node local allocations. A lower
  1140. * defrag_ratio increases the tendency to do local allocations
  1141. * instead of attempting to obtain partial slabs from other nodes.
  1142. *
  1143. * If the defrag_ratio is set to 0 then kmalloc() always
  1144. * returns node local objects. If the ratio is higher then kmalloc()
  1145. * may return off node objects because partial slabs are obtained
  1146. * from other nodes and filled up.
  1147. *
  1148. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1149. * defrag_ratio = 1000) then every (well almost) allocation will
  1150. * first attempt to defrag slab caches on other nodes. This means
  1151. * scanning over all nodes to look for partial slabs which may be
  1152. * expensive if we do it every time we are trying to find a slab
  1153. * with available objects.
  1154. */
  1155. if (!s->remote_node_defrag_ratio ||
  1156. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1157. return NULL;
  1158. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1159. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1160. struct kmem_cache_node *n;
  1161. n = get_node(s, zone_to_nid(zone));
  1162. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1163. n->nr_partial > MIN_PARTIAL) {
  1164. page = get_partial_node(n);
  1165. if (page)
  1166. return page;
  1167. }
  1168. }
  1169. #endif
  1170. return NULL;
  1171. }
  1172. /*
  1173. * Get a partial page, lock it and return it.
  1174. */
  1175. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1176. {
  1177. struct page *page;
  1178. int searchnode = (node == -1) ? numa_node_id() : node;
  1179. page = get_partial_node(get_node(s, searchnode));
  1180. if (page || (flags & __GFP_THISNODE))
  1181. return page;
  1182. return get_any_partial(s, flags);
  1183. }
  1184. /*
  1185. * Move a page back to the lists.
  1186. *
  1187. * Must be called with the slab lock held.
  1188. *
  1189. * On exit the slab lock will have been dropped.
  1190. */
  1191. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1192. {
  1193. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1194. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1195. ClearSlabFrozen(page);
  1196. if (page->inuse) {
  1197. if (page->freelist) {
  1198. add_partial(n, page, tail);
  1199. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1200. } else {
  1201. stat(c, DEACTIVATE_FULL);
  1202. if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1203. add_full(n, page);
  1204. }
  1205. slab_unlock(page);
  1206. } else {
  1207. stat(c, DEACTIVATE_EMPTY);
  1208. if (n->nr_partial < MIN_PARTIAL) {
  1209. /*
  1210. * Adding an empty slab to the partial slabs in order
  1211. * to avoid page allocator overhead. This slab needs
  1212. * to come after the other slabs with objects in
  1213. * so that the others get filled first. That way the
  1214. * size of the partial list stays small.
  1215. *
  1216. * kmem_cache_shrink can reclaim any empty slabs from
  1217. * the partial list.
  1218. */
  1219. add_partial(n, page, 1);
  1220. slab_unlock(page);
  1221. } else {
  1222. slab_unlock(page);
  1223. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1224. discard_slab(s, page);
  1225. }
  1226. }
  1227. }
  1228. /*
  1229. * Remove the cpu slab
  1230. */
  1231. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1232. {
  1233. struct page *page = c->page;
  1234. int tail = 1;
  1235. if (page->freelist)
  1236. stat(c, DEACTIVATE_REMOTE_FREES);
  1237. /*
  1238. * Merge cpu freelist into slab freelist. Typically we get here
  1239. * because both freelists are empty. So this is unlikely
  1240. * to occur.
  1241. */
  1242. while (unlikely(c->freelist)) {
  1243. void **object;
  1244. tail = 0; /* Hot objects. Put the slab first */
  1245. /* Retrieve object from cpu_freelist */
  1246. object = c->freelist;
  1247. c->freelist = c->freelist[c->offset];
  1248. /* And put onto the regular freelist */
  1249. object[c->offset] = page->freelist;
  1250. page->freelist = object;
  1251. page->inuse--;
  1252. }
  1253. c->page = NULL;
  1254. unfreeze_slab(s, page, tail);
  1255. }
  1256. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1257. {
  1258. stat(c, CPUSLAB_FLUSH);
  1259. slab_lock(c->page);
  1260. deactivate_slab(s, c);
  1261. }
  1262. /*
  1263. * Flush cpu slab.
  1264. *
  1265. * Called from IPI handler with interrupts disabled.
  1266. */
  1267. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1268. {
  1269. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1270. if (likely(c && c->page))
  1271. flush_slab(s, c);
  1272. }
  1273. static void flush_cpu_slab(void *d)
  1274. {
  1275. struct kmem_cache *s = d;
  1276. __flush_cpu_slab(s, smp_processor_id());
  1277. }
  1278. static void flush_all(struct kmem_cache *s)
  1279. {
  1280. #ifdef CONFIG_SMP
  1281. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1282. #else
  1283. unsigned long flags;
  1284. local_irq_save(flags);
  1285. flush_cpu_slab(s);
  1286. local_irq_restore(flags);
  1287. #endif
  1288. }
  1289. /*
  1290. * Check if the objects in a per cpu structure fit numa
  1291. * locality expectations.
  1292. */
  1293. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1294. {
  1295. #ifdef CONFIG_NUMA
  1296. if (node != -1 && c->node != node)
  1297. return 0;
  1298. #endif
  1299. return 1;
  1300. }
  1301. /*
  1302. * Slow path. The lockless freelist is empty or we need to perform
  1303. * debugging duties.
  1304. *
  1305. * Interrupts are disabled.
  1306. *
  1307. * Processing is still very fast if new objects have been freed to the
  1308. * regular freelist. In that case we simply take over the regular freelist
  1309. * as the lockless freelist and zap the regular freelist.
  1310. *
  1311. * If that is not working then we fall back to the partial lists. We take the
  1312. * first element of the freelist as the object to allocate now and move the
  1313. * rest of the freelist to the lockless freelist.
  1314. *
  1315. * And if we were unable to get a new slab from the partial slab lists then
  1316. * we need to allocate a new slab. This is the slowest path since it involves
  1317. * a call to the page allocator and the setup of a new slab.
  1318. */
  1319. static void *__slab_alloc(struct kmem_cache *s,
  1320. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1321. {
  1322. void **object;
  1323. struct page *new;
  1324. /* We handle __GFP_ZERO in the caller */
  1325. gfpflags &= ~__GFP_ZERO;
  1326. if (!c->page)
  1327. goto new_slab;
  1328. slab_lock(c->page);
  1329. if (unlikely(!node_match(c, node)))
  1330. goto another_slab;
  1331. stat(c, ALLOC_REFILL);
  1332. load_freelist:
  1333. object = c->page->freelist;
  1334. if (unlikely(!object))
  1335. goto another_slab;
  1336. if (unlikely(SlabDebug(c->page)))
  1337. goto debug;
  1338. c->freelist = object[c->offset];
  1339. c->page->inuse = c->page->objects;
  1340. c->page->freelist = NULL;
  1341. c->node = page_to_nid(c->page);
  1342. unlock_out:
  1343. slab_unlock(c->page);
  1344. stat(c, ALLOC_SLOWPATH);
  1345. return object;
  1346. another_slab:
  1347. deactivate_slab(s, c);
  1348. new_slab:
  1349. new = get_partial(s, gfpflags, node);
  1350. if (new) {
  1351. c->page = new;
  1352. stat(c, ALLOC_FROM_PARTIAL);
  1353. goto load_freelist;
  1354. }
  1355. if (gfpflags & __GFP_WAIT)
  1356. local_irq_enable();
  1357. new = new_slab(s, gfpflags, node);
  1358. if (gfpflags & __GFP_WAIT)
  1359. local_irq_disable();
  1360. if (new) {
  1361. c = get_cpu_slab(s, smp_processor_id());
  1362. stat(c, ALLOC_SLAB);
  1363. if (c->page)
  1364. flush_slab(s, c);
  1365. slab_lock(new);
  1366. SetSlabFrozen(new);
  1367. c->page = new;
  1368. goto load_freelist;
  1369. }
  1370. return NULL;
  1371. debug:
  1372. if (!alloc_debug_processing(s, c->page, object, addr))
  1373. goto another_slab;
  1374. c->page->inuse++;
  1375. c->page->freelist = object[c->offset];
  1376. c->node = -1;
  1377. goto unlock_out;
  1378. }
  1379. /*
  1380. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1381. * have the fastpath folded into their functions. So no function call
  1382. * overhead for requests that can be satisfied on the fastpath.
  1383. *
  1384. * The fastpath works by first checking if the lockless freelist can be used.
  1385. * If not then __slab_alloc is called for slow processing.
  1386. *
  1387. * Otherwise we can simply pick the next object from the lockless free list.
  1388. */
  1389. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1390. gfp_t gfpflags, int node, void *addr)
  1391. {
  1392. void **object;
  1393. struct kmem_cache_cpu *c;
  1394. unsigned long flags;
  1395. local_irq_save(flags);
  1396. c = get_cpu_slab(s, smp_processor_id());
  1397. if (unlikely(!c->freelist || !node_match(c, node)))
  1398. object = __slab_alloc(s, gfpflags, node, addr, c);
  1399. else {
  1400. object = c->freelist;
  1401. c->freelist = object[c->offset];
  1402. stat(c, ALLOC_FASTPATH);
  1403. }
  1404. local_irq_restore(flags);
  1405. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1406. memset(object, 0, c->objsize);
  1407. return object;
  1408. }
  1409. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1410. {
  1411. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1412. }
  1413. EXPORT_SYMBOL(kmem_cache_alloc);
  1414. #ifdef CONFIG_NUMA
  1415. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1416. {
  1417. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1418. }
  1419. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1420. #endif
  1421. /*
  1422. * Slow patch handling. This may still be called frequently since objects
  1423. * have a longer lifetime than the cpu slabs in most processing loads.
  1424. *
  1425. * So we still attempt to reduce cache line usage. Just take the slab
  1426. * lock and free the item. If there is no additional partial page
  1427. * handling required then we can return immediately.
  1428. */
  1429. static void __slab_free(struct kmem_cache *s, struct page *page,
  1430. void *x, void *addr, unsigned int offset)
  1431. {
  1432. void *prior;
  1433. void **object = (void *)x;
  1434. struct kmem_cache_cpu *c;
  1435. c = get_cpu_slab(s, raw_smp_processor_id());
  1436. stat(c, FREE_SLOWPATH);
  1437. slab_lock(page);
  1438. if (unlikely(SlabDebug(page)))
  1439. goto debug;
  1440. checks_ok:
  1441. prior = object[offset] = page->freelist;
  1442. page->freelist = object;
  1443. page->inuse--;
  1444. if (unlikely(SlabFrozen(page))) {
  1445. stat(c, FREE_FROZEN);
  1446. goto out_unlock;
  1447. }
  1448. if (unlikely(!page->inuse))
  1449. goto slab_empty;
  1450. /*
  1451. * Objects left in the slab. If it was not on the partial list before
  1452. * then add it.
  1453. */
  1454. if (unlikely(!prior)) {
  1455. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1456. stat(c, FREE_ADD_PARTIAL);
  1457. }
  1458. out_unlock:
  1459. slab_unlock(page);
  1460. return;
  1461. slab_empty:
  1462. if (prior) {
  1463. /*
  1464. * Slab still on the partial list.
