memory.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <asm/pgalloc.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/tlb.h>
  52. #include <asm/tlbflush.h>
  53. #include <asm/pgtable.h>
  54. #include <linux/swapops.h>
  55. #include <linux/elf.h>
  56. #ifndef CONFIG_NEED_MULTIPLE_NODES
  57. /* use the per-pgdat data instead for discontigmem - mbligh */
  58. unsigned long max_mapnr;
  59. struct page *mem_map;
  60. EXPORT_SYMBOL(max_mapnr);
  61. EXPORT_SYMBOL(mem_map);
  62. #endif
  63. unsigned long num_physpages;
  64. /*
  65. * A number of key systems in x86 including ioremap() rely on the assumption
  66. * that high_memory defines the upper bound on direct map memory, then end
  67. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  68. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  69. * and ZONE_HIGHMEM.
  70. */
  71. void * high_memory;
  72. EXPORT_SYMBOL(num_physpages);
  73. EXPORT_SYMBOL(high_memory);
  74. /*
  75. * Randomize the address space (stacks, mmaps, brk, etc.).
  76. *
  77. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  78. * as ancient (libc5 based) binaries can segfault. )
  79. */
  80. int randomize_va_space __read_mostly =
  81. #ifdef CONFIG_COMPAT_BRK
  82. 1;
  83. #else
  84. 2;
  85. #endif
  86. static int __init disable_randmaps(char *s)
  87. {
  88. randomize_va_space = 0;
  89. return 1;
  90. }
  91. __setup("norandmaps", disable_randmaps);
  92. /*
  93. * If a p?d_bad entry is found while walking page tables, report
  94. * the error, before resetting entry to p?d_none. Usually (but
  95. * very seldom) called out from the p?d_none_or_clear_bad macros.
  96. */
  97. void pgd_clear_bad(pgd_t *pgd)
  98. {
  99. pgd_ERROR(*pgd);
  100. pgd_clear(pgd);
  101. }
  102. void pud_clear_bad(pud_t *pud)
  103. {
  104. pud_ERROR(*pud);
  105. pud_clear(pud);
  106. }
  107. void pmd_clear_bad(pmd_t *pmd)
  108. {
  109. pmd_ERROR(*pmd);
  110. pmd_clear(pmd);
  111. }
  112. /*
  113. * Note: this doesn't free the actual pages themselves. That
  114. * has been handled earlier when unmapping all the memory regions.
  115. */
  116. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  117. {
  118. pgtable_t token = pmd_pgtable(*pmd);
  119. pmd_clear(pmd);
  120. pte_free_tlb(tlb, token);
  121. tlb->mm->nr_ptes--;
  122. }
  123. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  124. unsigned long addr, unsigned long end,
  125. unsigned long floor, unsigned long ceiling)
  126. {
  127. pmd_t *pmd;
  128. unsigned long next;
  129. unsigned long start;
  130. start = addr;
  131. pmd = pmd_offset(pud, addr);
  132. do {
  133. next = pmd_addr_end(addr, end);
  134. if (pmd_none_or_clear_bad(pmd))
  135. continue;
  136. free_pte_range(tlb, pmd);
  137. } while (pmd++, addr = next, addr != end);
  138. start &= PUD_MASK;
  139. if (start < floor)
  140. return;
  141. if (ceiling) {
  142. ceiling &= PUD_MASK;
  143. if (!ceiling)
  144. return;
  145. }
  146. if (end - 1 > ceiling - 1)
  147. return;
  148. pmd = pmd_offset(pud, start);
  149. pud_clear(pud);
  150. pmd_free_tlb(tlb, pmd);
  151. }
  152. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  153. unsigned long addr, unsigned long end,
  154. unsigned long floor, unsigned long ceiling)
  155. {
  156. pud_t *pud;
  157. unsigned long next;
  158. unsigned long start;
  159. start = addr;
  160. pud = pud_offset(pgd, addr);
  161. do {
  162. next = pud_addr_end(addr, end);
  163. if (pud_none_or_clear_bad(pud))
  164. continue;
  165. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  166. } while (pud++, addr = next, addr != end);
  167. start &= PGDIR_MASK;
  168. if (start < floor)
  169. return;
  170. if (ceiling) {
  171. ceiling &= PGDIR_MASK;
  172. if (!ceiling)
  173. return;
  174. }
  175. if (end - 1 > ceiling - 1)
  176. return;
  177. pud = pud_offset(pgd, start);
  178. pgd_clear(pgd);
  179. pud_free_tlb(tlb, pud);
  180. }
  181. /*
  182. * This function frees user-level page tables of a process.
  183. *
  184. * Must be called with pagetable lock held.
  185. */
  186. void free_pgd_range(struct mmu_gather **tlb,
  187. unsigned long addr, unsigned long end,
  188. unsigned long floor, unsigned long ceiling)
  189. {
  190. pgd_t *pgd;
  191. unsigned long next;
  192. unsigned long start;
  193. /*
  194. * The next few lines have given us lots of grief...
  195. *
  196. * Why are we testing PMD* at this top level? Because often
  197. * there will be no work to do at all, and we'd prefer not to
  198. * go all the way down to the bottom just to discover that.
  199. *
  200. * Why all these "- 1"s? Because 0 represents both the bottom
  201. * of the address space and the top of it (using -1 for the
  202. * top wouldn't help much: the masks would do the wrong thing).
  203. * The rule is that addr 0 and floor 0 refer to the bottom of
  204. * the address space, but end 0 and ceiling 0 refer to the top
  205. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  206. * that end 0 case should be mythical).
  207. *
  208. * Wherever addr is brought up or ceiling brought down, we must
  209. * be careful to reject "the opposite 0" before it confuses the
  210. * subsequent tests. But what about where end is brought down
  211. * by PMD_SIZE below? no, end can't go down to 0 there.
  212. *
  213. * Whereas we round start (addr) and ceiling down, by different
  214. * masks at different levels, in order to test whether a table
  215. * now has no other vmas using it, so can be freed, we don't
  216. * bother to round floor or end up - the tests don't need that.
  217. */
  218. addr &= PMD_MASK;
  219. if (addr < floor) {
  220. addr += PMD_SIZE;
  221. if (!addr)
  222. return;
  223. }
  224. if (ceiling) {
  225. ceiling &= PMD_MASK;
  226. if (!ceiling)
  227. return;
  228. }
  229. if (end - 1 > ceiling - 1)
  230. end -= PMD_SIZE;
  231. if (addr > end - 1)
  232. return;
  233. start = addr;
  234. pgd = pgd_offset((*tlb)->mm, addr);
  235. do {
  236. next = pgd_addr_end(addr, end);
  237. if (pgd_none_or_clear_bad(pgd))
  238. continue;
  239. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  240. } while (pgd++, addr = next, addr != end);
  241. }
  242. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  243. unsigned long floor, unsigned long ceiling)
  244. {
  245. while (vma) {
  246. struct vm_area_struct *next = vma->vm_next;
  247. unsigned long addr = vma->vm_start;
  248. /*
  249. * Hide vma from rmap and vmtruncate before freeing pgtables
  250. */
  251. anon_vma_unlink(vma);
  252. unlink_file_vma(vma);
  253. if (is_vm_hugetlb_page(vma)) {
  254. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  255. floor, next? next->vm_start: ceiling);
  256. } else {
  257. /*
  258. * Optimization: gather nearby vmas into one call down
  259. */
  260. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  261. && !is_vm_hugetlb_page(next)) {
  262. vma = next;
  263. next = vma->vm_next;
  264. anon_vma_unlink(vma);
  265. unlink_file_vma(vma);
  266. }
  267. free_pgd_range(tlb, addr, vma->vm_end,
  268. floor, next? next->vm_start: ceiling);
  269. }
  270. vma = next;
  271. }
  272. }
  273. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  274. {
  275. pgtable_t new = pte_alloc_one(mm, address);
  276. if (!new)
  277. return -ENOMEM;
  278. /*
  279. * Ensure all pte setup (eg. pte page lock and page clearing) are
  280. * visible before the pte is made visible to other CPUs by being
  281. * put into page tables.
  282. *
  283. * The other side of the story is the pointer chasing in the page
  284. * table walking code (when walking the page table without locking;
  285. * ie. most of the time). Fortunately, these data accesses consist
  286. * of a chain of data-dependent loads, meaning most CPUs (alpha
  287. * being the notable exception) will already guarantee loads are
  288. * seen in-order. See the alpha page table accessors for the
  289. * smp_read_barrier_depends() barriers in page table walking code.
  290. */
  291. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  292. spin_lock(&mm->page_table_lock);
  293. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  294. mm->nr_ptes++;
  295. pmd_populate(mm, pmd, new);
  296. new = NULL;
  297. }
  298. spin_unlock(&mm->page_table_lock);
  299. if (new)
  300. pte_free(mm, new);
  301. return 0;
  302. }
  303. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  304. {
  305. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  306. if (!new)
  307. return -ENOMEM;
  308. smp_wmb(); /* See comment in __pte_alloc */
  309. spin_lock(&init_mm.page_table_lock);
  310. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  311. pmd_populate_kernel(&init_mm, pmd, new);
  312. new = NULL;
  313. }
  314. spin_unlock(&init_mm.page_table_lock);
  315. if (new)
  316. pte_free_kernel(&init_mm, new);
  317. return 0;
  318. }
  319. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  320. {
  321. if (file_rss)
  322. add_mm_counter(mm, file_rss, file_rss);
  323. if (anon_rss)
  324. add_mm_counter(mm, anon_rss, anon_rss);
  325. }
  326. /*
  327. * This function is called to print an error when a bad pte
  328. * is found. For example, we might have a PFN-mapped pte in
  329. * a region that doesn't allow it.
  330. *
  331. * The calling function must still handle the error.
  332. */
  333. void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
  334. {
  335. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  336. "vm_flags = %lx, vaddr = %lx\n",
  337. (long long)pte_val(pte),
  338. (vma->vm_mm == current->mm ? current->comm : "???"),
  339. vma->vm_flags, vaddr);
  340. dump_stack();
  341. }
  342. static inline int is_cow_mapping(unsigned int flags)
  343. {
  344. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  345. }
  346. /*
  347. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  348. *
  349. * "Special" mappings do not wish to be associated with a "struct page" (either
  350. * it doesn't exist, or it exists but they don't want to touch it). In this
  351. * case, NULL is returned here. "Normal" mappings do have a struct page.
  352. *
  353. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  354. * pte bit, in which case this function is trivial. Secondly, an architecture
  355. * may not have a spare pte bit, which requires a more complicated scheme,
  356. * described below.
  357. *
  358. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  359. * special mapping (even if there are underlying and valid "struct pages").
  360. * COWed pages of a VM_PFNMAP are always normal.
  361. *
  362. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  363. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  364. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  365. * mapping will always honor the rule
  366. *
  367. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  368. *
  369. * And for normal mappings this is false.
  370. *
  371. * This restricts such mappings to be a linear translation from virtual address
  372. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  373. * as the vma is not a COW mapping; in that case, we know that all ptes are
  374. * special (because none can have been COWed).
