page-writeback.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 akpm@zip.com.au
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. /*
  37. * The maximum number of pages to writeout in a single bdflush/kupdate
  38. * operation. We do this so we don't hold I_SYNC against an inode for
  39. * enormous amounts of time, which would block a userspace task which has
  40. * been forced to throttle against that inode. Also, the code reevaluates
  41. * the dirty each time it has written this many pages.
  42. */
  43. #define MAX_WRITEBACK_PAGES 1024
  44. /*
  45. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  46. * will look to see if it needs to force writeback or throttling.
  47. */
  48. static long ratelimit_pages = 32;
  49. /*
  50. * When balance_dirty_pages decides that the caller needs to perform some
  51. * non-background writeback, this is how many pages it will attempt to write.
  52. * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  53. * large amounts of I/O are submitted.
  54. */
  55. static inline long sync_writeback_pages(void)
  56. {
  57. return ratelimit_pages + ratelimit_pages / 2;
  58. }
  59. /* The following parameters are exported via /proc/sys/vm */
  60. /*
  61. * Start background writeback (via pdflush) at this percentage
  62. */
  63. int dirty_background_ratio = 5;
  64. /*
  65. * free highmem will not be subtracted from the total free memory
  66. * for calculating free ratios if vm_highmem_is_dirtyable is true
  67. */
  68. int vm_highmem_is_dirtyable;
  69. /*
  70. * The generator of dirty data starts writeback at this percentage
  71. */
  72. int vm_dirty_ratio = 10;
  73. /*
  74. * The interval between `kupdate'-style writebacks, in jiffies
  75. */
  76. int dirty_writeback_interval = 5 * HZ;
  77. /*
  78. * The longest number of jiffies for which data is allowed to remain dirty
  79. */
  80. int dirty_expire_interval = 30 * HZ;
  81. /*
  82. * Flag that makes the machine dump writes/reads and block dirtyings.
  83. */
  84. int block_dump;
  85. /*
  86. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  87. * a full sync is triggered after this time elapses without any disk activity.
  88. */
  89. int laptop_mode;
  90. EXPORT_SYMBOL(laptop_mode);
  91. /* End of sysctl-exported parameters */
  92. static void background_writeout(unsigned long _min_pages);
  93. /*
  94. * Scale the writeback cache size proportional to the relative writeout speeds.
  95. *
  96. * We do this by keeping a floating proportion between BDIs, based on page
  97. * writeback completions [end_page_writeback()]. Those devices that write out
  98. * pages fastest will get the larger share, while the slower will get a smaller
  99. * share.
  100. *
  101. * We use page writeout completions because we are interested in getting rid of
  102. * dirty pages. Having them written out is the primary goal.
  103. *
  104. * We introduce a concept of time, a period over which we measure these events,
  105. * because demand can/will vary over time. The length of this period itself is
  106. * measured in page writeback completions.
  107. *
  108. */
  109. static struct prop_descriptor vm_completions;
  110. static struct prop_descriptor vm_dirties;
  111. static unsigned long determine_dirtyable_memory(void);
  112. /*
  113. * couple the period to the dirty_ratio:
  114. *
  115. * period/2 ~ roundup_pow_of_two(dirty limit)
  116. */
  117. static int calc_period_shift(void)
  118. {
  119. unsigned long dirty_total;
  120. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
  121. return 2 + ilog2(dirty_total - 1);
  122. }
  123. /*
  124. * update the period when the dirty ratio changes.
  125. */
  126. int dirty_ratio_handler(struct ctl_table *table, int write,
  127. struct file *filp, void __user *buffer, size_t *lenp,
  128. loff_t *ppos)
  129. {
  130. int old_ratio = vm_dirty_ratio;
  131. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  132. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  133. int shift = calc_period_shift();
  134. prop_change_shift(&vm_completions, shift);
  135. prop_change_shift(&vm_dirties, shift);
  136. }
  137. return ret;
  138. }
  139. /*
  140. * Increment the BDI's writeout completion count and the global writeout
  141. * completion count. Called from test_clear_page_writeback().
  142. */
  143. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  144. {
  145. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  146. bdi->max_prop_frac);
  147. }
  148. void bdi_writeout_inc(struct backing_dev_info *bdi)
  149. {
  150. unsigned long flags;
  151. local_irq_save(flags);
  152. __bdi_writeout_inc(bdi);
  153. local_irq_restore(flags);
  154. }
  155. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  156. static inline void task_dirty_inc(struct task_struct *tsk)
  157. {
  158. prop_inc_single(&vm_dirties, &tsk->dirties);
  159. }
  160. /*
  161. * Obtain an accurate fraction of the BDI's portion.
  162. */
  163. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  164. long *numerator, long *denominator)
  165. {
  166. if (bdi_cap_writeback_dirty(bdi)) {
  167. prop_fraction_percpu(&vm_completions, &bdi->completions,
  168. numerator, denominator);
  169. } else {
  170. *numerator = 0;
  171. *denominator = 1;
  172. }
  173. }
  174. /*
  175. * Clip the earned share of dirty pages to that which is actually available.