  1465. */
  1466. remove_partial(s, page);
  1467. stat(c, FREE_REMOVE_PARTIAL);
  1468. }
  1469. slab_unlock(page);
  1470. stat(c, FREE_SLAB);
  1471. discard_slab(s, page);
  1472. return;
  1473. debug:
  1474. if (!free_debug_processing(s, page, x, addr))
  1475. goto out_unlock;
  1476. goto checks_ok;
  1477. }
  1478. /*
  1479. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1480. * can perform fastpath freeing without additional function calls.
  1481. *
  1482. * The fastpath is only possible if we are freeing to the current cpu slab
  1483. * of this processor. This typically the case if we have just allocated
  1484. * the item before.
  1485. *
  1486. * If fastpath is not possible then fall back to __slab_free where we deal
  1487. * with all sorts of special processing.
  1488. */
  1489. static __always_inline void slab_free(struct kmem_cache *s,
  1490. struct page *page, void *x, void *addr)
  1491. {
  1492. void **object = (void *)x;
  1493. struct kmem_cache_cpu *c;
  1494. unsigned long flags;
  1495. local_irq_save(flags);
  1496. c = get_cpu_slab(s, smp_processor_id());
  1497. debug_check_no_locks_freed(object, c->objsize);
  1498. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1499. debug_check_no_obj_freed(object, s->objsize);
  1500. if (likely(page == c->page && c->node >= 0)) {
  1501. object[c->offset] = c->freelist;
  1502. c->freelist = object;
  1503. stat(c, FREE_FASTPATH);
  1504. } else
  1505. __slab_free(s, page, x, addr, c->offset);
  1506. local_irq_restore(flags);
  1507. }
  1508. void kmem_cache_free(struct kmem_cache *s, void *x)
  1509. {
  1510. struct page *page;
  1511. page = virt_to_head_page(x);
  1512. slab_free(s, page, x, __builtin_return_address(0));
  1513. }
  1514. EXPORT_SYMBOL(kmem_cache_free);
  1515. /* Figure out on which slab object the object resides */
  1516. static struct page *get_object_page(const void *x)
  1517. {
  1518. struct page *page = virt_to_head_page(x);
  1519. if (!PageSlab(page))
  1520. return NULL;
  1521. return page;
  1522. }
  1523. /*
  1524. * Object placement in a slab is made very easy because we always start at
  1525. * offset 0. If we tune the size of the object to the alignment then we can
  1526. * get the required alignment by putting one properly sized object after
  1527. * another.
  1528. *
  1529. * Notice that the allocation order determines the sizes of the per cpu
  1530. * caches. Each processor has always one slab available for allocations.
  1531. * Increasing the allocation order reduces the number of times that slabs
  1532. * must be moved on and off the partial lists and is therefore a factor in
  1533. * locking overhead.
  1534. */
  1535. /*
  1536. * Mininum / Maximum order of slab pages. This influences locking overhead
  1537. * and slab fragmentation. A higher order reduces the number of partial slabs
  1538. * and increases the number of allocations possible without having to
  1539. * take the list_lock.
  1540. */
  1541. static int slub_min_order;
  1542. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1543. static int slub_min_objects;
  1544. /*
  1545. * Merge control. If this is set then no merging of slab caches will occur.
  1546. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1547. */
  1548. static int slub_nomerge;
  1549. /*
  1550. * Calculate the order of allocation given an slab object size.
  1551. *
  1552. * The order of allocation has significant impact on performance and other
  1553. * system components. Generally order 0 allocations should be preferred since
  1554. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1555. * be problematic to put into order 0 slabs because there may be too much
  1556. * unused space left. We go to a higher order if more than 1/16th of the slab
  1557. * would be wasted.
  1558. *
  1559. * In order to reach satisfactory performance we must ensure that a minimum
  1560. * number of objects is in one slab. Otherwise we may generate too much
  1561. * activity on the partial lists which requires taking the list_lock. This is
  1562. * less a concern for large slabs though which are rarely used.
  1563. *
  1564. * slub_max_order specifies the order where we begin to stop considering the
  1565. * number of objects in a slab as critical. If we reach slub_max_order then
  1566. * we try to keep the page order as low as possible. So we accept more waste
  1567. * of space in favor of a small page order.
  1568. *
  1569. * Higher order allocations also allow the placement of more objects in a
  1570. * slab and thereby reduce object handling overhead. If the user has
  1571. * requested a higher mininum order then we start with that one instead of
  1572. * the smallest order which will fit the object.
  1573. */
  1574. static inline int slab_order(int size, int min_objects,
  1575. int max_order, int fract_leftover)
  1576. {
  1577. int order;
  1578. int rem;
  1579. int min_order = slub_min_order;
  1580. if ((PAGE_SIZE << min_order) / size > 65535)
  1581. return get_order(size * 65535) - 1;
  1582. for (order = max(min_order,
  1583. fls(min_objects * size - 1) - PAGE_SHIFT);
  1584. order <= max_order; order++) {
  1585. unsigned long slab_size = PAGE_SIZE << order;
  1586. if (slab_size < min_objects * size)
  1587. continue;
  1588. rem = slab_size % size;
  1589. if (rem <= slab_size / fract_leftover)
  1590. break;
  1591. }
  1592. return order;
  1593. }
  1594. static inline int calculate_order(int size)
  1595. {
  1596. int order;
  1597. int min_objects;
  1598. int fraction;
  1599. /*
  1600. * Attempt to find best configuration for a slab. This
  1601. * works by first attempting to generate a layout with
  1602. * the best configuration and backing off gradually.
  1603. *
  1604. * First we reduce the acceptable waste in a slab. Then
  1605. * we reduce the minimum objects required in a slab.
  1606. */
  1607. min_objects = slub_min_objects;
  1608. if (!min_objects)
  1609. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1610. while (min_objects > 1) {
  1611. fraction = 16;
  1612. while (fraction >= 4) {
  1613. order = slab_order(size, min_objects,
  1614. slub_max_order, fraction);
  1615. if (order <= slub_max_order)
  1616. return order;
  1617. fraction /= 2;
  1618. }
  1619. min_objects /= 2;
  1620. }
  1621. /*
  1622. * We were unable to place multiple objects in a slab. Now
  1623. * lets see if we can place a single object there.
  1624. */
  1625. order = slab_order(size, 1, slub_max_order, 1);
  1626. if (order <= slub_max_order)
  1627. return order;
  1628. /*
  1629. * Doh this slab cannot be placed using slub_max_order.
  1630. */
  1631. order = slab_order(size, 1, MAX_ORDER, 1);
  1632. if (order <= MAX_ORDER)
  1633. return order;
  1634. return -ENOSYS;
  1635. }
  1636. /*
  1637. * Figure out what the alignment of the objects will be.
  1638. */
  1639. static unsigned long calculate_alignment(unsigned long flags,
  1640. unsigned long align, unsigned long size)
  1641. {
  1642. /*
  1643. * If the user wants hardware cache aligned objects then follow that
  1644. * suggestion if the object is sufficiently large.
  1645. *
  1646. * The hardware cache alignment cannot override the specified
  1647. * alignment though. If that is greater then use it.
  1648. */
  1649. if (flags & SLAB_HWCACHE_ALIGN) {
  1650. unsigned long ralign = cache_line_size();
  1651. while (size <= ralign / 2)
  1652. ralign /= 2;
  1653. align = max(align, ralign);
  1654. }
  1655. if (align < ARCH_SLAB_MINALIGN)
  1656. align = ARCH_SLAB_MINALIGN;
  1657. return ALIGN(align, sizeof(void *));
  1658. }
  1659. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1660. struct kmem_cache_cpu *c)
  1661. {
  1662. c->page = NULL;
  1663. c->freelist = NULL;
  1664. c->node = 0;
  1665. c->offset = s->offset / sizeof(void *);
  1666. c->objsize = s->objsize;
  1667. #ifdef CONFIG_SLUB_STATS
  1668. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1669. #endif
  1670. }
  1671. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1672. {
  1673. n->nr_partial = 0;
  1674. spin_lock_init(&n->list_lock);
  1675. INIT_LIST_HEAD(&n->partial);
  1676. #ifdef CONFIG_SLUB_DEBUG
  1677. atomic_long_set(&n->nr_slabs, 0);
  1678. INIT_LIST_HEAD(&n->full);
  1679. #endif
  1680. }
  1681. #ifdef CONFIG_SMP
  1682. /*
  1683. * Per cpu array for per cpu structures.
  1684. *
  1685. * The per cpu array places all kmem_cache_cpu structures from one processor
  1686. * close together meaning that it becomes possible that multiple per cpu
  1687. * structures are contained in one cacheline. This may be particularly
  1688. * beneficial for the kmalloc caches.
  1689. *
  1690. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1691. * likely able to get per cpu structures for all caches from the array defined
  1692. * here. We must be able to cover all kmalloc caches during bootstrap.
  1693. *
  1694. * If the per cpu array is exhausted then fall back to kmalloc
  1695. * of individual cachelines. No sharing is possible then.
  1696. */
  1697. #define NR_KMEM_CACHE_CPU 100
  1698. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1699. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1700. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1701. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1702. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1703. int cpu, gfp_t flags)
  1704. {
  1705. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1706. if (c)
  1707. per_cpu(kmem_cache_cpu_free, cpu) =
  1708. (void *)c->freelist;
  1709. else {
  1710. /* Table overflow: So allocate ourselves */
  1711. c = kmalloc_node(
  1712. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1713. flags, cpu_to_node(cpu));
  1714. if (!c)
  1715. return NULL;
  1716. }
  1717. init_kmem_cache_cpu(s, c);
  1718. return c;
  1719. }
  1720. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1721. {
  1722. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1723. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1724. kfree(c);
  1725. return;
  1726. }
  1727. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1728. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1729. }
  1730. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1731. {
  1732. int cpu;
  1733. for_each_online_cpu(cpu) {
  1734. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1735. if (c) {
  1736. s->cpu_slab[cpu] = NULL;
  1737. free_kmem_cache_cpu(c, cpu);
  1738. }
  1739. }
  1740. }
  1741. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1742. {
  1743. int cpu;
  1744. for_each_online_cpu(cpu) {
  1745. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1746. if (c)
  1747. continue;
  1748. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1749. if (!c) {
  1750. free_kmem_cache_cpus(s);
  1751. return 0;
  1752. }
  1753. s->cpu_slab[cpu] = c;
  1754. }
  1755. return 1;
  1756. }
  1757. /*
  1758. * Initialize the per cpu array.
  1759. */
  1760. static void init_alloc_cpu_cpu(int cpu)
  1761. {
  1762. int i;
  1763. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1764. return;
  1765. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1766. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1767. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1768. }
  1769. static void __init init_alloc_cpu(void)
  1770. {
  1771. int cpu;
  1772. for_each_online_cpu(cpu)
  1773. init_alloc_cpu_cpu(cpu);
  1774. }
  1775. #else
  1776. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1777. static inline void init_alloc_cpu(void) {}
  1778. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1779. {
  1780. init_kmem_cache_cpu(s, &s->cpu_slab);
  1781. return 1;
  1782. }
  1783. #endif
  1784. #ifdef CONFIG_NUMA
  1785. /*
  1786. * No kmalloc_node yet so do it by hand. We know that this is the first
  1787. * slab on the node for this slabcache. There are no concurrent accesses
  1788. * possible.
  1789. *
  1790. * Note that this function only works on the kmalloc_node_cache
  1791. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1792. * memory on a fresh node that has no slab structures yet.
