namespace.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/acct.h>
  17. #include <linux/capability.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/security.h>
  25. #include <linux/mount.h>
  26. #include <linux/ramfs.h>
  27. #include <linux/log2.h>
  28. #include <linux/idr.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/unistd.h>
  31. #include "pnode.h"
  32. #include "internal.h"
  33. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  34. #define HASH_SIZE (1UL << HASH_SHIFT)
  35. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  36. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  37. static int event;
  38. static DEFINE_IDA(mnt_id_ida);
  39. static DEFINE_IDA(mnt_group_ida);
  40. static struct list_head *mount_hashtable __read_mostly;
  41. static struct kmem_cache *mnt_cache __read_mostly;
  42. static struct rw_semaphore namespace_sem;
  43. /* /sys/fs */
  44. struct kobject *fs_kobj;
  45. EXPORT_SYMBOL_GPL(fs_kobj);
  46. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  47. {
  48. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  49. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  50. tmp = tmp + (tmp >> HASH_SHIFT);
  51. return tmp & (HASH_SIZE - 1);
  52. }
  53. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  54. /* allocation is serialized by namespace_sem */
  55. static int mnt_alloc_id(struct vfsmount *mnt)
  56. {
  57. int res;
  58. retry:
  59. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  60. spin_lock(&vfsmount_lock);
  61. res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
  62. spin_unlock(&vfsmount_lock);
  63. if (res == -EAGAIN)
  64. goto retry;
  65. return res;
  66. }
  67. static void mnt_free_id(struct vfsmount *mnt)
  68. {
  69. spin_lock(&vfsmount_lock);
  70. ida_remove(&mnt_id_ida, mnt->mnt_id);
  71. spin_unlock(&vfsmount_lock);
  72. }
  73. /*
  74. * Allocate a new peer group ID
  75. *
  76. * mnt_group_ida is protected by namespace_sem
  77. */
  78. static int mnt_alloc_group_id(struct vfsmount *mnt)
  79. {
  80. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  81. return -ENOMEM;
  82. return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
  83. }
  84. /*
  85. * Release a peer group ID
  86. */
  87. void mnt_release_group_id(struct vfsmount *mnt)
  88. {
  89. ida_remove(&mnt_group_ida, mnt->mnt_group_id);
  90. mnt->mnt_group_id = 0;
  91. }
  92. struct vfsmount *alloc_vfsmnt(const char *name)
  93. {
  94. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  95. if (mnt) {
  96. int err;
  97. err = mnt_alloc_id(mnt);
  98. if (err) {
  99. kmem_cache_free(mnt_cache, mnt);
  100. return NULL;
  101. }
  102. atomic_set(&mnt->mnt_count, 1);
  103. INIT_LIST_HEAD(&mnt->mnt_hash);
  104. INIT_LIST_HEAD(&mnt->mnt_child);
  105. INIT_LIST_HEAD(&mnt->mnt_mounts);
  106. INIT_LIST_HEAD(&mnt->mnt_list);
  107. INIT_LIST_HEAD(&mnt->mnt_expire);
  108. INIT_LIST_HEAD(&mnt->mnt_share);
  109. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  110. INIT_LIST_HEAD(&mnt->mnt_slave);
  111. atomic_set(&mnt->__mnt_writers, 0);
  112. if (name) {
  113. int size = strlen(name) + 1;
  114. char *newname = kmalloc(size, GFP_KERNEL);
  115. if (newname) {
  116. memcpy(newname, name, size);
  117. mnt->mnt_devname = newname;
  118. }
  119. }
  120. }
  121. return mnt;
  122. }
  123. /*
  124. * Most r/o checks on a fs are for operations that take
  125. * discrete amounts of time, like a write() or unlink().
  126. * We must keep track of when those operations start
  127. * (for permission checks) and when they end, so that
  128. * we can determine when writes are able to occur to
  129. * a filesystem.
  130. */
  131. /*
  132. * __mnt_is_readonly: check whether a mount is read-only
  133. * @mnt: the mount to check for its write status
  134. *
  135. * This shouldn't be used directly ouside of the VFS.
  136. * It does not guarantee that the filesystem will stay
  137. * r/w, just that it is right *now*. This can not and
  138. * should not be used in place of IS_RDONLY(inode).
  139. * mnt_want/drop_write() will _keep_ the filesystem
  140. * r/w.
  141. */
  142. int __mnt_is_readonly(struct vfsmount *mnt)
  143. {
  144. if (mnt->mnt_flags & MNT_READONLY)
  145. return 1;
  146. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  147. return 1;
  148. return 0;
  149. }
  150. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  151. struct mnt_writer {
  152. /*
  153. * If holding multiple instances of this lock, they
  154. * must be ordered by cpu number.
  155. */
  156. spinlock_t lock;
  157. struct lock_class_key lock_class; /* compiles out with !lockdep */
  158. unsigned long count;
  159. struct vfsmount *mnt;
  160. } ____cacheline_aligned_in_smp;
  161. static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
  162. static int __init init_mnt_writers(void)
  163. {
  164. int cpu;
  165. for_each_possible_cpu(cpu) {
  166. struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
  167. spin_lock_init(&writer->lock);
  168. lockdep_set_class(&writer->lock, &writer->lock_class);
  169. writer->count = 0;
  170. }
  171. return 0;
  172. }
  173. fs_initcall(init_mnt_writers);
  174. static void unlock_mnt_writers(void)
  175. {
  176. int cpu;
  177. struct mnt_writer *cpu_writer;
  178. for_each_possible_cpu(cpu) {
  179. cpu_writer = &per_cpu(mnt_writers, cpu);
  180. spin_unlock(&cpu_writer->lock);
  181. }
  182. }
  183. static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
  184. {
  185. if (!cpu_writer->mnt)
  186. return;
  187. /*
  188. * This is in case anyone ever leaves an invalid,
  189. * old ->mnt and a count of 0.
  190. */
  191. if (!cpu_writer->count)
  192. return;
  193. atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
  194. cpu_writer->count = 0;
  195. }
  196. /*
  197. * must hold cpu_writer->lock
  198. */
  199. static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
  200. struct vfsmount *mnt)
  201. {
  202. if (cpu_writer->mnt == mnt)
  203. return;
  204. __clear_mnt_count(cpu_writer);
  205. cpu_writer->mnt = mnt;
  206. }
  207. /*
  208. * Most r/o checks on a fs are for operations that take
  209. * discrete amounts of time, like a write() or unlink().
  210. * We must keep track of when those operations start
  211. * (for permission checks) and when they end, so that
  212. * we can determine when writes are able to occur to
  213. * a filesystem.
  214. */
  215. /**
  216. * mnt_want_write - get write access to a mount
  217. * @mnt: the mount on which to take a write
  218. *
  219. * This tells the low-level filesystem that a write is
  220. * about to be performed to it, and makes sure that
  221. * writes are allowed before returning success. When
  222. * the write operation is finished, mnt_drop_write()
  223. * must be called. This is effectively a refcount.
  224. */
  225. int mnt_want_write(struct vfsmount *mnt)
  226. {
  227. int ret = 0;
  228. struct mnt_writer *cpu_writer;
  229. cpu_writer = &get_cpu_var(mnt_writers);
  230. spin_lock(&cpu_writer->lock);
  231. if (__mnt_is_readonly(mnt)) {
  232. ret = -EROFS;
  233. goto out;
  234. }
  235. use_cpu_writer_for_mount(cpu_writer, mnt);
  236. cpu_writer->count++;
  237. out:
  238. spin_unlock(&cpu_writer->lock);
  239. put_cpu_var(mnt_writers);
  240. return ret;
  241. }
  242. EXPORT_SYMBOL_GPL(mnt_want_write);
  243. static void lock_mnt_writers(void)
  244. {
  245. int cpu;
  246. struct mnt_writer *cpu_writer;
  247. for_each_possible_cpu(cpu) {
  248. cpu_writer = &per_cpu(mnt_writers, cpu);
  249. spin_lock(&cpu_writer->lock);
  250. __clear_mnt_count(cpu_writer);
  251. cpu_writer->mnt = NULL;
  252. }
  253. }
  254. /*
  255. * These per-cpu write counts are not guaranteed to have
  256. * matched increments and decrements on any given cpu.
  257. * A file open()ed for write on one cpu and close()d on
  258. * another cpu will imbalance this count. Make sure it
  259. * does not get too far out of whack.
  260. */
  261. static void handle_write_count_underflow(struct vfsmount *mnt)
  262. {
  263. if (atomic_read(&mnt->__mnt_writers) >=
  264. MNT_WRITER_UNDERFLOW_LIMIT)
  265. return;
  266. /*
  267. * It isn't necessary to hold all of the locks
  268. * at the same time, but doing it this way makes
  269. * us share a lot more code.
  270. */
  271. lock_mnt_writers();
  272. /*
  273. * vfsmount_lock is for mnt_flags.
  274. */
  275. spin_lock(&vfsmount_lock);
  276. /*
  277. * If coalescing the per-cpu writer counts did not
  278. * get us back to a positive writer count, we have
  279. * a bug.
