rt2500pci.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2500pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2500pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2500pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2500pci_read_csr,
  174. .write = rt2500pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2500pci_bbp_read,
  186. .write = rt2500pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2500pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2500PCI_RFKILL
  199. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2500pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2500PCI_RFKILL */
  208. #ifdef CONFIG_RT2500PCI_LEDS
  209. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  210. enum led_brightness brightness)
  211. {
  212. struct rt2x00_led *led =
  213. container_of(led_cdev, struct rt2x00_led, led_dev);
  214. unsigned int enabled = brightness != LED_OFF;
  215. u32 reg;
  216. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  217. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  218. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  219. else if (led->type == LED_TYPE_ACTIVITY)
  220. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  221. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  222. }
  223. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  224. unsigned long *delay_on,
  225. unsigned long *delay_off)
  226. {
  227. struct rt2x00_led *led =
  228. container_of(led_cdev, struct rt2x00_led, led_dev);
  229. u32 reg;
  230. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  231. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  232. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  233. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  234. return 0;
  235. }
  236. #endif /* CONFIG_RT2500PCI_LEDS */
  237. /*
  238. * Configuration handlers.
  239. */
  240. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  241. const unsigned int filter_flags)
  242. {
  243. u32 reg;
  244. /*
  245. * Start configuration steps.
  246. * Note that the version error will always be dropped
  247. * and broadcast frames will always be accepted since
  248. * there is no filter for it at this time.
  249. */
  250. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  251. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  252. !(filter_flags & FIF_FCSFAIL));
  253. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  254. !(filter_flags & FIF_PLCPFAIL));
  255. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  256. !(filter_flags & FIF_CONTROL));
  257. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  258. !(filter_flags & FIF_PROMISC_IN_BSS));
  259. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  260. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  261. !rt2x00dev->intf_ap_count);
  262. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  263. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  264. !(filter_flags & FIF_ALLMULTI));
  265. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  266. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  267. }
  268. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  269. struct rt2x00_intf *intf,
  270. struct rt2x00intf_conf *conf,
  271. const unsigned int flags)
  272. {
  273. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
  274. unsigned int bcn_preload;
  275. u32 reg;
  276. if (flags & CONFIG_UPDATE_TYPE) {
  277. /*
  278. * Enable beacon config
  279. */
  280. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  281. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  282. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  283. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  284. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  285. /*
  286. * Enable synchronisation.
  287. */
  288. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  289. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  290. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  291. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  292. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  293. }
  294. if (flags & CONFIG_UPDATE_MAC)
  295. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  296. conf->mac, sizeof(conf->mac));
  297. if (flags & CONFIG_UPDATE_BSSID)
  298. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  299. conf->bssid, sizeof(conf->bssid));
  300. }
  301. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  302. struct rt2x00lib_erp *erp)
  303. {
  304. int preamble_mask;
  305. u32 reg;
  306. /*
  307. * When short preamble is enabled, we should set bit 0x08
  308. */
  309. preamble_mask = erp->short_preamble << 3;
  310. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  311. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  312. erp->ack_timeout);
  313. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  314. erp->ack_consume_time);
  315. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  316. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  317. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  318. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  319. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  320. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  321. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  322. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  323. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  324. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  325. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  326. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  327. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  328. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  329. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  330. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  331. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  332. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  333. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  334. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  335. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  336. }
  337. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  338. const int basic_rate_mask)
  339. {
  340. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  341. }
  342. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  343. struct rf_channel *rf, const int txpower)
  344. {
  345. u8 r70;
  346. /*
  347. * Set TXpower.
  348. */
  349. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  350. /*
  351. * Switch on tuning bits.
  352. * For RT2523 devices we do not need to update the R1 register.
  353. */
  354. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  355. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  356. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  357. /*
  358. * For RT2525 we should first set the channel to half band higher.
  359. */
  360. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  361. static const u32 vals[] = {
  362. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  363. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  364. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  365. 0x00080d2e, 0x00080d3a
  366. };
  367. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  368. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  369. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  370. if (rf->rf4)
  371. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  372. }
  373. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  374. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  375. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  376. if (rf->rf4)
  377. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  378. /*
  379. * Channel 14 requires the Japan filter bit to be set.