  1793. */
  1794. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1795. int node)
  1796. {
  1797. struct page *page;
  1798. struct kmem_cache_node *n;
  1799. unsigned long flags;
  1800. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1801. page = new_slab(kmalloc_caches, gfpflags, node);
  1802. BUG_ON(!page);
  1803. if (page_to_nid(page) != node) {
  1804. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1805. "node %d\n", node);
  1806. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1807. "in order to be able to continue\n");
  1808. }
  1809. n = page->freelist;
  1810. BUG_ON(!n);
  1811. page->freelist = get_freepointer(kmalloc_caches, n);
  1812. page->inuse++;
  1813. kmalloc_caches->node[node] = n;
  1814. #ifdef CONFIG_SLUB_DEBUG
  1815. init_object(kmalloc_caches, n, 1);
  1816. init_tracking(kmalloc_caches, n);
  1817. #endif
  1818. init_kmem_cache_node(n);
  1819. inc_slabs_node(kmalloc_caches, node, page->objects);
  1820. /*
  1821. * lockdep requires consistent irq usage for each lock
  1822. * so even though there cannot be a race this early in
  1823. * the boot sequence, we still disable irqs.
  1824. */
  1825. local_irq_save(flags);
  1826. add_partial(n, page, 0);
  1827. local_irq_restore(flags);
  1828. return n;
  1829. }
  1830. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1831. {
  1832. int node;
  1833. for_each_node_state(node, N_NORMAL_MEMORY) {
  1834. struct kmem_cache_node *n = s->node[node];
  1835. if (n && n != &s->local_node)
  1836. kmem_cache_free(kmalloc_caches, n);
  1837. s->node[node] = NULL;
  1838. }
  1839. }
  1840. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1841. {
  1842. int node;
  1843. int local_node;
  1844. if (slab_state >= UP)
  1845. local_node = page_to_nid(virt_to_page(s));
  1846. else
  1847. local_node = 0;
  1848. for_each_node_state(node, N_NORMAL_MEMORY) {
  1849. struct kmem_cache_node *n;
  1850. if (local_node == node)
  1851. n = &s->local_node;
  1852. else {
  1853. if (slab_state == DOWN) {
  1854. n = early_kmem_cache_node_alloc(gfpflags,
  1855. node);
  1856. continue;
  1857. }
  1858. n = kmem_cache_alloc_node(kmalloc_caches,
  1859. gfpflags, node);
  1860. if (!n) {
  1861. free_kmem_cache_nodes(s);
  1862. return 0;
  1863. }
  1864. }
  1865. s->node[node] = n;
  1866. init_kmem_cache_node(n);
  1867. }
  1868. return 1;
  1869. }
  1870. #else
  1871. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1872. {
  1873. }
  1874. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1875. {
  1876. init_kmem_cache_node(&s->local_node);
  1877. return 1;
  1878. }
  1879. #endif
  1880. /*
  1881. * calculate_sizes() determines the order and the distribution of data within
  1882. * a slab object.
  1883. */
  1884. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1885. {
  1886. unsigned long flags = s->flags;
  1887. unsigned long size = s->objsize;
  1888. unsigned long align = s->align;
  1889. int order;
  1890. /*
  1891. * Round up object size to the next word boundary. We can only
  1892. * place the free pointer at word boundaries and this determines
  1893. * the possible location of the free pointer.
  1894. */
  1895. size = ALIGN(size, sizeof(void *));
  1896. #ifdef CONFIG_SLUB_DEBUG
  1897. /*
  1898. * Determine if we can poison the object itself. If the user of
  1899. * the slab may touch the object after free or before allocation
  1900. * then we should never poison the object itself.
  1901. */
  1902. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1903. !s->ctor)
  1904. s->flags |= __OBJECT_POISON;
  1905. else
  1906. s->flags &= ~__OBJECT_POISON;
  1907. /*
  1908. * If we are Redzoning then check if there is some space between the
  1909. * end of the object and the free pointer. If not then add an
  1910. * additional word to have some bytes to store Redzone information.
  1911. */
  1912. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1913. size += sizeof(void *);
  1914. #endif
  1915. /*
  1916. * With that we have determined the number of bytes in actual use
  1917. * by the object. This is the potential offset to the free pointer.
  1918. */
  1919. s->inuse = size;
  1920. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1921. s->ctor)) {
  1922. /*
  1923. * Relocate free pointer after the object if it is not
  1924. * permitted to overwrite the first word of the object on
  1925. * kmem_cache_free.
  1926. *
  1927. * This is the case if we do RCU, have a constructor or
  1928. * destructor or are poisoning the objects.
  1929. */
  1930. s->offset = size;
  1931. size += sizeof(void *);
  1932. }
  1933. #ifdef CONFIG_SLUB_DEBUG
  1934. if (flags & SLAB_STORE_USER)
  1935. /*
  1936. * Need to store information about allocs and frees after
  1937. * the object.
  1938. */
  1939. size += 2 * sizeof(struct track);
  1940. if (flags & SLAB_RED_ZONE)
  1941. /*
  1942. * Add some empty padding so that we can catch
  1943. * overwrites from earlier objects rather than let
  1944. * tracking information or the free pointer be
  1945. * corrupted if an user writes before the start
  1946. * of the object.
  1947. */
  1948. size += sizeof(void *);
  1949. #endif
  1950. /*
  1951. * Determine the alignment based on various parameters that the
  1952. * user specified and the dynamic determination of cache line size
  1953. * on bootup.
  1954. */
  1955. align = calculate_alignment(flags, align, s->objsize);
  1956. /*
  1957. * SLUB stores one object immediately after another beginning from
  1958. * offset 0. In order to align the objects we have to simply size
  1959. * each object to conform to the alignment.
  1960. */
  1961. size = ALIGN(size, align);
  1962. s->size = size;
  1963. if (forced_order >= 0)
  1964. order = forced_order;
  1965. else
  1966. order = calculate_order(size);
  1967. if (order < 0)
  1968. return 0;
  1969. s->allocflags = 0;
  1970. if (order)
  1971. s->allocflags |= __GFP_COMP;
  1972. if (s->flags & SLAB_CACHE_DMA)
  1973. s->allocflags |= SLUB_DMA;
  1974. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1975. s->allocflags |= __GFP_RECLAIMABLE;
  1976. /*
  1977. * Determine the number of objects per slab
  1978. */
  1979. s->oo = oo_make(order, size);
  1980. s->min = oo_make(get_order(size), size);
  1981. if (oo_objects(s->oo) > oo_objects(s->max))
  1982. s->max = s->oo;
  1983. return !!oo_objects(s->oo);
  1984. }
  1985. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1986. const char *name, size_t size,
  1987. size_t align, unsigned long flags,
  1988. void (*ctor)(struct kmem_cache *, void *))
  1989. {
  1990. memset(s, 0, kmem_size);
  1991. s->name = name;
  1992. s->ctor = ctor;
  1993. s->objsize = size;
  1994. s->align = align;
  1995. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1996. if (!calculate_sizes(s, -1))
  1997. goto error;
  1998. s->refcount = 1;
  1999. #ifdef CONFIG_NUMA
  2000. s->remote_node_defrag_ratio = 100;
  2001. #endif
  2002. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2003. goto error;
  2004. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2005. return 1;
  2006. free_kmem_cache_nodes(s);
  2007. error:
  2008. if (flags & SLAB_PANIC)
  2009. panic("Cannot create slab %s size=%lu realsize=%u "
  2010. "order=%u offset=%u flags=%lx\n",
  2011. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2012. s->offset, flags);
  2013. return 0;
  2014. }
  2015. /*
  2016. * Check if a given pointer is valid
  2017. */
  2018. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2019. {
  2020. struct page *page;
  2021. page = get_object_page(object);
  2022. if (!page || s != page->slab)
  2023. /* No slab or wrong slab */
  2024. return 0;
  2025. if (!check_valid_pointer(s, page, object))
  2026. return 0;
  2027. /*
  2028. * We could also check if the object is on the slabs freelist.
  2029. * But this would be too expensive and it seems that the main
  2030. * purpose of kmem_ptr_valid() is to check if the object belongs
  2031. * to a certain slab.
  2032. */
  2033. return 1;
  2034. }
  2035. EXPORT_SYMBOL(kmem_ptr_validate);
  2036. /*
  2037. * Determine the size of a slab object
  2038. */
  2039. unsigned int kmem_cache_size(struct kmem_cache *s)
  2040. {
  2041. return s->objsize;
  2042. }
  2043. EXPORT_SYMBOL(kmem_cache_size);
  2044. const char *kmem_cache_name(struct kmem_cache *s)
  2045. {
  2046. return s->name;
  2047. }
  2048. EXPORT_SYMBOL(kmem_cache_name);
  2049. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2050. const char *text)
  2051. {
  2052. #ifdef CONFIG_SLUB_DEBUG
  2053. void *addr = page_address(page);
  2054. void *p;
  2055. DECLARE_BITMAP(map, page->objects);
  2056. bitmap_zero(map, page->objects);
  2057. slab_err(s, page, "%s", text);
  2058. slab_lock(page);
  2059. for_each_free_object(p, s, page->freelist)
  2060. set_bit(slab_index(p, s, addr), map);
  2061. for_each_object(p, s, addr, page->objects) {
  2062. if (!test_bit(slab_index(p, s, addr), map)) {
  2063. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2064. p, p - addr);
  2065. print_tracking(s, p);
  2066. }
  2067. }
  2068. slab_unlock(page);
  2069. #endif
  2070. }
  2071. /*
  2072. * Attempt to free all partial slabs on a node.
  2073. */
  2074. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2075. {
  2076. unsigned long flags;
  2077. struct page *page, *h;
  2078. spin_lock_irqsave(&n->list_lock, flags);
  2079. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2080. if (!page->inuse) {
  2081. list_del(&page->lru);
  2082. discard_slab(s, page);
  2083. n->nr_partial--;
  2084. } else {
  2085. list_slab_objects(s, page,
  2086. "Objects remaining on kmem_cache_close()");
  2087. }
  2088. }
  2089. spin_unlock_irqrestore(&n->list_lock, flags);
  2090. }
  2091. /*
  2092. * Release all resources used by a slab cache.