  280. */
  281. if ((atomic_read(&mnt->__mnt_writers) < 0) &&
  282. !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
  283. printk(KERN_DEBUG "leak detected on mount(%p) writers "
  284. "count: %d\n",
  285. mnt, atomic_read(&mnt->__mnt_writers));
  286. WARN_ON(1);
  287. /* use the flag to keep the dmesg spam down */
  288. mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
  289. }
  290. spin_unlock(&vfsmount_lock);
  291. unlock_mnt_writers();
  292. }
  293. /**
  294. * mnt_drop_write - give up write access to a mount
  295. * @mnt: the mount on which to give up write access
  296. *
  297. * Tells the low-level filesystem that we are done
  298. * performing writes to it. Must be matched with
  299. * mnt_want_write() call above.
  300. */
  301. void mnt_drop_write(struct vfsmount *mnt)
  302. {
  303. int must_check_underflow = 0;
  304. struct mnt_writer *cpu_writer;
  305. cpu_writer = &get_cpu_var(mnt_writers);
  306. spin_lock(&cpu_writer->lock);
  307. use_cpu_writer_for_mount(cpu_writer, mnt);
  308. if (cpu_writer->count > 0) {
  309. cpu_writer->count--;
  310. } else {
  311. must_check_underflow = 1;
  312. atomic_dec(&mnt->__mnt_writers);
  313. }
  314. spin_unlock(&cpu_writer->lock);
  315. /*
  316. * Logically, we could call this each time,
  317. * but the __mnt_writers cacheline tends to
  318. * be cold, and makes this expensive.
  319. */
  320. if (must_check_underflow)
  321. handle_write_count_underflow(mnt);
  322. /*
  323. * This could be done right after the spinlock
  324. * is taken because the spinlock keeps us on
  325. * the cpu, and disables preemption. However,
  326. * putting it here bounds the amount that
  327. * __mnt_writers can underflow. Without it,
  328. * we could theoretically wrap __mnt_writers.
  329. */
  330. put_cpu_var(mnt_writers);
  331. }
  332. EXPORT_SYMBOL_GPL(mnt_drop_write);
  333. static int mnt_make_readonly(struct vfsmount *mnt)
  334. {
  335. int ret = 0;
  336. lock_mnt_writers();
  337. /*
  338. * With all the locks held, this value is stable
  339. */
  340. if (atomic_read(&mnt->__mnt_writers) > 0) {
  341. ret = -EBUSY;
  342. goto out;
  343. }
  344. /*
  345. * nobody can do a successful mnt_want_write() with all
  346. * of the counts in MNT_DENIED_WRITE and the locks held.
  347. */
  348. spin_lock(&vfsmount_lock);
  349. if (!ret)
  350. mnt->mnt_flags |= MNT_READONLY;
  351. spin_unlock(&vfsmount_lock);
  352. out:
  353. unlock_mnt_writers();
  354. return ret;
  355. }
  356. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  357. {
  358. spin_lock(&vfsmount_lock);
  359. mnt->mnt_flags &= ~MNT_READONLY;
  360. spin_unlock(&vfsmount_lock);
  361. }
  362. int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  363. {
  364. mnt->mnt_sb = sb;
  365. mnt->mnt_root = dget(sb->s_root);
  366. return 0;
  367. }
  368. EXPORT_SYMBOL(simple_set_mnt);
  369. void free_vfsmnt(struct vfsmount *mnt)
  370. {
  371. kfree(mnt->mnt_devname);
  372. mnt_free_id(mnt);
  373. kmem_cache_free(mnt_cache, mnt);
  374. }
  375. /*
  376. * find the first or last mount at @dentry on vfsmount @mnt depending on
  377. * @dir. If @dir is set return the first mount else return the last mount.
  378. */
  379. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  380. int dir)
  381. {
  382. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  383. struct list_head *tmp = head;
  384. struct vfsmount *p, *found = NULL;
  385. for (;;) {
  386. tmp = dir ? tmp->next : tmp->prev;
  387. p = NULL;
  388. if (tmp == head)
  389. break;
  390. p = list_entry(tmp, struct vfsmount, mnt_hash);
  391. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  392. found = p;
  393. break;
  394. }
  395. }
  396. return found;
  397. }
  398. /*
  399. * lookup_mnt increments the ref count before returning
  400. * the vfsmount struct.
  401. */
  402. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  403. {
  404. struct vfsmount *child_mnt;
  405. spin_lock(&vfsmount_lock);
  406. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  407. mntget(child_mnt);
  408. spin_unlock(&vfsmount_lock);
  409. return child_mnt;
  410. }
  411. static inline int check_mnt(struct vfsmount *mnt)
  412. {
  413. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  414. }
  415. static void touch_mnt_namespace(struct mnt_namespace *ns)
  416. {
  417. if (ns) {
  418. ns->event = ++event;
  419. wake_up_interruptible(&ns->poll);
  420. }
  421. }
  422. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  423. {
  424. if (ns && ns->event != event) {
  425. ns->event = event;
  426. wake_up_interruptible(&ns->poll);
  427. }
  428. }
  429. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  430. {
  431. old_path->dentry = mnt->mnt_mountpoint;
  432. old_path->mnt = mnt->mnt_parent;
  433. mnt->mnt_parent = mnt;
  434. mnt->mnt_mountpoint = mnt->mnt_root;
  435. list_del_init(&mnt->mnt_child);
  436. list_del_init(&mnt->mnt_hash);
  437. old_path->dentry->d_mounted--;
  438. }
  439. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  440. struct vfsmount *child_mnt)
  441. {
  442. child_mnt->mnt_parent = mntget(mnt);
  443. child_mnt->mnt_mountpoint = dget(dentry);
  444. dentry->d_mounted++;
  445. }
  446. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  447. {
  448. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  449. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  450. hash(path->mnt, path->dentry));
  451. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  452. }
  453. /*
  454. * the caller must hold vfsmount_lock
  455. */
  456. static void commit_tree(struct vfsmount *mnt)
  457. {
  458. struct vfsmount *parent = mnt->mnt_parent;
  459. struct vfsmount *m;
  460. LIST_HEAD(head);
  461. struct mnt_namespace *n = parent->mnt_ns;
  462. BUG_ON(parent == mnt);
  463. list_add_tail(&head, &mnt->mnt_list);
  464. list_for_each_entry(m, &head, mnt_list)
  465. m->mnt_ns = n;
  466. list_splice(&head, n->list.prev);
  467. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  468. hash(parent, mnt->mnt_mountpoint));
  469. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  470. touch_mnt_namespace(n);
  471. }
  472. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  473. {
  474. struct list_head *next = p->mnt_mounts.next;
  475. if (next == &p->mnt_mounts) {
  476. while (1) {
  477. if (p == root)
  478. return NULL;
  479. next = p->mnt_child.next;
  480. if (next != &p->mnt_parent->mnt_mounts)
  481. break;
  482. p = p->mnt_parent;
  483. }
  484. }
  485. return list_entry(next, struct vfsmount, mnt_child);
  486. }
  487. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  488. {
  489. struct list_head *prev = p->mnt_mounts.prev;
  490. while (prev != &p->mnt_mounts) {
  491. p = list_entry(prev, struct vfsmount, mnt_child);
  492. prev = p->mnt_mounts.prev;
  493. }
  494. return p;
  495. }
  496. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  497. int flag)
  498. {
  499. struct super_block *sb = old->mnt_sb;
  500. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  501. if (mnt) {
  502. if (flag & (CL_SLAVE | CL_PRIVATE))
  503. mnt->mnt_group_id = 0; /* not a peer of original */
  504. else
  505. mnt->mnt_group_id = old->mnt_group_id;
  506. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  507. int err = mnt_alloc_group_id(mnt);
  508. if (err)
  509. goto out_free;
  510. }
  511. mnt->mnt_flags = old->mnt_flags;
  512. atomic_inc(&sb->s_active);
  513. mnt->mnt_sb = sb;
  514. mnt->mnt_root = dget(root);
  515. mnt->mnt_mountpoint = mnt->mnt_root;
  516. mnt->mnt_parent = mnt;
  517. if (flag & CL_SLAVE) {
  518. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  519. mnt->mnt_master = old;
  520. CLEAR_MNT_SHARED(mnt);
  521. } else if (!(flag & CL_PRIVATE)) {
  522. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  523. list_add(&mnt->mnt_share, &old->mnt_share);
  524. if (IS_MNT_SLAVE(old))
  525. list_add(&mnt->mnt_slave, &old->mnt_slave);
  526. mnt->mnt_master = old->mnt_master;
  527. }
  528. if (flag & CL_MAKE_SHARED)
  529. set_mnt_shared(mnt);
  530. /* stick the duplicate mount on the same expiry list
  531. * as the original if that was on one */
  532. if (flag & CL_EXPIRE) {
  533. if (!list_empty(&old->mnt_expire))
  534. list_add(&mnt->mnt_expire, &old->mnt_expire);
  535. }
  536. }
  537. return mnt;
  538. out_free:
  539. free_vfsmnt(mnt);
  540. return NULL;
  541. }
  542. static inline void __mntput(struct vfsmount *mnt)
  543. {
  544. int cpu;
  545. struct super_block *sb = mnt->mnt_sb;
  546. /*
  547. * We don't have to hold all of the locks at the
  548. * same time here because we know that we're the
  549. * last reference to mnt and that no new writers
  550. * can come in.