  176. * This avoids exceeding the total dirty_limit when the floating averages
  177. * fluctuate too quickly.
  178. */
  179. static void
  180. clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
  181. {
  182. long avail_dirty;
  183. avail_dirty = dirty -
  184. (global_page_state(NR_FILE_DIRTY) +
  185. global_page_state(NR_WRITEBACK) +
  186. global_page_state(NR_UNSTABLE_NFS) +
  187. global_page_state(NR_WRITEBACK_TEMP));
  188. if (avail_dirty < 0)
  189. avail_dirty = 0;
  190. avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
  191. bdi_stat(bdi, BDI_WRITEBACK);
  192. *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
  193. }
  194. static inline void task_dirties_fraction(struct task_struct *tsk,
  195. long *numerator, long *denominator)
  196. {
  197. prop_fraction_single(&vm_dirties, &tsk->dirties,
  198. numerator, denominator);
  199. }
  200. /*
  201. * scale the dirty limit
  202. *
  203. * task specific dirty limit:
  204. *
  205. * dirty -= (dirty/8) * p_{t}
  206. */
  207. static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
  208. {
  209. long numerator, denominator;
  210. long dirty = *pdirty;
  211. u64 inv = dirty >> 3;
  212. task_dirties_fraction(tsk, &numerator, &denominator);
  213. inv *= numerator;
  214. do_div(inv, denominator);
  215. dirty -= inv;
  216. if (dirty < *pdirty/2)
  217. dirty = *pdirty/2;
  218. *pdirty = dirty;
  219. }
  220. /*
  221. *
  222. */
  223. static DEFINE_SPINLOCK(bdi_lock);
  224. static unsigned int bdi_min_ratio;
  225. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  226. {
  227. int ret = 0;
  228. unsigned long flags;
  229. spin_lock_irqsave(&bdi_lock, flags);
  230. if (min_ratio > bdi->max_ratio) {
  231. ret = -EINVAL;
  232. } else {
  233. min_ratio -= bdi->min_ratio;
  234. if (bdi_min_ratio + min_ratio < 100) {
  235. bdi_min_ratio += min_ratio;
  236. bdi->min_ratio += min_ratio;
  237. } else {
  238. ret = -EINVAL;
  239. }
  240. }
  241. spin_unlock_irqrestore(&bdi_lock, flags);
  242. return ret;
  243. }
  244. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  245. {
  246. unsigned long flags;
  247. int ret = 0;
  248. if (max_ratio > 100)
  249. return -EINVAL;
  250. spin_lock_irqsave(&bdi_lock, flags);
  251. if (bdi->min_ratio > max_ratio) {
  252. ret = -EINVAL;
  253. } else {
  254. bdi->max_ratio = max_ratio;
  255. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  256. }
  257. spin_unlock_irqrestore(&bdi_lock, flags);
  258. return ret;
  259. }
  260. EXPORT_SYMBOL(bdi_set_max_ratio);
  261. /*
  262. * Work out the current dirty-memory clamping and background writeout
  263. * thresholds.
  264. *
  265. * The main aim here is to lower them aggressively if there is a lot of mapped
  266. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  267. * pages. It is better to clamp down on writers than to start swapping, and
  268. * performing lots of scanning.
  269. *
  270. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  271. *
  272. * We don't permit the clamping level to fall below 5% - that is getting rather
  273. * excessive.
  274. *
  275. * We make sure that the background writeout level is below the adjusted
  276. * clamping level.
  277. */
  278. static unsigned long highmem_dirtyable_memory(unsigned long total)
  279. {
  280. #ifdef CONFIG_HIGHMEM
  281. int node;
  282. unsigned long x = 0;
  283. for_each_node_state(node, N_HIGH_MEMORY) {
  284. struct zone *z =
  285. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  286. x += zone_page_state(z, NR_FREE_PAGES)
  287. + zone_page_state(z, NR_INACTIVE)
  288. + zone_page_state(z, NR_ACTIVE);
  289. }
  290. /*
  291. * Make sure that the number of highmem pages is never larger
  292. * than the number of the total dirtyable memory. This can only
  293. * occur in very strange VM situations but we want to make sure
  294. * that this does not occur.
  295. */
  296. return min(x, total);
  297. #else
  298. return 0;
  299. #endif
  300. }
  301. static unsigned long determine_dirtyable_memory(void)
  302. {
  303. unsigned long x;
  304. x = global_page_state(NR_FREE_PAGES)
  305. + global_page_state(NR_INACTIVE)
  306. + global_page_state(NR_ACTIVE);
  307. if (!vm_highmem_is_dirtyable)
  308. x -= highmem_dirtyable_memory(x);
  309. return x + 1; /* Ensure that we never return 0 */
  310. }
  311. void
  312. get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
  313. struct backing_dev_info *bdi)
  314. {
  315. int background_ratio; /* Percentages */
  316. int dirty_ratio;
  317. long background;
  318. long dirty;
  319. unsigned long available_memory = determine_dirtyable_memory();
  320. struct task_struct *tsk;
  321. dirty_ratio = vm_dirty_ratio;
  322. if (dirty_ratio < 5)
  323. dirty_ratio = 5;
  324. background_ratio = dirty_background_ratio;
  325. if (background_ratio >= dirty_ratio)
  326. background_ratio = dirty_ratio / 2;
  327. background = (background_ratio * available_memory) / 100;
  328. dirty = (dirty_ratio * available_memory) / 100;
  329. tsk = current;
  330. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  331. background += background / 4;
  332. dirty += dirty / 4;
  333. }
  334. *pbackground = background;
  335. *pdirty = dirty;
  336. if (bdi) {
  337. u64 bdi_dirty;
  338. long numerator, denominator;
  339. /*
  340. * Calculate this BDI's share of the dirty ratio.
