rt61pci.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt61pci
  19. Abstract: rt61pci device specific routines.
  20. Supported chipsets: RT2561, RT2561s, RT2661.
  21. */
  22. #include <linux/crc-itu-t.h>
  23. #include <linux/delay.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/pci.h>
  29. #include <linux/eeprom_93cx6.h>
  30. #include "rt2x00.h"
  31. #include "rt2x00pci.h"
  32. #include "rt61pci.h"
  33. /*
  34. * Register access.
  35. * BBP and RF register require indirect register access,
  36. * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  37. * These indirect registers work with busy bits,
  38. * and we will try maximal REGISTER_BUSY_COUNT times to access
  39. * the register while taking a REGISTER_BUSY_DELAY us delay
  40. * between each attampt. When the busy bit is still set at that time,
  41. * the access attempt is considered to have failed,
  42. * and we will print an error.
  43. */
  44. static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  45. {
  46. u32 reg;
  47. unsigned int i;
  48. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  49. rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
  50. if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
  51. break;
  52. udelay(REGISTER_BUSY_DELAY);
  53. }
  54. return reg;
  55. }
  56. static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  57. const unsigned int word, const u8 value)
  58. {
  59. u32 reg;
  60. /*
  61. * Wait until the BBP becomes ready.
  62. */
  63. reg = rt61pci_bbp_check(rt2x00dev);
  64. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  65. ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
  66. return;
  67. }
  68. /*
  69. * Write the data into the BBP.
  70. */
  71. reg = 0;
  72. rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  73. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  74. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  75. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  76. rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  77. }
  78. static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  79. const unsigned int word, u8 *value)
  80. {
  81. u32 reg;
  82. /*
  83. * Wait until the BBP becomes ready.
  84. */
  85. reg = rt61pci_bbp_check(rt2x00dev);
  86. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  87. ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
  88. return;
  89. }
  90. /*
  91. * Write the request into the BBP.
  92. */
  93. reg = 0;
  94. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  95. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  96. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
  97. rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  98. /*
  99. * Wait until the BBP becomes ready.
  100. */
  101. reg = rt61pci_bbp_check(rt2x00dev);
  102. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  103. ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
  104. *value = 0xff;
  105. return;
  106. }
  107. *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
  108. }
  109. static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
  110. const unsigned int word, const u32 value)
  111. {
  112. u32 reg;
  113. unsigned int i;
  114. if (!word)
  115. return;
  116. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  117. rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
  118. if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
  119. goto rf_write;
  120. udelay(REGISTER_BUSY_DELAY);
  121. }
  122. ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
  123. return;
  124. rf_write:
  125. reg = 0;
  126. rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
  127. rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
  128. rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
  129. rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
  130. rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
  131. rt2x00_rf_write(rt2x00dev, word, value);
  132. }
  133. #ifdef CONFIG_RT61PCI_LEDS
  134. /*
  135. * This function is only called from rt61pci_led_brightness()
  136. * make gcc happy by placing this function inside the
  137. * same ifdef statement as the caller.
  138. */
  139. static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
  140. const u8 command, const u8 token,
  141. const u8 arg0, const u8 arg1)
  142. {
  143. u32 reg;
  144. rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
  145. if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
  146. ERROR(rt2x00dev, "mcu request error. "
  147. "Request 0x%02x failed for token 0x%02x.\n",
  148. command, token);
  149. return;
  150. }
  151. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
  152. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
  153. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
  154. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
  155. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
  156. rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
  157. rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
  158. rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
  159. rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
  160. }
  161. #endif /* CONFIG_RT61PCI_LEDS */
  162. static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  163. {
  164. struct rt2x00_dev *rt2x00dev = eeprom->data;
  165. u32 reg;
  166. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  167. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  168. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  169. eeprom->reg_data_clock =
  170. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  171. eeprom->reg_chip_select =
  172. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  173. }
  174. static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  175. {
  176. struct rt2x00_dev *rt2x00dev = eeprom->data;
  177. u32 reg = 0;
  178. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  179. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  180. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  181. !!eeprom->reg_data_clock);
  182. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  183. !!eeprom->reg_chip_select);
  184. rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
  185. }
  186. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  187. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  188. static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
  189. const unsigned int word, u32 *data)
  190. {
  191. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  192. }
  193. static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
  194. const unsigned int word, u32 data)
  195. {
  196. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  197. }
  198. static const struct rt2x00debug rt61pci_rt2x00debug = {
  199. .owner = THIS_MODULE,
  200. .csr = {
  201. .read = rt61pci_read_csr,
  202. .write = rt61pci_write_csr,
  203. .word_size = sizeof(u32),
  204. .word_count = CSR_REG_SIZE / sizeof(u32),
  205. },
  206. .eeprom = {
  207. .read = rt2x00_eeprom_read,
  208. .write = rt2x00_eeprom_write,
  209. .word_size = sizeof(u16),
  210. .word_count = EEPROM_SIZE / sizeof(u16),
  211. },
  212. .bbp = {
  213. .read = rt61pci_bbp_read,
  214. .write = rt61pci_bbp_write,
  215. .word_size = sizeof(u8),
  216. .word_count = BBP_SIZE / sizeof(u8),
  217. },
  218. .rf = {
  219. .read = rt2x00_rf_read,
  220. .write = rt61pci_rf_write,
  221. .word_size = sizeof(u32),
  222. .word_count = RF_SIZE / sizeof(u32),
  223. },
  224. };
  225. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  226. #ifdef CONFIG_RT61PCI_RFKILL
  227. static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  228. {
  229. u32 reg;
  230. rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
  231. return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
  232. }
  233. #else
  234. #define rt61pci_rfkill_poll NULL
  235. #endif /* CONFIG_RT61PCI_RFKILL */
  236. #ifdef CONFIG_RT61PCI_LEDS
  237. static void rt61pci_brightness_set(struct led_classdev *led_cdev,
  238. enum led_brightness brightness)
  239. {
  240. struct rt2x00_led *led =
  241. container_of(led_cdev, struct rt2x00_led, led_dev);
  242. unsigned int enabled = brightness != LED_OFF;
  243. unsigned int a_mode =
  244. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
  245. unsigned int bg_mode =
  246. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  247. if (led->type == LED_TYPE_RADIO) {
  248. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  249. MCU_LEDCS_RADIO_STATUS, enabled);
  250. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  251. (led->rt2x00dev->led_mcu_reg & 0xff),
  252. ((led->rt2x00dev->led_mcu_reg >> 8)));
  253. } else if (led->type == LED_TYPE_ASSOC) {
  254. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  255. MCU_LEDCS_LINK_BG_STATUS, bg_mode);
  256. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  257. MCU_LEDCS_LINK_A_STATUS, a_mode);
  258. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  259. (led->rt2x00dev->led_mcu_reg & 0xff),
  260. ((led->rt2x00dev->led_mcu_reg >> 8)));
  261. } else if (led->type == LED_TYPE_QUALITY) {
  262. /*
  263. * The brightness is divided into 6 levels (0 - 5),
  264. * this means we need to convert the brightness
  265. * argument into the matching level within that range.
  266. */
  267. rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
  268. brightness / (LED_FULL / 6), 0);
  269. }
  270. }
  271. static int rt61pci_blink_set(struct led_classdev *led_cdev,
  272. unsigned long *delay_on,
  273. unsigned long *delay_off)
  274. {
  275. struct rt2x00_led *led =
  276. container_of(led_cdev, struct rt2x00_led, led_dev);
  277. u32 reg;
  278. rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
  279. rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
  280. rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
  281. rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
  282. return 0;
  283. }
  284. #endif /* CONFIG_RT61PCI_LEDS */
  285. /*
  286. * Configuration handlers.
  287. */
  288. static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
  289. const unsigned int filter_flags)
  290. {
  291. u32 reg;
  292. /*
  293. * Start configuration steps.