  375. *
  376. *
  377. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  378. *
  379. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  380. * page" backing, however the difference is that _all_ pages with a struct
  381. * page (that is, those where pfn_valid is true) are refcounted and considered
  382. * normal pages by the VM. The disadvantage is that pages are refcounted
  383. * (which can be slower and simply not an option for some PFNMAP users). The
  384. * advantage is that we don't have to follow the strict linearity rule of
  385. * PFNMAP mappings in order to support COWable mappings.
  386. *
  387. */
  388. #ifdef __HAVE_ARCH_PTE_SPECIAL
  389. # define HAVE_PTE_SPECIAL 1
  390. #else
  391. # define HAVE_PTE_SPECIAL 0
  392. #endif
  393. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  394. pte_t pte)
  395. {
  396. unsigned long pfn;
  397. if (HAVE_PTE_SPECIAL) {
  398. if (likely(!pte_special(pte))) {
  399. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  400. return pte_page(pte);
  401. }
  402. VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
  403. return NULL;
  404. }
  405. /* !HAVE_PTE_SPECIAL case follows: */
  406. pfn = pte_pfn(pte);
  407. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  408. if (vma->vm_flags & VM_MIXEDMAP) {
  409. if (!pfn_valid(pfn))
  410. return NULL;
  411. goto out;
  412. } else {
  413. unsigned long off;
  414. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  415. if (pfn == vma->vm_pgoff + off)
  416. return NULL;
  417. if (!is_cow_mapping(vma->vm_flags))
  418. return NULL;
  419. }
  420. }
  421. VM_BUG_ON(!pfn_valid(pfn));
  422. /*
  423. * NOTE! We still have PageReserved() pages in the page tables.
  424. *
  425. * eg. VDSO mappings can cause them to exist.
  426. */
  427. out:
  428. return pfn_to_page(pfn);
  429. }
  430. /*
  431. * copy one vm_area from one task to the other. Assumes the page tables
  432. * already present in the new task to be cleared in the whole range
  433. * covered by this vma.
  434. */
  435. static inline void
  436. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  437. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  438. unsigned long addr, int *rss)
  439. {
  440. unsigned long vm_flags = vma->vm_flags;
  441. pte_t pte = *src_pte;
  442. struct page *page;
  443. /* pte contains position in swap or file, so copy. */
  444. if (unlikely(!pte_present(pte))) {
  445. if (!pte_file(pte)) {
  446. swp_entry_t entry = pte_to_swp_entry(pte);
  447. swap_duplicate(entry);
  448. /* make sure dst_mm is on swapoff's mmlist. */
  449. if (unlikely(list_empty(&dst_mm->mmlist))) {
  450. spin_lock(&mmlist_lock);
  451. if (list_empty(&dst_mm->mmlist))
  452. list_add(&dst_mm->mmlist,
  453. &src_mm->mmlist);
  454. spin_unlock(&mmlist_lock);
  455. }
  456. if (is_write_migration_entry(entry) &&
  457. is_cow_mapping(vm_flags)) {
  458. /*
  459. * COW mappings require pages in both parent
  460. * and child to be set to read.
  461. */
  462. make_migration_entry_read(&entry);
  463. pte = swp_entry_to_pte(entry);
  464. set_pte_at(src_mm, addr, src_pte, pte);
  465. }
  466. }
  467. goto out_set_pte;
  468. }
  469. /*
  470. * If it's a COW mapping, write protect it both
  471. * in the parent and the child
  472. */
  473. if (is_cow_mapping(vm_flags)) {
  474. ptep_set_wrprotect(src_mm, addr, src_pte);
  475. pte = pte_wrprotect(pte);
  476. }
  477. /*
  478. * If it's a shared mapping, mark it clean in
  479. * the child
  480. */
  481. if (vm_flags & VM_SHARED)
  482. pte = pte_mkclean(pte);
  483. pte = pte_mkold(pte);
  484. page = vm_normal_page(vma, addr, pte);
  485. if (page) {
  486. get_page(page);
  487. page_dup_rmap(page, vma, addr);
  488. rss[!!PageAnon(page)]++;
  489. }
  490. out_set_pte:
  491. set_pte_at(dst_mm, addr, dst_pte, pte);
  492. }
  493. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  494. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  495. unsigned long addr, unsigned long end)
  496. {
  497. pte_t *src_pte, *dst_pte;
  498. spinlock_t *src_ptl, *dst_ptl;
  499. int progress = 0;
  500. int rss[2];
  501. again:
  502. rss[1] = rss[0] = 0;
  503. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  504. if (!dst_pte)
  505. return -ENOMEM;
  506. src_pte = pte_offset_map_nested(src_pmd, addr);
  507. src_ptl = pte_lockptr(src_mm, src_pmd);
  508. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  509. arch_enter_lazy_mmu_mode();
  510. do {
  511. /*
  512. * We are holding two locks at this point - either of them
  513. * could generate latencies in another task on another CPU.
  514. */
  515. if (progress >= 32) {
  516. progress = 0;
  517. if (need_resched() ||
  518. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  519. break;
  520. }
  521. if (pte_none(*src_pte)) {
  522. progress++;
  523. continue;
  524. }
  525. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  526. progress += 8;
  527. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  528. arch_leave_lazy_mmu_mode();
  529. spin_unlock(src_ptl);
  530. pte_unmap_nested(src_pte - 1);
  531. add_mm_rss(dst_mm, rss[0], rss[1]);
  532. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  533. cond_resched();
  534. if (addr != end)
  535. goto again;
  536. return 0;
  537. }
  538. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  539. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  540. unsigned long addr, unsigned long end)
  541. {
  542. pmd_t *src_pmd, *dst_pmd;
  543. unsigned long next;
  544. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  545. if (!dst_pmd)
  546. return -ENOMEM;
  547. src_pmd = pmd_offset(src_pud, addr);
  548. do {
  549. next = pmd_addr_end(addr, end);
  550. if (pmd_none_or_clear_bad(src_pmd))
  551. continue;
  552. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  553. vma, addr, next))
  554. return -ENOMEM;
  555. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  556. return 0;
  557. }
  558. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  559. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  560. unsigned long addr, unsigned long end)
  561. {
  562. pud_t *src_pud, *dst_pud;
  563. unsigned long next;
  564. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  565. if (!dst_pud)
  566. return -ENOMEM;
  567. src_pud = pud_offset(src_pgd, addr);
  568. do {
  569. next = pud_addr_end(addr, end);
  570. if (pud_none_or_clear_bad(src_pud))
  571. continue;
  572. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  573. vma, addr, next))
  574. return -ENOMEM;
  575. } while (dst_pud++, src_pud++, addr = next, addr != end);
  576. return 0;
  577. }
  578. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  579. struct vm_area_struct *vma)
  580. {
  581. pgd_t *src_pgd, *dst_pgd;
  582. unsigned long next;
  583. unsigned long addr = vma->vm_start;
  584. unsigned long end = vma->vm_end;
  585. /*
  586. * Don't copy ptes where a page fault will fill them correctly.
  587. * Fork becomes much lighter when there are big shared or private
  588. * readonly mappings. The tradeoff is that copy_page_range is more
  589. * efficient than faulting.
  590. */
  591. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  592. if (!vma->anon_vma)
  593. return 0;
  594. }
  595. if (is_vm_hugetlb_page(vma))
  596. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  597. dst_pgd = pgd_offset(dst_mm, addr);
  598. src_pgd = pgd_offset(src_mm, addr);
  599. do {
  600. next = pgd_addr_end(addr, end);
  601. if (pgd_none_or_clear_bad(src_pgd))
  602. continue;
  603. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  604. vma, addr, next))
  605. return -ENOMEM;
  606. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  607. return 0;
  608. }
  609. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  610. struct vm_area_struct *vma, pmd_t *pmd,
  611. unsigned long addr, unsigned long end,
  612. long *zap_work, struct zap_details *details)
  613. {
  614. struct mm_struct *mm = tlb->mm;
  615. pte_t *pte;
  616. spinlock_t *ptl;
  617. int file_rss = 0;
  618. int anon_rss = 0;
  619. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  620. arch_enter_lazy_mmu_mode();
  621. do {
  622. pte_t ptent = *pte;
  623. if (pte_none(ptent)) {
  624. (*zap_work)--;
  625. continue;
  626. }
  627. (*zap_work) -= PAGE_SIZE;
  628. if (pte_present(ptent)) {
  629. struct page *page;
  630. page = vm_normal_page(vma, addr, ptent);
  631. if (unlikely(details) && page) {
  632. /*
  633. * unmap_shared_mapping_pages() wants to
  634. * invalidate cache without truncating:
  635. * unmap shared but keep private pages.
  636. */
  637. if (details->check_mapping &&
  638. details->check_mapping != page->mapping)
  639. continue;
  640. /*
  641. * Each page->index must be checked when
  642. * invalidating or truncating nonlinear.
  643. */
  644. if (details->nonlinear_vma &&
  645. (page->index < details->first_index ||
  646. page->index > details->last_index))
  647. continue;
  648. }
  649. ptent = ptep_get_and_clear_full(mm, addr, pte,
  650. tlb->fullmm);
  651. tlb_remove_tlb_entry(tlb, pte, addr);
  652. if (unlikely(!page))
  653. continue;
  654. if (unlikely(details) && details->nonlinear_vma
  655. && linear_page_index(details->nonlinear_vma,
  656. addr) != page->index)
  657. set_pte_at(mm, addr, pte,
  658. pgoff_to_pte(page->index));
  659. if (PageAnon(page))
  660. anon_rss--;
  661. else {
  662. if (pte_dirty(ptent))
  663. set_page_dirty(page);
  664. if (pte_young(ptent))
  665. SetPageReferenced(page);
  666. file_rss--;
  667. }
  668. page_remove_rmap(page, vma);
  669. tlb_remove_page(tlb, page);
  670. continue;
  671. }
  672. /*
  673. * If details->check_mapping, we leave swap entries;
  674. * if details->nonlinear_vma, we leave file entries.