  341. */
  342. bdi_writeout_fraction(bdi, &numerator, &denominator);
  343. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  344. bdi_dirty *= numerator;
  345. do_div(bdi_dirty, denominator);
  346. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  347. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  348. bdi_dirty = dirty * bdi->max_ratio / 100;
  349. *pbdi_dirty = bdi_dirty;
  350. clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
  351. task_dirty_limit(current, pbdi_dirty);
  352. }
  353. }
  354. /*
  355. * balance_dirty_pages() must be called by processes which are generating dirty
  356. * data. It looks at the number of dirty pages in the machine and will force
  357. * the caller to perform writeback if the system is over `vm_dirty_ratio'.
  358. * If we're over `background_thresh' then pdflush is woken to perform some
  359. * writeout.
  360. */
  361. static void balance_dirty_pages(struct address_space *mapping)
  362. {
  363. long nr_reclaimable, bdi_nr_reclaimable;
  364. long nr_writeback, bdi_nr_writeback;
  365. long background_thresh;
  366. long dirty_thresh;
  367. long bdi_thresh;
  368. unsigned long pages_written = 0;
  369. unsigned long write_chunk = sync_writeback_pages();
  370. struct backing_dev_info *bdi = mapping->backing_dev_info;
  371. for (;;) {
  372. struct writeback_control wbc = {
  373. .bdi = bdi,
  374. .sync_mode = WB_SYNC_NONE,
  375. .older_than_this = NULL,
  376. .nr_to_write = write_chunk,
  377. .range_cyclic = 1,
  378. };
  379. get_dirty_limits(&background_thresh, &dirty_thresh,
  380. &bdi_thresh, bdi);
  381. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  382. global_page_state(NR_UNSTABLE_NFS);
  383. nr_writeback = global_page_state(NR_WRITEBACK);
  384. bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  385. bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
  386. if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
  387. break;
  388. /*
  389. * Throttle it only when the background writeback cannot
  390. * catch-up. This avoids (excessively) small writeouts
  391. * when the bdi limits are ramping up.
  392. */
  393. if (nr_reclaimable + nr_writeback <
  394. (background_thresh + dirty_thresh) / 2)
  395. break;
  396. if (!bdi->dirty_exceeded)
  397. bdi->dirty_exceeded = 1;
  398. /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
  399. * Unstable writes are a feature of certain networked
  400. * filesystems (i.e. NFS) in which data may have been
  401. * written to the server's write cache, but has not yet
  402. * been flushed to permanent storage.
  403. */
  404. if (bdi_nr_reclaimable) {
  405. writeback_inodes(&wbc);
  406. pages_written += write_chunk - wbc.nr_to_write;
  407. get_dirty_limits(&background_thresh, &dirty_thresh,
  408. &bdi_thresh, bdi);
  409. }
  410. /*
  411. * In order to avoid the stacked BDI deadlock we need
  412. * to ensure we accurately count the 'dirty' pages when
  413. * the threshold is low.
  414. *
  415. * Otherwise it would be possible to get thresh+n pages
  416. * reported dirty, even though there are thresh-m pages
  417. * actually dirty; with m+n sitting in the percpu
  418. * deltas.
  419. */
  420. if (bdi_thresh < 2*bdi_stat_error(bdi)) {
  421. bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  422. bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
  423. } else if (bdi_nr_reclaimable) {
  424. bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  425. bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
  426. }
  427. if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
  428. break;
  429. if (pages_written >= write_chunk)
  430. break; /* We've done our duty */
  431. congestion_wait(WRITE, HZ/10);
  432. }
  433. if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
  434. bdi->dirty_exceeded)
  435. bdi->dirty_exceeded = 0;
  436. if (writeback_in_progress(bdi))
  437. return; /* pdflush is already working this queue */
  438. /*
  439. * In laptop mode, we wait until hitting the higher threshold before
  440. * starting background writeout, and then write out all the way down
  441. * to the lower threshold. So slow writers cause minimal disk activity.
  442. *
  443. * In normal mode, we start background writeout at the lower
  444. * background_thresh, to keep the amount of dirty memory low.