  380. */
  381. r70 = 0x46;
  382. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  383. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  384. msleep(1);
  385. /*
  386. * Switch off tuning bits.
  387. * For RT2523 devices we do not need to update the R1 register.
  388. */
  389. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  390. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  391. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  392. }
  393. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  394. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  395. /*
  396. * Clear false CRC during channel switch.
  397. */
  398. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  399. }
  400. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  401. const int txpower)
  402. {
  403. u32 rf3;
  404. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  405. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  406. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  407. }
  408. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  409. struct antenna_setup *ant)
  410. {
  411. u32 reg;
  412. u8 r14;
  413. u8 r2;
  414. /*
  415. * We should never come here because rt2x00lib is supposed
  416. * to catch this and send us the correct antenna explicitely.
  417. */
  418. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  419. ant->tx == ANTENNA_SW_DIVERSITY);
  420. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  421. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  422. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  423. /*
  424. * Configure the TX antenna.
  425. */
  426. switch (ant->tx) {
  427. case ANTENNA_A:
  428. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  429. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  430. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  431. break;
  432. case ANTENNA_B:
  433. default:
  434. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  435. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  436. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  437. break;
  438. }
  439. /*
  440. * Configure the RX antenna.
  441. */
  442. switch (ant->rx) {
  443. case ANTENNA_A:
  444. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  445. break;
  446. case ANTENNA_B:
  447. default:
  448. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  449. break;
  450. }
  451. /*
  452. * RT2525E and RT5222 need to flip TX I/Q
  453. */
  454. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  455. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  456. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  457. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  458. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  459. /*
  460. * RT2525E does not need RX I/Q Flip.
  461. */
  462. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  463. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  464. } else {
  465. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  466. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  467. }
  468. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  469. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  470. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  471. }
  472. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  473. struct rt2x00lib_conf *libconf)
  474. {
  475. u32 reg;
  476. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  477. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  478. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  479. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  480. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  481. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  482. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  483. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  484. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  485. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  486. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  487. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  488. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  489. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  490. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  491. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  492. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  493. libconf->conf->beacon_int * 16);
  494. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  495. libconf->conf->beacon_int * 16);
  496. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  497. }
  498. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  499. struct rt2x00lib_conf *libconf,
  500. const unsigned int flags)
  501. {
  502. if (flags & CONFIG_UPDATE_PHYMODE)
  503. rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
  504. if (flags & CONFIG_UPDATE_CHANNEL)
  505. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  506. libconf->conf->power_level);
  507. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  508. rt2500pci_config_txpower(rt2x00dev,
  509. libconf->conf->power_level);
  510. if (flags & CONFIG_UPDATE_ANTENNA)
  511. rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
  512. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  513. rt2500pci_config_duration(rt2x00dev, libconf);
  514. }
  515. /*
  516. * Link tuning
  517. */
  518. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  519. struct link_qual *qual)
  520. {
  521. u32 reg;
  522. /*
  523. * Update FCS error count from register.
  524. */
  525. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  526. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  527. /*
  528. * Update False CCA count from register.
  529. */
  530. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  531. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  532. }
  533. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  534. {
  535. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  536. rt2x00dev->link.vgc_level = 0x48;
  537. }
  538. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  539. {
  540. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  541. u8 r17;
  542. /*
  543. * To prevent collisions with MAC ASIC on chipsets
  544. * up to version C the link tuning should halt after 20
  545. * seconds while being associated.
  546. */
  547. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  548. rt2x00dev->intf_associated &&
  549. rt2x00dev->link.count > 20)
  550. return;
  551. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  552. /*
  553. * Chipset versions C and lower should directly continue
  554. * to the dynamic CCA tuning. Chipset version D and higher
  555. * should go straight to dynamic CCA tuning when they
  556. * are not associated.