  551. */
  552. for_each_possible_cpu(cpu) {
  553. struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
  554. if (cpu_writer->mnt != mnt)
  555. continue;
  556. spin_lock(&cpu_writer->lock);
  557. atomic_add(cpu_writer->count, &mnt->__mnt_writers);
  558. cpu_writer->count = 0;
  559. /*
  560. * Might as well do this so that no one
  561. * ever sees the pointer and expects
  562. * it to be valid.
  563. */
  564. cpu_writer->mnt = NULL;
  565. spin_unlock(&cpu_writer->lock);
  566. }
  567. /*
  568. * This probably indicates that somebody messed
  569. * up a mnt_want/drop_write() pair. If this
  570. * happens, the filesystem was probably unable
  571. * to make r/w->r/o transitions.
  572. */
  573. WARN_ON(atomic_read(&mnt->__mnt_writers));
  574. dput(mnt->mnt_root);
  575. free_vfsmnt(mnt);
  576. deactivate_super(sb);
  577. }
  578. void mntput_no_expire(struct vfsmount *mnt)
  579. {
  580. repeat:
  581. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  582. if (likely(!mnt->mnt_pinned)) {
  583. spin_unlock(&vfsmount_lock);
  584. __mntput(mnt);
  585. return;
  586. }
  587. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  588. mnt->mnt_pinned = 0;
  589. spin_unlock(&vfsmount_lock);
  590. acct_auto_close_mnt(mnt);
  591. security_sb_umount_close(mnt);
  592. goto repeat;
  593. }
  594. }
  595. EXPORT_SYMBOL(mntput_no_expire);
  596. void mnt_pin(struct vfsmount *mnt)
  597. {
  598. spin_lock(&vfsmount_lock);
  599. mnt->mnt_pinned++;
  600. spin_unlock(&vfsmount_lock);
  601. }
  602. EXPORT_SYMBOL(mnt_pin);
  603. void mnt_unpin(struct vfsmount *mnt)
  604. {
  605. spin_lock(&vfsmount_lock);
  606. if (mnt->mnt_pinned) {
  607. atomic_inc(&mnt->mnt_count);
  608. mnt->mnt_pinned--;
  609. }
  610. spin_unlock(&vfsmount_lock);
  611. }
  612. EXPORT_SYMBOL(mnt_unpin);
  613. static inline void mangle(struct seq_file *m, const char *s)
  614. {
  615. seq_escape(m, s, " \t\n\\");
  616. }
  617. /*
  618. * Simple .show_options callback for filesystems which don't want to
  619. * implement more complex mount option showing.
  620. *
  621. * See also save_mount_options().
  622. */
  623. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  624. {
  625. const char *options = mnt->mnt_sb->s_options;
  626. if (options != NULL && options[0]) {
  627. seq_putc(m, ',');
  628. mangle(m, options);
  629. }
  630. return 0;
  631. }
  632. EXPORT_SYMBOL(generic_show_options);
  633. /*
  634. * If filesystem uses generic_show_options(), this function should be
  635. * called from the fill_super() callback.
  636. *
  637. * The .remount_fs callback usually needs to be handled in a special
  638. * way, to make sure, that previous options are not overwritten if the
  639. * remount fails.
  640. *
  641. * Also note, that if the filesystem's .remount_fs function doesn't
  642. * reset all options to their default value, but changes only newly
  643. * given options, then the displayed options will not reflect reality
  644. * any more.
  645. */
  646. void save_mount_options(struct super_block *sb, char *options)
  647. {
  648. kfree(sb->s_options);
  649. sb->s_options = kstrdup(options, GFP_KERNEL);
  650. }
  651. EXPORT_SYMBOL(save_mount_options);
  652. #ifdef CONFIG_PROC_FS
  653. /* iterator */
  654. static void *m_start(struct seq_file *m, loff_t *pos)
  655. {
  656. struct proc_mounts *p = m->private;
  657. down_read(&namespace_sem);
  658. return seq_list_start(&p->ns->list, *pos);
  659. }
  660. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  661. {
  662. struct proc_mounts *p = m->private;
  663. return seq_list_next(v, &p->ns->list, pos);
  664. }
  665. static void m_stop(struct seq_file *m, void *v)
  666. {
  667. up_read(&namespace_sem);
  668. }
  669. struct proc_fs_info {
  670. int flag;
  671. const char *str;
  672. };
  673. static void show_sb_opts(struct seq_file *m, struct super_block *sb)
  674. {
  675. static const struct proc_fs_info fs_info[] = {
  676. { MS_SYNCHRONOUS, ",sync" },
  677. { MS_DIRSYNC, ",dirsync" },
  678. { MS_MANDLOCK, ",mand" },
  679. { 0, NULL }
  680. };
  681. const struct proc_fs_info *fs_infop;
  682. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  683. if (sb->s_flags & fs_infop->flag)
  684. seq_puts(m, fs_infop->str);
  685. }
  686. }
  687. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  688. {
  689. static const struct proc_fs_info mnt_info[] = {
  690. { MNT_NOSUID, ",nosuid" },
  691. { MNT_NODEV, ",nodev" },
  692. { MNT_NOEXEC, ",noexec" },
  693. { MNT_NOATIME, ",noatime" },
  694. { MNT_NODIRATIME, ",nodiratime" },
  695. { MNT_RELATIME, ",relatime" },
  696. { 0, NULL }
  697. };
  698. const struct proc_fs_info *fs_infop;
  699. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  700. if (mnt->mnt_flags & fs_infop->flag)
  701. seq_puts(m, fs_infop->str);
  702. }
  703. }
  704. static void show_type(struct seq_file *m, struct super_block *sb)
  705. {
  706. mangle(m, sb->s_type->name);
  707. if (sb->s_subtype && sb->s_subtype[0]) {
  708. seq_putc(m, '.');
  709. mangle(m, sb->s_subtype);
  710. }
  711. }
  712. static int show_vfsmnt(struct seq_file *m, void *v)
  713. {
  714. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  715. int err = 0;
  716. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  717. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  718. seq_putc(m, ' ');
  719. seq_path(m, &mnt_path, " \t\n\\");
  720. seq_putc(m, ' ');
  721. show_type(m, mnt->mnt_sb);
  722. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  723. show_sb_opts(m, mnt->mnt_sb);
  724. show_mnt_opts(m, mnt);
  725. if (mnt->mnt_sb->s_op->show_options)
  726. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  727. seq_puts(m, " 0 0\n");
  728. return err;
  729. }
  730. const struct seq_operations mounts_op = {
  731. .start = m_start,
  732. .next = m_next,
  733. .stop = m_stop,
  734. .show = show_vfsmnt
  735. };
  736. static int show_mountinfo(struct seq_file *m, void *v)
  737. {
  738. struct proc_mounts *p = m->private;
  739. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  740. struct super_block *sb = mnt->mnt_sb;
  741. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  742. struct path root = p->root;
  743. int err = 0;
  744. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  745. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  746. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  747. seq_putc(m, ' ');
  748. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  749. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  750. /*
  751. * Mountpoint is outside root, discard that one. Ugly,
  752. * but less so than trying to do that in iterator in a
  753. * race-free way (due to renames).
  754. */
  755. return SEQ_SKIP;
  756. }
  757. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  758. show_mnt_opts(m, mnt);
  759. /* Tagged fields ("foo:X" or "bar") */
  760. if (IS_MNT_SHARED(mnt))
  761. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  762. if (IS_MNT_SLAVE(mnt)) {
  763. int master = mnt->mnt_master->mnt_group_id;
  764. int dom = get_dominating_id(mnt, &p->root);
  765. seq_printf(m, " master:%i", master);
  766. if (dom && dom != master)
  767. seq_printf(m, " propagate_from:%i", dom);
  768. }
  769. if (IS_MNT_UNBINDABLE(mnt))
  770. seq_puts(m, " unbindable");
  771. /* Filesystem specific data */
  772. seq_puts(m, " - ");
  773. show_type(m, sb);
  774. seq_putc(m, ' ');
  775. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  776. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  777. show_sb_opts(m, sb);
  778. if (sb->s_op->show_options)
  779. err = sb->s_op->show_options(m, mnt);
  780. seq_putc(m, '\n');
  781. return err;
  782. }
  783. const struct seq_operations mountinfo_op = {
  784. .start = m_start,
  785. .next = m_next,
  786. .stop = m_stop,
  787. .show = show_mountinfo,
  788. };
  789. static int show_vfsstat(struct seq_file *m, void *v)
  790. {
  791. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  792. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  793. int err = 0;
  794. /* device */
  795. if (mnt->mnt_devname) {
  796. seq_puts(m, "device ");
  797. mangle(m, mnt->mnt_devname);
  798. } else
  799. seq_puts(m, "no device");
  800. /* mount point */
  801. seq_puts(m, " mounted on ");
  802. seq_path(m, &mnt_path, " \t\n\\");
  803. seq_putc(m, ' ');
  804. /* file system type */
  805. seq_puts(m, "with fstype ");
  806. show_type(m, mnt->mnt_sb);
  807. /* optional statistics */
  808. if (mnt->mnt_sb->s_op->show_stats) {
  809. seq_putc(m, ' ');
  810. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  811. }
  812. seq_putc(m, '\n');
  813. return err;
  814. }
  815. const struct seq_operations mountstats_op = {
  816. .start = m_start,
  817. .next = m_next,
  818. .stop = m_stop,
  819. .show = show_vfsstat,
  820. };
  821. #endif /* CONFIG_PROC_FS */
  822. /**
  823. * may_umount_tree - check if a mount tree is busy
  824. * @mnt: root of mount tree
  825. *
  826. * This is called to check if a tree of mounts has any
  827. * open files, pwds, chroots or sub mounts that are
  828. * busy.