  445. */
  446. if ((laptop_mode && pages_written) ||
  447. (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
  448. + global_page_state(NR_UNSTABLE_NFS)
  449. > background_thresh)))
  450. pdflush_operation(background_writeout, 0);
  451. }
  452. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  453. {
  454. if (set_page_dirty(page) || page_mkwrite) {
  455. struct address_space *mapping = page_mapping(page);
  456. if (mapping)
  457. balance_dirty_pages_ratelimited(mapping);
  458. }
  459. }
  460. /**
  461. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  462. * @mapping: address_space which was dirtied
  463. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  464. *
  465. * Processes which are dirtying memory should call in here once for each page
  466. * which was newly dirtied. The function will periodically check the system's
  467. * dirty state and will initiate writeback if needed.
  468. *
  469. * On really big machines, get_writeback_state is expensive, so try to avoid
  470. * calling it too often (ratelimiting). But once we're over the dirty memory
  471. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  472. * from overshooting the limit by (ratelimit_pages) each.
  473. */
  474. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  475. unsigned long nr_pages_dirtied)
  476. {
  477. static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
  478. unsigned long ratelimit;
  479. unsigned long *p;
  480. ratelimit = ratelimit_pages;
  481. if (mapping->backing_dev_info->dirty_exceeded)
  482. ratelimit = 8;
  483. /*
  484. * Check the rate limiting. Also, we do not want to throttle real-time
  485. * tasks in balance_dirty_pages(). Period.
  486. */
  487. preempt_disable();
  488. p = &__get_cpu_var(ratelimits);
  489. *p += nr_pages_dirtied;
  490. if (unlikely(*p >= ratelimit)) {
  491. *p = 0;
  492. preempt_enable();
  493. balance_dirty_pages(mapping);
  494. return;
  495. }
  496. preempt_enable();
  497. }
  498. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  499. void throttle_vm_writeout(gfp_t gfp_mask)
  500. {
  501. long background_thresh;
  502. long dirty_thresh;
  503. for ( ; ; ) {
  504. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  505. /*
  506. * Boost the allowable dirty threshold a bit for page
  507. * allocators so they don't get DoS'ed by heavy writers
  508. */
  509. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  510. if (global_page_state(NR_UNSTABLE_NFS) +
  511. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  512. break;
  513. congestion_wait(WRITE, HZ/10);
  514. /*
  515. * The caller might hold locks which can prevent IO completion
  516. * or progress in the filesystem. So we cannot just sit here
  517. * waiting for IO to complete.
  518. */
  519. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  520. break;
  521. }
  522. }
  523. /*
  524. * writeback at least _min_pages, and keep writing until the amount of dirty
  525. * memory is less than the background threshold, or until we're all clean.
  526. */
  527. static void background_writeout(unsigned long _min_pages)
  528. {
  529. long min_pages = _min_pages;
  530. struct writeback_control wbc = {
  531. .bdi = NULL,
  532. .sync_mode = WB_SYNC_NONE,
  533. .older_than_this = NULL,
  534. .nr_to_write = 0,
  535. .nonblocking = 1,
  536. .range_cyclic = 1,
  537. };
  538. for ( ; ; ) {
  539. long background_thresh;
  540. long dirty_thresh;
  541. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  542. if (global_page_state(NR_FILE_DIRTY) +
  543. global_page_state(NR_UNSTABLE_NFS) < background_thresh
  544. && min_pages <= 0)
  545. break;
  546. wbc.more_io = 0;
  547. wbc.encountered_congestion = 0;
  548. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  549. wbc.pages_skipped = 0;
  550. writeback_inodes(&wbc);
  551. min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  552. if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
  553. /* Wrote less than expected */
  554. if (wbc.encountered_congestion || wbc.more_io)
  555. congestion_wait(WRITE, HZ/10);
  556. else
  557. break;
  558. }
  559. }
  560. }
  561. /*
  562. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  563. * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
  564. * -1 if all pdflush threads were busy.
  565. */
  566. int wakeup_pdflush(long nr_pages)
  567. {
  568. if (nr_pages == 0)
  569. nr_pages = global_page_state(NR_FILE_DIRTY) +
  570. global_page_state(NR_UNSTABLE_NFS);
  571. return pdflush_operation(background_writeout, nr_pages);
  572. }
  573. static void wb_timer_fn(unsigned long unused);
  574. static void laptop_timer_fn(unsigned long unused);
  575. static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
  576. static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
  577. /*
  578. * Periodic writeback of "old" data.
  579. *
  580. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  581. * dirtying-time in the inode's address_space. So this periodic writeback code
  582. * just walks the superblock inode list, writing back any inodes which are
  583. * older than a specific point in time.
  584. *
  585. * Try to run once per dirty_writeback_interval. But if a writeback event
  586. * takes longer than a dirty_writeback_interval interval, then leave a
  587. * one-second gap.
  588. *
  589. * older_than_this takes precedence over nr_to_write. So we'll only write back
  590. * all dirty pages if they are all attached to "old" mappings.