  557. */
  558. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
  559. !rt2x00dev->intf_associated)
  560. goto dynamic_cca_tune;
  561. /*
  562. * A too low RSSI will cause too much false CCA which will
  563. * then corrupt the R17 tuning. To remidy this the tuning should
  564. * be stopped (While making sure the R17 value will not exceed limits)
  565. */
  566. if (rssi < -80 && rt2x00dev->link.count > 20) {
  567. if (r17 >= 0x41) {
  568. r17 = rt2x00dev->link.vgc_level;
  569. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  570. }
  571. return;
  572. }
  573. /*
  574. * Special big-R17 for short distance
  575. */
  576. if (rssi >= -58) {
  577. if (r17 != 0x50)
  578. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  579. return;
  580. }
  581. /*
  582. * Special mid-R17 for middle distance
  583. */
  584. if (rssi >= -74) {
  585. if (r17 != 0x41)
  586. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  587. return;
  588. }
  589. /*
  590. * Leave short or middle distance condition, restore r17
  591. * to the dynamic tuning range.
  592. */
  593. if (r17 >= 0x41) {
  594. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  595. return;
  596. }
  597. dynamic_cca_tune:
  598. /*
  599. * R17 is inside the dynamic tuning range,
  600. * start tuning the link based on the false cca counter.
  601. */
  602. if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
  603. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  604. rt2x00dev->link.vgc_level = r17;
  605. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
  606. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  607. rt2x00dev->link.vgc_level = r17;
  608. }
  609. }
  610. /*
  611. * Initialization functions.
  612. */
  613. static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  614. struct queue_entry *entry)
  615. {
  616. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  617. u32 word;
  618. rt2x00_desc_read(entry_priv->desc, 1, &word);
  619. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, entry_priv->data_dma);
  620. rt2x00_desc_write(entry_priv->desc, 1, word);
  621. rt2x00_desc_read(entry_priv->desc, 0, &word);
  622. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  623. rt2x00_desc_write(entry_priv->desc, 0, word);
  624. }
  625. static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  626. struct queue_entry *entry)
  627. {
  628. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  629. u32 word;
  630. rt2x00_desc_read(entry_priv->desc, 0, &word);
  631. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  632. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  633. rt2x00_desc_write(entry_priv->desc, 0, word);
  634. }
  635. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  636. {
  637. struct queue_entry_priv_pci *entry_priv;
  638. u32 reg;
  639. /*
  640. * Initialize registers.
  641. */
  642. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  643. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  644. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  645. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  646. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  647. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  648. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  649. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  650. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  651. entry_priv->desc_dma);
  652. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  653. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  654. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  655. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  656. entry_priv->desc_dma);
  657. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  658. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  659. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  660. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  661. entry_priv->desc_dma);
  662. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  663. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  664. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  665. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  666. entry_priv->desc_dma);
  667. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  668. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  669. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  670. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  671. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  672. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  673. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  674. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  675. entry_priv->desc_dma);
  676. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  677. return 0;
  678. }
  679. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  680. {
  681. u32 reg;
  682. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  683. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  684. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  685. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  686. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  687. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  688. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  689. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  690. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  691. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  692. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  693. rt2x00dev->rx->data_size / 128);
  694. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  695. /*
  696. * Always use CWmin and CWmax set in descriptor.
  697. */
  698. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  699. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  700. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  701. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  702. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  703. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  704. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  705. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  706. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  707. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  708. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  709. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  710. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  711. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  712. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  713. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  714. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  715. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  716. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  717. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  718. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  719. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  720. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  721. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  722. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  723. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  724. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  725. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  726. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  727. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  728. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  729. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  730. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  731. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  732. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  733. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  734. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  735. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  736. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  737. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  738. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  739. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  740. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  741. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  742. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  743. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  744. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  745. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  746. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  747. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  748. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  749. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  750. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  751. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  752. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  753. return -EBUSY;
  754. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  755. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  756. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  757. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  758. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  759. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  760. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  761. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  762. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  763. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  764. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  765. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  766. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  767. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  768. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  769. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  770. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  771. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  772. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  773. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  774. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  775. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  776. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  777. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  778. /*
  779. * We must clear the FCS and FIFO error count.
  780. * These registers are cleared on read,
  781. * so we may pass a useless variable to store the value.