  829. */
  830. int may_umount_tree(struct vfsmount *mnt)
  831. {
  832. int actual_refs = 0;
  833. int minimum_refs = 0;
  834. struct vfsmount *p;
  835. spin_lock(&vfsmount_lock);
  836. for (p = mnt; p; p = next_mnt(p, mnt)) {
  837. actual_refs += atomic_read(&p->mnt_count);
  838. minimum_refs += 2;
  839. }
  840. spin_unlock(&vfsmount_lock);
  841. if (actual_refs > minimum_refs)
  842. return 0;
  843. return 1;
  844. }
  845. EXPORT_SYMBOL(may_umount_tree);
  846. /**
  847. * may_umount - check if a mount point is busy
  848. * @mnt: root of mount
  849. *
  850. * This is called to check if a mount point has any
  851. * open files, pwds, chroots or sub mounts. If the
  852. * mount has sub mounts this will return busy
  853. * regardless of whether the sub mounts are busy.
  854. *
  855. * Doesn't take quota and stuff into account. IOW, in some cases it will
  856. * give false negatives. The main reason why it's here is that we need
  857. * a non-destructive way to look for easily umountable filesystems.
  858. */
  859. int may_umount(struct vfsmount *mnt)
  860. {
  861. int ret = 1;
  862. spin_lock(&vfsmount_lock);
  863. if (propagate_mount_busy(mnt, 2))
  864. ret = 0;
  865. spin_unlock(&vfsmount_lock);
  866. return ret;
  867. }
  868. EXPORT_SYMBOL(may_umount);
  869. void release_mounts(struct list_head *head)
  870. {
  871. struct vfsmount *mnt;
  872. while (!list_empty(head)) {
  873. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  874. list_del_init(&mnt->mnt_hash);
  875. if (mnt->mnt_parent != mnt) {
  876. struct dentry *dentry;
  877. struct vfsmount *m;
  878. spin_lock(&vfsmount_lock);
  879. dentry = mnt->mnt_mountpoint;
  880. m = mnt->mnt_parent;
  881. mnt->mnt_mountpoint = mnt->mnt_root;
  882. mnt->mnt_parent = mnt;
  883. m->mnt_ghosts--;
  884. spin_unlock(&vfsmount_lock);
  885. dput(dentry);
  886. mntput(m);
  887. }
  888. mntput(mnt);
  889. }
  890. }
  891. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  892. {
  893. struct vfsmount *p;
  894. for (p = mnt; p; p = next_mnt(p, mnt))
  895. list_move(&p->mnt_hash, kill);
  896. if (propagate)
  897. propagate_umount(kill);
  898. list_for_each_entry(p, kill, mnt_hash) {
  899. list_del_init(&p->mnt_expire);
  900. list_del_init(&p->mnt_list);
  901. __touch_mnt_namespace(p->mnt_ns);
  902. p->mnt_ns = NULL;
  903. list_del_init(&p->mnt_child);
  904. if (p->mnt_parent != p) {
  905. p->mnt_parent->mnt_ghosts++;
  906. p->mnt_mountpoint->d_mounted--;
  907. }
  908. change_mnt_propagation(p, MS_PRIVATE);
  909. }
  910. }
  911. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  912. static int do_umount(struct vfsmount *mnt, int flags)
  913. {
  914. struct super_block *sb = mnt->mnt_sb;
  915. int retval;
  916. LIST_HEAD(umount_list);
  917. retval = security_sb_umount(mnt, flags);
  918. if (retval)
  919. return retval;
  920. /*
  921. * Allow userspace to request a mountpoint be expired rather than
  922. * unmounting unconditionally. Unmount only happens if:
  923. * (1) the mark is already set (the mark is cleared by mntput())
  924. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  925. */
  926. if (flags & MNT_EXPIRE) {
  927. if (mnt == current->fs->root.mnt ||
  928. flags & (MNT_FORCE | MNT_DETACH))
  929. return -EINVAL;
  930. if (atomic_read(&mnt->mnt_count) != 2)
  931. return -EBUSY;
  932. if (!xchg(&mnt->mnt_expiry_mark, 1))
  933. return -EAGAIN;
  934. }
  935. /*
  936. * If we may have to abort operations to get out of this
  937. * mount, and they will themselves hold resources we must
  938. * allow the fs to do things. In the Unix tradition of
  939. * 'Gee thats tricky lets do it in userspace' the umount_begin
  940. * might fail to complete on the first run through as other tasks
  941. * must return, and the like. Thats for the mount program to worry
  942. * about for the moment.
  943. */
  944. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  945. lock_kernel();
  946. sb->s_op->umount_begin(sb);
  947. unlock_kernel();
  948. }
  949. /*
  950. * No sense to grab the lock for this test, but test itself looks
  951. * somewhat bogus. Suggestions for better replacement?
  952. * Ho-hum... In principle, we might treat that as umount + switch
  953. * to rootfs. GC would eventually take care of the old vfsmount.
  954. * Actually it makes sense, especially if rootfs would contain a
  955. * /reboot - static binary that would close all descriptors and
  956. * call reboot(9). Then init(8) could umount root and exec /reboot.
  957. */
  958. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  959. /*
  960. * Special case for "unmounting" root ...
  961. * we just try to remount it readonly.
  962. */
  963. down_write(&sb->s_umount);
  964. if (!(sb->s_flags & MS_RDONLY)) {
  965. lock_kernel();
  966. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  967. unlock_kernel();
  968. }
  969. up_write(&sb->s_umount);
  970. return retval;
  971. }
  972. down_write(&namespace_sem);
  973. spin_lock(&vfsmount_lock);
  974. event++;
  975. if (!(flags & MNT_DETACH))
  976. shrink_submounts(mnt, &umount_list);
  977. retval = -EBUSY;
  978. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  979. if (!list_empty(&mnt->mnt_list))
  980. umount_tree(mnt, 1, &umount_list);
  981. retval = 0;
  982. }
  983. spin_unlock(&vfsmount_lock);
  984. if (retval)
  985. security_sb_umount_busy(mnt);
  986. up_write(&namespace_sem);
  987. release_mounts(&umount_list);
  988. return retval;
  989. }
  990. /*
  991. * Now umount can handle mount points as well as block devices.
  992. * This is important for filesystems which use unnamed block devices.
  993. *
  994. * We now support a flag for forced unmount like the other 'big iron'
  995. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  996. */
  997. asmlinkage long sys_umount(char __user * name, int flags)
  998. {
  999. struct nameidata nd;
  1000. int retval;
  1001. retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
  1002. if (retval)
  1003. goto out;
  1004. retval = -EINVAL;
  1005. if (nd.path.dentry != nd.path.mnt->mnt_root)
  1006. goto dput_and_out;
  1007. if (!check_mnt(nd.path.mnt))
  1008. goto dput_and_out;
  1009. retval = -EPERM;
  1010. if (!capable(CAP_SYS_ADMIN))
  1011. goto dput_and_out;
  1012. retval = do_umount(nd.path.mnt, flags);
  1013. dput_and_out:
  1014. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1015. dput(nd.path.dentry);
  1016. mntput_no_expire(nd.path.mnt);
  1017. out:
  1018. return retval;
  1019. }
  1020. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1021. /*
  1022. * The 2.0 compatible umount. No flags.