  675. */
  676. if (unlikely(details))
  677. continue;
  678. if (!pte_file(ptent))
  679. free_swap_and_cache(pte_to_swp_entry(ptent));
  680. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  681. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  682. add_mm_rss(mm, file_rss, anon_rss);
  683. arch_leave_lazy_mmu_mode();
  684. pte_unmap_unlock(pte - 1, ptl);
  685. return addr;
  686. }
  687. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  688. struct vm_area_struct *vma, pud_t *pud,
  689. unsigned long addr, unsigned long end,
  690. long *zap_work, struct zap_details *details)
  691. {
  692. pmd_t *pmd;
  693. unsigned long next;
  694. pmd = pmd_offset(pud, addr);
  695. do {
  696. next = pmd_addr_end(addr, end);
  697. if (pmd_none_or_clear_bad(pmd)) {
  698. (*zap_work)--;
  699. continue;
  700. }
  701. next = zap_pte_range(tlb, vma, pmd, addr, next,
  702. zap_work, details);
  703. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  704. return addr;
  705. }
  706. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  707. struct vm_area_struct *vma, pgd_t *pgd,
  708. unsigned long addr, unsigned long end,
  709. long *zap_work, struct zap_details *details)
  710. {
  711. pud_t *pud;
  712. unsigned long next;
  713. pud = pud_offset(pgd, addr);
  714. do {
  715. next = pud_addr_end(addr, end);
  716. if (pud_none_or_clear_bad(pud)) {
  717. (*zap_work)--;
  718. continue;
  719. }
  720. next = zap_pmd_range(tlb, vma, pud, addr, next,
  721. zap_work, details);
  722. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  723. return addr;
  724. }
  725. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  726. struct vm_area_struct *vma,
  727. unsigned long addr, unsigned long end,
  728. long *zap_work, struct zap_details *details)
  729. {
  730. pgd_t *pgd;
  731. unsigned long next;
  732. if (details && !details->check_mapping && !details->nonlinear_vma)
  733. details = NULL;
  734. BUG_ON(addr >= end);
  735. tlb_start_vma(tlb, vma);
  736. pgd = pgd_offset(vma->vm_mm, addr);
  737. do {
  738. next = pgd_addr_end(addr, end);
  739. if (pgd_none_or_clear_bad(pgd)) {
  740. (*zap_work)--;
  741. continue;
  742. }
  743. next = zap_pud_range(tlb, vma, pgd, addr, next,
  744. zap_work, details);
  745. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  746. tlb_end_vma(tlb, vma);
  747. return addr;
  748. }
  749. #ifdef CONFIG_PREEMPT
  750. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  751. #else
  752. /* No preempt: go for improved straight-line efficiency */
  753. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  754. #endif
  755. /**
  756. * unmap_vmas - unmap a range of memory covered by a list of vma's
  757. * @tlbp: address of the caller's struct mmu_gather
  758. * @vma: the starting vma
  759. * @start_addr: virtual address at which to start unmapping
  760. * @end_addr: virtual address at which to end unmapping
  761. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  762. * @details: details of nonlinear truncation or shared cache invalidation
  763. *
  764. * Returns the end address of the unmapping (restart addr if interrupted).
  765. *
  766. * Unmap all pages in the vma list.
  767. *
  768. * We aim to not hold locks for too long (for scheduling latency reasons).
  769. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  770. * return the ending mmu_gather to the caller.
  771. *
  772. * Only addresses between `start' and `end' will be unmapped.
  773. *
  774. * The VMA list must be sorted in ascending virtual address order.
  775. *
  776. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  777. * range after unmap_vmas() returns. So the only responsibility here is to
  778. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  779. * drops the lock and schedules.
  780. */
  781. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  782. struct vm_area_struct *vma, unsigned long start_addr,
  783. unsigned long end_addr, unsigned long *nr_accounted,
  784. struct zap_details *details)
  785. {
  786. long zap_work = ZAP_BLOCK_SIZE;
  787. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  788. int tlb_start_valid = 0;
  789. unsigned long start = start_addr;
  790. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  791. int fullmm = (*tlbp)->fullmm;
  792. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  793. unsigned long end;
  794. start = max(vma->vm_start, start_addr);
  795. if (start >= vma->vm_end)
  796. continue;
  797. end = min(vma->vm_end, end_addr);
  798. if (end <= vma->vm_start)
  799. continue;
  800. if (vma->vm_flags & VM_ACCOUNT)
  801. *nr_accounted += (end - start) >> PAGE_SHIFT;
  802. while (start != end) {
  803. if (!tlb_start_valid) {
  804. tlb_start = start;
  805. tlb_start_valid = 1;
  806. }
  807. if (unlikely(is_vm_hugetlb_page(vma))) {
  808. unmap_hugepage_range(vma, start, end);
  809. zap_work -= (end - start) /
  810. (HPAGE_SIZE / PAGE_SIZE);
  811. start = end;
  812. } else
  813. start = unmap_page_range(*tlbp, vma,
  814. start, end, &zap_work, details);
  815. if (zap_work > 0) {
  816. BUG_ON(start != end);
  817. break;
  818. }
  819. tlb_finish_mmu(*tlbp, tlb_start, start);
  820. if (need_resched() ||
  821. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  822. if (i_mmap_lock) {
  823. *tlbp = NULL;
  824. goto out;
  825. }
  826. cond_resched();
  827. }
  828. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  829. tlb_start_valid = 0;
  830. zap_work = ZAP_BLOCK_SIZE;
  831. }
  832. }
  833. out:
  834. return start; /* which is now the end (or restart) address */
  835. }
  836. /**
  837. * zap_page_range - remove user pages in a given range
  838. * @vma: vm_area_struct holding the applicable pages
  839. * @address: starting address of pages to zap
  840. * @size: number of bytes to zap
  841. * @details: details of nonlinear truncation or shared cache invalidation
  842. */
  843. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  844. unsigned long size, struct zap_details *details)
  845. {
  846. struct mm_struct *mm = vma->vm_mm;
  847. struct mmu_gather *tlb;
  848. unsigned long end = address + size;
  849. unsigned long nr_accounted = 0;
  850. lru_add_drain();
  851. tlb = tlb_gather_mmu(mm, 0);
  852. update_hiwater_rss(mm);
  853. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  854. if (tlb)
  855. tlb_finish_mmu(tlb, address, end);
  856. return end;
  857. }
  858. /*
  859. * Do a quick page-table lookup for a single page.
  860. */
  861. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  862. unsigned int flags)
  863. {
  864. pgd_t *pgd;
  865. pud_t *pud;
  866. pmd_t *pmd;
  867. pte_t *ptep, pte;
  868. spinlock_t *ptl;
  869. struct page *page;
  870. struct mm_struct *mm = vma->vm_mm;
  871. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  872. if (!IS_ERR(page)) {
  873. BUG_ON(flags & FOLL_GET);
  874. goto out;
  875. }
  876. page = NULL;
  877. pgd = pgd_offset(mm, address);
  878. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  879. goto no_page_table;
  880. pud = pud_offset(pgd, address);
  881. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  882. goto no_page_table;
  883. pmd = pmd_offset(pud, address);
  884. if (pmd_none(*pmd))
  885. goto no_page_table;
  886. if (pmd_huge(*pmd)) {
  887. BUG_ON(flags & FOLL_GET);
  888. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  889. goto out;
  890. }
  891. if (unlikely(pmd_bad(*pmd)))
  892. goto no_page_table;
  893. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  894. if (!ptep)
  895. goto out;
  896. pte = *ptep;
  897. if (!pte_present(pte))
  898. goto unlock;
  899. if ((flags & FOLL_WRITE) && !pte_write(pte))
  900. goto unlock;
  901. page = vm_normal_page(vma, address, pte);
  902. if (unlikely(!page))
  903. goto unlock;
  904. if (flags & FOLL_GET)
  905. get_page(page);
  906. if (flags & FOLL_TOUCH) {
  907. if ((flags & FOLL_WRITE) &&
  908. !pte_dirty(pte) && !PageDirty(page))
  909. set_page_dirty(page);
  910. mark_page_accessed(page);
  911. }
  912. unlock:
  913. pte_unmap_unlock(ptep, ptl);
  914. out:
  915. return page;
  916. no_page_table:
  917. /*
  918. * When core dumping an enormous anonymous area that nobody
  919. * has touched so far, we don't want to allocate page tables.
  920. */
  921. if (flags & FOLL_ANON) {
  922. page = ZERO_PAGE(0);
  923. if (flags & FOLL_GET)
  924. get_page(page);
  925. BUG_ON(flags & FOLL_WRITE);
  926. }
  927. return page;
  928. }
  929. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  930. unsigned long start, int len, int write, int force,
  931. struct page **pages, struct vm_area_struct **vmas)
  932. {
  933. int i;
  934. unsigned int vm_flags;
  935. if (len <= 0)
  936. return 0;
  937. /*
  938. * Require read or write permissions.
  939. * If 'force' is set, we only require the "MAY" flags.
  940. */
  941. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  942. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  943. i = 0;
  944. do {
  945. struct vm_area_struct *vma;
  946. unsigned int foll_flags;
  947. vma = find_extend_vma(mm, start);
  948. if (!vma && in_gate_area(tsk, start)) {
  949. unsigned long pg = start & PAGE_MASK;
  950. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  951. pgd_t *pgd;
  952. pud_t *pud;
  953. pmd_t *pmd;
  954. pte_t *pte;
  955. if (write) /* user gate pages are read-only */
  956. return i ? : -EFAULT;
  957. if (pg > TASK_SIZE)
  958. pgd = pgd_offset_k(pg);
  959. else
  960. pgd = pgd_offset_gate(mm, pg);
  961. BUG_ON(pgd_none(*pgd));
  962. pud = pud_offset(pgd, pg);
  963. BUG_ON(pud_none(*pud));
  964. pmd = pmd_offset(pud, pg);
  965. if (pmd_none(*pmd))
  966. return i ? : -EFAULT;
  967. pte = pte_offset_map(pmd, pg);
  968. if (pte_none(*pte)) {
  969. pte_unmap(pte);
  970. return i ? : -EFAULT;
  971. }
  972. if (pages) {
  973. struct page *page = vm_normal_page(gate_vma, start, *pte);
  974. pages[i] = page;
  975. if (page)
  976. get_page(page);
  977. }
  978. pte_unmap(pte);
  979. if (vmas)
  980. vmas[i] = gate_vma;
  981. i++;
  982. start += PAGE_SIZE;
  983. len--;
  984. continue;
  985. }
  986. if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
  987. || !(vm_flags & vma->vm_flags))
  988. return i ? : -EFAULT;
  989. if (is_vm_hugetlb_page(vma)) {
  990. i = follow_hugetlb_page(mm, vma, pages, vmas,
  991. &start, &len, i, write);
  992. continue;
  993. }
  994. foll_flags = FOLL_TOUCH;
  995. if (pages)
  996. foll_flags |= FOLL_GET;
  997. if (!write && !(vma->vm_flags & VM_LOCKED) &&
  998. (!vma->vm_ops || !vma->vm_ops->fault))
  999. foll_flags |= FOLL_ANON;
  1000. do {
  1001. struct page *page;
  1002. /*
  1003. * If tsk is ooming, cut off its access to large memory
  1004. * allocations. It has a pending SIGKILL, but it can't
  1005. * be processed until returning to user space.
  1006. */
  1007. if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
  1008. return -ENOMEM;
  1009. if (write)
  1010. foll_flags |= FOLL_WRITE;
  1011. cond_resched();
  1012. while (!(page = follow_page(vma, start, foll_flags))) {
  1013. int ret;
  1014. ret = handle_mm_fault(mm, vma, start,
  1015. foll_flags & FOLL_WRITE);
  1016. if (ret & VM_FAULT_ERROR) {
  1017. if (ret & VM_FAULT_OOM)
  1018. return i ? i : -ENOMEM;
  1019. else if (ret & VM_FAULT_SIGBUS)
  1020. return i ? i : -EFAULT;
  1021. BUG();
  1022. }
  1023. if (ret & VM_FAULT_MAJOR)
  1024. tsk->maj_flt++;
  1025. else
  1026. tsk->min_flt++;
  1027. /*
  1028. * The VM_FAULT_WRITE bit tells us that
  1029. * do_wp_page has broken COW when necessary,
  1030. * even if maybe_mkwrite decided not to set
  1031. * pte_write. We can thus safely do subsequent
  1032. * page lookups as if they were reads.