  782. */
  783. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  784. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  785. return 0;
  786. }
  787. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  788. {
  789. unsigned int i;
  790. u16 eeprom;
  791. u8 reg_id;
  792. u8 value;
  793. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  794. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  795. if ((value != 0xff) && (value != 0x00))
  796. goto continue_csr_init;
  797. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  798. udelay(REGISTER_BUSY_DELAY);
  799. }
  800. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  801. return -EACCES;
  802. continue_csr_init:
  803. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  804. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  805. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  806. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  807. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  808. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  809. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  810. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  811. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  812. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  813. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  814. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  815. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  816. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  817. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  818. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  819. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  820. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  821. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  822. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  823. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  824. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  825. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  826. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  827. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  828. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  829. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  830. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  831. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  832. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  833. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  834. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  835. if (eeprom != 0xffff && eeprom != 0x0000) {
  836. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  837. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  838. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  839. }
  840. }
  841. return 0;
  842. }
  843. /*
  844. * Device state switch handlers.
  845. */
  846. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  847. enum dev_state state)
  848. {
  849. u32 reg;
  850. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  851. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  852. state == STATE_RADIO_RX_OFF);
  853. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  854. }
  855. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  856. enum dev_state state)
  857. {
  858. int mask = (state == STATE_RADIO_IRQ_OFF);
  859. u32 reg;
  860. /*
  861. * When interrupts are being enabled, the interrupt registers
  862. * should clear the register to assure a clean state.
  863. */
  864. if (state == STATE_RADIO_IRQ_ON) {
  865. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  866. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  867. }
  868. /*
  869. * Only toggle the interrupts bits we are going to use.
  870. * Non-checked interrupt bits are disabled by default.
  871. */
  872. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  873. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  874. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  875. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  876. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  877. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  878. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  879. }
  880. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  881. {
  882. /*
  883. * Initialize all registers.
  884. */
  885. if (rt2500pci_init_queues(rt2x00dev) ||
  886. rt2500pci_init_registers(rt2x00dev) ||
  887. rt2500pci_init_bbp(rt2x00dev)) {
  888. ERROR(rt2x00dev, "Register initialization failed.\n");
  889. return -EIO;
  890. }
  891. /*
  892. * Enable interrupts.
  893. */
  894. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  895. return 0;
  896. }
  897. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  898. {
  899. u32 reg;
  900. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  901. /*
  902. * Disable synchronisation.
  903. */
  904. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  905. /*
  906. * Cancel RX and TX.
  907. */
  908. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  909. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  910. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  911. /*
  912. * Disable interrupts.
  913. */
  914. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  915. }
  916. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  917. enum dev_state state)
  918. {
  919. u32 reg;
  920. unsigned int i;
  921. char put_to_sleep;
  922. char bbp_state;
  923. char rf_state;
  924. put_to_sleep = (state != STATE_AWAKE);
  925. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  926. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  927. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  928. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  929. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  930. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  931. /*
  932. * Device is not guaranteed to be in the requested state yet.
  933. * We must wait until the register indicates that the
  934. * device has entered the correct state.
  935. */
  936. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  937. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  938. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  939. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  940. if (bbp_state == state && rf_state == state)
  941. return 0;
  942. msleep(10);
  943. }
  944. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  945. "current device state: bbp %d and rf %d.\n",
  946. state, bbp_state, rf_state);
  947. return -EBUSY;
  948. }
  949. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  950. enum dev_state state)
  951. {
  952. int retval = 0;
  953. switch (state) {
  954. case STATE_RADIO_ON:
  955. retval = rt2500pci_enable_radio(rt2x00dev);
  956. break;
  957. case STATE_RADIO_OFF:
  958. rt2500pci_disable_radio(rt2x00dev);
  959. break;
  960. case STATE_RADIO_RX_ON:
  961. case STATE_RADIO_RX_ON_LINK:
  962. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  963. break;
  964. case STATE_RADIO_RX_OFF:
  965. case STATE_RADIO_RX_OFF_LINK:
  966. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  967. break;
  968. case STATE_DEEP_SLEEP:
  969. case STATE_SLEEP:
  970. case STATE_STANDBY:
  971. case STATE_AWAKE:
  972. retval = rt2500pci_set_state(rt2x00dev, state);
  973. break;
  974. default:
  975. retval = -ENOTSUPP;
  976. break;
  977. }
  978. return retval;
  979. }
  980. /*
  981. * TX descriptor initialization
  982. */
  983. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  984. struct sk_buff *skb,
  985. struct txentry_desc *txdesc)
  986. {
  987. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  988. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  989. __le32 *txd = skbdesc->desc;
  990. u32 word;
  991. /*
  992. * Start writing the descriptor words.