  294. * Note that the version error will always be dropped
  295. * and broadcast frames will always be accepted since
  296. * there is no filter for it at this time.
  297. */
  298. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  299. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
  300. !(filter_flags & FIF_FCSFAIL));
  301. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
  302. !(filter_flags & FIF_PLCPFAIL));
  303. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
  304. !(filter_flags & FIF_CONTROL));
  305. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
  306. !(filter_flags & FIF_PROMISC_IN_BSS));
  307. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
  308. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  309. !rt2x00dev->intf_ap_count);
  310. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
  311. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
  312. !(filter_flags & FIF_ALLMULTI));
  313. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
  314. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
  315. !(filter_flags & FIF_CONTROL));
  316. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  317. }
  318. static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
  319. struct rt2x00_intf *intf,
  320. struct rt2x00intf_conf *conf,
  321. const unsigned int flags)
  322. {
  323. unsigned int beacon_base;
  324. u32 reg;
  325. if (flags & CONFIG_UPDATE_TYPE) {
  326. /*
  327. * Clear current synchronisation setup.
  328. * For the Beacon base registers we only need to clear
  329. * the first byte since that byte contains the VALID and OWNER
  330. * bits which (when set to 0) will invalidate the entire beacon.
  331. */
  332. beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
  333. rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
  334. /*
  335. * Enable synchronisation.
  336. */
  337. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  338. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  339. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
  340. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
  341. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  342. }
  343. if (flags & CONFIG_UPDATE_MAC) {
  344. reg = le32_to_cpu(conf->mac[1]);
  345. rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
  346. conf->mac[1] = cpu_to_le32(reg);
  347. rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
  348. conf->mac, sizeof(conf->mac));
  349. }
  350. if (flags & CONFIG_UPDATE_BSSID) {
  351. reg = le32_to_cpu(conf->bssid[1]);
  352. rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
  353. conf->bssid[1] = cpu_to_le32(reg);
  354. rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
  355. conf->bssid, sizeof(conf->bssid));
  356. }
  357. }
  358. static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
  359. struct rt2x00lib_erp *erp)
  360. {
  361. u32 reg;
  362. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  363. rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
  364. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  365. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  366. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
  367. !!erp->short_preamble);
  368. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  369. }
  370. static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  371. const int basic_rate_mask)
  372. {
  373. rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
  374. }
  375. static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
  376. struct rf_channel *rf, const int txpower)
  377. {
  378. u8 r3;
  379. u8 r94;
  380. u8 smart;
  381. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  382. rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
  383. smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  384. rt2x00_rf(&rt2x00dev->chip, RF2527));
  385. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  386. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
  387. rt61pci_bbp_write(rt2x00dev, 3, r3);
  388. r94 = 6;
  389. if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
  390. r94 += txpower - MAX_TXPOWER;
  391. else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
  392. r94 += txpower;
  393. rt61pci_bbp_write(rt2x00dev, 94, r94);
  394. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  395. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  396. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  397. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  398. udelay(200);
  399. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  400. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  401. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
  402. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  403. udelay(200);
  404. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  405. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  406. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  407. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  408. msleep(1);
  409. }
  410. static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  411. const int txpower)
  412. {
  413. struct rf_channel rf;
  414. rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
  415. rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
  416. rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
  417. rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
  418. rt61pci_config_channel(rt2x00dev, &rf, txpower);
  419. }
  420. static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
  421. struct antenna_setup *ant)
  422. {
  423. u8 r3;
  424. u8 r4;
  425. u8 r77;
  426. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  427. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  428. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  429. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
  430. rt2x00_rf(&rt2x00dev->chip, RF5325));
  431. /*
  432. * Configure the RX antenna.
  433. */
  434. switch (ant->rx) {
  435. case ANTENNA_HW_DIVERSITY:
  436. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  437. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  438. (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
  439. break;
  440. case ANTENNA_A:
  441. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  442. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  443. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  444. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  445. else
  446. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  447. break;
  448. case ANTENNA_B:
  449. default:
  450. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  451. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  452. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  453. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  454. else
  455. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  456. break;
  457. }
  458. rt61pci_bbp_write(rt2x00dev, 77, r77);
  459. rt61pci_bbp_write(rt2x00dev, 3, r3);
  460. rt61pci_bbp_write(rt2x00dev, 4, r4);
  461. }
  462. static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
  463. struct antenna_setup *ant)
  464. {
  465. u8 r3;
  466. u8 r4;
  467. u8 r77;
  468. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  469. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  470. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  471. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
  472. rt2x00_rf(&rt2x00dev->chip, RF2529));
  473. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  474. !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
  475. /*
  476. * Configure the RX antenna.
  477. */
  478. switch (ant->rx) {
  479. case ANTENNA_HW_DIVERSITY:
  480. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  481. break;
  482. case ANTENNA_A:
  483. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  484. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  485. break;
  486. case ANTENNA_B:
  487. default:
  488. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  489. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  490. break;
  491. }
  492. rt61pci_bbp_write(rt2x00dev, 77, r77);
  493. rt61pci_bbp_write(rt2x00dev, 3, r3);
  494. rt61pci_bbp_write(rt2x00dev, 4, r4);
  495. }
  496. static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
  497. const int p1, const int p2)
  498. {
  499. u32 reg;
  500. rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
  501. rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
  502. rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
  503. rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
  504. rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
  505. rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
  506. }
  507. static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
  508. struct antenna_setup *ant)
  509. {
  510. u8 r3;
  511. u8 r4;
  512. u8 r77;
  513. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  514. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  515. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  516. /*
  517. * Configure the RX antenna.
  518. */
  519. switch (ant->rx) {
  520. case ANTENNA_A:
  521. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  522. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  523. rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
  524. break;
  525. case ANTENNA_HW_DIVERSITY:
  526. /*
  527. * FIXME: Antenna selection for the rf 2529 is very confusing
  528. * in the legacy driver. Just default to antenna B until the
  529. * legacy code can be properly translated into rt2x00 code.
  530. */
  531. case ANTENNA_B:
  532. default:
  533. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  534. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  535. rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
  536. break;
  537. }
  538. rt61pci_bbp_write(rt2x00dev, 77, r77);
  539. rt61pci_bbp_write(rt2x00dev, 3, r3);
  540. rt61pci_bbp_write(rt2x00dev, 4, r4);
  541. }
  542. struct antenna_sel {
  543. u8 word;
  544. /*
  545. * value[0] -> non-LNA
  546. * value[1] -> LNA
  547. */
  548. u8 value[2];
  549. };
  550. static const struct antenna_sel antenna_sel_a[] = {
  551. { 96, { 0x58, 0x78 } },
  552. { 104, { 0x38, 0x48 } },
  553. { 75, { 0xfe, 0x80 } },
  554. { 86, { 0xfe, 0x80 } },
  555. { 88, { 0xfe, 0x80 } },
  556. { 35, { 0x60, 0x60 } },
  557. { 97, { 0x58, 0x58 } },
  558. { 98, { 0x58, 0x58 } },
  559. };
  560. static const struct antenna_sel antenna_sel_bg[] = {
  561. { 96, { 0x48, 0x68 } },
  562. { 104, { 0x2c, 0x3c } },
  563. { 75, { 0xfe, 0x80 } },
  564. { 86, { 0xfe, 0x80 } },
  565. { 88, { 0xfe, 0x80 } },
  566. { 35, { 0x50, 0x50 } },
  567. { 97, { 0x48, 0x48 } },
  568. { 98, { 0x48, 0x48 } },
  569. };
  570. static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  571. struct antenna_setup *ant)
  572. {
  573. const struct antenna_sel *sel;
  574. unsigned int lna;
  575. unsigned int i;
  576. u32 reg;
  577. /*
  578. * We should never come here because rt2x00lib is supposed
  579. * to catch this and send us the correct antenna explicitely.