  1033. */
  1034. if (ret & VM_FAULT_WRITE)
  1035. foll_flags &= ~FOLL_WRITE;
  1036. cond_resched();
  1037. }
  1038. if (pages) {
  1039. pages[i] = page;
  1040. flush_anon_page(vma, page, start);
  1041. flush_dcache_page(page);
  1042. }
  1043. if (vmas)
  1044. vmas[i] = vma;
  1045. i++;
  1046. start += PAGE_SIZE;
  1047. len--;
  1048. } while (len && start < vma->vm_end);
  1049. } while (len);
  1050. return i;
  1051. }
  1052. EXPORT_SYMBOL(get_user_pages);
  1053. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1054. spinlock_t **ptl)
  1055. {
  1056. pgd_t * pgd = pgd_offset(mm, addr);
  1057. pud_t * pud = pud_alloc(mm, pgd, addr);
  1058. if (pud) {
  1059. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1060. if (pmd)
  1061. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1062. }
  1063. return NULL;
  1064. }
  1065. /*
  1066. * This is the old fallback for page remapping.
  1067. *
  1068. * For historical reasons, it only allows reserved pages. Only
  1069. * old drivers should use this, and they needed to mark their
  1070. * pages reserved for the old functions anyway.
  1071. */
  1072. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1073. struct page *page, pgprot_t prot)
  1074. {
  1075. struct mm_struct *mm = vma->vm_mm;
  1076. int retval;
  1077. pte_t *pte;
  1078. spinlock_t *ptl;
  1079. retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
  1080. if (retval)
  1081. goto out;
  1082. retval = -EINVAL;
  1083. if (PageAnon(page))
  1084. goto out_uncharge;
  1085. retval = -ENOMEM;
  1086. flush_dcache_page(page);
  1087. pte = get_locked_pte(mm, addr, &ptl);
  1088. if (!pte)
  1089. goto out_uncharge;
  1090. retval = -EBUSY;
  1091. if (!pte_none(*pte))
  1092. goto out_unlock;
  1093. /* Ok, finally just insert the thing.. */
  1094. get_page(page);
  1095. inc_mm_counter(mm, file_rss);
  1096. page_add_file_rmap(page);
  1097. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1098. retval = 0;
  1099. pte_unmap_unlock(pte, ptl);
  1100. return retval;
  1101. out_unlock:
  1102. pte_unmap_unlock(pte, ptl);
  1103. out_uncharge:
  1104. mem_cgroup_uncharge_page(page);
  1105. out:
  1106. return retval;
  1107. }
  1108. /**
  1109. * vm_insert_page - insert single page into user vma
  1110. * @vma: user vma to map to
  1111. * @addr: target user address of this page
  1112. * @page: source kernel page
  1113. *
  1114. * This allows drivers to insert individual pages they've allocated
  1115. * into a user vma.
  1116. *
  1117. * The page has to be a nice clean _individual_ kernel allocation.
  1118. * If you allocate a compound page, you need to have marked it as
  1119. * such (__GFP_COMP), or manually just split the page up yourself
  1120. * (see split_page()).
  1121. *
  1122. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1123. * took an arbitrary page protection parameter. This doesn't allow
  1124. * that. Your vma protection will have to be set up correctly, which
  1125. * means that if you want a shared writable mapping, you'd better
  1126. * ask for a shared writable mapping!
  1127. *
  1128. * The page does not need to be reserved.
  1129. */
  1130. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1131. struct page *page)
  1132. {
  1133. if (addr < vma->vm_start || addr >= vma->vm_end)
  1134. return -EFAULT;
  1135. if (!page_count(page))
  1136. return -EINVAL;
  1137. vma->vm_flags |= VM_INSERTPAGE;
  1138. return insert_page(vma, addr, page, vma->vm_page_prot);
  1139. }
  1140. EXPORT_SYMBOL(vm_insert_page);
  1141. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1142. unsigned long pfn, pgprot_t prot)
  1143. {
  1144. struct mm_struct *mm = vma->vm_mm;
  1145. int retval;
  1146. pte_t *pte, entry;
  1147. spinlock_t *ptl;
  1148. retval = -ENOMEM;
  1149. pte = get_locked_pte(mm, addr, &ptl);
  1150. if (!pte)
  1151. goto out;
  1152. retval = -EBUSY;
  1153. if (!pte_none(*pte))
  1154. goto out_unlock;
  1155. /* Ok, finally just insert the thing.. */
  1156. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1157. set_pte_at(mm, addr, pte, entry);
  1158. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1159. retval = 0;
  1160. out_unlock:
  1161. pte_unmap_unlock(pte, ptl);
  1162. out:
  1163. return retval;
  1164. }
  1165. /**
  1166. * vm_insert_pfn - insert single pfn into user vma
  1167. * @vma: user vma to map to
  1168. * @addr: target user address of this page
  1169. * @pfn: source kernel pfn
  1170. *
  1171. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1172. * they've allocated into a user vma. Same comments apply.
  1173. *
  1174. * This function should only be called from a vm_ops->fault handler, and
  1175. * in that case the handler should return NULL.
  1176. */
  1177. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1178. unsigned long pfn)
  1179. {
  1180. /*
  1181. * Technically, architectures with pte_special can avoid all these
  1182. * restrictions (same for remap_pfn_range). However we would like
  1183. * consistency in testing and feature parity among all, so we should
  1184. * try to keep these invariants in place for everybody.
  1185. */
  1186. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1187. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1188. (VM_PFNMAP|VM_MIXEDMAP));
  1189. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1190. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1191. if (addr < vma->vm_start || addr >= vma->vm_end)
  1192. return -EFAULT;
  1193. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1194. }
  1195. EXPORT_SYMBOL(vm_insert_pfn);
  1196. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1197. unsigned long pfn)
  1198. {
  1199. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1200. if (addr < vma->vm_start || addr >= vma->vm_end)
  1201. return -EFAULT;
  1202. /*
  1203. * If we don't have pte special, then we have to use the pfn_valid()
  1204. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1205. * refcount the page if pfn_valid is true (hence insert_page rather
  1206. * than insert_pfn).
  1207. */
  1208. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1209. struct page *page;
  1210. page = pfn_to_page(pfn);
  1211. return insert_page(vma, addr, page, vma->vm_page_prot);
  1212. }
  1213. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1214. }
  1215. EXPORT_SYMBOL(vm_insert_mixed);
  1216. /*
  1217. * maps a range of physical memory into the requested pages. the old
  1218. * mappings are removed. any references to nonexistent pages results
  1219. * in null mappings (currently treated as "copy-on-access")
  1220. */
  1221. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1222. unsigned long addr, unsigned long end,
  1223. unsigned long pfn, pgprot_t prot)
  1224. {
  1225. pte_t *pte;
  1226. spinlock_t *ptl;
  1227. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1228. if (!pte)
  1229. return -ENOMEM;
  1230. arch_enter_lazy_mmu_mode();
  1231. do {
  1232. BUG_ON(!pte_none(*pte));
  1233. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1234. pfn++;
  1235. } while (pte++, addr += PAGE_SIZE, addr != end);
  1236. arch_leave_lazy_mmu_mode();
  1237. pte_unmap_unlock(pte - 1, ptl);
  1238. return 0;
  1239. }
  1240. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1241. unsigned long addr, unsigned long end,
  1242. unsigned long pfn, pgprot_t prot)
  1243. {
  1244. pmd_t *pmd;
  1245. unsigned long next;
  1246. pfn -= addr >> PAGE_SHIFT;
  1247. pmd = pmd_alloc(mm, pud, addr);
  1248. if (!pmd)
  1249. return -ENOMEM;
  1250. do {
  1251. next = pmd_addr_end(addr, end);
  1252. if (remap_pte_range(mm, pmd, addr, next,
  1253. pfn + (addr >> PAGE_SHIFT), prot))
  1254. return -ENOMEM;
  1255. } while (pmd++, addr = next, addr != end);
  1256. return 0;
  1257. }
  1258. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1259. unsigned long addr, unsigned long end,
  1260. unsigned long pfn, pgprot_t prot)
  1261. {
  1262. pud_t *pud;
  1263. unsigned long next;
  1264. pfn -= addr >> PAGE_SHIFT;
  1265. pud = pud_alloc(mm, pgd, addr);
  1266. if (!pud)
  1267. return -ENOMEM;
  1268. do {
  1269. next = pud_addr_end(addr, end);
  1270. if (remap_pmd_range(mm, pud, addr, next,
  1271. pfn + (addr >> PAGE_SHIFT), prot))
  1272. return -ENOMEM;
  1273. } while (pud++, addr = next, addr != end);
  1274. return 0;
  1275. }
  1276. /**
  1277. * remap_pfn_range - remap kernel memory to userspace
  1278. * @vma: user vma to map to
  1279. * @addr: target user address to start at
  1280. * @pfn: physical address of kernel memory
  1281. * @size: size of map area
  1282. * @prot: page protection flags for this mapping
  1283. *
  1284. * Note: this is only safe if the mm semaphore is held when called.
  1285. */
  1286. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1287. unsigned long pfn, unsigned long size, pgprot_t prot)
  1288. {
  1289. pgd_t *pgd;
  1290. unsigned long next;
  1291. unsigned long end = addr + PAGE_ALIGN(size);
  1292. struct mm_struct *mm = vma->vm_mm;
  1293. int err;
  1294. /*
  1295. * Physically remapped pages are special. Tell the
  1296. * rest of the world about it:
  1297. * VM_IO tells people not to look at these pages
  1298. * (accesses can have side effects).
  1299. * VM_RESERVED is specified all over the place, because
  1300. * in 2.4 it kept swapout's vma scan off this vma; but
  1301. * in 2.6 the LRU scan won't even find its pages, so this
  1302. * flag means no more than count its pages in reserved_vm,
  1303. * and omit it from core dump, even when VM_IO turned off.
  1304. * VM_PFNMAP tells the core MM that the base pages are just
  1305. * raw PFN mappings, and do not have a "struct page" associated
  1306. * with them.