  591. */
  592. static void wb_kupdate(unsigned long arg)
  593. {
  594. unsigned long oldest_jif;
  595. unsigned long start_jif;
  596. unsigned long next_jif;
  597. long nr_to_write;
  598. struct writeback_control wbc = {
  599. .bdi = NULL,
  600. .sync_mode = WB_SYNC_NONE,
  601. .older_than_this = &oldest_jif,
  602. .nr_to_write = 0,
  603. .nonblocking = 1,
  604. .for_kupdate = 1,
  605. .range_cyclic = 1,
  606. };
  607. sync_supers();
  608. oldest_jif = jiffies - dirty_expire_interval;
  609. start_jif = jiffies;
  610. next_jif = start_jif + dirty_writeback_interval;
  611. nr_to_write = global_page_state(NR_FILE_DIRTY) +
  612. global_page_state(NR_UNSTABLE_NFS) +
  613. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  614. while (nr_to_write > 0) {
  615. wbc.more_io = 0;
  616. wbc.encountered_congestion = 0;
  617. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  618. writeback_inodes(&wbc);
  619. if (wbc.nr_to_write > 0) {
  620. if (wbc.encountered_congestion || wbc.more_io)
  621. congestion_wait(WRITE, HZ/10);
  622. else
  623. break; /* All the old data is written */
  624. }
  625. nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  626. }
  627. if (time_before(next_jif, jiffies + HZ))
  628. next_jif = jiffies + HZ;
  629. if (dirty_writeback_interval)
  630. mod_timer(&wb_timer, next_jif);
  631. }
  632. /*
  633. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  634. */
  635. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  636. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  637. {
  638. proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
  639. if (dirty_writeback_interval)
  640. mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
  641. else
  642. del_timer(&wb_timer);
  643. return 0;
  644. }
  645. static void wb_timer_fn(unsigned long unused)
  646. {
  647. if (pdflush_operation(wb_kupdate, 0) < 0)
  648. mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
  649. }
  650. static void laptop_flush(unsigned long unused)
  651. {
  652. sys_sync();
  653. }
  654. static void laptop_timer_fn(unsigned long unused)
  655. {
  656. pdflush_operation(laptop_flush, 0);
  657. }
  658. /*
  659. * We've spun up the disk and we're in laptop mode: schedule writeback
  660. * of all dirty data a few seconds from now. If the flush is already scheduled
  661. * then push it back - the user is still using the disk.
  662. */
  663. void laptop_io_completion(void)
  664. {
  665. mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
  666. }
  667. /*
  668. * We're in laptop mode and we've just synced. The sync's writes will have
  669. * caused another writeback to be scheduled by laptop_io_completion.
  670. * Nothing needs to be written back anymore, so we unschedule the writeback.
  671. */
  672. void laptop_sync_completion(void)
  673. {
  674. del_timer(&laptop_mode_wb_timer);
  675. }
  676. /*
  677. * If ratelimit_pages is too high then we can get into dirty-data overload
  678. * if a large number of processes all perform writes at the same time.
  679. * If it is too low then SMP machines will call the (expensive)
  680. * get_writeback_state too often.
  681. *
  682. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  683. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  684. * thresholds before writeback cuts in.
  685. *
  686. * But the limit should not be set too high. Because it also controls the
  687. * amount of memory which the balance_dirty_pages() caller has to write back.
  688. * If this is too large then the caller will block on the IO queue all the
  689. * time. So limit it to four megabytes - the balance_dirty_pages() caller
  690. * will write six megabyte chunks, max.
  691. */
  692. void writeback_set_ratelimit(void)
  693. {
  694. ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
  695. if (ratelimit_pages < 16)
  696. ratelimit_pages = 16;
  697. if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
  698. ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
  699. }
  700. static int __cpuinit
  701. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  702. {
  703. writeback_set_ratelimit();
  704. return NOTIFY_DONE;
  705. }
  706. static struct notifier_block __cpuinitdata ratelimit_nb = {
  707. .notifier_call = ratelimit_handler,
  708. .next = NULL,
  709. };
  710. /*
  711. * Called early on to tune the page writeback dirty limits.
  712. *
  713. * We used to scale dirty pages according to how total memory
  714. * related to pages that could be allocated for buffers (by
  715. * comparing nr_free_buffer_pages() to vm_total_pages.
  716. *
  717. * However, that was when we used "dirty_ratio" to scale with
  718. * all memory, and we don't do that any more. "dirty_ratio"
  719. * is now applied to total non-HIGHPAGE memory (by subtracting
  720. * totalhigh_pages from vm_total_pages), and as such we can't
  721. * get into the old insane situation any more where we had
  722. * large amounts of dirty pages compared to a small amount of
  723. * non-HIGHMEM memory.
  724. *
  725. * But we might still want to scale the dirty_ratio by how
  726. * much memory the box has..
  727. */
  728. void __init page_writeback_init(void)
  729. {
  730. int shift;
  731. mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
  732. writeback_set_ratelimit();
  733. register_cpu_notifier(&ratelimit_nb);
  734. shift = calc_period_shift();
  735. prop_descriptor_init(&vm_completions, shift);
  736. prop_descriptor_init(&vm_dirties, shift);
  737. }
  738. /**
  739. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  740. * @mapping: address space structure to write
  741. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  742. * @writepage: function called for each page
  743. * @data: data passed to writepage function
  744. *
  745. * If a page is already under I/O, write_cache_pages() skips it, even
  746. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  747. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  748. * and msync() need to guarantee that all the data which was dirty at the time
  749. * the call was made get new I/O started against them. If wbc->sync_mode is
  750. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  751. * existing IO to complete.