  580. */
  581. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  582. ant->tx == ANTENNA_SW_DIVERSITY);
  583. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
  584. sel = antenna_sel_a;
  585. lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  586. } else {
  587. sel = antenna_sel_bg;
  588. lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  589. }
  590. for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
  591. rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
  592. rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
  593. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
  594. rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  595. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
  596. rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
  597. rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
  598. if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  599. rt2x00_rf(&rt2x00dev->chip, RF5325))
  600. rt61pci_config_antenna_5x(rt2x00dev, ant);
  601. else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
  602. rt61pci_config_antenna_2x(rt2x00dev, ant);
  603. else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
  604. if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
  605. rt61pci_config_antenna_2x(rt2x00dev, ant);
  606. else
  607. rt61pci_config_antenna_2529(rt2x00dev, ant);
  608. }
  609. }
  610. static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
  611. struct rt2x00lib_conf *libconf)
  612. {
  613. u32 reg;
  614. rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
  615. rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
  616. rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
  617. rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
  618. rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
  619. rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
  620. rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
  621. rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
  622. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  623. rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
  624. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  625. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  626. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
  627. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  628. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  629. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
  630. libconf->conf->beacon_int * 16);
  631. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  632. }
  633. static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
  634. struct rt2x00lib_conf *libconf,
  635. const unsigned int flags)
  636. {
  637. if (flags & CONFIG_UPDATE_PHYMODE)
  638. rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
  639. if (flags & CONFIG_UPDATE_CHANNEL)
  640. rt61pci_config_channel(rt2x00dev, &libconf->rf,
  641. libconf->conf->power_level);
  642. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  643. rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
  644. if (flags & CONFIG_UPDATE_ANTENNA)
  645. rt61pci_config_antenna(rt2x00dev, &libconf->ant);
  646. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  647. rt61pci_config_duration(rt2x00dev, libconf);
  648. }
  649. /*
  650. * Link tuning
  651. */
  652. static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
  653. struct link_qual *qual)
  654. {
  655. u32 reg;
  656. /*
  657. * Update FCS error count from register.
  658. */
  659. rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
  660. qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
  661. /*
  662. * Update False CCA count from register.
  663. */
  664. rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
  665. qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
  666. }
  667. static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  668. {
  669. rt61pci_bbp_write(rt2x00dev, 17, 0x20);
  670. rt2x00dev->link.vgc_level = 0x20;
  671. }
  672. static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  673. {
  674. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  675. u8 r17;
  676. u8 up_bound;
  677. u8 low_bound;
  678. rt61pci_bbp_read(rt2x00dev, 17, &r17);
  679. /*
  680. * Determine r17 bounds.
  681. */
  682. if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
  683. low_bound = 0x28;
  684. up_bound = 0x48;
  685. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
  686. low_bound += 0x10;
  687. up_bound += 0x10;
  688. }
  689. } else {
  690. low_bound = 0x20;
  691. up_bound = 0x40;
  692. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
  693. low_bound += 0x10;
  694. up_bound += 0x10;
  695. }
  696. }
  697. /*
  698. * If we are not associated, we should go straight to the
  699. * dynamic CCA tuning.
  700. */
  701. if (!rt2x00dev->intf_associated)
  702. goto dynamic_cca_tune;
  703. /*
  704. * Special big-R17 for very short distance
  705. */
  706. if (rssi >= -35) {
  707. if (r17 != 0x60)
  708. rt61pci_bbp_write(rt2x00dev, 17, 0x60);
  709. return;
  710. }
  711. /*
  712. * Special big-R17 for short distance
  713. */
  714. if (rssi >= -58) {
  715. if (r17 != up_bound)
  716. rt61pci_bbp_write(rt2x00dev, 17, up_bound);
  717. return;
  718. }
  719. /*
  720. * Special big-R17 for middle-short distance
  721. */
  722. if (rssi >= -66) {
  723. low_bound += 0x10;
  724. if (r17 != low_bound)
  725. rt61pci_bbp_write(rt2x00dev, 17, low_bound);
  726. return;
  727. }
  728. /*
  729. * Special mid-R17 for middle distance
  730. */
  731. if (rssi >= -74) {
  732. low_bound += 0x08;
  733. if (r17 != low_bound)
  734. rt61pci_bbp_write(rt2x00dev, 17, low_bound);
  735. return;
  736. }
  737. /*
  738. * Special case: Change up_bound based on the rssi.
  739. * Lower up_bound when rssi is weaker then -74 dBm.
  740. */
  741. up_bound -= 2 * (-74 - rssi);
  742. if (low_bound > up_bound)
  743. up_bound = low_bound;
  744. if (r17 > up_bound) {
  745. rt61pci_bbp_write(rt2x00dev, 17, up_bound);
  746. return;
  747. }
  748. dynamic_cca_tune:
  749. /*
  750. * r17 does not yet exceed upper limit, continue and base
  751. * the r17 tuning on the false CCA count.
  752. */
  753. if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
  754. if (++r17 > up_bound)
  755. r17 = up_bound;
  756. rt61pci_bbp_write(rt2x00dev, 17, r17);
  757. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
  758. if (--r17 < low_bound)
  759. r17 = low_bound;
  760. rt61pci_bbp_write(rt2x00dev, 17, r17);
  761. }
  762. }
  763. /*
  764. * Firmware functions
  765. */
  766. static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  767. {
  768. char *fw_name;
  769. switch (rt2x00dev->chip.rt) {
  770. case RT2561:
  771. fw_name = FIRMWARE_RT2561;
  772. break;
  773. case RT2561s:
  774. fw_name = FIRMWARE_RT2561s;
  775. break;
  776. case RT2661:
  777. fw_name = FIRMWARE_RT2661;
  778. break;
  779. default:
  780. fw_name = NULL;
  781. break;
  782. }
  783. return fw_name;
  784. }
  785. static u16 rt61pci_get_firmware_crc(void *data, const size_t len)
  786. {
  787. u16 crc;
  788. /*
  789. * Use the crc itu-t algorithm.
  790. * The last 2 bytes in the firmware array are the crc checksum itself,
  791. * this means that we should never pass those 2 bytes to the crc
  792. * algorithm.
  793. */
  794. crc = crc_itu_t(0, data, len - 2);
  795. crc = crc_itu_t_byte(crc, 0);
  796. crc = crc_itu_t_byte(crc, 0);
  797. return crc;
  798. }
  799. static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
  800. const size_t len)
  801. {
  802. int i;
  803. u32 reg;
  804. /*
  805. * Wait for stable hardware.
  806. */
  807. for (i = 0; i < 100; i++) {
  808. rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
  809. if (reg)
  810. break;
  811. msleep(1);
  812. }
  813. if (!reg) {
  814. ERROR(rt2x00dev, "Unstable hardware.\n");
  815. return -EBUSY;
  816. }
  817. /*
  818. * Prepare MCU and mailbox for firmware loading.
  819. */
  820. reg = 0;
  821. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  822. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  823. rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  824. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  825. rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
  826. /*
  827. * Write firmware to device.
  828. */
  829. reg = 0;
  830. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  831. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
  832. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  833. rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  834. data, len);
  835. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
  836. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  837. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
  838. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  839. for (i = 0; i < 100; i++) {
  840. rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
  841. if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
  842. break;
  843. msleep(1);
  844. }
  845. if (i == 100) {
  846. ERROR(rt2x00dev, "MCU Control register not ready.\n");
  847. return -EBUSY;
  848. }
  849. /*
  850. * Reset MAC and BBP registers.
  851. */
  852. reg = 0;
  853. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  854. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  855. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  856. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  857. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  858. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  859. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  860. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  861. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  862. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  863. return 0;
  864. }
  865. /*
  866. * Initialization functions.