  1023. */
  1024. asmlinkage long sys_oldumount(char __user * name)
  1025. {
  1026. return sys_umount(name, 0);
  1027. }
  1028. #endif
  1029. static int mount_is_safe(struct nameidata *nd)
  1030. {
  1031. if (capable(CAP_SYS_ADMIN))
  1032. return 0;
  1033. return -EPERM;
  1034. #ifdef notyet
  1035. if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
  1036. return -EPERM;
  1037. if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
  1038. if (current->uid != nd->path.dentry->d_inode->i_uid)
  1039. return -EPERM;
  1040. }
  1041. if (vfs_permission(nd, MAY_WRITE))
  1042. return -EPERM;
  1043. return 0;
  1044. #endif
  1045. }
  1046. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1047. int flag)
  1048. {
  1049. struct vfsmount *res, *p, *q, *r, *s;
  1050. struct path path;
  1051. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1052. return NULL;
  1053. res = q = clone_mnt(mnt, dentry, flag);
  1054. if (!q)
  1055. goto Enomem;
  1056. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1057. p = mnt;
  1058. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1059. if (!is_subdir(r->mnt_mountpoint, dentry))
  1060. continue;
  1061. for (s = r; s; s = next_mnt(s, r)) {
  1062. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1063. s = skip_mnt_tree(s);
  1064. continue;
  1065. }
  1066. while (p != s->mnt_parent) {
  1067. p = p->mnt_parent;
  1068. q = q->mnt_parent;
  1069. }
  1070. p = s;
  1071. path.mnt = q;
  1072. path.dentry = p->mnt_mountpoint;
  1073. q = clone_mnt(p, p->mnt_root, flag);
  1074. if (!q)
  1075. goto Enomem;
  1076. spin_lock(&vfsmount_lock);
  1077. list_add_tail(&q->mnt_list, &res->mnt_list);
  1078. attach_mnt(q, &path);
  1079. spin_unlock(&vfsmount_lock);
  1080. }
  1081. }
  1082. return res;
  1083. Enomem:
  1084. if (res) {
  1085. LIST_HEAD(umount_list);
  1086. spin_lock(&vfsmount_lock);
  1087. umount_tree(res, 0, &umount_list);
  1088. spin_unlock(&vfsmount_lock);
  1089. release_mounts(&umount_list);
  1090. }
  1091. return NULL;
  1092. }
  1093. struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
  1094. {
  1095. struct vfsmount *tree;
  1096. down_write(&namespace_sem);
  1097. tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
  1098. up_write(&namespace_sem);
  1099. return tree;
  1100. }
  1101. void drop_collected_mounts(struct vfsmount *mnt)
  1102. {
  1103. LIST_HEAD(umount_list);
  1104. down_write(&namespace_sem);
  1105. spin_lock(&vfsmount_lock);
  1106. umount_tree(mnt, 0, &umount_list);
  1107. spin_unlock(&vfsmount_lock);
  1108. up_write(&namespace_sem);
  1109. release_mounts(&umount_list);
  1110. }
  1111. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1112. {
  1113. struct vfsmount *p;
  1114. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1115. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1116. mnt_release_group_id(p);
  1117. }
  1118. }
  1119. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1120. {
  1121. struct vfsmount *p;
  1122. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1123. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1124. int err = mnt_alloc_group_id(p);
  1125. if (err) {
  1126. cleanup_group_ids(mnt, p);
  1127. return err;
  1128. }
  1129. }
  1130. }
  1131. return 0;
  1132. }
  1133. /*
  1134. * @source_mnt : mount tree to be attached
  1135. * @nd : place the mount tree @source_mnt is attached
  1136. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1137. * store the parent mount and mountpoint dentry.
  1138. * (done when source_mnt is moved)
  1139. *
  1140. * NOTE: in the table below explains the semantics when a source mount
  1141. * of a given type is attached to a destination mount of a given type.
  1142. * ---------------------------------------------------------------------------
  1143. * | BIND MOUNT OPERATION |
  1144. * |**************************************************************************
  1145. * | source-->| shared | private | slave | unbindable |
  1146. * | dest | | | | |
  1147. * | | | | | | |
  1148. * | v | | | | |
  1149. * |**************************************************************************
  1150. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1151. * | | | | | |
  1152. * |non-shared| shared (+) | private | slave (*) | invalid |
  1153. * ***************************************************************************
  1154. * A bind operation clones the source mount and mounts the clone on the
  1155. * destination mount.
  1156. *
  1157. * (++) the cloned mount is propagated to all the mounts in the propagation
  1158. * tree of the destination mount and the cloned mount is added to
  1159. * the peer group of the source mount.
  1160. * (+) the cloned mount is created under the destination mount and is marked
  1161. * as shared. The cloned mount is added to the peer group of the source
  1162. * mount.
  1163. * (+++) the mount is propagated to all the mounts in the propagation tree
  1164. * of the destination mount and the cloned mount is made slave
  1165. * of the same master as that of the source mount. The cloned mount
  1166. * is marked as 'shared and slave'.
  1167. * (*) the cloned mount is made a slave of the same master as that of the
  1168. * source mount.
  1169. *
  1170. * ---------------------------------------------------------------------------
  1171. * | MOVE MOUNT OPERATION |
  1172. * |**************************************************************************
  1173. * | source-->| shared | private | slave | unbindable |
  1174. * | dest | | | | |
  1175. * | | | | | | |
  1176. * | v | | | | |
  1177. * |**************************************************************************
  1178. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1179. * | | | | | |
  1180. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1181. * ***************************************************************************
  1182. *
  1183. * (+) the mount is moved to the destination. And is then propagated to
  1184. * all the mounts in the propagation tree of the destination mount.
  1185. * (+*) the mount is moved to the destination.
  1186. * (+++) the mount is moved to the destination and is then propagated to
  1187. * all the mounts belonging to the destination mount's propagation tree.
  1188. * the mount is marked as 'shared and slave'.
  1189. * (*) the mount continues to be a slave at the new location.
  1190. *
  1191. * if the source mount is a tree, the operations explained above is
  1192. * applied to each mount in the tree.
  1193. * Must be called without spinlocks held, since this function can sleep
  1194. * in allocations.
  1195. */
  1196. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1197. struct path *path, struct path *parent_path)
  1198. {
  1199. LIST_HEAD(tree_list);
  1200. struct vfsmount *dest_mnt = path->mnt;
  1201. struct dentry *dest_dentry = path->dentry;
  1202. struct vfsmount *child, *p;
  1203. int err;
  1204. if (IS_MNT_SHARED(dest_mnt)) {
  1205. err = invent_group_ids(source_mnt, true);
  1206. if (err)
  1207. goto out;
  1208. }
  1209. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1210. if (err)
  1211. goto out_cleanup_ids;
  1212. if (IS_MNT_SHARED(dest_mnt)) {
  1213. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1214. set_mnt_shared(p);
  1215. }
  1216. spin_lock(&vfsmount_lock);
  1217. if (parent_path) {
  1218. detach_mnt(source_mnt, parent_path);
  1219. attach_mnt(source_mnt, path);
  1220. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1221. } else {
  1222. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1223. commit_tree(source_mnt);
  1224. }
  1225. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1226. list_del_init(&child->mnt_hash);
  1227. commit_tree(child);
  1228. }
  1229. spin_unlock(&vfsmount_lock);
  1230. return 0;
  1231. out_cleanup_ids:
  1232. if (IS_MNT_SHARED(dest_mnt))
  1233. cleanup_group_ids(source_mnt, NULL);
  1234. out:
  1235. return err;
  1236. }
  1237. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1238. {
  1239. int err;
  1240. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1241. return -EINVAL;
  1242. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1243. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1244. return -ENOTDIR;
  1245. err = -ENOENT;
  1246. mutex_lock(&path->dentry->d_inode->i_mutex);
  1247. if (IS_DEADDIR(path->dentry->d_inode))
  1248. goto out_unlock;
  1249. err = security_sb_check_sb(mnt, path);
  1250. if (err)
  1251. goto out_unlock;
  1252. err = -ENOENT;
  1253. if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
  1254. err = attach_recursive_mnt(mnt, path, NULL);
  1255. out_unlock:
  1256. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1257. if (!err)
  1258. security_sb_post_addmount(mnt, path);
  1259. return err;
  1260. }
  1261. /*
  1262. * recursively change the type of the mountpoint.
  1263. * noinline this do_mount helper to save do_mount stack space.
  1264. */
  1265. static noinline int do_change_type(struct nameidata *nd, int flag)
  1266. {
  1267. struct vfsmount *m, *mnt = nd->path.mnt;
  1268. int recurse = flag & MS_REC;
  1269. int type = flag & ~MS_REC;
  1270. int err = 0;
  1271. if (!capable(CAP_SYS_ADMIN))
  1272. return -EPERM;
  1273. if (nd->path.dentry != nd->path.mnt->mnt_root)
  1274. return -EINVAL;
  1275. down_write(&namespace_sem);
  1276. if (type == MS_SHARED) {
  1277. err = invent_group_ids(mnt, recurse);
  1278. if (err)
  1279. goto out_unlock;
  1280. }
  1281. spin_lock(&vfsmount_lock);
  1282. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1283. change_mnt_propagation(m, type);
  1284. spin_unlock(&vfsmount_lock);
  1285. out_unlock:
  1286. up_write(&namespace_sem);
  1287. return err;
  1288. }
  1289. /*
  1290. * do loopback mount.
  1291. * noinline this do_mount helper to save do_mount stack space.