  752. */
  753. int write_cache_pages(struct address_space *mapping,
  754. struct writeback_control *wbc, writepage_t writepage,
  755. void *data)
  756. {
  757. struct backing_dev_info *bdi = mapping->backing_dev_info;
  758. int ret = 0;
  759. int done = 0;
  760. struct pagevec pvec;
  761. int nr_pages;
  762. pgoff_t index;
  763. pgoff_t end; /* Inclusive */
  764. int scanned = 0;
  765. int range_whole = 0;
  766. if (wbc->nonblocking && bdi_write_congested(bdi)) {
  767. wbc->encountered_congestion = 1;
  768. return 0;
  769. }
  770. pagevec_init(&pvec, 0);
  771. if (wbc->range_cyclic) {
  772. index = mapping->writeback_index; /* Start from prev offset */
  773. end = -1;
  774. } else {
  775. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  776. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  777. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  778. range_whole = 1;
  779. scanned = 1;
  780. }
  781. retry:
  782. while (!done && (index <= end) &&
  783. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  784. PAGECACHE_TAG_DIRTY,
  785. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
  786. unsigned i;
  787. scanned = 1;
  788. for (i = 0; i < nr_pages; i++) {
  789. struct page *page = pvec.pages[i];
  790. /*
  791. * At this point we hold neither mapping->tree_lock nor
  792. * lock on the page itself: the page may be truncated or
  793. * invalidated (changing page->mapping to NULL), or even
  794. * swizzled back from swapper_space to tmpfs file
  795. * mapping
  796. */
  797. lock_page(page);
  798. if (unlikely(page->mapping != mapping)) {
  799. unlock_page(page);
  800. continue;
  801. }
  802. if (!wbc->range_cyclic && page->index > end) {
  803. done = 1;
  804. unlock_page(page);
  805. continue;
  806. }
  807. if (wbc->sync_mode != WB_SYNC_NONE)
  808. wait_on_page_writeback(page);
  809. if (PageWriteback(page) ||
  810. !clear_page_dirty_for_io(page)) {
  811. unlock_page(page);
  812. continue;
  813. }
  814. ret = (*writepage)(page, wbc, data);
  815. if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
  816. unlock_page(page);
  817. ret = 0;
  818. }
  819. if (ret || (--(wbc->nr_to_write) <= 0))
  820. done = 1;
  821. if (wbc->nonblocking && bdi_write_congested(bdi)) {
  822. wbc->encountered_congestion = 1;
  823. done = 1;
  824. }
  825. }
  826. pagevec_release(&pvec);
  827. cond_resched();
  828. }
  829. if (!scanned && !done) {
  830. /*
  831. * We hit the last page and there is more work to be done: wrap
  832. * back to the start of the file
  833. */
  834. scanned = 1;
  835. index = 0;
  836. goto retry;
  837. }
  838. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  839. mapping->writeback_index = index;
  840. return ret;
  841. }
  842. EXPORT_SYMBOL(write_cache_pages);
  843. /*
  844. * Function used by generic_writepages to call the real writepage
  845. * function and set the mapping flags on error
  846. */
  847. static int __writepage(struct page *page, struct writeback_control *wbc,
  848. void *data)
  849. {
  850. struct address_space *mapping = data;
  851. int ret = mapping->a_ops->writepage(page, wbc);
  852. mapping_set_error(mapping, ret);
  853. return ret;
  854. }
  855. /**
  856. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  857. * @mapping: address space structure to write
  858. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  859. *
  860. * This is a library function, which implements the writepages()
  861. * address_space_operation.
  862. */
  863. int generic_writepages(struct address_space *mapping,
  864. struct writeback_control *wbc)
  865. {
  866. /* deal with chardevs and other special file */
  867. if (!mapping->a_ops->writepage)
  868. return 0;
  869. return write_cache_pages(mapping, wbc, __writepage, mapping);
  870. }
  871. EXPORT_SYMBOL(generic_writepages);
  872. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  873. {
  874. int ret;
  875. if (wbc->nr_to_write <= 0)
  876. return 0;
  877. wbc->for_writepages = 1;
  878. if (mapping->a_ops->writepages)
  879. ret = mapping->a_ops->writepages(mapping, wbc);
  880. else
  881. ret = generic_writepages(mapping, wbc);
  882. wbc->for_writepages = 0;
  883. return ret;
  884. }
  885. /**
  886. * write_one_page - write out a single page and optionally wait on I/O
  887. * @page: the page to write
  888. * @wait: if true, wait on writeout
  889. *
  890. * The page must be locked by the caller and will be unlocked upon return.
  891. *
  892. * write_one_page() returns a negative error code if I/O failed.