  993. */
  994. rt2x00_desc_read(entry_priv->desc, 1, &word);
  995. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, entry_priv->data_dma);
  996. rt2x00_desc_write(entry_priv->desc, 1, word);
  997. rt2x00_desc_read(txd, 2, &word);
  998. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  999. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  1000. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  1001. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  1002. rt2x00_desc_write(txd, 2, word);
  1003. rt2x00_desc_read(txd, 3, &word);
  1004. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  1005. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  1006. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  1007. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  1008. rt2x00_desc_write(txd, 3, word);
  1009. rt2x00_desc_read(txd, 10, &word);
  1010. rt2x00_set_field32(&word, TXD_W10_RTS,
  1011. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1012. rt2x00_desc_write(txd, 10, word);
  1013. rt2x00_desc_read(txd, 0, &word);
  1014. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1015. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1016. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1017. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1018. rt2x00_set_field32(&word, TXD_W0_ACK,
  1019. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1020. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1021. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1022. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1023. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1024. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1025. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1026. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1027. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1028. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1029. rt2x00_desc_write(txd, 0, word);
  1030. }
  1031. /*
  1032. * TX data initialization
  1033. */
  1034. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1035. const enum data_queue_qid queue)
  1036. {
  1037. u32 reg;
  1038. if (queue == QID_BEACON) {
  1039. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1040. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1041. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  1042. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  1043. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1044. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1045. }
  1046. return;
  1047. }
  1048. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1049. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  1050. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  1051. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  1052. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1053. }
  1054. /*
  1055. * RX control handlers
  1056. */
  1057. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1058. struct rxdone_entry_desc *rxdesc)
  1059. {
  1060. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1061. u32 word0;
  1062. u32 word2;
  1063. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1064. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1065. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1066. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1067. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1068. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1069. /*
  1070. * Obtain the status about this packet.
  1071. * When frame was received with an OFDM bitrate,
  1072. * the signal is the PLCP value. If it was received with
  1073. * a CCK bitrate the signal is the rate in 100kbit/s.
  1074. */
  1075. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1076. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1077. entry->queue->rt2x00dev->rssi_offset;
  1078. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1079. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1080. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1081. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1082. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1083. }
  1084. /*
  1085. * Interrupt functions.
  1086. */
  1087. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1088. const enum data_queue_qid queue_idx)
  1089. {
  1090. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1091. struct queue_entry_priv_pci *entry_priv;
  1092. struct queue_entry *entry;
  1093. struct txdone_entry_desc txdesc;
  1094. u32 word;
  1095. while (!rt2x00queue_empty(queue)) {
  1096. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1097. entry_priv = entry->priv_data;
  1098. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1099. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1100. !rt2x00_get_field32(word, TXD_W0_VALID))
  1101. break;
  1102. /*
  1103. * Obtain the status about this packet.
  1104. */
  1105. txdesc.flags = 0;
  1106. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1107. case 0: /* Success */
  1108. case 1: /* Success with retry */
  1109. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1110. break;
  1111. case 2: /* Failure, excessive retries */
  1112. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1113. /* Don't break, this is a failed frame! */
  1114. default: /* Failure */
  1115. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1116. }
  1117. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1118. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1119. }
  1120. }
  1121. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1122. {
  1123. struct rt2x00_dev *rt2x00dev = dev_instance;
  1124. u32 reg;
  1125. /*
  1126. * Get the interrupt sources & saved to local variable.
  1127. * Write register value back to clear pending interrupts.