  867. */
  868. static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  869. struct queue_entry *entry)
  870. {
  871. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  872. u32 word;
  873. rt2x00_desc_read(entry_priv->desc, 5, &word);
  874. rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
  875. entry_priv->data_dma);
  876. rt2x00_desc_write(entry_priv->desc, 5, word);
  877. rt2x00_desc_read(entry_priv->desc, 0, &word);
  878. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  879. rt2x00_desc_write(entry_priv->desc, 0, word);
  880. }
  881. static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  882. struct queue_entry *entry)
  883. {
  884. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  885. u32 word;
  886. rt2x00_desc_read(entry_priv->desc, 0, &word);
  887. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  888. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  889. rt2x00_desc_write(entry_priv->desc, 0, word);
  890. }
  891. static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
  892. {
  893. struct queue_entry_priv_pci *entry_priv;
  894. u32 reg;
  895. /*
  896. * Initialize registers.
  897. */
  898. rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
  899. rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
  900. rt2x00dev->tx[0].limit);
  901. rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
  902. rt2x00dev->tx[1].limit);
  903. rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
  904. rt2x00dev->tx[2].limit);
  905. rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
  906. rt2x00dev->tx[3].limit);
  907. rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
  908. rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
  909. rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
  910. rt2x00dev->tx[0].desc_size / 4);
  911. rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
  912. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  913. rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
  914. rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
  915. entry_priv->desc_dma);
  916. rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
  917. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  918. rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
  919. rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
  920. entry_priv->desc_dma);
  921. rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
  922. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  923. rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
  924. rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
  925. entry_priv->desc_dma);
  926. rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
  927. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  928. rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
  929. rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
  930. entry_priv->desc_dma);
  931. rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
  932. rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
  933. rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
  934. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
  935. rt2x00dev->rx->desc_size / 4);
  936. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
  937. rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
  938. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  939. rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
  940. rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
  941. entry_priv->desc_dma);
  942. rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
  943. rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
  944. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
  945. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
  946. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
  947. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
  948. rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
  949. rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
  950. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
  951. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
  952. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
  953. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
  954. rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
  955. rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
  956. rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
  957. rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  958. return 0;
  959. }
  960. static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
  961. {
  962. u32 reg;
  963. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  964. rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
  965. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
  966. rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
  967. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  968. rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
  969. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
  970. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
  971. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
  972. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
  973. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
  974. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
  975. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
  976. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
  977. rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
  978. /*
  979. * CCK TXD BBP registers
  980. */
  981. rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
  982. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
  983. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
  984. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
  985. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
  986. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
  987. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
  988. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
  989. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
  990. rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
  991. /*
  992. * OFDM TXD BBP registers
  993. */
  994. rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
  995. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
  996. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
  997. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
  998. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
  999. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
  1000. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
  1001. rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
  1002. rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
  1003. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
  1004. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
  1005. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
  1006. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
  1007. rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
  1008. rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
  1009. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
  1010. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
  1011. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
  1012. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
  1013. rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
  1014. rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
  1015. rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
  1016. rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
  1017. rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
  1018. rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
  1019. rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
  1020. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  1021. return -EBUSY;
  1022. rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
  1023. /*
  1024. * Invalidate all Shared Keys (SEC_CSR0),
  1025. * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
  1026. */
  1027. rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
  1028. rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
  1029. rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
  1030. rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
  1031. rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
  1032. rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
  1033. rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
  1034. rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
  1035. rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
  1036. rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  1037. rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
  1038. rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
  1039. rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
  1040. rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
  1041. rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
  1042. rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
  1043. rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
  1044. rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
  1045. /*
  1046. * Clear all beacons
  1047. * For the Beacon base registers we only need to clear
  1048. * the first byte since that byte contains the VALID and OWNER
  1049. * bits which (when set to 0) will invalidate the entire beacon.
  1050. */
  1051. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
  1052. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
  1053. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
  1054. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
  1055. /*
  1056. * We must clear the error counters.
  1057. * These registers are cleared on read,
  1058. * so we may pass a useless variable to store the value.
  1059. */
  1060. rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
  1061. rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
  1062. rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
  1063. /*
  1064. * Reset MAC and BBP registers.
  1065. */
  1066. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1067. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  1068. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  1069. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1070. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1071. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  1072. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  1073. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1074. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1075. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  1076. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1077. return 0;
  1078. }
  1079. static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  1080. {
  1081. unsigned int i;
  1082. u16 eeprom;
  1083. u8 reg_id;
  1084. u8 value;
  1085. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1086. rt61pci_bbp_read(rt2x00dev, 0, &value);
  1087. if ((value != 0xff) && (value != 0x00))
  1088. goto continue_csr_init;
  1089. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  1090. udelay(REGISTER_BUSY_DELAY);
  1091. }
  1092. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  1093. return -EACCES;
  1094. continue_csr_init:
  1095. rt61pci_bbp_write(rt2x00dev, 3, 0x00);
  1096. rt61pci_bbp_write(rt2x00dev, 15, 0x30);
  1097. rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
  1098. rt61pci_bbp_write(rt2x00dev, 22, 0x38);
  1099. rt61pci_bbp_write(rt2x00dev, 23, 0x06);
  1100. rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
  1101. rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
  1102. rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
  1103. rt61pci_bbp_write(rt2x00dev, 34, 0x12);
  1104. rt61pci_bbp_write(rt2x00dev, 37, 0x07);
  1105. rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
  1106. rt61pci_bbp_write(rt2x00dev, 41, 0x60);
  1107. rt61pci_bbp_write(rt2x00dev, 53, 0x10);
  1108. rt61pci_bbp_write(rt2x00dev, 54, 0x18);
  1109. rt61pci_bbp_write(rt2x00dev, 60, 0x10);
  1110. rt61pci_bbp_write(rt2x00dev, 61, 0x04);
  1111. rt61pci_bbp_write(rt2x00dev, 62, 0x04);
  1112. rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
  1113. rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
  1114. rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
  1115. rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
  1116. rt61pci_bbp_write(rt2x00dev, 99, 0x00);
  1117. rt61pci_bbp_write(rt2x00dev, 102, 0x16);
  1118. rt61pci_bbp_write(rt2x00dev, 107, 0x04);
  1119. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  1120. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  1121. if (eeprom != 0xffff && eeprom != 0x0000) {
  1122. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  1123. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  1124. rt61pci_bbp_write(rt2x00dev, reg_id, value);
  1125. }
  1126. }
  1127. return 0;
  1128. }
  1129. /*
  1130. * Device state switch handlers.
  1131. */
  1132. static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  1133. enum dev_state state)
  1134. {
  1135. u32 reg;
  1136. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  1137. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
  1138. state == STATE_RADIO_RX_OFF);
  1139. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  1140. }
  1141. static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  1142. enum dev_state state)
  1143. {
  1144. int mask = (state == STATE_RADIO_IRQ_OFF);
  1145. u32 reg;
  1146. /*
  1147. * When interrupts are being enabled, the interrupt registers
  1148. * should clear the register to assure a clean state.
  1149. */
  1150. if (state == STATE_RADIO_IRQ_ON) {
  1151. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  1152. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1153. rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
  1154. rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
  1155. }
  1156. /*
  1157. * Only toggle the interrupts bits we are going to use.
  1158. * Non-checked interrupt bits are disabled by default.
  1159. */
  1160. rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  1161. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
  1162. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
  1163. rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
  1164. rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
  1165. rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
  1166. rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
  1167. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
  1168. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
  1169. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
  1170. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
  1171. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
  1172. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
  1173. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
  1174. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
  1175. rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
  1176. }
  1177. static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  1178. {
  1179. u32 reg;
  1180. /*
  1181. * Initialize all registers.