  2093. */
  2094. static inline int kmem_cache_close(struct kmem_cache *s)
  2095. {
  2096. int node;
  2097. flush_all(s);
  2098. /* Attempt to free all objects */
  2099. free_kmem_cache_cpus(s);
  2100. for_each_node_state(node, N_NORMAL_MEMORY) {
  2101. struct kmem_cache_node *n = get_node(s, node);
  2102. free_partial(s, n);
  2103. if (n->nr_partial || slabs_node(s, node))
  2104. return 1;
  2105. }
  2106. free_kmem_cache_nodes(s);
  2107. return 0;
  2108. }
  2109. /*
  2110. * Close a cache and release the kmem_cache structure
  2111. * (must be used for caches created using kmem_cache_create)
  2112. */
  2113. void kmem_cache_destroy(struct kmem_cache *s)
  2114. {
  2115. down_write(&slub_lock);
  2116. s->refcount--;
  2117. if (!s->refcount) {
  2118. list_del(&s->list);
  2119. up_write(&slub_lock);
  2120. if (kmem_cache_close(s)) {
  2121. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2122. "still has objects.\n", s->name, __func__);
  2123. dump_stack();
  2124. }
  2125. sysfs_slab_remove(s);
  2126. } else
  2127. up_write(&slub_lock);
  2128. }
  2129. EXPORT_SYMBOL(kmem_cache_destroy);
  2130. /********************************************************************
  2131. * Kmalloc subsystem
  2132. *******************************************************************/
  2133. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2134. EXPORT_SYMBOL(kmalloc_caches);
  2135. static int __init setup_slub_min_order(char *str)
  2136. {
  2137. get_option(&str, &slub_min_order);
  2138. return 1;
  2139. }
  2140. __setup("slub_min_order=", setup_slub_min_order);
  2141. static int __init setup_slub_max_order(char *str)
  2142. {
  2143. get_option(&str, &slub_max_order);
  2144. return 1;
  2145. }
  2146. __setup("slub_max_order=", setup_slub_max_order);
  2147. static int __init setup_slub_min_objects(char *str)
  2148. {
  2149. get_option(&str, &slub_min_objects);
  2150. return 1;
  2151. }
  2152. __setup("slub_min_objects=", setup_slub_min_objects);
  2153. static int __init setup_slub_nomerge(char *str)
  2154. {
  2155. slub_nomerge = 1;
  2156. return 1;
  2157. }
  2158. __setup("slub_nomerge", setup_slub_nomerge);
  2159. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2160. const char *name, int size, gfp_t gfp_flags)
  2161. {
  2162. unsigned int flags = 0;
  2163. if (gfp_flags & SLUB_DMA)
  2164. flags = SLAB_CACHE_DMA;
  2165. down_write(&slub_lock);
  2166. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2167. flags, NULL))
  2168. goto panic;
  2169. list_add(&s->list, &slab_caches);
  2170. up_write(&slub_lock);
  2171. if (sysfs_slab_add(s))
  2172. goto panic;
  2173. return s;
  2174. panic:
  2175. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2176. }
  2177. #ifdef CONFIG_ZONE_DMA
  2178. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2179. static void sysfs_add_func(struct work_struct *w)
  2180. {
  2181. struct kmem_cache *s;
  2182. down_write(&slub_lock);
  2183. list_for_each_entry(s, &slab_caches, list) {
  2184. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2185. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2186. sysfs_slab_add(s);
  2187. }
  2188. }
  2189. up_write(&slub_lock);
  2190. }
  2191. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2192. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2193. {
  2194. struct kmem_cache *s;
  2195. char *text;
  2196. size_t realsize;
  2197. s = kmalloc_caches_dma[index];
  2198. if (s)
  2199. return s;
  2200. /* Dynamically create dma cache */
  2201. if (flags & __GFP_WAIT)
  2202. down_write(&slub_lock);
  2203. else {
  2204. if (!down_write_trylock(&slub_lock))
  2205. goto out;
  2206. }
  2207. if (kmalloc_caches_dma[index])
  2208. goto unlock_out;
  2209. realsize = kmalloc_caches[index].objsize;
  2210. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2211. (unsigned int)realsize);
  2212. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2213. if (!s || !text || !kmem_cache_open(s, flags, text,
  2214. realsize, ARCH_KMALLOC_MINALIGN,
  2215. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2216. kfree(s);
  2217. kfree(text);
  2218. goto unlock_out;
  2219. }
  2220. list_add(&s->list, &slab_caches);
  2221. kmalloc_caches_dma[index] = s;
  2222. schedule_work(&sysfs_add_work);
  2223. unlock_out:
  2224. up_write(&slub_lock);
  2225. out:
  2226. return kmalloc_caches_dma[index];
  2227. }
  2228. #endif
  2229. /*
  2230. * Conversion table for small slabs sizes / 8 to the index in the
  2231. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2232. * of two cache sizes there. The size of larger slabs can be determined using
  2233. * fls.
  2234. */
  2235. static s8 size_index[24] = {
  2236. 3, /* 8 */
  2237. 4, /* 16 */
  2238. 5, /* 24 */
  2239. 5, /* 32 */
  2240. 6, /* 40 */
  2241. 6, /* 48 */
  2242. 6, /* 56 */
  2243. 6, /* 64 */
  2244. 1, /* 72 */
  2245. 1, /* 80 */
  2246. 1, /* 88 */
  2247. 1, /* 96 */
  2248. 7, /* 104 */
  2249. 7, /* 112 */
  2250. 7, /* 120 */
  2251. 7, /* 128 */
  2252. 2, /* 136 */
  2253. 2, /* 144 */
  2254. 2, /* 152 */
  2255. 2, /* 160 */
  2256. 2, /* 168 */
  2257. 2, /* 176 */
  2258. 2, /* 184 */
  2259. 2 /* 192 */
  2260. };
  2261. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2262. {
  2263. int index;
  2264. if (size <= 192) {
  2265. if (!size)
  2266. return ZERO_SIZE_PTR;
  2267. index = size_index[(size - 1) / 8];
  2268. } else
  2269. index = fls(size - 1);
  2270. #ifdef CONFIG_ZONE_DMA
  2271. if (unlikely((flags & SLUB_DMA)))
  2272. return dma_kmalloc_cache(index, flags);
  2273. #endif
  2274. return &kmalloc_caches[index];
  2275. }
  2276. void *__kmalloc(size_t size, gfp_t flags)
  2277. {
  2278. struct kmem_cache *s;
  2279. if (unlikely(size > PAGE_SIZE))
  2280. return kmalloc_large(size, flags);
  2281. s = get_slab(size, flags);
  2282. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2283. return s;
  2284. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2285. }
  2286. EXPORT_SYMBOL(__kmalloc);
  2287. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2288. {
  2289. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2290. get_order(size));
  2291. if (page)
  2292. return page_address(page);
  2293. else
  2294. return NULL;
  2295. }
  2296. #ifdef CONFIG_NUMA
  2297. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2298. {
  2299. struct kmem_cache *s;
  2300. if (unlikely(size > PAGE_SIZE))
  2301. return kmalloc_large_node(size, flags, node);
  2302. s = get_slab(size, flags);
  2303. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2304. return s;
  2305. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2306. }
  2307. EXPORT_SYMBOL(__kmalloc_node);
  2308. #endif
  2309. size_t ksize(const void *object)
  2310. {
  2311. struct page *page;
  2312. struct kmem_cache *s;
  2313. if (unlikely(object == ZERO_SIZE_PTR))
  2314. return 0;
  2315. page = virt_to_head_page(object);
  2316. if (unlikely(!PageSlab(page)))
  2317. return PAGE_SIZE << compound_order(page);
  2318. s = page->slab;
  2319. #ifdef CONFIG_SLUB_DEBUG
  2320. /*
  2321. * Debugging requires use of the padding between object
  2322. * and whatever may come after it.
  2323. */
  2324. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2325. return s->objsize;
  2326. #endif
  2327. /*
  2328. * If we have the need to store the freelist pointer
  2329. * back there or track user information then we can
  2330. * only use the space before that information.
  2331. */
  2332. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2333. return s->inuse;
  2334. /*
  2335. * Else we can use all the padding etc for the allocation
  2336. */
  2337. return s->size;
  2338. }
  2339. EXPORT_SYMBOL(ksize);
  2340. void kfree(const void *x)
  2341. {
  2342. struct page *page;
  2343. void *object = (void *)x;
  2344. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2345. return;
  2346. page = virt_to_head_page(x);
  2347. if (unlikely(!PageSlab(page))) {
  2348. put_page(page);
  2349. return;
  2350. }
  2351. slab_free(page->slab, page, object, __builtin_return_address(0));
  2352. }
  2353. EXPORT_SYMBOL(kfree);
  2354. /*
  2355. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2356. * the remaining slabs by the number of items in use. The slabs with the
  2357. * most items in use come first. New allocations will then fill those up
  2358. * and thus they can be removed from the partial lists.
  2359. *
  2360. * The slabs with the least items are placed last. This results in them
  2361. * being allocated from last increasing the chance that the last objects
  2362. * are freed in them.
  2363. */
  2364. int kmem_cache_shrink(struct kmem_cache *s)
  2365. {
  2366. int node;
  2367. int i;
  2368. struct kmem_cache_node *n;
  2369. struct page *page;
  2370. struct page *t;
  2371. int objects = oo_objects(s->max);
  2372. struct list_head *slabs_by_inuse =
  2373. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2374. unsigned long flags;
  2375. if (!slabs_by_inuse)
  2376. return -ENOMEM;
  2377. flush_all(s);
  2378. for_each_node_state(node, N_NORMAL_MEMORY) {
  2379. n = get_node(s, node);
  2380. if (!n->nr_partial)
  2381. continue;
  2382. for (i = 0; i < objects; i++)
  2383. INIT_LIST_HEAD(slabs_by_inuse + i);
  2384. spin_lock_irqsave(&n->list_lock, flags);
  2385. /*
  2386. * Build lists indexed by the items in use in each slab.
  2387. *
  2388. * Note that concurrent frees may occur while we hold the
  2389. * list_lock. page->inuse here is the upper limit.
  2390. */
  2391. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2392. if (!page->inuse && slab_trylock(page)) {
  2393. /*
  2394. * Must hold slab lock here because slab_free
  2395. * may have freed the last object and be
  2396. * waiting to release the slab.
  2397. */
  2398. list_del(&page->lru);
  2399. n->nr_partial--;
  2400. slab_unlock(page);
  2401. discard_slab(s, page);
  2402. } else {
  2403. list_move(&page->lru,
  2404. slabs_by_inuse + page->inuse);
  2405. }
  2406. }
  2407. /*
  2408. * Rebuild the partial list with the slabs filled up most
  2409. * first and the least used slabs at the end.
  2410. */
  2411. for (i = objects - 1; i >= 0; i--)
  2412. list_splice(slabs_by_inuse + i, n->partial.prev);
  2413. spin_unlock_irqrestore(&n->list_lock, flags);
  2414. }
  2415. kfree(slabs_by_inuse);
  2416. return 0;
  2417. }
  2418. EXPORT_SYMBOL(kmem_cache_shrink);
  2419. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2420. static int slab_mem_going_offline_callback(void *arg)
  2421. {
  2422. struct kmem_cache *s;
  2423. down_read(&slub_lock);
  2424. list_for_each_entry(s, &slab_caches, list)
  2425. kmem_cache_shrink(s);
  2426. up_read(&slub_lock);
  2427. return 0;
  2428. }
  2429. static void slab_mem_offline_callback(void *arg)
  2430. {
  2431. struct kmem_cache_node *n;
  2432. struct kmem_cache *s;
  2433. struct memory_notify *marg = arg;
  2434. int offline_node;
  2435. offline_node = marg->status_change_nid;
  2436. /*
  2437. * If the node still has available memory. we need kmem_cache_node
  2438. * for it yet.
  2439. */
  2440. if (offline_node < 0)
  2441. return;
  2442. down_read(&slub_lock);
  2443. list_for_each_entry(s, &slab_caches, list) {
  2444. n = get_node(s, offline_node);
  2445. if (n) {
  2446. /*
  2447. * if n->nr_slabs > 0, slabs still exist on the node
  2448. * that is going down. We were unable to free them,
  2449. * and offline_pages() function shoudn't call this
  2450. * callback. So, we must fail.
  2451. */
  2452. BUG_ON(slabs_node(s, offline_node));
  2453. s->node[offline_node] = NULL;
  2454. kmem_cache_free(kmalloc_caches, n);
  2455. }
  2456. }
  2457. up_read(&slub_lock);
  2458. }
  2459. static int slab_mem_going_online_callback(void *arg)
  2460. {
  2461. struct kmem_cache_node *n;
  2462. struct kmem_cache *s;
  2463. struct memory_notify *marg = arg;
  2464. int nid = marg->status_change_nid;
  2465. int ret = 0;
  2466. /*
  2467. * If the node's memory is already available, then kmem_cache_node is
  2468. * already created. Nothing to do.