  1307. *
  1308. * There's a horrible special case to handle copy-on-write
  1309. * behaviour that some programs depend on. We mark the "original"
  1310. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1311. */
  1312. if (is_cow_mapping(vma->vm_flags)) {
  1313. if (addr != vma->vm_start || end != vma->vm_end)
  1314. return -EINVAL;
  1315. vma->vm_pgoff = pfn;
  1316. }
  1317. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1318. BUG_ON(addr >= end);
  1319. pfn -= addr >> PAGE_SHIFT;
  1320. pgd = pgd_offset(mm, addr);
  1321. flush_cache_range(vma, addr, end);
  1322. do {
  1323. next = pgd_addr_end(addr, end);
  1324. err = remap_pud_range(mm, pgd, addr, next,
  1325. pfn + (addr >> PAGE_SHIFT), prot);
  1326. if (err)
  1327. break;
  1328. } while (pgd++, addr = next, addr != end);
  1329. return err;
  1330. }
  1331. EXPORT_SYMBOL(remap_pfn_range);
  1332. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1333. unsigned long addr, unsigned long end,
  1334. pte_fn_t fn, void *data)
  1335. {
  1336. pte_t *pte;
  1337. int err;
  1338. pgtable_t token;
  1339. spinlock_t *uninitialized_var(ptl);
  1340. pte = (mm == &init_mm) ?
  1341. pte_alloc_kernel(pmd, addr) :
  1342. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1343. if (!pte)
  1344. return -ENOMEM;
  1345. BUG_ON(pmd_huge(*pmd));
  1346. token = pmd_pgtable(*pmd);
  1347. do {
  1348. err = fn(pte, token, addr, data);
  1349. if (err)
  1350. break;
  1351. } while (pte++, addr += PAGE_SIZE, addr != end);
  1352. if (mm != &init_mm)
  1353. pte_unmap_unlock(pte-1, ptl);
  1354. return err;
  1355. }
  1356. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1357. unsigned long addr, unsigned long end,
  1358. pte_fn_t fn, void *data)
  1359. {
  1360. pmd_t *pmd;
  1361. unsigned long next;
  1362. int err;
  1363. pmd = pmd_alloc(mm, pud, addr);
  1364. if (!pmd)
  1365. return -ENOMEM;
  1366. do {
  1367. next = pmd_addr_end(addr, end);
  1368. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1369. if (err)
  1370. break;
  1371. } while (pmd++, addr = next, addr != end);
  1372. return err;
  1373. }
  1374. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1375. unsigned long addr, unsigned long end,
  1376. pte_fn_t fn, void *data)
  1377. {
  1378. pud_t *pud;
  1379. unsigned long next;
  1380. int err;
  1381. pud = pud_alloc(mm, pgd, addr);
  1382. if (!pud)
  1383. return -ENOMEM;
  1384. do {
  1385. next = pud_addr_end(addr, end);
  1386. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1387. if (err)
  1388. break;
  1389. } while (pud++, addr = next, addr != end);
  1390. return err;
  1391. }
  1392. /*
  1393. * Scan a region of virtual memory, filling in page tables as necessary
  1394. * and calling a provided function on each leaf page table.
  1395. */
  1396. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1397. unsigned long size, pte_fn_t fn, void *data)
  1398. {
  1399. pgd_t *pgd;
  1400. unsigned long next;
  1401. unsigned long end = addr + size;
  1402. int err;
  1403. BUG_ON(addr >= end);
  1404. pgd = pgd_offset(mm, addr);
  1405. do {
  1406. next = pgd_addr_end(addr, end);
  1407. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1408. if (err)
  1409. break;
  1410. } while (pgd++, addr = next, addr != end);
  1411. return err;
  1412. }
  1413. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1414. /*
  1415. * handle_pte_fault chooses page fault handler according to an entry
  1416. * which was read non-atomically. Before making any commitment, on
  1417. * those architectures or configurations (e.g. i386 with PAE) which
  1418. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1419. * must check under lock before unmapping the pte and proceeding
  1420. * (but do_wp_page is only called after already making such a check;
  1421. * and do_anonymous_page and do_no_page can safely check later on).
  1422. */
  1423. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1424. pte_t *page_table, pte_t orig_pte)
  1425. {
  1426. int same = 1;
  1427. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1428. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1429. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1430. spin_lock(ptl);
  1431. same = pte_same(*page_table, orig_pte);
  1432. spin_unlock(ptl);
  1433. }
  1434. #endif
  1435. pte_unmap(page_table);
  1436. return same;
  1437. }
  1438. /*
  1439. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1440. * servicing faults for write access. In the normal case, do always want
  1441. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1442. * that do not have writing enabled, when used by access_process_vm.
  1443. */
  1444. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1445. {
  1446. if (likely(vma->vm_flags & VM_WRITE))
  1447. pte = pte_mkwrite(pte);
  1448. return pte;
  1449. }
  1450. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1451. {
  1452. /*
  1453. * If the source page was a PFN mapping, we don't have
  1454. * a "struct page" for it. We do a best-effort copy by
  1455. * just copying from the original user address. If that
  1456. * fails, we just zero-fill it. Live with it.
  1457. */
  1458. if (unlikely(!src)) {
  1459. void *kaddr = kmap_atomic(dst, KM_USER0);
  1460. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1461. /*
  1462. * This really shouldn't fail, because the page is there
  1463. * in the page tables. But it might just be unreadable,
  1464. * in which case we just give up and fill the result with
  1465. * zeroes.
  1466. */
  1467. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1468. memset(kaddr, 0, PAGE_SIZE);
  1469. kunmap_atomic(kaddr, KM_USER0);
  1470. flush_dcache_page(dst);
  1471. } else
  1472. copy_user_highpage(dst, src, va, vma);
  1473. }
  1474. /*
  1475. * This routine handles present pages, when users try to write
  1476. * to a shared page. It is done by copying the page to a new address
  1477. * and decrementing the shared-page counter for the old page.
  1478. *
  1479. * Note that this routine assumes that the protection checks have been
  1480. * done by the caller (the low-level page fault routine in most cases).
  1481. * Thus we can safely just mark it writable once we've done any necessary
  1482. * COW.
  1483. *
  1484. * We also mark the page dirty at this point even though the page will
  1485. * change only once the write actually happens. This avoids a few races,
  1486. * and potentially makes it more efficient.
  1487. *
  1488. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1489. * but allow concurrent faults), with pte both mapped and locked.
  1490. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1491. */
  1492. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1493. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1494. spinlock_t *ptl, pte_t orig_pte)
  1495. {
  1496. struct page *old_page, *new_page;
  1497. pte_t entry;
  1498. int reuse = 0, ret = 0;
  1499. int page_mkwrite = 0;
  1500. struct page *dirty_page = NULL;
  1501. old_page = vm_normal_page(vma, address, orig_pte);
  1502. if (!old_page)
  1503. goto gotten;
  1504. /*
  1505. * Take out anonymous pages first, anonymous shared vmas are
  1506. * not dirty accountable.
  1507. */
  1508. if (PageAnon(old_page)) {
  1509. if (!TestSetPageLocked(old_page)) {
  1510. reuse = can_share_swap_page(old_page);
  1511. unlock_page(old_page);
  1512. }
  1513. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1514. (VM_WRITE|VM_SHARED))) {
  1515. /*
  1516. * Only catch write-faults on shared writable pages,
  1517. * read-only shared pages can get COWed by
  1518. * get_user_pages(.write=1, .force=1).
  1519. */
  1520. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1521. /*
  1522. * Notify the address space that the page is about to
  1523. * become writable so that it can prohibit this or wait
  1524. * for the page to get into an appropriate state.
  1525. *
  1526. * We do this without the lock held, so that it can
  1527. * sleep if it needs to.
  1528. */
  1529. page_cache_get(old_page);
  1530. pte_unmap_unlock(page_table, ptl);
  1531. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1532. goto unwritable_page;
  1533. /*
  1534. * Since we dropped the lock we need to revalidate
  1535. * the PTE as someone else may have changed it. If
  1536. * they did, we just return, as we can count on the
  1537. * MMU to tell us if they didn't also make it writable.
  1538. */
  1539. page_table = pte_offset_map_lock(mm, pmd, address,
  1540. &ptl);
  1541. page_cache_release(old_page);
  1542. if (!pte_same(*page_table, orig_pte))
  1543. goto unlock;
  1544. page_mkwrite = 1;
  1545. }
  1546. dirty_page = old_page;
  1547. get_page(dirty_page);
  1548. reuse = 1;
  1549. }
  1550. if (reuse) {
  1551. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1552. entry = pte_mkyoung(orig_pte);
  1553. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1554. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1555. update_mmu_cache(vma, address, entry);
  1556. ret |= VM_FAULT_WRITE;
  1557. goto unlock;
  1558. }
  1559. /*
  1560. * Ok, we need to copy. Oh, well..
  1561. */
  1562. page_cache_get(old_page);
  1563. gotten:
  1564. pte_unmap_unlock(page_table, ptl);
  1565. if (unlikely(anon_vma_prepare(vma)))
  1566. goto oom;
  1567. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1568. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1569. if (!new_page)
  1570. goto oom;
  1571. cow_user_page(new_page, old_page, address, vma);
  1572. __SetPageUptodate(new_page);
  1573. if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
  1574. goto oom_free_new;
  1575. /*
  1576. * Re-check the pte - we dropped the lock
  1577. */
  1578. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1579. if (likely(pte_same(*page_table, orig_pte))) {
  1580. if (old_page) {
  1581. page_remove_rmap(old_page, vma);
  1582. if (!PageAnon(old_page)) {
  1583. dec_mm_counter(mm, file_rss);
  1584. inc_mm_counter(mm, anon_rss);
  1585. }
  1586. } else
  1587. inc_mm_counter(mm, anon_rss);
  1588. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1589. entry = mk_pte(new_page, vma->vm_page_prot);
  1590. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1591. /*
  1592. * Clear the pte entry and flush it first, before updating the
  1593. * pte with the new entry. This will avoid a race condition
  1594. * seen in the presence of one thread doing SMC and another
  1595. * thread doing COW.
  1596. */
  1597. ptep_clear_flush(vma, address, page_table);
  1598. set_pte_at(mm, address, page_table, entry);
  1599. update_mmu_cache(vma, address, entry);
  1600. lru_cache_add_active(new_page);
  1601. page_add_new_anon_rmap(new_page, vma, address);
  1602. /* Free the old page.. */
  1603. new_page = old_page;
  1604. ret |= VM_FAULT_WRITE;
  1605. } else
  1606. mem_cgroup_uncharge_page(new_page);
  1607. if (new_page)
  1608. page_cache_release(new_page);
  1609. if (old_page)
  1610. page_cache_release(old_page);
  1611. unlock:
  1612. pte_unmap_unlock(page_table, ptl);
  1613. if (dirty_page) {
  1614. if (vma->vm_file)
  1615. file_update_time(vma->vm_file);
  1616. /*
  1617. * Yes, Virginia, this is actually required to prevent a race
  1618. * with clear_page_dirty_for_io() from clearing the page dirty
  1619. * bit after it clear all dirty ptes, but before a racing
  1620. * do_wp_page installs a dirty pte.
  1621. *
  1622. * do_no_page is protected similarly.