  1182. */
  1183. if (rt61pci_init_queues(rt2x00dev) ||
  1184. rt61pci_init_registers(rt2x00dev) ||
  1185. rt61pci_init_bbp(rt2x00dev)) {
  1186. ERROR(rt2x00dev, "Register initialization failed.\n");
  1187. return -EIO;
  1188. }
  1189. /*
  1190. * Enable interrupts.
  1191. */
  1192. rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  1193. /*
  1194. * Enable RX.
  1195. */
  1196. rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
  1197. rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
  1198. rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  1199. return 0;
  1200. }
  1201. static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  1202. {
  1203. u32 reg;
  1204. rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
  1205. /*
  1206. * Disable synchronisation.
  1207. */
  1208. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
  1209. /*
  1210. * Cancel RX and TX.
  1211. */
  1212. rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
  1213. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
  1214. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
  1215. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
  1216. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
  1217. rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  1218. /*
  1219. * Disable interrupts.
  1220. */
  1221. rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  1222. }
  1223. static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
  1224. {
  1225. u32 reg;
  1226. unsigned int i;
  1227. char put_to_sleep;
  1228. char current_state;
  1229. put_to_sleep = (state != STATE_AWAKE);
  1230. rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
  1231. rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
  1232. rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
  1233. rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
  1234. /*
  1235. * Device is not guaranteed to be in the requested state yet.
  1236. * We must wait until the register indicates that the
  1237. * device has entered the correct state.
  1238. */
  1239. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1240. rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
  1241. current_state =
  1242. rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
  1243. if (current_state == !put_to_sleep)
  1244. return 0;
  1245. msleep(10);
  1246. }
  1247. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  1248. "current device state %d.\n", !put_to_sleep, current_state);
  1249. return -EBUSY;
  1250. }
  1251. static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1252. enum dev_state state)
  1253. {
  1254. int retval = 0;
  1255. switch (state) {
  1256. case STATE_RADIO_ON:
  1257. retval = rt61pci_enable_radio(rt2x00dev);
  1258. break;
  1259. case STATE_RADIO_OFF:
  1260. rt61pci_disable_radio(rt2x00dev);
  1261. break;
  1262. case STATE_RADIO_RX_ON:
  1263. case STATE_RADIO_RX_ON_LINK:
  1264. rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  1265. break;
  1266. case STATE_RADIO_RX_OFF:
  1267. case STATE_RADIO_RX_OFF_LINK:
  1268. rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  1269. break;
  1270. case STATE_DEEP_SLEEP:
  1271. case STATE_SLEEP:
  1272. case STATE_STANDBY:
  1273. case STATE_AWAKE:
  1274. retval = rt61pci_set_state(rt2x00dev, state);
  1275. break;
  1276. default:
  1277. retval = -ENOTSUPP;
  1278. break;
  1279. }
  1280. return retval;
  1281. }
  1282. /*
  1283. * TX descriptor initialization
  1284. */
  1285. static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  1286. struct sk_buff *skb,
  1287. struct txentry_desc *txdesc)
  1288. {
  1289. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  1290. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  1291. __le32 *txd = skbdesc->desc;
  1292. u32 word;
  1293. /*
  1294. * Start writing the descriptor words.
  1295. */
  1296. rt2x00_desc_read(txd, 1, &word);
  1297. rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
  1298. rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
  1299. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  1300. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  1301. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
  1302. rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
  1303. rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
  1304. rt2x00_desc_write(txd, 1, word);
  1305. rt2x00_desc_read(txd, 2, &word);
  1306. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  1307. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  1308. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  1309. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  1310. rt2x00_desc_write(txd, 2, word);
  1311. rt2x00_desc_read(txd, 5, &word);
  1312. rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
  1313. rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
  1314. skbdesc->entry->entry_idx);
  1315. rt2x00_set_field32(&word, TXD_W5_TX_POWER,
  1316. TXPOWER_TO_DEV(rt2x00dev->tx_power));
  1317. rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
  1318. rt2x00_desc_write(txd, 5, word);
  1319. rt2x00_desc_read(txd, 6, &word);
  1320. rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
  1321. entry_priv->data_dma);
  1322. rt2x00_desc_write(txd, 6, word);
  1323. if (skbdesc->desc_len > TXINFO_SIZE) {
  1324. rt2x00_desc_read(txd, 11, &word);
  1325. rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len);
  1326. rt2x00_desc_write(txd, 11, word);
  1327. }
  1328. rt2x00_desc_read(txd, 0, &word);
  1329. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1330. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1331. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1332. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1333. rt2x00_set_field32(&word, TXD_W0_ACK,
  1334. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1335. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1336. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1337. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1338. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1339. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1340. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1341. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1342. rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
  1343. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  1344. rt2x00_set_field32(&word, TXD_W0_BURST,
  1345. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  1346. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1347. rt2x00_desc_write(txd, 0, word);
  1348. }
  1349. /*
  1350. * TX data initialization
  1351. */
  1352. static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1353. const enum data_queue_qid queue)
  1354. {
  1355. u32 reg;
  1356. if (queue == QID_BEACON) {
  1357. /*
  1358. * For Wi-Fi faily generated beacons between participating
  1359. * stations. Set TBTT phase adaptive adjustment step to 8us.
  1360. */
  1361. rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
  1362. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  1363. if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
  1364. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  1365. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
  1366. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
  1367. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  1368. }
  1369. return;
  1370. }
  1371. rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
  1372. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
  1373. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
  1374. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
  1375. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
  1376. rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  1377. }
  1378. /*
  1379. * RX control handlers
  1380. */
  1381. static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
  1382. {
  1383. u16 eeprom;
  1384. u8 offset;
  1385. u8 lna;
  1386. lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
  1387. switch (lna) {
  1388. case 3:
  1389. offset = 90;
  1390. break;
  1391. case 2:
  1392. offset = 74;
  1393. break;
  1394. case 1:
  1395. offset = 64;
  1396. break;
  1397. default:
  1398. return 0;
  1399. }
  1400. if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
  1401. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
  1402. offset += 14;
  1403. if (lna == 3 || lna == 2)
  1404. offset += 10;
  1405. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
  1406. offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
  1407. } else {
  1408. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
  1409. offset += 14;
  1410. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
  1411. offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
  1412. }
  1413. return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
  1414. }
  1415. static void rt61pci_fill_rxdone(struct queue_entry *entry,
  1416. struct rxdone_entry_desc *rxdesc)
  1417. {
  1418. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1419. u32 word0;
  1420. u32 word1;
  1421. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1422. rt2x00_desc_read(entry_priv->desc, 1, &word1);
  1423. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1424. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1425. /*
  1426. * Obtain the status about this packet.
  1427. * When frame was received with an OFDM bitrate,
  1428. * the signal is the PLCP value. If it was received with
  1429. * a CCK bitrate the signal is the rate in 100kbit/s.
  1430. */
  1431. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1432. rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
  1433. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1434. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1435. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1436. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1437. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1438. }
  1439. /*
  1440. * Interrupt functions.
  1441. */
  1442. static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
  1443. {
  1444. struct data_queue *queue;
  1445. struct queue_entry *entry;
  1446. struct queue_entry *entry_done;
  1447. struct queue_entry_priv_pci *entry_priv;
  1448. struct txdone_entry_desc txdesc;
  1449. u32 word;
  1450. u32 reg;
  1451. u32 old_reg;
  1452. int type;
  1453. int index;
  1454. /*
  1455. * During each loop we will compare the freshly read
  1456. * STA_CSR4 register value with the value read from
  1457. * the previous loop. If the 2 values are equal then
  1458. * we should stop processing because the chance it
  1459. * quite big that the device has been unplugged and
  1460. * we risk going into an endless loop.
  1461. */
  1462. old_reg = 0;
  1463. while (1) {
  1464. rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
  1465. if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
  1466. break;
  1467. if (old_reg == reg)
  1468. break;
  1469. old_reg = reg;
  1470. /*
  1471. * Skip this entry when it contains an invalid
  1472. * queue identication number.