  2469. */
  2470. if (nid < 0)
  2471. return 0;
  2472. /*
  2473. * We are bringing a node online. No memory is available yet. We must
  2474. * allocate a kmem_cache_node structure in order to bring the node
  2475. * online.
  2476. */
  2477. down_read(&slub_lock);
  2478. list_for_each_entry(s, &slab_caches, list) {
  2479. /*
  2480. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2481. * since memory is not yet available from the node that
  2482. * is brought up.
  2483. */
  2484. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2485. if (!n) {
  2486. ret = -ENOMEM;
  2487. goto out;
  2488. }
  2489. init_kmem_cache_node(n);
  2490. s->node[nid] = n;
  2491. }
  2492. out:
  2493. up_read(&slub_lock);
  2494. return ret;
  2495. }
  2496. static int slab_memory_callback(struct notifier_block *self,
  2497. unsigned long action, void *arg)
  2498. {
  2499. int ret = 0;
  2500. switch (action) {
  2501. case MEM_GOING_ONLINE:
  2502. ret = slab_mem_going_online_callback(arg);
  2503. break;
  2504. case MEM_GOING_OFFLINE:
  2505. ret = slab_mem_going_offline_callback(arg);
  2506. break;
  2507. case MEM_OFFLINE:
  2508. case MEM_CANCEL_ONLINE:
  2509. slab_mem_offline_callback(arg);
  2510. break;
  2511. case MEM_ONLINE:
  2512. case MEM_CANCEL_OFFLINE:
  2513. break;
  2514. }
  2515. ret = notifier_from_errno(ret);
  2516. return ret;
  2517. }
  2518. #endif /* CONFIG_MEMORY_HOTPLUG */
  2519. /********************************************************************
  2520. * Basic setup of slabs
  2521. *******************************************************************/
  2522. void __init kmem_cache_init(void)
  2523. {
  2524. int i;
  2525. int caches = 0;
  2526. init_alloc_cpu();
  2527. #ifdef CONFIG_NUMA
  2528. /*
  2529. * Must first have the slab cache available for the allocations of the
  2530. * struct kmem_cache_node's. There is special bootstrap code in
  2531. * kmem_cache_open for slab_state == DOWN.
  2532. */
  2533. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2534. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2535. kmalloc_caches[0].refcount = -1;
  2536. caches++;
  2537. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2538. #endif
  2539. /* Able to allocate the per node structures */
  2540. slab_state = PARTIAL;
  2541. /* Caches that are not of the two-to-the-power-of size */
  2542. if (KMALLOC_MIN_SIZE <= 64) {
  2543. create_kmalloc_cache(&kmalloc_caches[1],
  2544. "kmalloc-96", 96, GFP_KERNEL);
  2545. caches++;
  2546. }
  2547. if (KMALLOC_MIN_SIZE <= 128) {
  2548. create_kmalloc_cache(&kmalloc_caches[2],
  2549. "kmalloc-192", 192, GFP_KERNEL);
  2550. caches++;
  2551. }
  2552. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2553. create_kmalloc_cache(&kmalloc_caches[i],
  2554. "kmalloc", 1 << i, GFP_KERNEL);
  2555. caches++;
  2556. }
  2557. /*
  2558. * Patch up the size_index table if we have strange large alignment
  2559. * requirements for the kmalloc array. This is only the case for
  2560. * MIPS it seems. The standard arches will not generate any code here.
  2561. *
  2562. * Largest permitted alignment is 256 bytes due to the way we
  2563. * handle the index determination for the smaller caches.
  2564. *
  2565. * Make sure that nothing crazy happens if someone starts tinkering
  2566. * around with ARCH_KMALLOC_MINALIGN
  2567. */
  2568. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2569. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2570. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2571. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2572. slab_state = UP;
  2573. /* Provide the correct kmalloc names now that the caches are up */
  2574. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2575. kmalloc_caches[i]. name =
  2576. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2577. #ifdef CONFIG_SMP
  2578. register_cpu_notifier(&slab_notifier);
  2579. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2580. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2581. #else
  2582. kmem_size = sizeof(struct kmem_cache);
  2583. #endif
  2584. printk(KERN_INFO
  2585. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2586. " CPUs=%d, Nodes=%d\n",
  2587. caches, cache_line_size(),
  2588. slub_min_order, slub_max_order, slub_min_objects,
  2589. nr_cpu_ids, nr_node_ids);
  2590. }
  2591. /*
  2592. * Find a mergeable slab cache
  2593. */
  2594. static int slab_unmergeable(struct kmem_cache *s)
  2595. {
  2596. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2597. return 1;
  2598. if (s->ctor)
  2599. return 1;
  2600. /*
  2601. * We may have set a slab to be unmergeable during bootstrap.
  2602. */
  2603. if (s->refcount < 0)
  2604. return 1;
  2605. return 0;
  2606. }
  2607. static struct kmem_cache *find_mergeable(size_t size,
  2608. size_t align, unsigned long flags, const char *name,
  2609. void (*ctor)(struct kmem_cache *, void *))
  2610. {
  2611. struct kmem_cache *s;
  2612. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2613. return NULL;
  2614. if (ctor)
  2615. return NULL;
  2616. size = ALIGN(size, sizeof(void *));
  2617. align = calculate_alignment(flags, align, size);
  2618. size = ALIGN(size, align);
  2619. flags = kmem_cache_flags(size, flags, name, NULL);
  2620. list_for_each_entry(s, &slab_caches, list) {
  2621. if (slab_unmergeable(s))
  2622. continue;
  2623. if (size > s->size)
  2624. continue;
  2625. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2626. continue;
  2627. /*
  2628. * Check if alignment is compatible.
  2629. * Courtesy of Adrian Drzewiecki
  2630. */
  2631. if ((s->size & ~(align - 1)) != s->size)
  2632. continue;
  2633. if (s->size - size >= sizeof(void *))
  2634. continue;
  2635. return s;
  2636. }
  2637. return NULL;
  2638. }
  2639. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2640. size_t align, unsigned long flags,
  2641. void (*ctor)(struct kmem_cache *, void *))
  2642. {
  2643. struct kmem_cache *s;
  2644. down_write(&slub_lock);
  2645. s = find_mergeable(size, align, flags, name, ctor);
  2646. if (s) {
  2647. int cpu;
  2648. s->refcount++;
  2649. /*
  2650. * Adjust the object sizes so that we clear
  2651. * the complete object on kzalloc.
  2652. */
  2653. s->objsize = max(s->objsize, (int)size);
  2654. /*
  2655. * And then we need to update the object size in the
  2656. * per cpu structures
  2657. */
  2658. for_each_online_cpu(cpu)
  2659. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2660. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2661. up_write(&slub_lock);
  2662. if (sysfs_slab_alias(s, name))
  2663. goto err;
  2664. return s;
  2665. }
  2666. s = kmalloc(kmem_size, GFP_KERNEL);
  2667. if (s) {
  2668. if (kmem_cache_open(s, GFP_KERNEL, name,
  2669. size, align, flags, ctor)) {
  2670. list_add(&s->list, &slab_caches);
  2671. up_write(&slub_lock);
  2672. if (sysfs_slab_add(s))
  2673. goto err;
  2674. return s;
  2675. }
  2676. kfree(s);
  2677. }
  2678. up_write(&slub_lock);
  2679. err:
  2680. if (flags & SLAB_PANIC)
  2681. panic("Cannot create slabcache %s\n", name);
  2682. else
  2683. s = NULL;
  2684. return s;
  2685. }
  2686. EXPORT_SYMBOL(kmem_cache_create);
  2687. #ifdef CONFIG_SMP
  2688. /*
  2689. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2690. * necessary.
  2691. */
  2692. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2693. unsigned long action, void *hcpu)
  2694. {
  2695. long cpu = (long)hcpu;
  2696. struct kmem_cache *s;
  2697. unsigned long flags;
  2698. switch (action) {
  2699. case CPU_UP_PREPARE:
  2700. case CPU_UP_PREPARE_FROZEN:
  2701. init_alloc_cpu_cpu(cpu);
  2702. down_read(&slub_lock);
  2703. list_for_each_entry(s, &slab_caches, list)
  2704. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2705. GFP_KERNEL);
  2706. up_read(&slub_lock);
  2707. break;
  2708. case CPU_UP_CANCELED:
  2709. case CPU_UP_CANCELED_FROZEN:
  2710. case CPU_DEAD:
  2711. case CPU_DEAD_FROZEN:
  2712. down_read(&slub_lock);
  2713. list_for_each_entry(s, &slab_caches, list) {
  2714. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2715. local_irq_save(flags);
  2716. __flush_cpu_slab(s, cpu);
  2717. local_irq_restore(flags);
  2718. free_kmem_cache_cpu(c, cpu);
  2719. s->cpu_slab[cpu] = NULL;
  2720. }
  2721. up_read(&slub_lock);
  2722. break;
  2723. default:
  2724. break;
  2725. }
  2726. return NOTIFY_OK;
  2727. }
  2728. static struct notifier_block __cpuinitdata slab_notifier = {
  2729. .notifier_call = slab_cpuup_callback
  2730. };
  2731. #endif
  2732. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2733. {
  2734. struct kmem_cache *s;
  2735. if (unlikely(size > PAGE_SIZE))
  2736. return kmalloc_large(size, gfpflags);
  2737. s = get_slab(size, gfpflags);
  2738. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2739. return s;
  2740. return slab_alloc(s, gfpflags, -1, caller);
  2741. }
  2742. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2743. int node, void *caller)
  2744. {
  2745. struct kmem_cache *s;
  2746. if (unlikely(size > PAGE_SIZE))
  2747. return kmalloc_large_node(size, gfpflags, node);
  2748. s = get_slab(size, gfpflags);
  2749. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2750. return s;
  2751. return slab_alloc(s, gfpflags, node, caller);
  2752. }
  2753. #ifdef CONFIG_SLUB_DEBUG
  2754. static unsigned long count_partial(struct kmem_cache_node *n,
  2755. int (*get_count)(struct page *))
  2756. {
  2757. unsigned long flags;
  2758. unsigned long x = 0;
  2759. struct page *page;
  2760. spin_lock_irqsave(&n->list_lock, flags);
  2761. list_for_each_entry(page, &n->partial, lru)
  2762. x += get_count(page);
  2763. spin_unlock_irqrestore(&n->list_lock, flags);
  2764. return x;
  2765. }
  2766. static int count_inuse(struct page *page)
  2767. {
  2768. return page->inuse;
  2769. }
  2770. static int count_total(struct page *page)
  2771. {
  2772. return page->objects;
  2773. }
  2774. static int count_free(struct page *page)
  2775. {
  2776. return page->objects - page->inuse;
  2777. }
  2778. static int validate_slab(struct kmem_cache *s, struct page *page,
  2779. unsigned long *map)
  2780. {
  2781. void *p;
  2782. void *addr = page_address(page);
  2783. if (!check_slab(s, page) ||
  2784. !on_freelist(s, page, NULL))
  2785. return 0;
  2786. /* Now we know that a valid freelist exists */
  2787. bitmap_zero(map, page->objects);
  2788. for_each_free_object(p, s, page->freelist) {
  2789. set_bit(slab_index(p, s, addr), map);
  2790. if (!check_object(s, page, p, 0))
  2791. return 0;
  2792. }
  2793. for_each_object(p, s, addr, page->objects)
  2794. if (!test_bit(slab_index(p, s, addr), map))
  2795. if (!check_object(s, page, p, 1))
  2796. return 0;
  2797. return 1;
  2798. }
  2799. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2800. unsigned long *map)