  1292. */
  1293. static noinline int do_loopback(struct nameidata *nd, char *old_name,
  1294. int recurse)
  1295. {
  1296. struct nameidata old_nd;
  1297. struct vfsmount *mnt = NULL;
  1298. int err = mount_is_safe(nd);
  1299. if (err)
  1300. return err;
  1301. if (!old_name || !*old_name)
  1302. return -EINVAL;
  1303. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  1304. if (err)
  1305. return err;
  1306. down_write(&namespace_sem);
  1307. err = -EINVAL;
  1308. if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
  1309. goto out;
  1310. if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
  1311. goto out;
  1312. err = -ENOMEM;
  1313. if (recurse)
  1314. mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
  1315. else
  1316. mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
  1317. if (!mnt)
  1318. goto out;
  1319. err = graft_tree(mnt, &nd->path);
  1320. if (err) {
  1321. LIST_HEAD(umount_list);
  1322. spin_lock(&vfsmount_lock);
  1323. umount_tree(mnt, 0, &umount_list);
  1324. spin_unlock(&vfsmount_lock);
  1325. release_mounts(&umount_list);
  1326. }
  1327. out:
  1328. up_write(&namespace_sem);
  1329. path_put(&old_nd.path);
  1330. return err;
  1331. }
  1332. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1333. {
  1334. int error = 0;
  1335. int readonly_request = 0;
  1336. if (ms_flags & MS_RDONLY)
  1337. readonly_request = 1;
  1338. if (readonly_request == __mnt_is_readonly(mnt))
  1339. return 0;
  1340. if (readonly_request)
  1341. error = mnt_make_readonly(mnt);
  1342. else
  1343. __mnt_unmake_readonly(mnt);
  1344. return error;
  1345. }
  1346. /*
  1347. * change filesystem flags. dir should be a physical root of filesystem.
  1348. * If you've mounted a non-root directory somewhere and want to do remount
  1349. * on it - tough luck.
  1350. * noinline this do_mount helper to save do_mount stack space.
  1351. */
  1352. static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
  1353. void *data)
  1354. {
  1355. int err;
  1356. struct super_block *sb = nd->path.mnt->mnt_sb;
  1357. if (!capable(CAP_SYS_ADMIN))
  1358. return -EPERM;
  1359. if (!check_mnt(nd->path.mnt))
  1360. return -EINVAL;
  1361. if (nd->path.dentry != nd->path.mnt->mnt_root)
  1362. return -EINVAL;
  1363. down_write(&sb->s_umount);
  1364. if (flags & MS_BIND)
  1365. err = change_mount_flags(nd->path.mnt, flags);
  1366. else
  1367. err = do_remount_sb(sb, flags, data, 0);
  1368. if (!err)
  1369. nd->path.mnt->mnt_flags = mnt_flags;
  1370. up_write(&sb->s_umount);
  1371. if (!err)
  1372. security_sb_post_remount(nd->path.mnt, flags, data);
  1373. return err;
  1374. }
  1375. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1376. {
  1377. struct vfsmount *p;
  1378. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1379. if (IS_MNT_UNBINDABLE(p))
  1380. return 1;
  1381. }
  1382. return 0;
  1383. }
  1384. /*
  1385. * noinline this do_mount helper to save do_mount stack space.
  1386. */
  1387. static noinline int do_move_mount(struct nameidata *nd, char *old_name)
  1388. {
  1389. struct nameidata old_nd;
  1390. struct path parent_path;
  1391. struct vfsmount *p;
  1392. int err = 0;
  1393. if (!capable(CAP_SYS_ADMIN))
  1394. return -EPERM;
  1395. if (!old_name || !*old_name)
  1396. return -EINVAL;
  1397. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  1398. if (err)
  1399. return err;
  1400. down_write(&namespace_sem);
  1401. while (d_mountpoint(nd->path.dentry) &&
  1402. follow_down(&nd->path.mnt, &nd->path.dentry))
  1403. ;
  1404. err = -EINVAL;
  1405. if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
  1406. goto out;
  1407. err = -ENOENT;
  1408. mutex_lock(&nd->path.dentry->d_inode->i_mutex);
  1409. if (IS_DEADDIR(nd->path.dentry->d_inode))
  1410. goto out1;
  1411. if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
  1412. goto out1;
  1413. err = -EINVAL;
  1414. if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
  1415. goto out1;
  1416. if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
  1417. goto out1;
  1418. if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
  1419. S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
  1420. goto out1;
  1421. /*
  1422. * Don't move a mount residing in a shared parent.
  1423. */
  1424. if (old_nd.path.mnt->mnt_parent &&
  1425. IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
  1426. goto out1;
  1427. /*
  1428. * Don't move a mount tree containing unbindable mounts to a destination
  1429. * mount which is shared.
  1430. */
  1431. if (IS_MNT_SHARED(nd->path.mnt) &&
  1432. tree_contains_unbindable(old_nd.path.mnt))
  1433. goto out1;
  1434. err = -ELOOP;
  1435. for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
  1436. if (p == old_nd.path.mnt)
  1437. goto out1;
  1438. err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
  1439. if (err)
  1440. goto out1;
  1441. /* if the mount is moved, it should no longer be expire
  1442. * automatically */
  1443. list_del_init(&old_nd.path.mnt->mnt_expire);
  1444. out1:
  1445. mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
  1446. out:
  1447. up_write(&namespace_sem);
  1448. if (!err)
  1449. path_put(&parent_path);
  1450. path_put(&old_nd.path);
  1451. return err;
  1452. }
  1453. /*
  1454. * create a new mount for userspace and request it to be added into the
  1455. * namespace's tree
  1456. * noinline this do_mount helper to save do_mount stack space.
  1457. */
  1458. static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
  1459. int mnt_flags, char *name, void *data)
  1460. {
  1461. struct vfsmount *mnt;
  1462. if (!type || !memchr(type, 0, PAGE_SIZE))
  1463. return -EINVAL;
  1464. /* we need capabilities... */
  1465. if (!capable(CAP_SYS_ADMIN))
  1466. return -EPERM;
  1467. mnt = do_kern_mount(type, flags, name, data);
  1468. if (IS_ERR(mnt))
  1469. return PTR_ERR(mnt);
  1470. return do_add_mount(mnt, nd, mnt_flags, NULL);
  1471. }
  1472. /*
  1473. * add a mount into a namespace's mount tree
  1474. * - provide the option of adding the new mount to an expiration list
  1475. */
  1476. int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
  1477. int mnt_flags, struct list_head *fslist)
  1478. {
  1479. int err;
  1480. down_write(&namespace_sem);
  1481. /* Something was mounted here while we slept */
  1482. while (d_mountpoint(nd->path.dentry) &&
  1483. follow_down(&nd->path.mnt, &nd->path.dentry))
  1484. ;
  1485. err = -EINVAL;
  1486. if (!check_mnt(nd->path.mnt))
  1487. goto unlock;
  1488. /* Refuse the same filesystem on the same mount point */
  1489. err = -EBUSY;
  1490. if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
  1491. nd->path.mnt->mnt_root == nd->path.dentry)
  1492. goto unlock;
  1493. err = -EINVAL;
  1494. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1495. goto unlock;
  1496. newmnt->mnt_flags = mnt_flags;
  1497. if ((err = graft_tree(newmnt, &nd->path)))
  1498. goto unlock;
  1499. if (fslist) /* add to the specified expiration list */
  1500. list_add_tail(&newmnt->mnt_expire, fslist);
  1501. up_write(&namespace_sem);
  1502. return 0;
  1503. unlock:
  1504. up_write(&namespace_sem);
  1505. mntput(newmnt);
  1506. return err;
  1507. }
  1508. EXPORT_SYMBOL_GPL(do_add_mount);
  1509. /*
  1510. * process a list of expirable mountpoints with the intent of discarding any
  1511. * mountpoints that aren't in use and haven't been touched since last we came
  1512. * here
  1513. */
  1514. void mark_mounts_for_expiry(struct list_head *mounts)
  1515. {
  1516. struct vfsmount *mnt, *next;
  1517. LIST_HEAD(graveyard);
  1518. LIST_HEAD(umounts);
  1519. if (list_empty(mounts))
  1520. return;
  1521. down_write(&namespace_sem);
  1522. spin_lock(&vfsmount_lock);
  1523. /* extract from the expiration list every vfsmount that matches the
  1524. * following criteria:
  1525. * - only referenced by its parent vfsmount
  1526. * - still marked for expiry (marked on the last call here; marks are
  1527. * cleared by mntput())
  1528. */
  1529. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1530. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1531. propagate_mount_busy(mnt, 1))
  1532. continue;
  1533. list_move(&mnt->mnt_expire, &graveyard);
  1534. }
  1535. while (!list_empty(&graveyard)) {
  1536. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1537. touch_mnt_namespace(mnt->mnt_ns);
  1538. umount_tree(mnt, 1, &umounts);
  1539. }
  1540. spin_unlock(&vfsmount_lock);
  1541. up_write(&namespace_sem);
  1542. release_mounts(&umounts);
  1543. }
  1544. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1545. /*
  1546. * Ripoff of 'select_parent()'
  1547. *
  1548. * search the list of submounts for a given mountpoint, and move any
  1549. * shrinkable submounts to the 'graveyard' list.
  1550. */
  1551. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1552. {
  1553. struct vfsmount *this_parent = parent;
  1554. struct list_head *next;
  1555. int found = 0;
  1556. repeat:
  1557. next = this_parent->mnt_mounts.next;
  1558. resume:
  1559. while (next != &this_parent->mnt_mounts) {
  1560. struct list_head *tmp = next;
  1561. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1562. next = tmp->next;
  1563. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1564. continue;
  1565. /*
  1566. * Descend a level if the d_mounts list is non-empty.