  1473. */
  1474. type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
  1475. queue = rt2x00queue_get_queue(rt2x00dev, type);
  1476. if (unlikely(!queue))
  1477. continue;
  1478. /*
  1479. * Skip this entry when it contains an invalid
  1480. * index number.
  1481. */
  1482. index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
  1483. if (unlikely(index >= queue->limit))
  1484. continue;
  1485. entry = &queue->entries[index];
  1486. entry_priv = entry->priv_data;
  1487. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1488. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1489. !rt2x00_get_field32(word, TXD_W0_VALID))
  1490. return;
  1491. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1492. while (entry != entry_done) {
  1493. /* Catch up.
  1494. * Just report any entries we missed as failed.
  1495. */
  1496. WARNING(rt2x00dev,
  1497. "TX status report missed for entry %d\n",
  1498. entry_done->entry_idx);
  1499. txdesc.flags = 0;
  1500. __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
  1501. txdesc.retry = 0;
  1502. rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc);
  1503. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1504. }
  1505. /*
  1506. * Obtain the status about this packet.
  1507. */
  1508. txdesc.flags = 0;
  1509. switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
  1510. case 0: /* Success, maybe with retry */
  1511. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1512. break;
  1513. case 6: /* Failure, excessive retries */
  1514. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1515. /* Don't break, this is a failed frame! */
  1516. default: /* Failure */
  1517. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1518. }
  1519. txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
  1520. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1521. }
  1522. }
  1523. static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
  1524. {
  1525. struct rt2x00_dev *rt2x00dev = dev_instance;
  1526. u32 reg_mcu;
  1527. u32 reg;
  1528. /*
  1529. * Get the interrupt sources & saved to local variable.
  1530. * Write register value back to clear pending interrupts.
  1531. */
  1532. rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
  1533. rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
  1534. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  1535. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1536. if (!reg && !reg_mcu)
  1537. return IRQ_NONE;
  1538. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1539. return IRQ_HANDLED;
  1540. /*
  1541. * Handle interrupts, walk through all bits
  1542. * and run the tasks, the bits are checked in order of
  1543. * priority.
  1544. */
  1545. /*
  1546. * 1 - Rx ring done interrupt.
  1547. */
  1548. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
  1549. rt2x00pci_rxdone(rt2x00dev);
  1550. /*
  1551. * 2 - Tx ring done interrupt.
  1552. */
  1553. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
  1554. rt61pci_txdone(rt2x00dev);
  1555. /*
  1556. * 3 - Handle MCU command done.
  1557. */
  1558. if (reg_mcu)
  1559. rt2x00pci_register_write(rt2x00dev,
  1560. M2H_CMD_DONE_CSR, 0xffffffff);
  1561. return IRQ_HANDLED;
  1562. }
  1563. /*
  1564. * Device probe functions.
  1565. */
  1566. static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1567. {
  1568. struct eeprom_93cx6 eeprom;
  1569. u32 reg;
  1570. u16 word;
  1571. u8 *mac;
  1572. s8 value;
  1573. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  1574. eeprom.data = rt2x00dev;
  1575. eeprom.register_read = rt61pci_eepromregister_read;
  1576. eeprom.register_write = rt61pci_eepromregister_write;
  1577. eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
  1578. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1579. eeprom.reg_data_in = 0;
  1580. eeprom.reg_data_out = 0;
  1581. eeprom.reg_data_clock = 0;
  1582. eeprom.reg_chip_select = 0;
  1583. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1584. EEPROM_SIZE / sizeof(u16));
  1585. /*
  1586. * Start validation of the data that has been read.
  1587. */
  1588. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1589. if (!is_valid_ether_addr(mac)) {
  1590. DECLARE_MAC_BUF(macbuf);
  1591. random_ether_addr(mac);
  1592. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1593. }
  1594. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1595. if (word == 0xffff) {
  1596. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1597. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1598. ANTENNA_B);
  1599. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1600. ANTENNA_B);
  1601. rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
  1602. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1603. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1604. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
  1605. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1606. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1607. }
  1608. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1609. if (word == 0xffff) {
  1610. rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
  1611. rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
  1612. rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
  1613. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
  1614. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1615. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
  1616. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1617. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1618. }
  1619. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
  1620. if (word == 0xffff) {
  1621. rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
  1622. LED_MODE_DEFAULT);
  1623. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
  1624. EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
  1625. }
  1626. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  1627. if (word == 0xffff) {
  1628. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  1629. rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
  1630. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  1631. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  1632. }
  1633. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
  1634. if (word == 0xffff) {
  1635. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1636. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1637. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1638. EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
  1639. } else {
  1640. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
  1641. if (value < -10 || value > 10)
  1642. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1643. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
  1644. if (value < -10 || value > 10)
  1645. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1646. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1647. }
  1648. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
  1649. if (word == 0xffff) {
  1650. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1651. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1652. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1653. EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
  1654. } else {
  1655. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
  1656. if (value < -10 || value > 10)
  1657. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1658. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
  1659. if (value < -10 || value > 10)
  1660. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1661. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1662. }
  1663. return 0;
  1664. }
  1665. static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1666. {
  1667. u32 reg;
  1668. u16 value;
  1669. u16 eeprom;
  1670. u16 device;
  1671. /*
  1672. * Read EEPROM word for configuration.
  1673. */
  1674. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1675. /*
  1676. * Identify RF chipset.
  1677. * To determine the RT chip we have to read the
  1678. * PCI header of the device.
  1679. */
  1680. pci_read_config_word(rt2x00dev_pci(rt2x00dev),
  1681. PCI_CONFIG_HEADER_DEVICE, &device);
  1682. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1683. rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
  1684. rt2x00_set_chip(rt2x00dev, device, value, reg);
  1685. if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
  1686. !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
  1687. !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
  1688. !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
  1689. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1690. return -ENODEV;
  1691. }
  1692. /*
  1693. * Determine number of antenna's.
  1694. */
  1695. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
  1696. __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
  1697. /*
  1698. * Identify default antenna configuration.
  1699. */
  1700. rt2x00dev->default_ant.tx =
  1701. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1702. rt2x00dev->default_ant.rx =
  1703. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1704. /*
  1705. * Read the Frame type.
  1706. */
  1707. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
  1708. __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
  1709. /*
  1710. * Detect if this device has an hardware controlled radio.
  1711. */
  1712. #ifdef CONFIG_RT61PCI_RFKILL
  1713. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1714. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1715. #endif /* CONFIG_RT61PCI_RFKILL */
  1716. /*
  1717. * Read frequency offset and RF programming sequence.
  1718. */
  1719. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  1720. if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
  1721. __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
  1722. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  1723. /*
  1724. * Read external LNA informations.
  1725. */
  1726. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1727. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
  1728. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  1729. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
  1730. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  1731. /*
  1732. * When working with a RF2529 chip without double antenna
  1733. * the antenna settings should be gathered from the NIC
  1734. * eeprom word.
  1735. */
  1736. if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
  1737. !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
  1738. switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
  1739. case 0:
  1740. rt2x00dev->default_ant.tx = ANTENNA_B;
  1741. rt2x00dev->default_ant.rx = ANTENNA_A;
  1742. break;
  1743. case 1:
  1744. rt2x00dev->default_ant.tx = ANTENNA_B;
  1745. rt2x00dev->default_ant.rx = ANTENNA_B;
  1746. break;
  1747. case 2:
  1748. rt2x00dev->default_ant.tx = ANTENNA_A;
  1749. rt2x00dev->default_ant.rx = ANTENNA_A;
  1750. break;
  1751. case 3:
  1752. rt2x00dev->default_ant.tx = ANTENNA_A;
  1753. rt2x00dev->default_ant.rx = ANTENNA_B;
  1754. break;
  1755. }
  1756. if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
  1757. rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
  1758. if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
  1759. rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
  1760. }
  1761. /*
  1762. * Store led settings, for correct led behaviour.