  2801. {
  2802. if (slab_trylock(page)) {
  2803. validate_slab(s, page, map);
  2804. slab_unlock(page);
  2805. } else
  2806. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2807. s->name, page);
  2808. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2809. if (!SlabDebug(page))
  2810. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2811. "on slab 0x%p\n", s->name, page);
  2812. } else {
  2813. if (SlabDebug(page))
  2814. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2815. "slab 0x%p\n", s->name, page);
  2816. }
  2817. }
  2818. static int validate_slab_node(struct kmem_cache *s,
  2819. struct kmem_cache_node *n, unsigned long *map)
  2820. {
  2821. unsigned long count = 0;
  2822. struct page *page;
  2823. unsigned long flags;
  2824. spin_lock_irqsave(&n->list_lock, flags);
  2825. list_for_each_entry(page, &n->partial, lru) {
  2826. validate_slab_slab(s, page, map);
  2827. count++;
  2828. }
  2829. if (count != n->nr_partial)
  2830. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2831. "counter=%ld\n", s->name, count, n->nr_partial);
  2832. if (!(s->flags & SLAB_STORE_USER))
  2833. goto out;
  2834. list_for_each_entry(page, &n->full, lru) {
  2835. validate_slab_slab(s, page, map);
  2836. count++;
  2837. }
  2838. if (count != atomic_long_read(&n->nr_slabs))
  2839. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2840. "counter=%ld\n", s->name, count,
  2841. atomic_long_read(&n->nr_slabs));
  2842. out:
  2843. spin_unlock_irqrestore(&n->list_lock, flags);
  2844. return count;
  2845. }
  2846. static long validate_slab_cache(struct kmem_cache *s)
  2847. {
  2848. int node;
  2849. unsigned long count = 0;
  2850. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2851. sizeof(unsigned long), GFP_KERNEL);
  2852. if (!map)
  2853. return -ENOMEM;
  2854. flush_all(s);
  2855. for_each_node_state(node, N_NORMAL_MEMORY) {
  2856. struct kmem_cache_node *n = get_node(s, node);
  2857. count += validate_slab_node(s, n, map);
  2858. }
  2859. kfree(map);
  2860. return count;
  2861. }
  2862. #ifdef SLUB_RESILIENCY_TEST
  2863. static void resiliency_test(void)
  2864. {
  2865. u8 *p;
  2866. printk(KERN_ERR "SLUB resiliency testing\n");
  2867. printk(KERN_ERR "-----------------------\n");
  2868. printk(KERN_ERR "A. Corruption after allocation\n");
  2869. p = kzalloc(16, GFP_KERNEL);
  2870. p[16] = 0x12;
  2871. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2872. " 0x12->0x%p\n\n", p + 16);
  2873. validate_slab_cache(kmalloc_caches + 4);
  2874. /* Hmmm... The next two are dangerous */
  2875. p = kzalloc(32, GFP_KERNEL);
  2876. p[32 + sizeof(void *)] = 0x34;
  2877. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2878. " 0x34 -> -0x%p\n", p);
  2879. printk(KERN_ERR
  2880. "If allocated object is overwritten then not detectable\n\n");
  2881. validate_slab_cache(kmalloc_caches + 5);
  2882. p = kzalloc(64, GFP_KERNEL);
  2883. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2884. *p = 0x56;
  2885. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2886. p);
  2887. printk(KERN_ERR
  2888. "If allocated object is overwritten then not detectable\n\n");
  2889. validate_slab_cache(kmalloc_caches + 6);
  2890. printk(KERN_ERR "\nB. Corruption after free\n");
  2891. p = kzalloc(128, GFP_KERNEL);
  2892. kfree(p);
  2893. *p = 0x78;
  2894. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2895. validate_slab_cache(kmalloc_caches + 7);
  2896. p = kzalloc(256, GFP_KERNEL);
  2897. kfree(p);
  2898. p[50] = 0x9a;
  2899. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2900. p);
  2901. validate_slab_cache(kmalloc_caches + 8);
  2902. p = kzalloc(512, GFP_KERNEL);
  2903. kfree(p);
  2904. p[512] = 0xab;
  2905. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2906. validate_slab_cache(kmalloc_caches + 9);
  2907. }
  2908. #else
  2909. static void resiliency_test(void) {};
  2910. #endif
  2911. /*
  2912. * Generate lists of code addresses where slabcache objects are allocated
  2913. * and freed.
  2914. */
  2915. struct location {
  2916. unsigned long count;
  2917. void *addr;
  2918. long long sum_time;
  2919. long min_time;
  2920. long max_time;
  2921. long min_pid;
  2922. long max_pid;
  2923. cpumask_t cpus;
  2924. nodemask_t nodes;
  2925. };
  2926. struct loc_track {
  2927. unsigned long max;
  2928. unsigned long count;
  2929. struct location *loc;
  2930. };
  2931. static void free_loc_track(struct loc_track *t)
  2932. {
  2933. if (t->max)
  2934. free_pages((unsigned long)t->loc,
  2935. get_order(sizeof(struct location) * t->max));
  2936. }
  2937. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2938. {
  2939. struct location *l;
  2940. int order;
  2941. order = get_order(sizeof(struct location) * max);
  2942. l = (void *)__get_free_pages(flags, order);
  2943. if (!l)
  2944. return 0;
  2945. if (t->count) {
  2946. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2947. free_loc_track(t);
  2948. }
  2949. t->max = max;
  2950. t->loc = l;
  2951. return 1;
  2952. }
  2953. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2954. const struct track *track)
  2955. {
  2956. long start, end, pos;
  2957. struct location *l;
  2958. void *caddr;
  2959. unsigned long age = jiffies - track->when;
  2960. start = -1;
  2961. end = t->count;
  2962. for ( ; ; ) {
  2963. pos = start + (end - start + 1) / 2;
  2964. /*
  2965. * There is nothing at "end". If we end up there
  2966. * we need to add something to before end.
  2967. */
  2968. if (pos == end)
  2969. break;
  2970. caddr = t->loc[pos].addr;
  2971. if (track->addr == caddr) {
  2972. l = &t->loc[pos];
  2973. l->count++;
  2974. if (track->when) {
  2975. l->sum_time += age;
  2976. if (age < l->min_time)
  2977. l->min_time = age;
  2978. if (age > l->max_time)
  2979. l->max_time = age;
  2980. if (track->pid < l->min_pid)
  2981. l->min_pid = track->pid;
  2982. if (track->pid > l->max_pid)
  2983. l->max_pid = track->pid;
  2984. cpu_set(track->cpu, l->cpus);
  2985. }
  2986. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2987. return 1;
  2988. }
  2989. if (track->addr < caddr)
  2990. end = pos;
  2991. else
  2992. start = pos;
  2993. }
  2994. /*
  2995. * Not found. Insert new tracking element.
  2996. */
  2997. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2998. return 0;
  2999. l = t->loc + pos;
  3000. if (pos < t->count)
  3001. memmove(l + 1, l,
  3002. (t->count - pos) * sizeof(struct location));
  3003. t->count++;
  3004. l->count = 1;
  3005. l->addr = track->addr;
  3006. l->sum_time = age;
  3007. l->min_time = age;
  3008. l->max_time = age;
  3009. l->min_pid = track->pid;
  3010. l->max_pid = track->pid;
  3011. cpus_clear(l->cpus);
  3012. cpu_set(track->cpu, l->cpus);
  3013. nodes_clear(l->nodes);
  3014. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3015. return 1;
  3016. }
  3017. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3018. struct page *page, enum track_item alloc)
  3019. {
  3020. void *addr = page_address(page);
  3021. DECLARE_BITMAP(map, page->objects);
  3022. void *p;
  3023. bitmap_zero(map, page->objects);
  3024. for_each_free_object(p, s, page->freelist)
  3025. set_bit(slab_index(p, s, addr), map);
  3026. for_each_object(p, s, addr, page->objects)
  3027. if (!test_bit(slab_index(p, s, addr), map))
  3028. add_location(t, s, get_track(s, p, alloc));
  3029. }
  3030. static int list_locations(struct kmem_cache *s, char *buf,
  3031. enum track_item alloc)
  3032. {
  3033. int len = 0;
  3034. unsigned long i;
  3035. struct loc_track t = { 0, 0, NULL };
  3036. int node;
  3037. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3038. GFP_TEMPORARY))
  3039. return sprintf(buf, "Out of memory\n");
  3040. /* Push back cpu slabs */
  3041. flush_all(s);
  3042. for_each_node_state(node, N_NORMAL_MEMORY) {
  3043. struct kmem_cache_node *n = get_node(s, node);
  3044. unsigned long flags;
  3045. struct page *page;
  3046. if (!atomic_long_read(&n->nr_slabs))
  3047. continue;
  3048. spin_lock_irqsave(&n->list_lock, flags);
  3049. list_for_each_entry(page, &n->partial, lru)
  3050. process_slab(&t, s, page, alloc);
  3051. list_for_each_entry(page, &n->full, lru)
  3052. process_slab(&t, s, page, alloc);
  3053. spin_unlock_irqrestore(&n->list_lock, flags);
  3054. }
  3055. for (i = 0; i < t.count; i++) {
  3056. struct location *l = &t.loc[i];
  3057. if (len > PAGE_SIZE - 100)
  3058. break;
  3059. len += sprintf(buf + len, "%7ld ", l->count);
  3060. if (l->addr)
  3061. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3062. else
  3063. len += sprintf(buf + len, "<not-available>");
  3064. if (l->sum_time != l->min_time) {
  3065. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3066. l->min_time,
  3067. (long)div_u64(l->sum_time, l->count),
  3068. l->max_time);
  3069. } else
  3070. len += sprintf(buf + len, " age=%ld",
  3071. l->min_time);
  3072. if (l->min_pid != l->max_pid)
  3073. len += sprintf(buf + len, " pid=%ld-%ld",
  3074. l->min_pid, l->max_pid);
  3075. else
  3076. len += sprintf(buf + len, " pid=%ld",
  3077. l->min_pid);
  3078. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  3079. len < PAGE_SIZE - 60) {
  3080. len += sprintf(buf + len, " cpus=");
  3081. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3082. l->cpus);
  3083. }
  3084. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3085. len < PAGE_SIZE - 60) {
  3086. len += sprintf(buf + len, " nodes=");
  3087. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3088. l->nodes);
  3089. }
  3090. len += sprintf(buf + len, "\n");
  3091. }
  3092. free_loc_track(&t);
  3093. if (!t.count)
  3094. len += sprintf(buf, "No data\n");
  3095. return len;
  3096. }
  3097. enum slab_stat_type {
  3098. SL_ALL, /* All slabs */
  3099. SL_PARTIAL, /* Only partially allocated slabs */
  3100. SL_CPU, /* Only slabs used for cpu caches */
  3101. SL_OBJECTS, /* Determine allocated objects not slabs */
  3102. SL_TOTAL /* Determine object capacity not slabs */
  3103. };
  3104. #define SO_ALL (1 << SL_ALL)
  3105. #define SO_PARTIAL (1 << SL_PARTIAL)
  3106. #define SO_CPU (1 << SL_CPU)
  3107. #define SO_OBJECTS (1 << SL_OBJECTS)
  3108. #define SO_TOTAL (1 << SL_TOTAL)
  3109. static ssize_t show_slab_objects(struct kmem_cache *s,
  3110. char *buf, unsigned long flags)
  3111. {
  3112. unsigned long total = 0;
  3113. int node;
  3114. int x;
  3115. unsigned long *nodes;
  3116. unsigned long *per_cpu;
  3117. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3118. if (!nodes)
  3119. return -ENOMEM;
  3120. per_cpu = nodes + nr_node_ids;
  3121. if (flags & SO_CPU) {
  3122. int cpu;
  3123. for_each_possible_cpu(cpu) {
  3124. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3125. if (!c || c->node < 0)
  3126. continue;