  1567. */
  1568. if (!list_empty(&mnt->mnt_mounts)) {
  1569. this_parent = mnt;
  1570. goto repeat;
  1571. }
  1572. if (!propagate_mount_busy(mnt, 1)) {
  1573. list_move_tail(&mnt->mnt_expire, graveyard);
  1574. found++;
  1575. }
  1576. }
  1577. /*
  1578. * All done at this level ... ascend and resume the search
  1579. */
  1580. if (this_parent != parent) {
  1581. next = this_parent->mnt_child.next;
  1582. this_parent = this_parent->mnt_parent;
  1583. goto resume;
  1584. }
  1585. return found;
  1586. }
  1587. /*
  1588. * process a list of expirable mountpoints with the intent of discarding any
  1589. * submounts of a specific parent mountpoint
  1590. */
  1591. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1592. {
  1593. LIST_HEAD(graveyard);
  1594. struct vfsmount *m;
  1595. /* extract submounts of 'mountpoint' from the expiration list */
  1596. while (select_submounts(mnt, &graveyard)) {
  1597. while (!list_empty(&graveyard)) {
  1598. m = list_first_entry(&graveyard, struct vfsmount,
  1599. mnt_expire);
  1600. touch_mnt_namespace(mnt->mnt_ns);
  1601. umount_tree(mnt, 1, umounts);
  1602. }
  1603. }
  1604. }
  1605. /*
  1606. * Some copy_from_user() implementations do not return the exact number of
  1607. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1608. * Note that this function differs from copy_from_user() in that it will oops
  1609. * on bad values of `to', rather than returning a short copy.
  1610. */
  1611. static long exact_copy_from_user(void *to, const void __user * from,
  1612. unsigned long n)
  1613. {
  1614. char *t = to;
  1615. const char __user *f = from;
  1616. char c;
  1617. if (!access_ok(VERIFY_READ, from, n))
  1618. return n;
  1619. while (n) {
  1620. if (__get_user(c, f)) {
  1621. memset(t, 0, n);
  1622. break;
  1623. }
  1624. *t++ = c;
  1625. f++;
  1626. n--;
  1627. }
  1628. return n;
  1629. }
  1630. int copy_mount_options(const void __user * data, unsigned long *where)
  1631. {
  1632. int i;
  1633. unsigned long page;
  1634. unsigned long size;
  1635. *where = 0;
  1636. if (!data)
  1637. return 0;
  1638. if (!(page = __get_free_page(GFP_KERNEL)))
  1639. return -ENOMEM;
  1640. /* We only care that *some* data at the address the user
  1641. * gave us is valid. Just in case, we'll zero
  1642. * the remainder of the page.
  1643. */
  1644. /* copy_from_user cannot cross TASK_SIZE ! */
  1645. size = TASK_SIZE - (unsigned long)data;
  1646. if (size > PAGE_SIZE)
  1647. size = PAGE_SIZE;
  1648. i = size - exact_copy_from_user((void *)page, data, size);
  1649. if (!i) {
  1650. free_page(page);
  1651. return -EFAULT;
  1652. }
  1653. if (i != PAGE_SIZE)
  1654. memset((char *)page + i, 0, PAGE_SIZE - i);
  1655. *where = page;
  1656. return 0;
  1657. }
  1658. /*
  1659. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1660. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1661. *
  1662. * data is a (void *) that can point to any structure up to
  1663. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1664. * information (or be NULL).
  1665. *
  1666. * Pre-0.97 versions of mount() didn't have a flags word.
  1667. * When the flags word was introduced its top half was required
  1668. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1669. * Therefore, if this magic number is present, it carries no information
  1670. * and must be discarded.
  1671. */
  1672. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1673. unsigned long flags, void *data_page)
  1674. {
  1675. struct nameidata nd;
  1676. int retval = 0;
  1677. int mnt_flags = 0;
  1678. /* Discard magic */
  1679. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1680. flags &= ~MS_MGC_MSK;
  1681. /* Basic sanity checks */
  1682. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1683. return -EINVAL;
  1684. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1685. return -EINVAL;
  1686. if (data_page)
  1687. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1688. /* Separate the per-mountpoint flags */
  1689. if (flags & MS_NOSUID)
  1690. mnt_flags |= MNT_NOSUID;
  1691. if (flags & MS_NODEV)
  1692. mnt_flags |= MNT_NODEV;
  1693. if (flags & MS_NOEXEC)
  1694. mnt_flags |= MNT_NOEXEC;
  1695. if (flags & MS_NOATIME)
  1696. mnt_flags |= MNT_NOATIME;
  1697. if (flags & MS_NODIRATIME)
  1698. mnt_flags |= MNT_NODIRATIME;
  1699. if (flags & MS_RELATIME)
  1700. mnt_flags |= MNT_RELATIME;
  1701. if (flags & MS_RDONLY)
  1702. mnt_flags |= MNT_READONLY;
  1703. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1704. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
  1705. /* ... and get the mountpoint */
  1706. retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
  1707. if (retval)
  1708. return retval;
  1709. retval = security_sb_mount(dev_name, &nd.path,
  1710. type_page, flags, data_page);
  1711. if (retval)
  1712. goto dput_out;
  1713. if (flags & MS_REMOUNT)
  1714. retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
  1715. data_page);
  1716. else if (flags & MS_BIND)
  1717. retval = do_loopback(&nd, dev_name, flags & MS_REC);
  1718. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1719. retval = do_change_type(&nd, flags);
  1720. else if (flags & MS_MOVE)
  1721. retval = do_move_mount(&nd, dev_name);
  1722. else
  1723. retval = do_new_mount(&nd, type_page, flags, mnt_flags,
  1724. dev_name, data_page);
  1725. dput_out:
  1726. path_put(&nd.path);
  1727. return retval;
  1728. }
  1729. /*
  1730. * Allocate a new namespace structure and populate it with contents
  1731. * copied from the namespace of the passed in task structure.
  1732. */
  1733. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1734. struct fs_struct *fs)
  1735. {
  1736. struct mnt_namespace *new_ns;
  1737. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
  1738. struct vfsmount *p, *q;
  1739. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1740. if (!new_ns)
  1741. return ERR_PTR(-ENOMEM);
  1742. atomic_set(&new_ns->count, 1);
  1743. INIT_LIST_HEAD(&new_ns->list);
  1744. init_waitqueue_head(&new_ns->poll);
  1745. new_ns->event = 0;
  1746. down_write(&namespace_sem);
  1747. /* First pass: copy the tree topology */
  1748. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1749. CL_COPY_ALL | CL_EXPIRE);
  1750. if (!new_ns->root) {
  1751. up_write(&namespace_sem);
  1752. kfree(new_ns);
  1753. return ERR_PTR(-ENOMEM);;
  1754. }
  1755. spin_lock(&vfsmount_lock);
  1756. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1757. spin_unlock(&vfsmount_lock);
  1758. /*
  1759. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1760. * as belonging to new namespace. We have already acquired a private
  1761. * fs_struct, so tsk->fs->lock is not needed.
  1762. */
  1763. p = mnt_ns->root;
  1764. q = new_ns->root;
  1765. while (p) {
  1766. q->mnt_ns = new_ns;
  1767. if (fs) {
  1768. if (p == fs->root.mnt) {
  1769. rootmnt = p;
  1770. fs->root.mnt = mntget(q);
  1771. }
  1772. if (p == fs->pwd.mnt) {
  1773. pwdmnt = p;
  1774. fs->pwd.mnt = mntget(q);
  1775. }
  1776. if (p == fs->altroot.mnt) {
  1777. altrootmnt = p;
  1778. fs->altroot.mnt = mntget(q);
  1779. }
  1780. }
  1781. p = next_mnt(p, mnt_ns->root);
  1782. q = next_mnt(q, new_ns->root);
  1783. }
  1784. up_write(&namespace_sem);
  1785. if (rootmnt)
  1786. mntput(rootmnt);
  1787. if (pwdmnt)
  1788. mntput(pwdmnt);
  1789. if (altrootmnt)
  1790. mntput(altrootmnt);
  1791. return new_ns;
  1792. }
  1793. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1794. struct fs_struct *new_fs)
  1795. {
  1796. struct mnt_namespace *new_ns;
  1797. BUG_ON(!ns);
  1798. get_mnt_ns(ns);
  1799. if (!(flags & CLONE_NEWNS))
  1800. return ns;
  1801. new_ns = dup_mnt_ns(ns, new_fs);
  1802. put_mnt_ns(ns);
  1803. return new_ns;
  1804. }
  1805. asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
  1806. char __user * type, unsigned long flags,
  1807. void __user * data)
  1808. {
  1809. int retval;
  1810. unsigned long data_page;
  1811. unsigned long type_page;
  1812. unsigned long dev_page;
  1813. char *dir_page;
  1814. retval = copy_mount_options(type, &type_page);
  1815. if (retval < 0)
  1816. return retval;
  1817. dir_page = getname(dir_name);
  1818. retval = PTR_ERR(dir_page);
  1819. if (IS_ERR(dir_page))
  1820. goto out1;
  1821. retval = copy_mount_options(dev_name, &dev_page);
  1822. if (retval < 0)
  1823. goto out2;
  1824. retval = copy_mount_options(data, &data_page);
  1825. if (retval < 0)
  1826. goto out3;
  1827. lock_kernel();
  1828. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1829. flags, (void *)data_page);
  1830. unlock_kernel();
  1831. free_page(data_page);
  1832. out3:
  1833. free_page(dev_page);
  1834. out2:
  1835. putname(dir_page);
  1836. out1:
  1837. free_page(type_page);
  1838. return retval;
  1839. }
  1840. /*
  1841. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1842. * It can block. Requires the big lock held.