  1623. */
  1624. wait_on_page_locked(dirty_page);
  1625. set_page_dirty_balance(dirty_page, page_mkwrite);
  1626. put_page(dirty_page);
  1627. }
  1628. return ret;
  1629. oom_free_new:
  1630. page_cache_release(new_page);
  1631. oom:
  1632. if (old_page)
  1633. page_cache_release(old_page);
  1634. return VM_FAULT_OOM;
  1635. unwritable_page:
  1636. page_cache_release(old_page);
  1637. return VM_FAULT_SIGBUS;
  1638. }
  1639. /*
  1640. * Helper functions for unmap_mapping_range().
  1641. *
  1642. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1643. *
  1644. * We have to restart searching the prio_tree whenever we drop the lock,
  1645. * since the iterator is only valid while the lock is held, and anyway
  1646. * a later vma might be split and reinserted earlier while lock dropped.
  1647. *
  1648. * The list of nonlinear vmas could be handled more efficiently, using
  1649. * a placeholder, but handle it in the same way until a need is shown.
  1650. * It is important to search the prio_tree before nonlinear list: a vma
  1651. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1652. * while the lock is dropped; but never shifted from list to prio_tree.
  1653. *
  1654. * In order to make forward progress despite restarting the search,
  1655. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1656. * quickly skip it next time around. Since the prio_tree search only
  1657. * shows us those vmas affected by unmapping the range in question, we
  1658. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1659. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1660. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1661. * i_mmap_lock.
  1662. *
  1663. * In order to make forward progress despite repeatedly restarting some
  1664. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1665. * and restart from that address when we reach that vma again. It might
  1666. * have been split or merged, shrunk or extended, but never shifted: so
  1667. * restart_addr remains valid so long as it remains in the vma's range.
  1668. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1669. * values so we can save vma's restart_addr in its truncate_count field.
  1670. */
  1671. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1672. static void reset_vma_truncate_counts(struct address_space *mapping)
  1673. {
  1674. struct vm_area_struct *vma;
  1675. struct prio_tree_iter iter;
  1676. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1677. vma->vm_truncate_count = 0;
  1678. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1679. vma->vm_truncate_count = 0;
  1680. }
  1681. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1682. unsigned long start_addr, unsigned long end_addr,
  1683. struct zap_details *details)
  1684. {
  1685. unsigned long restart_addr;
  1686. int need_break;
  1687. /*
  1688. * files that support invalidating or truncating portions of the
  1689. * file from under mmaped areas must have their ->fault function
  1690. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1691. * This provides synchronisation against concurrent unmapping here.
  1692. */
  1693. again:
  1694. restart_addr = vma->vm_truncate_count;
  1695. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1696. start_addr = restart_addr;
  1697. if (start_addr >= end_addr) {
  1698. /* Top of vma has been split off since last time */
  1699. vma->vm_truncate_count = details->truncate_count;
  1700. return 0;
  1701. }
  1702. }
  1703. restart_addr = zap_page_range(vma, start_addr,
  1704. end_addr - start_addr, details);
  1705. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1706. if (restart_addr >= end_addr) {
  1707. /* We have now completed this vma: mark it so */
  1708. vma->vm_truncate_count = details->truncate_count;
  1709. if (!need_break)
  1710. return 0;
  1711. } else {
  1712. /* Note restart_addr in vma's truncate_count field */
  1713. vma->vm_truncate_count = restart_addr;
  1714. if (!need_break)
  1715. goto again;
  1716. }
  1717. spin_unlock(details->i_mmap_lock);
  1718. cond_resched();
  1719. spin_lock(details->i_mmap_lock);
  1720. return -EINTR;
  1721. }
  1722. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1723. struct zap_details *details)
  1724. {
  1725. struct vm_area_struct *vma;
  1726. struct prio_tree_iter iter;
  1727. pgoff_t vba, vea, zba, zea;
  1728. restart:
  1729. vma_prio_tree_foreach(vma, &iter, root,
  1730. details->first_index, details->last_index) {
  1731. /* Skip quickly over those we have already dealt with */
  1732. if (vma->vm_truncate_count == details->truncate_count)
  1733. continue;
  1734. vba = vma->vm_pgoff;
  1735. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1736. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1737. zba = details->first_index;
  1738. if (zba < vba)
  1739. zba = vba;
  1740. zea = details->last_index;
  1741. if (zea > vea)
  1742. zea = vea;
  1743. if (unmap_mapping_range_vma(vma,
  1744. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1745. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1746. details) < 0)
  1747. goto restart;
  1748. }
  1749. }
  1750. static inline void unmap_mapping_range_list(struct list_head *head,
  1751. struct zap_details *details)
  1752. {
  1753. struct vm_area_struct *vma;
  1754. /*
  1755. * In nonlinear VMAs there is no correspondence between virtual address
  1756. * offset and file offset. So we must perform an exhaustive search
  1757. * across *all* the pages in each nonlinear VMA, not just the pages
  1758. * whose virtual address lies outside the file truncation point.
  1759. */
  1760. restart:
  1761. list_for_each_entry(vma, head, shared.vm_set.list) {
  1762. /* Skip quickly over those we have already dealt with */
  1763. if (vma->vm_truncate_count == details->truncate_count)
  1764. continue;
  1765. details->nonlinear_vma = vma;
  1766. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1767. vma->vm_end, details) < 0)
  1768. goto restart;
  1769. }
  1770. }
  1771. /**
  1772. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1773. * @mapping: the address space containing mmaps to be unmapped.
  1774. * @holebegin: byte in first page to unmap, relative to the start of
  1775. * the underlying file. This will be rounded down to a PAGE_SIZE
  1776. * boundary. Note that this is different from vmtruncate(), which
  1777. * must keep the partial page. In contrast, we must get rid of
  1778. * partial pages.
  1779. * @holelen: size of prospective hole in bytes. This will be rounded
  1780. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1781. * end of the file.
  1782. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1783. * but 0 when invalidating pagecache, don't throw away private data.
  1784. */
  1785. void unmap_mapping_range(struct address_space *mapping,
  1786. loff_t const holebegin, loff_t const holelen, int even_cows)
  1787. {
  1788. struct zap_details details;
  1789. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1790. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1791. /* Check for overflow. */
  1792. if (sizeof(holelen) > sizeof(hlen)) {
  1793. long long holeend =
  1794. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1795. if (holeend & ~(long long)ULONG_MAX)
  1796. hlen = ULONG_MAX - hba + 1;
  1797. }
  1798. details.check_mapping = even_cows? NULL: mapping;
  1799. details.nonlinear_vma = NULL;
  1800. details.first_index = hba;
  1801. details.last_index = hba + hlen - 1;
  1802. if (details.last_index < details.first_index)
  1803. details.last_index = ULONG_MAX;
  1804. details.i_mmap_lock = &mapping->i_mmap_lock;
  1805. spin_lock(&mapping->i_mmap_lock);
  1806. /* Protect against endless unmapping loops */
  1807. mapping->truncate_count++;
  1808. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1809. if (mapping->truncate_count == 0)
  1810. reset_vma_truncate_counts(mapping);
  1811. mapping->truncate_count++;
  1812. }
  1813. details.truncate_count = mapping->truncate_count;
  1814. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1815. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1816. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1817. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1818. spin_unlock(&mapping->i_mmap_lock);
  1819. }
  1820. EXPORT_SYMBOL(unmap_mapping_range);
  1821. /**
  1822. * vmtruncate - unmap mappings "freed" by truncate() syscall
  1823. * @inode: inode of the file used
  1824. * @offset: file offset to start truncating
  1825. *
  1826. * NOTE! We have to be ready to update the memory sharing
  1827. * between the file and the memory map for a potential last
  1828. * incomplete page. Ugly, but necessary.
  1829. */
  1830. int vmtruncate(struct inode * inode, loff_t offset)
  1831. {
  1832. if (inode->i_size < offset) {
  1833. unsigned long limit;
  1834. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1835. if (limit != RLIM_INFINITY && offset > limit)
  1836. goto out_sig;
  1837. if (offset > inode->i_sb->s_maxbytes)
  1838. goto out_big;
  1839. i_size_write(inode, offset);
  1840. } else {
  1841. struct address_space *mapping = inode->i_mapping;
  1842. /*
  1843. * truncation of in-use swapfiles is disallowed - it would
  1844. * cause subsequent swapout to scribble on the now-freed
  1845. * blocks.
  1846. */
  1847. if (IS_SWAPFILE(inode))
  1848. return -ETXTBSY;
  1849. i_size_write(inode, offset);
  1850. /*
  1851. * unmap_mapping_range is called twice, first simply for
  1852. * efficiency so that truncate_inode_pages does fewer
  1853. * single-page unmaps. However after this first call, and
  1854. * before truncate_inode_pages finishes, it is possible for
  1855. * private pages to be COWed, which remain after
  1856. * truncate_inode_pages finishes, hence the second
  1857. * unmap_mapping_range call must be made for correctness.
  1858. */
  1859. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1860. truncate_inode_pages(mapping, offset);
  1861. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1862. }
  1863. if (inode->i_op && inode->i_op->truncate)
  1864. inode->i_op->truncate(inode);
  1865. return 0;
  1866. out_sig:
  1867. send_sig(SIGXFSZ, current, 0);
  1868. out_big:
  1869. return -EFBIG;
  1870. }
  1871. EXPORT_SYMBOL(vmtruncate);
  1872. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  1873. {
  1874. struct address_space *mapping = inode->i_mapping;
  1875. /*
  1876. * If the underlying filesystem is not going to provide
  1877. * a way to truncate a range of blocks (punch a hole) -
  1878. * we should return failure right now.
  1879. */
  1880. if (!inode->i_op || !inode->i_op->truncate_range)
  1881. return -ENOSYS;
  1882. mutex_lock(&inode->i_mutex);
  1883. down_write(&inode->i_alloc_sem);
  1884. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1885. truncate_inode_pages_range(mapping, offset, end);
  1886. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1887. inode->i_op->truncate_range(inode, offset, end);
  1888. up_write(&inode->i_alloc_sem);
  1889. mutex_unlock(&inode->i_mutex);
  1890. return 0;
  1891. }
  1892. /*
  1893. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1894. * but allow concurrent faults), and pte mapped but not yet locked.
  1895. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1896. */
  1897. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1898. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1899. int write_access, pte_t orig_pte)
  1900. {
  1901. spinlock_t *ptl;
  1902. struct page *page;
  1903. swp_entry_t entry;
  1904. pte_t pte;
  1905. int ret = 0;
  1906. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  1907. goto out;
  1908. entry = pte_to_swp_entry(orig_pte);
  1909. if (is_migration_entry(entry)) {
  1910. migration_entry_wait(mm, pmd, address);
  1911. goto out;
  1912. }
  1913. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  1914. page = lookup_swap_cache(entry);
  1915. if (!page) {
  1916. grab_swap_token(); /* Contend for token _before_ read-in */
  1917. page = swapin_readahead(entry,
  1918. GFP_HIGHUSER_MOVABLE, vma, address);
  1919. if (!page) {
  1920. /*
  1921. * Back out if somebody else faulted in this pte
  1922. * while we released the pte lock.