  3127. if (c->page) {
  3128. if (flags & SO_TOTAL)
  3129. x = c->page->objects;
  3130. else if (flags & SO_OBJECTS)
  3131. x = c->page->inuse;
  3132. else
  3133. x = 1;
  3134. total += x;
  3135. nodes[c->node] += x;
  3136. }
  3137. per_cpu[c->node]++;
  3138. }
  3139. }
  3140. if (flags & SO_ALL) {
  3141. for_each_node_state(node, N_NORMAL_MEMORY) {
  3142. struct kmem_cache_node *n = get_node(s, node);
  3143. if (flags & SO_TOTAL)
  3144. x = atomic_long_read(&n->total_objects);
  3145. else if (flags & SO_OBJECTS)
  3146. x = atomic_long_read(&n->total_objects) -
  3147. count_partial(n, count_free);
  3148. else
  3149. x = atomic_long_read(&n->nr_slabs);
  3150. total += x;
  3151. nodes[node] += x;
  3152. }
  3153. } else if (flags & SO_PARTIAL) {
  3154. for_each_node_state(node, N_NORMAL_MEMORY) {
  3155. struct kmem_cache_node *n = get_node(s, node);
  3156. if (flags & SO_TOTAL)
  3157. x = count_partial(n, count_total);
  3158. else if (flags & SO_OBJECTS)
  3159. x = count_partial(n, count_inuse);
  3160. else
  3161. x = n->nr_partial;
  3162. total += x;
  3163. nodes[node] += x;
  3164. }
  3165. }
  3166. x = sprintf(buf, "%lu", total);
  3167. #ifdef CONFIG_NUMA
  3168. for_each_node_state(node, N_NORMAL_MEMORY)
  3169. if (nodes[node])
  3170. x += sprintf(buf + x, " N%d=%lu",
  3171. node, nodes[node]);
  3172. #endif
  3173. kfree(nodes);
  3174. return x + sprintf(buf + x, "\n");
  3175. }
  3176. static int any_slab_objects(struct kmem_cache *s)
  3177. {
  3178. int node;
  3179. for_each_online_node(node) {
  3180. struct kmem_cache_node *n = get_node(s, node);
  3181. if (!n)
  3182. continue;
  3183. if (atomic_long_read(&n->total_objects))
  3184. return 1;
  3185. }
  3186. return 0;
  3187. }
  3188. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3189. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3190. struct slab_attribute {
  3191. struct attribute attr;
  3192. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3193. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3194. };
  3195. #define SLAB_ATTR_RO(_name) \
  3196. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3197. #define SLAB_ATTR(_name) \
  3198. static struct slab_attribute _name##_attr = \
  3199. __ATTR(_name, 0644, _name##_show, _name##_store)
  3200. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3201. {
  3202. return sprintf(buf, "%d\n", s->size);
  3203. }
  3204. SLAB_ATTR_RO(slab_size);
  3205. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3206. {
  3207. return sprintf(buf, "%d\n", s->align);
  3208. }
  3209. SLAB_ATTR_RO(align);
  3210. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3211. {
  3212. return sprintf(buf, "%d\n", s->objsize);
  3213. }
  3214. SLAB_ATTR_RO(object_size);
  3215. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3216. {
  3217. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3218. }
  3219. SLAB_ATTR_RO(objs_per_slab);
  3220. static ssize_t order_store(struct kmem_cache *s,
  3221. const char *buf, size_t length)
  3222. {
  3223. unsigned long order;
  3224. int err;
  3225. err = strict_strtoul(buf, 10, &order);
  3226. if (err)
  3227. return err;
  3228. if (order > slub_max_order || order < slub_min_order)
  3229. return -EINVAL;
  3230. calculate_sizes(s, order);
  3231. return length;
  3232. }
  3233. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3234. {
  3235. return sprintf(buf, "%d\n", oo_order(s->oo));
  3236. }
  3237. SLAB_ATTR(order);
  3238. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3239. {
  3240. if (s->ctor) {
  3241. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3242. return n + sprintf(buf + n, "\n");
  3243. }
  3244. return 0;
  3245. }
  3246. SLAB_ATTR_RO(ctor);
  3247. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3248. {
  3249. return sprintf(buf, "%d\n", s->refcount - 1);
  3250. }
  3251. SLAB_ATTR_RO(aliases);
  3252. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3253. {
  3254. return show_slab_objects(s, buf, SO_ALL);
  3255. }
  3256. SLAB_ATTR_RO(slabs);
  3257. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3258. {
  3259. return show_slab_objects(s, buf, SO_PARTIAL);
  3260. }
  3261. SLAB_ATTR_RO(partial);
  3262. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3263. {
  3264. return show_slab_objects(s, buf, SO_CPU);
  3265. }
  3266. SLAB_ATTR_RO(cpu_slabs);
  3267. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3268. {
  3269. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3270. }
  3271. SLAB_ATTR_RO(objects);
  3272. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3273. {
  3274. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3275. }
  3276. SLAB_ATTR_RO(objects_partial);
  3277. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3278. {
  3279. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3280. }
  3281. SLAB_ATTR_RO(total_objects);
  3282. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3283. {
  3284. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3285. }
  3286. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3287. const char *buf, size_t length)
  3288. {
  3289. s->flags &= ~SLAB_DEBUG_FREE;
  3290. if (buf[0] == '1')
  3291. s->flags |= SLAB_DEBUG_FREE;
  3292. return length;
  3293. }
  3294. SLAB_ATTR(sanity_checks);
  3295. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3296. {
  3297. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3298. }
  3299. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3300. size_t length)
  3301. {
  3302. s->flags &= ~SLAB_TRACE;
  3303. if (buf[0] == '1')
  3304. s->flags |= SLAB_TRACE;
  3305. return length;
  3306. }
  3307. SLAB_ATTR(trace);
  3308. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3309. {
  3310. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3311. }
  3312. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3313. const char *buf, size_t length)
  3314. {
  3315. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3316. if (buf[0] == '1')
  3317. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3318. return length;
  3319. }
  3320. SLAB_ATTR(reclaim_account);
  3321. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3322. {
  3323. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3324. }
  3325. SLAB_ATTR_RO(hwcache_align);
  3326. #ifdef CONFIG_ZONE_DMA
  3327. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3328. {
  3329. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3330. }
  3331. SLAB_ATTR_RO(cache_dma);
  3332. #endif
  3333. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3334. {
  3335. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3336. }
  3337. SLAB_ATTR_RO(destroy_by_rcu);
  3338. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3339. {
  3340. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3341. }
  3342. static ssize_t red_zone_store(struct kmem_cache *s,
  3343. const char *buf, size_t length)
  3344. {
  3345. if (any_slab_objects(s))
  3346. return -EBUSY;
  3347. s->flags &= ~SLAB_RED_ZONE;
  3348. if (buf[0] == '1')
  3349. s->flags |= SLAB_RED_ZONE;
  3350. calculate_sizes(s, -1);
  3351. return length;
  3352. }
  3353. SLAB_ATTR(red_zone);
  3354. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3355. {
  3356. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3357. }
  3358. static ssize_t poison_store(struct kmem_cache *s,
  3359. const char *buf, size_t length)
  3360. {
  3361. if (any_slab_objects(s))
  3362. return -EBUSY;
  3363. s->flags &= ~SLAB_POISON;
  3364. if (buf[0] == '1')
  3365. s->flags |= SLAB_POISON;
  3366. calculate_sizes(s, -1);
  3367. return length;
  3368. }
  3369. SLAB_ATTR(poison);
  3370. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3371. {
  3372. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3373. }
  3374. static ssize_t store_user_store(struct kmem_cache *s,
  3375. const char *buf, size_t length)
  3376. {
  3377. if (any_slab_objects(s))
  3378. return -EBUSY;
  3379. s->flags &= ~SLAB_STORE_USER;
  3380. if (buf[0] == '1')
  3381. s->flags |= SLAB_STORE_USER;
  3382. calculate_sizes(s, -1);
  3383. return length;
  3384. }
  3385. SLAB_ATTR(store_user);
  3386. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3387. {
  3388. return 0;
  3389. }
  3390. static ssize_t validate_store(struct kmem_cache *s,
  3391. const char *buf, size_t length)
  3392. {
  3393. int ret = -EINVAL;
  3394. if (buf[0] == '1') {
  3395. ret = validate_slab_cache(s);
  3396. if (ret >= 0)
  3397. ret = length;
  3398. }
  3399. return ret;
  3400. }
  3401. SLAB_ATTR(validate);
  3402. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3403. {
  3404. return 0;
  3405. }
  3406. static ssize_t shrink_store(struct kmem_cache *s,
  3407. const char *buf, size_t length)
  3408. {
  3409. if (buf[0] == '1') {
  3410. int rc = kmem_cache_shrink(s);
  3411. if (rc)
  3412. return rc;
  3413. } else
  3414. return -EINVAL;
  3415. return length;
  3416. }
  3417. SLAB_ATTR(shrink);
  3418. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3419. {
  3420. if (!(s->flags & SLAB_STORE_USER))
  3421. return -ENOSYS;
  3422. return list_locations(s, buf, TRACK_ALLOC);
  3423. }
  3424. SLAB_ATTR_RO(alloc_calls);
  3425. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3426. {
  3427. if (!(s->flags & SLAB_STORE_USER))
  3428. return -ENOSYS;
  3429. return list_locations(s, buf, TRACK_FREE);
  3430. }
  3431. SLAB_ATTR_RO(free_calls);
  3432. #ifdef CONFIG_NUMA
  3433. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3434. {
  3435. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3436. }
  3437. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3438. const char *buf, size_t length)
  3439. {
  3440. unsigned long ratio;
  3441. int err;
  3442. err = strict_strtoul(buf, 10, &ratio);
  3443. if (err)
  3444. return err;
  3445. if (ratio < 100)
  3446. s->remote_node_defrag_ratio = ratio * 10;
  3447. return length;
  3448. }
  3449. SLAB_ATTR(remote_node_defrag_ratio);
  3450. #endif
  3451. #ifdef CONFIG_SLUB_STATS
  3452. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3453. {
  3454. unsigned long sum = 0;
  3455. int cpu;
  3456. int len;
  3457. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3458. if (!data)
  3459. return -ENOMEM;
  3460. for_each_online_cpu(cpu) {
  3461. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3462. data[cpu] = x;
  3463. sum += x;
  3464. }
  3465. len = sprintf(buf, "%lu", sum);
  3466. #ifdef CONFIG_SMP
  3467. for_each_online_cpu(cpu) {
  3468. if (data[cpu] && len < PAGE_SIZE - 20)
  3469. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3470. }
  3471. #endif
  3472. kfree(data);
  3473. return len + sprintf(buf + len, "\n");
  3474. }
  3475. #define STAT_ATTR(si, text) \
  3476. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3477. { \
  3478. return show_stat(s, buf, si); \
  3479. } \