  1843. */
  1844. void set_fs_root(struct fs_struct *fs, struct path *path)
  1845. {
  1846. struct path old_root;
  1847. write_lock(&fs->lock);
  1848. old_root = fs->root;
  1849. fs->root = *path;
  1850. path_get(path);
  1851. write_unlock(&fs->lock);
  1852. if (old_root.dentry)
  1853. path_put(&old_root);
  1854. }
  1855. /*
  1856. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1857. * It can block. Requires the big lock held.
  1858. */
  1859. void set_fs_pwd(struct fs_struct *fs, struct path *path)
  1860. {
  1861. struct path old_pwd;
  1862. write_lock(&fs->lock);
  1863. old_pwd = fs->pwd;
  1864. fs->pwd = *path;
  1865. path_get(path);
  1866. write_unlock(&fs->lock);
  1867. if (old_pwd.dentry)
  1868. path_put(&old_pwd);
  1869. }
  1870. static void chroot_fs_refs(struct path *old_root, struct path *new_root)
  1871. {
  1872. struct task_struct *g, *p;
  1873. struct fs_struct *fs;
  1874. read_lock(&tasklist_lock);
  1875. do_each_thread(g, p) {
  1876. task_lock(p);
  1877. fs = p->fs;
  1878. if (fs) {
  1879. atomic_inc(&fs->count);
  1880. task_unlock(p);
  1881. if (fs->root.dentry == old_root->dentry
  1882. && fs->root.mnt == old_root->mnt)
  1883. set_fs_root(fs, new_root);
  1884. if (fs->pwd.dentry == old_root->dentry
  1885. && fs->pwd.mnt == old_root->mnt)
  1886. set_fs_pwd(fs, new_root);
  1887. put_fs_struct(fs);
  1888. } else
  1889. task_unlock(p);
  1890. } while_each_thread(g, p);
  1891. read_unlock(&tasklist_lock);
  1892. }
  1893. /*
  1894. * pivot_root Semantics:
  1895. * Moves the root file system of the current process to the directory put_old,
  1896. * makes new_root as the new root file system of the current process, and sets
  1897. * root/cwd of all processes which had them on the current root to new_root.
  1898. *
  1899. * Restrictions:
  1900. * The new_root and put_old must be directories, and must not be on the
  1901. * same file system as the current process root. The put_old must be
  1902. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1903. * pointed to by put_old must yield the same directory as new_root. No other
  1904. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1905. *
  1906. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1907. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1908. * in this situation.
  1909. *
  1910. * Notes:
  1911. * - we don't move root/cwd if they are not at the root (reason: if something
  1912. * cared enough to change them, it's probably wrong to force them elsewhere)
  1913. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1914. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1915. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1916. * first.
  1917. */
  1918. asmlinkage long sys_pivot_root(const char __user * new_root,
  1919. const char __user * put_old)
  1920. {
  1921. struct vfsmount *tmp;
  1922. struct nameidata new_nd, old_nd;
  1923. struct path parent_path, root_parent, root;
  1924. int error;
  1925. if (!capable(CAP_SYS_ADMIN))
  1926. return -EPERM;
  1927. error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
  1928. &new_nd);
  1929. if (error)
  1930. goto out0;
  1931. error = -EINVAL;
  1932. if (!check_mnt(new_nd.path.mnt))
  1933. goto out1;
  1934. error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
  1935. if (error)
  1936. goto out1;
  1937. error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
  1938. if (error) {
  1939. path_put(&old_nd.path);
  1940. goto out1;
  1941. }
  1942. read_lock(&current->fs->lock);
  1943. root = current->fs->root;
  1944. path_get(&current->fs->root);
  1945. read_unlock(&current->fs->lock);
  1946. down_write(&namespace_sem);
  1947. mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
  1948. error = -EINVAL;
  1949. if (IS_MNT_SHARED(old_nd.path.mnt) ||
  1950. IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
  1951. IS_MNT_SHARED(root.mnt->mnt_parent))
  1952. goto out2;
  1953. if (!check_mnt(root.mnt))
  1954. goto out2;
  1955. error = -ENOENT;
  1956. if (IS_DEADDIR(new_nd.path.dentry->d_inode))
  1957. goto out2;
  1958. if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
  1959. goto out2;
  1960. if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
  1961. goto out2;
  1962. error = -EBUSY;
  1963. if (new_nd.path.mnt == root.mnt ||
  1964. old_nd.path.mnt == root.mnt)
  1965. goto out2; /* loop, on the same file system */
  1966. error = -EINVAL;
  1967. if (root.mnt->mnt_root != root.dentry)
  1968. goto out2; /* not a mountpoint */
  1969. if (root.mnt->mnt_parent == root.mnt)
  1970. goto out2; /* not attached */
  1971. if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
  1972. goto out2; /* not a mountpoint */
  1973. if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
  1974. goto out2; /* not attached */
  1975. /* make sure we can reach put_old from new_root */
  1976. tmp = old_nd.path.mnt;
  1977. spin_lock(&vfsmount_lock);
  1978. if (tmp != new_nd.path.mnt) {
  1979. for (;;) {
  1980. if (tmp->mnt_parent == tmp)
  1981. goto out3; /* already mounted on put_old */
  1982. if (tmp->mnt_parent == new_nd.path.mnt)
  1983. break;
  1984. tmp = tmp->mnt_parent;
  1985. }
  1986. if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
  1987. goto out3;
  1988. } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
  1989. goto out3;
  1990. detach_mnt(new_nd.path.mnt, &parent_path);
  1991. detach_mnt(root.mnt, &root_parent);
  1992. /* mount old root on put_old */
  1993. attach_mnt(root.mnt, &old_nd.path);
  1994. /* mount new_root on / */
  1995. attach_mnt(new_nd.path.mnt, &root_parent);
  1996. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1997. spin_unlock(&vfsmount_lock);
  1998. chroot_fs_refs(&root, &new_nd.path);
  1999. security_sb_post_pivotroot(&root, &new_nd.path);
  2000. error = 0;
  2001. path_put(&root_parent);
  2002. path_put(&parent_path);
  2003. out2:
  2004. mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
  2005. up_write(&namespace_sem);
  2006. path_put(&root);
  2007. path_put(&old_nd.path);
  2008. out1:
  2009. path_put(&new_nd.path);
  2010. out0:
  2011. return error;
  2012. out3:
  2013. spin_unlock(&vfsmount_lock);
  2014. goto out2;
  2015. }
  2016. static void __init init_mount_tree(void)
  2017. {
  2018. struct vfsmount *mnt;
  2019. struct mnt_namespace *ns;
  2020. struct path root;
  2021. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2022. if (IS_ERR(mnt))
  2023. panic("Can't create rootfs");
  2024. ns = kmalloc(sizeof(*ns), GFP_KERNEL);
  2025. if (!ns)
  2026. panic("Can't allocate initial namespace");
  2027. atomic_set(&ns->count, 1);
  2028. INIT_LIST_HEAD(&ns->list);
  2029. init_waitqueue_head(&ns->poll);
  2030. ns->event = 0;
  2031. list_add(&mnt->mnt_list, &ns->list);
  2032. ns->root = mnt;
  2033. mnt->mnt_ns = ns;
  2034. init_task.nsproxy->mnt_ns = ns;
  2035. get_mnt_ns(ns);
  2036. root.mnt = ns->root;
  2037. root.dentry = ns->root->mnt_root;
  2038. set_fs_pwd(current->fs, &root);
  2039. set_fs_root(current->fs, &root);
  2040. }
  2041. void __init mnt_init(void)
  2042. {
  2043. unsigned u;
  2044. int err;
  2045. init_rwsem(&namespace_sem);
  2046. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2047. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2048. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2049. if (!mount_hashtable)
  2050. panic("Failed to allocate mount hash table\n");
  2051. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2052. for (u = 0; u < HASH_SIZE; u++)
  2053. INIT_LIST_HEAD(&mount_hashtable[u]);
  2054. err = sysfs_init();
  2055. if (err)
  2056. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2057. __func__, err);
  2058. fs_kobj = kobject_create_and_add("fs", NULL);
  2059. if (!fs_kobj)
  2060. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2061. init_rootfs();
  2062. init_mount_tree();
  2063. }
  2064. void __put_mnt_ns(struct mnt_namespace *ns)
  2065. {
  2066. struct vfsmount *root = ns->root;
  2067. LIST_HEAD(umount_list);
  2068. ns->root = NULL;
  2069. spin_unlock(&vfsmount_lock);
  2070. down_write(&namespace_sem);
  2071. spin_lock(&vfsmount_lock);
  2072. umount_tree(root, 0, &umount_list);
  2073. spin_unlock(&vfsmount_lock);
  2074. up_write(&namespace_sem);
  2075. release_mounts(&umount_list);
  2076. kfree(ns);
  2077. }