  1923. */
  1924. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1925. if (likely(pte_same(*page_table, orig_pte)))
  1926. ret = VM_FAULT_OOM;
  1927. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1928. goto unlock;
  1929. }
  1930. /* Had to read the page from swap area: Major fault */
  1931. ret = VM_FAULT_MAJOR;
  1932. count_vm_event(PGMAJFAULT);
  1933. }
  1934. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  1935. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1936. ret = VM_FAULT_OOM;
  1937. goto out;
  1938. }
  1939. mark_page_accessed(page);
  1940. lock_page(page);
  1941. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1942. /*
  1943. * Back out if somebody else already faulted in this pte.
  1944. */
  1945. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1946. if (unlikely(!pte_same(*page_table, orig_pte)))
  1947. goto out_nomap;
  1948. if (unlikely(!PageUptodate(page))) {
  1949. ret = VM_FAULT_SIGBUS;
  1950. goto out_nomap;
  1951. }
  1952. /* The page isn't present yet, go ahead with the fault. */
  1953. inc_mm_counter(mm, anon_rss);
  1954. pte = mk_pte(page, vma->vm_page_prot);
  1955. if (write_access && can_share_swap_page(page)) {
  1956. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1957. write_access = 0;
  1958. }
  1959. flush_icache_page(vma, page);
  1960. set_pte_at(mm, address, page_table, pte);
  1961. page_add_anon_rmap(page, vma, address);
  1962. swap_free(entry);
  1963. if (vm_swap_full())
  1964. remove_exclusive_swap_page(page);
  1965. unlock_page(page);
  1966. if (write_access) {
  1967. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  1968. if (ret & VM_FAULT_ERROR)
  1969. ret &= VM_FAULT_ERROR;
  1970. goto out;
  1971. }
  1972. /* No need to invalidate - it was non-present before */
  1973. update_mmu_cache(vma, address, pte);
  1974. unlock:
  1975. pte_unmap_unlock(page_table, ptl);
  1976. out:
  1977. return ret;
  1978. out_nomap:
  1979. mem_cgroup_uncharge_page(page);
  1980. pte_unmap_unlock(page_table, ptl);
  1981. unlock_page(page);
  1982. page_cache_release(page);
  1983. return ret;
  1984. }
  1985. /*
  1986. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1987. * but allow concurrent faults), and pte mapped but not yet locked.
  1988. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1989. */
  1990. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1991. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1992. int write_access)
  1993. {
  1994. struct page *page;
  1995. spinlock_t *ptl;
  1996. pte_t entry;
  1997. /* Allocate our own private page. */
  1998. pte_unmap(page_table);
  1999. if (unlikely(anon_vma_prepare(vma)))
  2000. goto oom;
  2001. page = alloc_zeroed_user_highpage_movable(vma, address);
  2002. if (!page)
  2003. goto oom;
  2004. __SetPageUptodate(page);
  2005. if (mem_cgroup_charge(page, mm, GFP_KERNEL))
  2006. goto oom_free_page;
  2007. entry = mk_pte(page, vma->vm_page_prot);
  2008. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2009. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2010. if (!pte_none(*page_table))
  2011. goto release;
  2012. inc_mm_counter(mm, anon_rss);
  2013. lru_cache_add_active(page);
  2014. page_add_new_anon_rmap(page, vma, address);
  2015. set_pte_at(mm, address, page_table, entry);
  2016. /* No need to invalidate - it was non-present before */
  2017. update_mmu_cache(vma, address, entry);
  2018. unlock:
  2019. pte_unmap_unlock(page_table, ptl);
  2020. return 0;
  2021. release:
  2022. mem_cgroup_uncharge_page(page);
  2023. page_cache_release(page);
  2024. goto unlock;
  2025. oom_free_page:
  2026. page_cache_release(page);
  2027. oom:
  2028. return VM_FAULT_OOM;
  2029. }
  2030. /*
  2031. * __do_fault() tries to create a new page mapping. It aggressively
  2032. * tries to share with existing pages, but makes a separate copy if
  2033. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2034. * the next page fault.
  2035. *
  2036. * As this is called only for pages that do not currently exist, we
  2037. * do not need to flush old virtual caches or the TLB.
  2038. *
  2039. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2040. * but allow concurrent faults), and pte neither mapped nor locked.
  2041. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2042. */
  2043. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2044. unsigned long address, pmd_t *pmd,
  2045. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2046. {
  2047. pte_t *page_table;
  2048. spinlock_t *ptl;
  2049. struct page *page;
  2050. pte_t entry;
  2051. int anon = 0;
  2052. struct page *dirty_page = NULL;
  2053. struct vm_fault vmf;
  2054. int ret;
  2055. int page_mkwrite = 0;
  2056. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2057. vmf.pgoff = pgoff;
  2058. vmf.flags = flags;
  2059. vmf.page = NULL;
  2060. BUG_ON(vma->vm_flags & VM_PFNMAP);
  2061. ret = vma->vm_ops->fault(vma, &vmf);
  2062. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2063. return ret;
  2064. /*
  2065. * For consistency in subsequent calls, make the faulted page always
  2066. * locked.
  2067. */
  2068. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2069. lock_page(vmf.page);
  2070. else
  2071. VM_BUG_ON(!PageLocked(vmf.page));
  2072. /*
  2073. * Should we do an early C-O-W break?
  2074. */
  2075. page = vmf.page;
  2076. if (flags & FAULT_FLAG_WRITE) {
  2077. if (!(vma->vm_flags & VM_SHARED)) {
  2078. anon = 1;
  2079. if (unlikely(anon_vma_prepare(vma))) {
  2080. ret = VM_FAULT_OOM;
  2081. goto out;
  2082. }
  2083. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2084. vma, address);
  2085. if (!page) {
  2086. ret = VM_FAULT_OOM;
  2087. goto out;
  2088. }
  2089. copy_user_highpage(page, vmf.page, address, vma);
  2090. __SetPageUptodate(page);
  2091. } else {
  2092. /*
  2093. * If the page will be shareable, see if the backing
  2094. * address space wants to know that the page is about
  2095. * to become writable
  2096. */
  2097. if (vma->vm_ops->page_mkwrite) {
  2098. unlock_page(page);
  2099. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  2100. ret = VM_FAULT_SIGBUS;
  2101. anon = 1; /* no anon but release vmf.page */
  2102. goto out_unlocked;
  2103. }
  2104. lock_page(page);
  2105. /*
  2106. * XXX: this is not quite right (racy vs
  2107. * invalidate) to unlock and relock the page
  2108. * like this, however a better fix requires
  2109. * reworking page_mkwrite locking API, which
  2110. * is better done later.
  2111. */
  2112. if (!page->mapping) {
  2113. ret = 0;
  2114. anon = 1; /* no anon but release vmf.page */
  2115. goto out;
  2116. }
  2117. page_mkwrite = 1;
  2118. }
  2119. }
  2120. }
  2121. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  2122. ret = VM_FAULT_OOM;
  2123. goto out;
  2124. }
  2125. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2126. /*
  2127. * This silly early PAGE_DIRTY setting removes a race
  2128. * due to the bad i386 page protection. But it's valid
  2129. * for other architectures too.
  2130. *
  2131. * Note that if write_access is true, we either now have
  2132. * an exclusive copy of the page, or this is a shared mapping,
  2133. * so we can make it writable and dirty to avoid having to
  2134. * handle that later.
  2135. */
  2136. /* Only go through if we didn't race with anybody else... */
  2137. if (likely(pte_same(*page_table, orig_pte))) {
  2138. flush_icache_page(vma, page);
  2139. entry = mk_pte(page, vma->vm_page_prot);
  2140. if (flags & FAULT_FLAG_WRITE)
  2141. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2142. set_pte_at(mm, address, page_table, entry);
  2143. if (anon) {
  2144. inc_mm_counter(mm, anon_rss);
  2145. lru_cache_add_active(page);
  2146. page_add_new_anon_rmap(page, vma, address);
  2147. } else {
  2148. inc_mm_counter(mm, file_rss);
  2149. page_add_file_rmap(page);
  2150. if (flags & FAULT_FLAG_WRITE) {
  2151. dirty_page = page;
  2152. get_page(dirty_page);
  2153. }
  2154. }
  2155. /* no need to invalidate: a not-present page won't be cached */
  2156. update_mmu_cache(vma, address, entry);
  2157. } else {
  2158. mem_cgroup_uncharge_page(page);
  2159. if (anon)
  2160. page_cache_release(page);
  2161. else
  2162. anon = 1; /* no anon but release faulted_page */
  2163. }
  2164. pte_unmap_unlock(page_table, ptl);
  2165. out:
  2166. unlock_page(vmf.page);
  2167. out_unlocked:
  2168. if (anon)
  2169. page_cache_release(vmf.page);
  2170. else if (dirty_page) {
  2171. if (vma->vm_file)
  2172. file_update_time(vma->vm_file);
  2173. set_page_dirty_balance(dirty_page, page_mkwrite);
  2174. put_page(dirty_page);
  2175. }
  2176. return ret;
  2177. }
  2178. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2179. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2180. int write_access, pte_t orig_pte)
  2181. {
  2182. pgoff_t pgoff = (((address & PAGE_MASK)
  2183. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2184. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2185. pte_unmap(page_table);
  2186. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2187. }
  2188. /*
  2189. * do_no_pfn() tries to create a new page mapping for a page without
  2190. * a struct_page backing it
  2191. *
  2192. * As this is called only for pages that do not currently exist, we
  2193. * do not need to flush old virtual caches or the TLB.
  2194. *
  2195. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2196. * but allow concurrent faults), and pte mapped but not yet locked.
  2197. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2198. *
  2199. * It is expected that the ->nopfn handler always returns the same pfn
  2200. * for a given virtual mapping.
  2201. *
  2202. * Mark this `noinline' to prevent it from bloating the main pagefault code.
  2203. */
  2204. static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
  2205. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2206. int write_access)
  2207. {
  2208. spinlock_t *ptl;
  2209. pte_t entry;
  2210. unsigned long pfn;
  2211. pte_unmap(page_table);
  2212. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  2213. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  2214. pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
  2215. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  2216. if (unlikely(pfn == NOPFN_OOM))
  2217. return VM_FAULT_OOM;
  2218. else if (unlikely(pfn == NOPFN_SIGBUS))
  2219. return VM_FAULT_SIGBUS;
  2220. else if (unlikely(pfn == NOPFN_REFAULT))
  2221. return 0;
  2222. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2223. /* Only go through if we didn't race with anybody else... */
  2224. if (pte_none(*page_table)) {
  2225. entry = pfn_pte(pfn, vma->vm_page_prot);
  2226. if (write_access)
  2227. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2228. set_pte_at(mm, address, page_table, entry);
  2229. }
  2230. pte_unmap_unlock(page_table, ptl);
  2231. return 0;
  2232. }
  2233. /*
  2234. * Fault of a previously existing named mapping. Repopulate the pte
  2235. * from the encoded file_pte if possible. This enables swappable
  2236. * nonlinear vmas.
  2237. *
  2238. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2239. * but allow concurrent faults), and pte mapped but not yet locked.