  893. */
  894. int write_one_page(struct page *page, int wait)
  895. {
  896. struct address_space *mapping = page->mapping;
  897. int ret = 0;
  898. struct writeback_control wbc = {
  899. .sync_mode = WB_SYNC_ALL,
  900. .nr_to_write = 1,
  901. };
  902. BUG_ON(!PageLocked(page));
  903. if (wait)
  904. wait_on_page_writeback(page);
  905. if (clear_page_dirty_for_io(page)) {
  906. page_cache_get(page);
  907. ret = mapping->a_ops->writepage(page, &wbc);
  908. if (ret == 0 && wait) {
  909. wait_on_page_writeback(page);
  910. if (PageError(page))
  911. ret = -EIO;
  912. }
  913. page_cache_release(page);
  914. } else {
  915. unlock_page(page);
  916. }
  917. return ret;
  918. }
  919. EXPORT_SYMBOL(write_one_page);
  920. /*
  921. * For address_spaces which do not use buffers nor write back.
  922. */
  923. int __set_page_dirty_no_writeback(struct page *page)
  924. {
  925. if (!PageDirty(page))
  926. SetPageDirty(page);
  927. return 0;
  928. }
  929. /*
  930. * For address_spaces which do not use buffers. Just tag the page as dirty in
  931. * its radix tree.
  932. *
  933. * This is also used when a single buffer is being dirtied: we want to set the
  934. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  935. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  936. *
  937. * Most callers have locked the page, which pins the address_space in memory.
  938. * But zap_pte_range() does not lock the page, however in that case the
  939. * mapping is pinned by the vma's ->vm_file reference.
  940. *
  941. * We take care to handle the case where the page was truncated from the
  942. * mapping by re-checking page_mapping() inside tree_lock.
  943. */
  944. int __set_page_dirty_nobuffers(struct page *page)
  945. {
  946. if (!TestSetPageDirty(page)) {
  947. struct address_space *mapping = page_mapping(page);
  948. struct address_space *mapping2;
  949. if (!mapping)
  950. return 1;
  951. write_lock_irq(&mapping->tree_lock);
  952. mapping2 = page_mapping(page);
  953. if (mapping2) { /* Race with truncate? */
  954. BUG_ON(mapping2 != mapping);
  955. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  956. if (mapping_cap_account_dirty(mapping)) {
  957. __inc_zone_page_state(page, NR_FILE_DIRTY);
  958. __inc_bdi_stat(mapping->backing_dev_info,
  959. BDI_RECLAIMABLE);
  960. task_io_account_write(PAGE_CACHE_SIZE);
  961. }
  962. radix_tree_tag_set(&mapping->page_tree,
  963. page_index(page), PAGECACHE_TAG_DIRTY);
  964. }
  965. write_unlock_irq(&mapping->tree_lock);
  966. if (mapping->host) {
  967. /* !PageAnon && !swapper_space */
  968. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  969. }
  970. return 1;
  971. }
  972. return 0;
  973. }
  974. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  975. /*
  976. * When a writepage implementation decides that it doesn't want to write this
  977. * page for some reason, it should redirty the locked page via
  978. * redirty_page_for_writepage() and it should then unlock the page and return 0
  979. */
  980. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  981. {
  982. wbc->pages_skipped++;
  983. return __set_page_dirty_nobuffers(page);
  984. }
  985. EXPORT_SYMBOL(redirty_page_for_writepage);
  986. /*
  987. * If the mapping doesn't provide a set_page_dirty a_op, then
  988. * just fall through and assume that it wants buffer_heads.
  989. */
  990. static int __set_page_dirty(struct page *page)
  991. {
  992. struct address_space *mapping = page_mapping(page);
  993. if (likely(mapping)) {
  994. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  995. #ifdef CONFIG_BLOCK
  996. if (!spd)
  997. spd = __set_page_dirty_buffers;
  998. #endif
  999. return (*spd)(page);
  1000. }
  1001. if (!PageDirty(page)) {
  1002. if (!TestSetPageDirty(page))
  1003. return 1;
  1004. }
  1005. return 0;
  1006. }
  1007. int set_page_dirty(struct page *page)
  1008. {
  1009. int ret = __set_page_dirty(page);
  1010. if (ret)
  1011. task_dirty_inc(current);
  1012. return ret;
  1013. }
  1014. EXPORT_SYMBOL(set_page_dirty);
  1015. /*
  1016. * set_page_dirty() is racy if the caller has no reference against
  1017. * page->mapping->host, and if the page is unlocked. This is because another
  1018. * CPU could truncate the page off the mapping and then free the mapping.
  1019. *
  1020. * Usually, the page _is_ locked, or the caller is a user-space process which
  1021. * holds a reference on the inode by having an open file.
  1022. *
  1023. * In other cases, the page should be locked before running set_page_dirty().
  1024. */
  1025. int set_page_dirty_lock(struct page *page)
  1026. {
  1027. int ret;
  1028. lock_page_nosync(page);
  1029. ret = set_page_dirty(page);
  1030. unlock_page(page);
  1031. return ret;
  1032. }
  1033. EXPORT_SYMBOL(set_page_dirty_lock);
  1034. /*
  1035. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1036. * Returns true if the page was previously dirty.
  1037. *
  1038. * This is for preparing to put the page under writeout. We leave the page
  1039. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1040. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1041. * implementation will run either set_page_writeback() or set_page_dirty(),
  1042. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1043. * back into sync.