  1763. * If the eeprom value is invalid,
  1764. * switch to default led mode.
  1765. */
  1766. #ifdef CONFIG_RT61PCI_LEDS
  1767. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
  1768. value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
  1769. rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
  1770. rt2x00dev->led_radio.type = LED_TYPE_RADIO;
  1771. rt2x00dev->led_radio.led_dev.brightness_set =
  1772. rt61pci_brightness_set;
  1773. rt2x00dev->led_radio.led_dev.blink_set =
  1774. rt61pci_blink_set;
  1775. rt2x00dev->led_radio.flags = LED_INITIALIZED;
  1776. rt2x00dev->led_assoc.rt2x00dev = rt2x00dev;
  1777. rt2x00dev->led_assoc.type = LED_TYPE_ASSOC;
  1778. rt2x00dev->led_assoc.led_dev.brightness_set =
  1779. rt61pci_brightness_set;
  1780. rt2x00dev->led_assoc.led_dev.blink_set =
  1781. rt61pci_blink_set;
  1782. rt2x00dev->led_assoc.flags = LED_INITIALIZED;
  1783. if (value == LED_MODE_SIGNAL_STRENGTH) {
  1784. rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
  1785. rt2x00dev->led_qual.type = LED_TYPE_QUALITY;
  1786. rt2x00dev->led_qual.led_dev.brightness_set =
  1787. rt61pci_brightness_set;
  1788. rt2x00dev->led_qual.led_dev.blink_set =
  1789. rt61pci_blink_set;
  1790. rt2x00dev->led_qual.flags = LED_INITIALIZED;
  1791. }
  1792. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
  1793. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
  1794. rt2x00_get_field16(eeprom,
  1795. EEPROM_LED_POLARITY_GPIO_0));
  1796. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
  1797. rt2x00_get_field16(eeprom,
  1798. EEPROM_LED_POLARITY_GPIO_1));
  1799. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
  1800. rt2x00_get_field16(eeprom,
  1801. EEPROM_LED_POLARITY_GPIO_2));
  1802. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
  1803. rt2x00_get_field16(eeprom,
  1804. EEPROM_LED_POLARITY_GPIO_3));
  1805. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
  1806. rt2x00_get_field16(eeprom,
  1807. EEPROM_LED_POLARITY_GPIO_4));
  1808. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
  1809. rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
  1810. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
  1811. rt2x00_get_field16(eeprom,
  1812. EEPROM_LED_POLARITY_RDY_G));
  1813. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
  1814. rt2x00_get_field16(eeprom,
  1815. EEPROM_LED_POLARITY_RDY_A));
  1816. #endif /* CONFIG_RT61PCI_LEDS */
  1817. return 0;
  1818. }
  1819. /*
  1820. * RF value list for RF5225 & RF5325
  1821. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
  1822. */
  1823. static const struct rf_channel rf_vals_noseq[] = {
  1824. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  1825. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  1826. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  1827. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  1828. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  1829. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  1830. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  1831. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  1832. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  1833. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  1834. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  1835. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  1836. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  1837. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  1838. /* 802.11 UNI / HyperLan 2 */
  1839. { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
  1840. { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
  1841. { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
  1842. { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
  1843. { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
  1844. { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
  1845. { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
  1846. { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
  1847. /* 802.11 HyperLan 2 */
  1848. { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
  1849. { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
  1850. { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
  1851. { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
  1852. { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
  1853. { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
  1854. { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
  1855. { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
  1856. { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
  1857. { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
  1858. /* 802.11 UNII */
  1859. { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
  1860. { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
  1861. { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
  1862. { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
  1863. { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
  1864. { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
  1865. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1866. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
  1867. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
  1868. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
  1869. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
  1870. };
  1871. /*
  1872. * RF value list for RF5225 & RF5325
  1873. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
  1874. */
  1875. static const struct rf_channel rf_vals_seq[] = {
  1876. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  1877. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  1878. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  1879. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  1880. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  1881. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  1882. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  1883. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  1884. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  1885. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  1886. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  1887. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  1888. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  1889. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  1890. /* 802.11 UNI / HyperLan 2 */
  1891. { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
  1892. { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
  1893. { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
  1894. { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
  1895. { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
  1896. { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
  1897. { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
  1898. { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
  1899. /* 802.11 HyperLan 2 */
  1900. { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
  1901. { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
  1902. { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
  1903. { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
  1904. { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
  1905. { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
  1906. { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
  1907. { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
  1908. { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
  1909. { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
  1910. /* 802.11 UNII */
  1911. { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
  1912. { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
  1913. { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
  1914. { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
  1915. { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
  1916. { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
  1917. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1918. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
  1919. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
  1920. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
  1921. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
  1922. };
  1923. static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1924. {
  1925. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1926. u8 *txpower;
  1927. unsigned int i;
  1928. /*
  1929. * Initialize all hw fields.
  1930. */
  1931. rt2x00dev->hw->flags =
  1932. IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
  1933. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1934. IEEE80211_HW_SIGNAL_DBM;
  1935. rt2x00dev->hw->extra_tx_headroom = 0;
  1936. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1937. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1938. rt2x00_eeprom_addr(rt2x00dev,
  1939. EEPROM_MAC_ADDR_0));
  1940. /*
  1941. * Convert tx_power array in eeprom.
  1942. */
  1943. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
  1944. for (i = 0; i < 14; i++)
  1945. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1946. /*
  1947. * Initialize hw_mode information.
  1948. */
  1949. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1950. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1951. spec->tx_power_a = NULL;
  1952. spec->tx_power_bg = txpower;
  1953. spec->tx_power_default = DEFAULT_TXPOWER;
  1954. if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
  1955. spec->num_channels = 14;
  1956. spec->channels = rf_vals_noseq;
  1957. } else {
  1958. spec->num_channels = 14;
  1959. spec->channels = rf_vals_seq;
  1960. }
  1961. if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  1962. rt2x00_rf(&rt2x00dev->chip, RF5325)) {
  1963. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1964. spec->num_channels = ARRAY_SIZE(rf_vals_seq);
  1965. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
  1966. for (i = 0; i < 14; i++)
  1967. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1968. spec->tx_power_a = txpower;
  1969. }
  1970. }
  1971. static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1972. {
  1973. int retval;
  1974. /*
  1975. * Allocate eeprom data.
  1976. */
  1977. retval = rt61pci_validate_eeprom(rt2x00dev);
  1978. if (retval)
  1979. return retval;
  1980. retval = rt61pci_init_eeprom(rt2x00dev);
  1981. if (retval)
  1982. return retval;
  1983. /*
  1984. * Initialize hw specifications.
  1985. */
  1986. rt61pci_probe_hw_mode(rt2x00dev);
  1987. /*
  1988. * This device requires firmware.
  1989. */
  1990. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  1991. /*
  1992. * Set the rssi offset.
  1993. */
  1994. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1995. return 0;
  1996. }
  1997. /*
  1998. * IEEE80211 stack callback functions.
  1999. */
  2000. static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
  2001. u32 short_retry, u32 long_retry)
  2002. {
  2003. struct rt2x00_dev *rt2x00dev = hw->priv;
  2004. u32 reg;
  2005. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  2006. rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
  2007. rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
  2008. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  2009. return 0;
  2010. }
  2011. static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
  2012. {
  2013. struct rt2x00_dev *rt2x00dev = hw->priv;
  2014. u64 tsf;
  2015. u32 reg;
  2016. rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
  2017. tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
  2018. rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
  2019. tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
  2020. return tsf;
  2021. }
  2022. static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
  2023. {
  2024. struct rt2x00_dev *rt2x00dev = hw->priv;
  2025. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  2026. struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
  2027. struct queue_entry_priv_pci *entry_priv;
  2028. struct skb_frame_desc *skbdesc;
  2029. struct txentry_desc txdesc;
  2030. unsigned int beacon_base;
  2031. u32 reg;
  2032. if (unlikely(!intf->beacon))
  2033. return -ENOBUFS;
  2034. /*
  2035. * Copy all TX descriptor information into txdesc,
  2036. * after that we are free to use the skb->cb array
  2037. * for our information.