  3480. SLAB_ATTR_RO(text); \
  3481. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3482. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3483. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3484. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3485. STAT_ATTR(FREE_FROZEN, free_frozen);
  3486. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3487. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3488. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3489. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3490. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3491. STAT_ATTR(FREE_SLAB, free_slab);
  3492. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3493. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3494. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3495. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3496. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3497. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3498. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3499. #endif
  3500. static struct attribute *slab_attrs[] = {
  3501. &slab_size_attr.attr,
  3502. &object_size_attr.attr,
  3503. &objs_per_slab_attr.attr,
  3504. &order_attr.attr,
  3505. &objects_attr.attr,
  3506. &objects_partial_attr.attr,
  3507. &total_objects_attr.attr,
  3508. &slabs_attr.attr,
  3509. &partial_attr.attr,
  3510. &cpu_slabs_attr.attr,
  3511. &ctor_attr.attr,
  3512. &aliases_attr.attr,
  3513. &align_attr.attr,
  3514. &sanity_checks_attr.attr,
  3515. &trace_attr.attr,
  3516. &hwcache_align_attr.attr,
  3517. &reclaim_account_attr.attr,
  3518. &destroy_by_rcu_attr.attr,
  3519. &red_zone_attr.attr,
  3520. &poison_attr.attr,
  3521. &store_user_attr.attr,
  3522. &validate_attr.attr,
  3523. &shrink_attr.attr,
  3524. &alloc_calls_attr.attr,
  3525. &free_calls_attr.attr,
  3526. #ifdef CONFIG_ZONE_DMA
  3527. &cache_dma_attr.attr,
  3528. #endif
  3529. #ifdef CONFIG_NUMA
  3530. &remote_node_defrag_ratio_attr.attr,
  3531. #endif
  3532. #ifdef CONFIG_SLUB_STATS
  3533. &alloc_fastpath_attr.attr,
  3534. &alloc_slowpath_attr.attr,
  3535. &free_fastpath_attr.attr,
  3536. &free_slowpath_attr.attr,
  3537. &free_frozen_attr.attr,
  3538. &free_add_partial_attr.attr,
  3539. &free_remove_partial_attr.attr,
  3540. &alloc_from_partial_attr.attr,
  3541. &alloc_slab_attr.attr,
  3542. &alloc_refill_attr.attr,
  3543. &free_slab_attr.attr,
  3544. &cpuslab_flush_attr.attr,
  3545. &deactivate_full_attr.attr,
  3546. &deactivate_empty_attr.attr,
  3547. &deactivate_to_head_attr.attr,
  3548. &deactivate_to_tail_attr.attr,
  3549. &deactivate_remote_frees_attr.attr,
  3550. &order_fallback_attr.attr,
  3551. #endif
  3552. NULL
  3553. };
  3554. static struct attribute_group slab_attr_group = {
  3555. .attrs = slab_attrs,
  3556. };
  3557. static ssize_t slab_attr_show(struct kobject *kobj,
  3558. struct attribute *attr,
  3559. char *buf)
  3560. {
  3561. struct slab_attribute *attribute;
  3562. struct kmem_cache *s;
  3563. int err;
  3564. attribute = to_slab_attr(attr);
  3565. s = to_slab(kobj);
  3566. if (!attribute->show)
  3567. return -EIO;
  3568. err = attribute->show(s, buf);
  3569. return err;
  3570. }
  3571. static ssize_t slab_attr_store(struct kobject *kobj,
  3572. struct attribute *attr,
  3573. const char *buf, size_t len)
  3574. {
  3575. struct slab_attribute *attribute;
  3576. struct kmem_cache *s;
  3577. int err;
  3578. attribute = to_slab_attr(attr);
  3579. s = to_slab(kobj);
  3580. if (!attribute->store)
  3581. return -EIO;
  3582. err = attribute->store(s, buf, len);
  3583. return err;
  3584. }
  3585. static void kmem_cache_release(struct kobject *kobj)
  3586. {
  3587. struct kmem_cache *s = to_slab(kobj);
  3588. kfree(s);
  3589. }
  3590. static struct sysfs_ops slab_sysfs_ops = {
  3591. .show = slab_attr_show,
  3592. .store = slab_attr_store,
  3593. };
  3594. static struct kobj_type slab_ktype = {
  3595. .sysfs_ops = &slab_sysfs_ops,
  3596. .release = kmem_cache_release
  3597. };
  3598. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3599. {
  3600. struct kobj_type *ktype = get_ktype(kobj);
  3601. if (ktype == &slab_ktype)
  3602. return 1;
  3603. return 0;
  3604. }
  3605. static struct kset_uevent_ops slab_uevent_ops = {
  3606. .filter = uevent_filter,
  3607. };
  3608. static struct kset *slab_kset;
  3609. #define ID_STR_LENGTH 64
  3610. /* Create a unique string id for a slab cache:
  3611. *
  3612. * Format :[flags-]size
  3613. */
  3614. static char *create_unique_id(struct kmem_cache *s)
  3615. {
  3616. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3617. char *p = name;
  3618. BUG_ON(!name);
  3619. *p++ = ':';
  3620. /*
  3621. * First flags affecting slabcache operations. We will only
  3622. * get here for aliasable slabs so we do not need to support
  3623. * too many flags. The flags here must cover all flags that
  3624. * are matched during merging to guarantee that the id is
  3625. * unique.
  3626. */
  3627. if (s->flags & SLAB_CACHE_DMA)
  3628. *p++ = 'd';
  3629. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3630. *p++ = 'a';
  3631. if (s->flags & SLAB_DEBUG_FREE)
  3632. *p++ = 'F';
  3633. if (p != name + 1)
  3634. *p++ = '-';
  3635. p += sprintf(p, "%07d", s->size);
  3636. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3637. return name;
  3638. }
  3639. static int sysfs_slab_add(struct kmem_cache *s)
  3640. {
  3641. int err;
  3642. const char *name;
  3643. int unmergeable;
  3644. if (slab_state < SYSFS)
  3645. /* Defer until later */
  3646. return 0;
  3647. unmergeable = slab_unmergeable(s);
  3648. if (unmergeable) {
  3649. /*
  3650. * Slabcache can never be merged so we can use the name proper.
  3651. * This is typically the case for debug situations. In that
  3652. * case we can catch duplicate names easily.
  3653. */
  3654. sysfs_remove_link(&slab_kset->kobj, s->name);
  3655. name = s->name;
  3656. } else {
  3657. /*
  3658. * Create a unique name for the slab as a target
  3659. * for the symlinks.
  3660. */
  3661. name = create_unique_id(s);
  3662. }
  3663. s->kobj.kset = slab_kset;
  3664. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3665. if (err) {
  3666. kobject_put(&s->kobj);
  3667. return err;
  3668. }
  3669. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3670. if (err)
  3671. return err;
  3672. kobject_uevent(&s->kobj, KOBJ_ADD);
  3673. if (!unmergeable) {
  3674. /* Setup first alias */
  3675. sysfs_slab_alias(s, s->name);
  3676. kfree(name);
  3677. }
  3678. return 0;
  3679. }
  3680. static void sysfs_slab_remove(struct kmem_cache *s)
  3681. {
  3682. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3683. kobject_del(&s->kobj);
  3684. kobject_put(&s->kobj);
  3685. }
  3686. /*
  3687. * Need to buffer aliases during bootup until sysfs becomes
  3688. * available lest we loose that information.
  3689. */
  3690. struct saved_alias {
  3691. struct kmem_cache *s;
  3692. const char *name;
  3693. struct saved_alias *next;
  3694. };
  3695. static struct saved_alias *alias_list;
  3696. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3697. {
  3698. struct saved_alias *al;
  3699. if (slab_state == SYSFS) {
  3700. /*
  3701. * If we have a leftover link then remove it.
  3702. */
  3703. sysfs_remove_link(&slab_kset->kobj, name);
  3704. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3705. }
  3706. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3707. if (!al)
  3708. return -ENOMEM;
  3709. al->s = s;
  3710. al->name = name;
  3711. al->next = alias_list;
  3712. alias_list = al;
  3713. return 0;
  3714. }
  3715. static int __init slab_sysfs_init(void)
  3716. {
  3717. struct kmem_cache *s;
  3718. int err;
  3719. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3720. if (!slab_kset) {
  3721. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3722. return -ENOSYS;
  3723. }
  3724. slab_state = SYSFS;
  3725. list_for_each_entry(s, &slab_caches, list) {
  3726. err = sysfs_slab_add(s);
  3727. if (err)
  3728. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3729. " to sysfs\n", s->name);
  3730. }
  3731. while (alias_list) {
  3732. struct saved_alias *al = alias_list;
  3733. alias_list = alias_list->next;
  3734. err = sysfs_slab_alias(al->s, al->name);
  3735. if (err)
  3736. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3737. " %s to sysfs\n", s->name);
  3738. kfree(al);
  3739. }
  3740. resiliency_test();
  3741. return 0;
  3742. }
  3743. __initcall(slab_sysfs_init);
  3744. #endif
  3745. /*
  3746. * The /proc/slabinfo ABI
  3747. */
  3748. #ifdef CONFIG_SLABINFO
  3749. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3750. size_t count, loff_t *ppos)
  3751. {
  3752. return -EINVAL;
  3753. }
  3754. static void print_slabinfo_header(struct seq_file *m)
  3755. {
  3756. seq_puts(m, "slabinfo - version: 2.1\n");
  3757. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3758. "<objperslab> <pagesperslab>");
  3759. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3760. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3761. seq_putc(m, '\n');
  3762. }
  3763. static void *s_start(struct seq_file *m, loff_t *pos)
  3764. {
  3765. loff_t n = *pos;
  3766. down_read(&slub_lock);
  3767. if (!n)
  3768. print_slabinfo_header(m);
  3769. return seq_list_start(&slab_caches, *pos);
  3770. }
  3771. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3772. {
  3773. return seq_list_next(p, &slab_caches, pos);
  3774. }
  3775. static void s_stop(struct seq_file *m, void *p)
  3776. {
  3777. up_read(&slub_lock);
  3778. }
  3779. static int s_show(struct seq_file *m, void *p)
  3780. {
  3781. unsigned long nr_partials = 0;
  3782. unsigned long nr_slabs = 0;
  3783. unsigned long nr_inuse = 0;
  3784. unsigned long nr_objs = 0;
  3785. unsigned long nr_free = 0;
  3786. struct kmem_cache *s;
  3787. int node;
  3788. s = list_entry(p, struct kmem_cache, list);
  3789. for_each_online_node(node) {
  3790. struct kmem_cache_node *n = get_node(s, node);
  3791. if (!n)
  3792. continue;
  3793. nr_partials += n->nr_partial;
  3794. nr_slabs += atomic_long_read(&n->nr_slabs);
  3795. nr_objs += atomic_long_read(&n->total_objects);
  3796. nr_free += count_partial(n, count_free);
  3797. }
  3798. nr_inuse = nr_objs - nr_free;
  3799. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3800. nr_objs, s->size, oo_objects(s->oo),
  3801. (1 << oo_order(s->oo)));
  3802. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3803. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3804. 0UL);
  3805. seq_putc(m, '\n');
  3806. return 0;
  3807. }
  3808. const struct seq_operations slabinfo_op = {
  3809. .start = s_start,
  3810. .next = s_next,
  3811. .stop = s_stop,
  3812. .show = s_show,
  3813. };
  3814. #endif /* CONFIG_SLABINFO */