  1044. *
  1045. * This incoherency between the page's dirty flag and radix-tree tag is
  1046. * unfortunate, but it only exists while the page is locked.
  1047. */
  1048. int clear_page_dirty_for_io(struct page *page)
  1049. {
  1050. struct address_space *mapping = page_mapping(page);
  1051. BUG_ON(!PageLocked(page));
  1052. ClearPageReclaim(page);
  1053. if (mapping && mapping_cap_account_dirty(mapping)) {
  1054. /*
  1055. * Yes, Virginia, this is indeed insane.
  1056. *
  1057. * We use this sequence to make sure that
  1058. * (a) we account for dirty stats properly
  1059. * (b) we tell the low-level filesystem to
  1060. * mark the whole page dirty if it was
  1061. * dirty in a pagetable. Only to then
  1062. * (c) clean the page again and return 1 to
  1063. * cause the writeback.
  1064. *
  1065. * This way we avoid all nasty races with the
  1066. * dirty bit in multiple places and clearing
  1067. * them concurrently from different threads.
  1068. *
  1069. * Note! Normally the "set_page_dirty(page)"
  1070. * has no effect on the actual dirty bit - since
  1071. * that will already usually be set. But we
  1072. * need the side effects, and it can help us
  1073. * avoid races.
  1074. *
  1075. * We basically use the page "master dirty bit"
  1076. * as a serialization point for all the different
  1077. * threads doing their things.
  1078. */
  1079. if (page_mkclean(page))
  1080. set_page_dirty(page);
  1081. /*
  1082. * We carefully synchronise fault handlers against
  1083. * installing a dirty pte and marking the page dirty
  1084. * at this point. We do this by having them hold the
  1085. * page lock at some point after installing their
  1086. * pte, but before marking the page dirty.
  1087. * Pages are always locked coming in here, so we get
  1088. * the desired exclusion. See mm/memory.c:do_wp_page()
  1089. * for more comments.
  1090. */
  1091. if (TestClearPageDirty(page)) {
  1092. dec_zone_page_state(page, NR_FILE_DIRTY);
  1093. dec_bdi_stat(mapping->backing_dev_info,
  1094. BDI_RECLAIMABLE);
  1095. return 1;
  1096. }
  1097. return 0;
  1098. }
  1099. return TestClearPageDirty(page);
  1100. }
  1101. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1102. int test_clear_page_writeback(struct page *page)
  1103. {
  1104. struct address_space *mapping = page_mapping(page);
  1105. int ret;
  1106. if (mapping) {
  1107. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1108. unsigned long flags;
  1109. write_lock_irqsave(&mapping->tree_lock, flags);
  1110. ret = TestClearPageWriteback(page);
  1111. if (ret) {
  1112. radix_tree_tag_clear(&mapping->page_tree,
  1113. page_index(page),
  1114. PAGECACHE_TAG_WRITEBACK);
  1115. if (bdi_cap_account_writeback(bdi)) {
  1116. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1117. __bdi_writeout_inc(bdi);
  1118. }
  1119. }
  1120. write_unlock_irqrestore(&mapping->tree_lock, flags);
  1121. } else {
  1122. ret = TestClearPageWriteback(page);
  1123. }
  1124. if (ret)
  1125. dec_zone_page_state(page, NR_WRITEBACK);
  1126. return ret;
  1127. }
  1128. int test_set_page_writeback(struct page *page)
  1129. {
  1130. struct address_space *mapping = page_mapping(page);
  1131. int ret;
  1132. if (mapping) {
  1133. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1134. unsigned long flags;
  1135. write_lock_irqsave(&mapping->tree_lock, flags);
  1136. ret = TestSetPageWriteback(page);
  1137. if (!ret) {
  1138. radix_tree_tag_set(&mapping->page_tree,
  1139. page_index(page),
  1140. PAGECACHE_TAG_WRITEBACK);
  1141. if (bdi_cap_account_writeback(bdi))
  1142. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1143. }
  1144. if (!PageDirty(page))
  1145. radix_tree_tag_clear(&mapping->page_tree,
  1146. page_index(page),
  1147. PAGECACHE_TAG_DIRTY);
  1148. write_unlock_irqrestore(&mapping->tree_lock, flags);
  1149. } else {
  1150. ret = TestSetPageWriteback(page);
  1151. }
  1152. if (!ret)
  1153. inc_zone_page_state(page, NR_WRITEBACK);
  1154. return ret;
  1155. }
  1156. EXPORT_SYMBOL(test_set_page_writeback);
  1157. /*
  1158. * Return true if any of the pages in the mapping are marked with the
  1159. * passed tag.
  1160. */
  1161. int mapping_tagged(struct address_space *mapping, int tag)
  1162. {
  1163. int ret;
  1164. rcu_read_lock();
  1165. ret = radix_tree_tagged(&mapping->page_tree, tag);
  1166. rcu_read_unlock();
  1167. return ret;
  1168. }
  1169. EXPORT_SYMBOL(mapping_tagged);