  2038. */
  2039. intf->beacon->skb = skb;
  2040. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  2041. entry_priv = intf->beacon->priv_data;
  2042. memset(entry_priv->desc, 0, intf->beacon->queue->desc_size);
  2043. /*
  2044. * Fill in skb descriptor
  2045. */
  2046. skbdesc = get_skb_frame_desc(skb);
  2047. memset(skbdesc, 0, sizeof(*skbdesc));
  2048. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  2049. skbdesc->data = skb->data;
  2050. skbdesc->data_len = skb->len;
  2051. skbdesc->desc = entry_priv->desc;
  2052. skbdesc->desc_len = intf->beacon->queue->desc_size;
  2053. skbdesc->entry = intf->beacon;
  2054. /*
  2055. * Disable beaconing while we are reloading the beacon data,
  2056. * otherwise we might be sending out invalid data.
  2057. */
  2058. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  2059. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
  2060. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
  2061. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  2062. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  2063. /*
  2064. * Write entire beacon with descriptor to register,
  2065. * and kick the beacon generator.
  2066. */
  2067. rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
  2068. beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
  2069. rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
  2070. skbdesc->desc, skbdesc->desc_len);
  2071. rt2x00pci_register_multiwrite(rt2x00dev,
  2072. beacon_base + skbdesc->desc_len,
  2073. skbdesc->data, skbdesc->data_len);
  2074. rt61pci_kick_tx_queue(rt2x00dev, QID_BEACON);
  2075. return 0;
  2076. }
  2077. static const struct ieee80211_ops rt61pci_mac80211_ops = {
  2078. .tx = rt2x00mac_tx,
  2079. .start = rt2x00mac_start,
  2080. .stop = rt2x00mac_stop,
  2081. .add_interface = rt2x00mac_add_interface,
  2082. .remove_interface = rt2x00mac_remove_interface,
  2083. .config = rt2x00mac_config,
  2084. .config_interface = rt2x00mac_config_interface,
  2085. .configure_filter = rt2x00mac_configure_filter,
  2086. .get_stats = rt2x00mac_get_stats,
  2087. .set_retry_limit = rt61pci_set_retry_limit,
  2088. .bss_info_changed = rt2x00mac_bss_info_changed,
  2089. .conf_tx = rt2x00mac_conf_tx,
  2090. .get_tx_stats = rt2x00mac_get_tx_stats,
  2091. .get_tsf = rt61pci_get_tsf,
  2092. .beacon_update = rt61pci_beacon_update,
  2093. };
  2094. static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
  2095. .irq_handler = rt61pci_interrupt,
  2096. .probe_hw = rt61pci_probe_hw,
  2097. .get_firmware_name = rt61pci_get_firmware_name,
  2098. .get_firmware_crc = rt61pci_get_firmware_crc,
  2099. .load_firmware = rt61pci_load_firmware,
  2100. .initialize = rt2x00pci_initialize,
  2101. .uninitialize = rt2x00pci_uninitialize,
  2102. .init_rxentry = rt61pci_init_rxentry,
  2103. .init_txentry = rt61pci_init_txentry,
  2104. .set_device_state = rt61pci_set_device_state,
  2105. .rfkill_poll = rt61pci_rfkill_poll,
  2106. .link_stats = rt61pci_link_stats,
  2107. .reset_tuner = rt61pci_reset_tuner,
  2108. .link_tuner = rt61pci_link_tuner,
  2109. .write_tx_desc = rt61pci_write_tx_desc,
  2110. .write_tx_data = rt2x00pci_write_tx_data,
  2111. .kick_tx_queue = rt61pci_kick_tx_queue,
  2112. .fill_rxdone = rt61pci_fill_rxdone,
  2113. .config_filter = rt61pci_config_filter,
  2114. .config_intf = rt61pci_config_intf,
  2115. .config_erp = rt61pci_config_erp,
  2116. .config = rt61pci_config,
  2117. };
  2118. static const struct data_queue_desc rt61pci_queue_rx = {
  2119. .entry_num = RX_ENTRIES,
  2120. .data_size = DATA_FRAME_SIZE,
  2121. .desc_size = RXD_DESC_SIZE,
  2122. .priv_size = sizeof(struct queue_entry_priv_pci),
  2123. };
  2124. static const struct data_queue_desc rt61pci_queue_tx = {
  2125. .entry_num = TX_ENTRIES,
  2126. .data_size = DATA_FRAME_SIZE,
  2127. .desc_size = TXD_DESC_SIZE,
  2128. .priv_size = sizeof(struct queue_entry_priv_pci),
  2129. };
  2130. static const struct data_queue_desc rt61pci_queue_bcn = {
  2131. .entry_num = 4 * BEACON_ENTRIES,
  2132. .data_size = 0, /* No DMA required for beacons */
  2133. .desc_size = TXINFO_SIZE,
  2134. .priv_size = sizeof(struct queue_entry_priv_pci),
  2135. };
  2136. static const struct rt2x00_ops rt61pci_ops = {
  2137. .name = KBUILD_MODNAME,
  2138. .max_sta_intf = 1,
  2139. .max_ap_intf = 4,
  2140. .eeprom_size = EEPROM_SIZE,
  2141. .rf_size = RF_SIZE,
  2142. .tx_queues = NUM_TX_QUEUES,
  2143. .rx = &rt61pci_queue_rx,
  2144. .tx = &rt61pci_queue_tx,
  2145. .bcn = &rt61pci_queue_bcn,
  2146. .lib = &rt61pci_rt2x00_ops,
  2147. .hw = &rt61pci_mac80211_ops,
  2148. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  2149. .debugfs = &rt61pci_rt2x00debug,
  2150. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  2151. };
  2152. /*
  2153. * RT61pci module information.
  2154. */
  2155. static struct pci_device_id rt61pci_device_table[] = {
  2156. /* RT2561s */
  2157. { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
  2158. /* RT2561 v2 */
  2159. { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
  2160. /* RT2661 */
  2161. { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
  2162. { 0, }
  2163. };
  2164. MODULE_AUTHOR(DRV_PROJECT);
  2165. MODULE_VERSION(DRV_VERSION);
  2166. MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
  2167. MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
  2168. "PCI & PCMCIA chipset based cards");
  2169. MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
  2170. MODULE_FIRMWARE(FIRMWARE_RT2561);
  2171. MODULE_FIRMWARE(FIRMWARE_RT2561s);
  2172. MODULE_FIRMWARE(FIRMWARE_RT2661);
  2173. MODULE_LICENSE("GPL");
  2174. static struct pci_driver rt61pci_driver = {
  2175. .name = KBUILD_MODNAME,
  2176. .id_table = rt61pci_device_table,
  2177. .probe = rt2x00pci_probe,
  2178. .remove = __devexit_p(rt2x00pci_remove),
  2179. .suspend = rt2x00pci_suspend,
  2180. .resume = rt2x00pci_resume,
  2181. };
  2182. static int __init rt61pci_init(void)
  2183. {
  2184. return pci_register_driver(&rt61pci_driver);
  2185. }
  2186. static void __exit rt61pci_exit(void)
  2187. {
  2188. pci_unregister_driver(&rt61pci_driver);
  2189. }
  2190. module_init(rt61pci_init);
  2191. module_exit(rt61pci_exit);