  2240. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2241. */
  2242. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2243. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2244. int write_access, pte_t orig_pte)
  2245. {
  2246. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2247. (write_access ? FAULT_FLAG_WRITE : 0);
  2248. pgoff_t pgoff;
  2249. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2250. return 0;
  2251. if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
  2252. !(vma->vm_flags & VM_CAN_NONLINEAR))) {
  2253. /*
  2254. * Page table corrupted: show pte and kill process.
  2255. */
  2256. print_bad_pte(vma, orig_pte, address);
  2257. return VM_FAULT_OOM;
  2258. }
  2259. pgoff = pte_to_pgoff(orig_pte);
  2260. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2261. }
  2262. /*
  2263. * These routines also need to handle stuff like marking pages dirty
  2264. * and/or accessed for architectures that don't do it in hardware (most
  2265. * RISC architectures). The early dirtying is also good on the i386.
  2266. *
  2267. * There is also a hook called "update_mmu_cache()" that architectures
  2268. * with external mmu caches can use to update those (ie the Sparc or
  2269. * PowerPC hashed page tables that act as extended TLBs).
  2270. *
  2271. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2272. * but allow concurrent faults), and pte mapped but not yet locked.
  2273. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2274. */
  2275. static inline int handle_pte_fault(struct mm_struct *mm,
  2276. struct vm_area_struct *vma, unsigned long address,
  2277. pte_t *pte, pmd_t *pmd, int write_access)
  2278. {
  2279. pte_t entry;
  2280. spinlock_t *ptl;
  2281. entry = *pte;
  2282. if (!pte_present(entry)) {
  2283. if (pte_none(entry)) {
  2284. if (vma->vm_ops) {
  2285. if (likely(vma->vm_ops->fault))
  2286. return do_linear_fault(mm, vma, address,
  2287. pte, pmd, write_access, entry);
  2288. if (unlikely(vma->vm_ops->nopfn))
  2289. return do_no_pfn(mm, vma, address, pte,
  2290. pmd, write_access);
  2291. }
  2292. return do_anonymous_page(mm, vma, address,
  2293. pte, pmd, write_access);
  2294. }
  2295. if (pte_file(entry))
  2296. return do_nonlinear_fault(mm, vma, address,
  2297. pte, pmd, write_access, entry);
  2298. return do_swap_page(mm, vma, address,
  2299. pte, pmd, write_access, entry);
  2300. }
  2301. ptl = pte_lockptr(mm, pmd);
  2302. spin_lock(ptl);
  2303. if (unlikely(!pte_same(*pte, entry)))
  2304. goto unlock;
  2305. if (write_access) {
  2306. if (!pte_write(entry))
  2307. return do_wp_page(mm, vma, address,
  2308. pte, pmd, ptl, entry);
  2309. entry = pte_mkdirty(entry);
  2310. }
  2311. entry = pte_mkyoung(entry);
  2312. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2313. update_mmu_cache(vma, address, entry);
  2314. } else {
  2315. /*
  2316. * This is needed only for protection faults but the arch code
  2317. * is not yet telling us if this is a protection fault or not.
  2318. * This still avoids useless tlb flushes for .text page faults
  2319. * with threads.
  2320. */
  2321. if (write_access)
  2322. flush_tlb_page(vma, address);
  2323. }
  2324. unlock:
  2325. pte_unmap_unlock(pte, ptl);
  2326. return 0;
  2327. }
  2328. /*
  2329. * By the time we get here, we already hold the mm semaphore
  2330. */
  2331. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2332. unsigned long address, int write_access)
  2333. {
  2334. pgd_t *pgd;
  2335. pud_t *pud;
  2336. pmd_t *pmd;
  2337. pte_t *pte;
  2338. __set_current_state(TASK_RUNNING);
  2339. count_vm_event(PGFAULT);
  2340. if (unlikely(is_vm_hugetlb_page(vma)))
  2341. return hugetlb_fault(mm, vma, address, write_access);
  2342. pgd = pgd_offset(mm, address);
  2343. pud = pud_alloc(mm, pgd, address);
  2344. if (!pud)
  2345. return VM_FAULT_OOM;
  2346. pmd = pmd_alloc(mm, pud, address);
  2347. if (!pmd)
  2348. return VM_FAULT_OOM;
  2349. pte = pte_alloc_map(mm, pmd, address);
  2350. if (!pte)
  2351. return VM_FAULT_OOM;
  2352. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2353. }
  2354. #ifndef __PAGETABLE_PUD_FOLDED
  2355. /*
  2356. * Allocate page upper directory.
  2357. * We've already handled the fast-path in-line.
  2358. */
  2359. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2360. {
  2361. pud_t *new = pud_alloc_one(mm, address);
  2362. if (!new)
  2363. return -ENOMEM;
  2364. smp_wmb(); /* See comment in __pte_alloc */
  2365. spin_lock(&mm->page_table_lock);
  2366. if (pgd_present(*pgd)) /* Another has populated it */
  2367. pud_free(mm, new);
  2368. else
  2369. pgd_populate(mm, pgd, new);
  2370. spin_unlock(&mm->page_table_lock);
  2371. return 0;
  2372. }
  2373. #endif /* __PAGETABLE_PUD_FOLDED */
  2374. #ifndef __PAGETABLE_PMD_FOLDED
  2375. /*
  2376. * Allocate page middle directory.
  2377. * We've already handled the fast-path in-line.
  2378. */
  2379. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2380. {
  2381. pmd_t *new = pmd_alloc_one(mm, address);
  2382. if (!new)
  2383. return -ENOMEM;
  2384. smp_wmb(); /* See comment in __pte_alloc */
  2385. spin_lock(&mm->page_table_lock);
  2386. #ifndef __ARCH_HAS_4LEVEL_HACK
  2387. if (pud_present(*pud)) /* Another has populated it */
  2388. pmd_free(mm, new);
  2389. else
  2390. pud_populate(mm, pud, new);
  2391. #else
  2392. if (pgd_present(*pud)) /* Another has populated it */
  2393. pmd_free(mm, new);
  2394. else
  2395. pgd_populate(mm, pud, new);
  2396. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2397. spin_unlock(&mm->page_table_lock);
  2398. return 0;
  2399. }
  2400. #endif /* __PAGETABLE_PMD_FOLDED */
  2401. int make_pages_present(unsigned long addr, unsigned long end)
  2402. {
  2403. int ret, len, write;
  2404. struct vm_area_struct * vma;
  2405. vma = find_vma(current->mm, addr);
  2406. if (!vma)
  2407. return -1;
  2408. write = (vma->vm_flags & VM_WRITE) != 0;
  2409. BUG_ON(addr >= end);
  2410. BUG_ON(end > vma->vm_end);
  2411. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2412. ret = get_user_pages(current, current->mm, addr,
  2413. len, write, 0, NULL, NULL);
  2414. if (ret < 0)
  2415. return ret;
  2416. return ret == len ? 0 : -1;
  2417. }
  2418. #if !defined(__HAVE_ARCH_GATE_AREA)
  2419. #if defined(AT_SYSINFO_EHDR)
  2420. static struct vm_area_struct gate_vma;
  2421. static int __init gate_vma_init(void)
  2422. {
  2423. gate_vma.vm_mm = NULL;
  2424. gate_vma.vm_start = FIXADDR_USER_START;
  2425. gate_vma.vm_end = FIXADDR_USER_END;
  2426. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2427. gate_vma.vm_page_prot = __P101;
  2428. /*
  2429. * Make sure the vDSO gets into every core dump.
  2430. * Dumping its contents makes post-mortem fully interpretable later
  2431. * without matching up the same kernel and hardware config to see
  2432. * what PC values meant.
  2433. */
  2434. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2435. return 0;
  2436. }
  2437. __initcall(gate_vma_init);
  2438. #endif
  2439. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2440. {
  2441. #ifdef AT_SYSINFO_EHDR
  2442. return &gate_vma;
  2443. #else
  2444. return NULL;
  2445. #endif
  2446. }
  2447. int in_gate_area_no_task(unsigned long addr)
  2448. {
  2449. #ifdef AT_SYSINFO_EHDR
  2450. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2451. return 1;
  2452. #endif
  2453. return 0;
  2454. }
  2455. #endif /* __HAVE_ARCH_GATE_AREA */
  2456. /*
  2457. * Access another process' address space.
  2458. * Source/target buffer must be kernel space,
  2459. * Do not walk the page table directly, use get_user_pages
  2460. */
  2461. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2462. {
  2463. struct mm_struct *mm;
  2464. struct vm_area_struct *vma;
  2465. struct page *page;
  2466. void *old_buf = buf;
  2467. mm = get_task_mm(tsk);
  2468. if (!mm)
  2469. return 0;
  2470. down_read(&mm->mmap_sem);
  2471. /* ignore errors, just check how much was successfully transferred */
  2472. while (len) {
  2473. int bytes, ret, offset;
  2474. void *maddr;
  2475. ret = get_user_pages(tsk, mm, addr, 1,
  2476. write, 1, &page, &vma);
  2477. if (ret <= 0)
  2478. break;
  2479. bytes = len;
  2480. offset = addr & (PAGE_SIZE-1);
  2481. if (bytes > PAGE_SIZE-offset)
  2482. bytes = PAGE_SIZE-offset;
  2483. maddr = kmap(page);
  2484. if (write) {
  2485. copy_to_user_page(vma, page, addr,
  2486. maddr + offset, buf, bytes);
  2487. set_page_dirty_lock(page);
  2488. } else {
  2489. copy_from_user_page(vma, page, addr,
  2490. buf, maddr + offset, bytes);
  2491. }
  2492. kunmap(page);
  2493. page_cache_release(page);
  2494. len -= bytes;
  2495. buf += bytes;
  2496. addr += bytes;
  2497. }
  2498. up_read(&mm->mmap_sem);
  2499. mmput(mm);
  2500. return buf - old_buf;
  2501. }
  2502. /*
  2503. * Print the name of a VMA.
  2504. */
  2505. void print_vma_addr(char *prefix, unsigned long ip)
  2506. {
  2507. struct mm_struct *mm = current->mm;
  2508. struct vm_area_struct *vma;
  2509. /*
  2510. * Do not print if we are in atomic
  2511. * contexts (in exception stacks, etc.):
  2512. */
  2513. if (preempt_count())
  2514. return;
  2515. down_read(&mm->mmap_sem);
  2516. vma = find_vma(mm, ip);
  2517. if (vma && vma->vm_file) {
  2518. struct file *f = vma->vm_file;
  2519. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2520. if (buf) {
  2521. char *p, *s;
  2522. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2523. if (IS_ERR(p))
  2524. p = "?";
  2525. s = strrchr(p, '/');
  2526. if (s)
  2527. p = s+1;
  2528. printk("%s%s[%lx+%lx]", prefix, p,
  2529. vma->vm_start,
  2530. vma->vm_end - vma->vm_start);
  2531. free_page((unsigned long)buf);
  2532. }
  2533. }
  2534. up_read(&current->mm->mmap_sem);
  2535. }