  1128. */
  1129. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1130. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1131. if (!reg)
  1132. return IRQ_NONE;
  1133. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1134. return IRQ_HANDLED;
  1135. /*
  1136. * Handle interrupts, walk through all bits
  1137. * and run the tasks, the bits are checked in order of
  1138. * priority.
  1139. */
  1140. /*
  1141. * 1 - Beacon timer expired interrupt.
  1142. */
  1143. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1144. rt2x00lib_beacondone(rt2x00dev);
  1145. /*
  1146. * 2 - Rx ring done interrupt.
  1147. */
  1148. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1149. rt2x00pci_rxdone(rt2x00dev);
  1150. /*
  1151. * 3 - Atim ring transmit done interrupt.
  1152. */
  1153. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1154. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1155. /*
  1156. * 4 - Priority ring transmit done interrupt.
  1157. */
  1158. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1159. rt2500pci_txdone(rt2x00dev, QID_AC_BE);
  1160. /*
  1161. * 5 - Tx ring transmit done interrupt.
  1162. */
  1163. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1164. rt2500pci_txdone(rt2x00dev, QID_AC_BK);
  1165. return IRQ_HANDLED;
  1166. }
  1167. /*
  1168. * Device probe functions.
  1169. */
  1170. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1171. {
  1172. struct eeprom_93cx6 eeprom;
  1173. u32 reg;
  1174. u16 word;
  1175. u8 *mac;
  1176. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1177. eeprom.data = rt2x00dev;
  1178. eeprom.register_read = rt2500pci_eepromregister_read;
  1179. eeprom.register_write = rt2500pci_eepromregister_write;
  1180. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1181. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1182. eeprom.reg_data_in = 0;
  1183. eeprom.reg_data_out = 0;
  1184. eeprom.reg_data_clock = 0;
  1185. eeprom.reg_chip_select = 0;
  1186. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1187. EEPROM_SIZE / sizeof(u16));
  1188. /*
  1189. * Start validation of the data that has been read.
  1190. */
  1191. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1192. if (!is_valid_ether_addr(mac)) {
  1193. DECLARE_MAC_BUF(macbuf);
  1194. random_ether_addr(mac);
  1195. EEPROM(rt2x00dev, "MAC: %s\n",
  1196. print_mac(macbuf, mac));
  1197. }
  1198. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1199. if (word == 0xffff) {
  1200. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1201. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1202. ANTENNA_SW_DIVERSITY);
  1203. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1204. ANTENNA_SW_DIVERSITY);
  1205. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1206. LED_MODE_DEFAULT);
  1207. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1208. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1209. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1210. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1211. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1212. }
  1213. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1214. if (word == 0xffff) {
  1215. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1216. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1217. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1218. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1219. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1220. }
  1221. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1222. if (word == 0xffff) {
  1223. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1224. DEFAULT_RSSI_OFFSET);
  1225. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1226. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1227. }
  1228. return 0;
  1229. }
  1230. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1231. {
  1232. u32 reg;
  1233. u16 value;
  1234. u16 eeprom;
  1235. /*
  1236. * Read EEPROM word for configuration.
  1237. */
  1238. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1239. /*
  1240. * Identify RF chipset.
  1241. */
  1242. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1243. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1244. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1245. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1246. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1247. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1248. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1249. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1250. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1251. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1252. return -ENODEV;
  1253. }
  1254. /*
  1255. * Identify default antenna configuration.
  1256. */
  1257. rt2x00dev->default_ant.tx =
  1258. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1259. rt2x00dev->default_ant.rx =
  1260. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1261. /*
  1262. * Store led mode, for correct led behaviour.
  1263. */
  1264. #ifdef CONFIG_RT2500PCI_LEDS
  1265. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1266. rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
  1267. rt2x00dev->led_radio.type = LED_TYPE_RADIO;
  1268. rt2x00dev->led_radio.led_dev.brightness_set =
  1269. rt2500pci_brightness_set;
  1270. rt2x00dev->led_radio.led_dev.blink_set =
  1271. rt2500pci_blink_set;
  1272. rt2x00dev->led_radio.flags = LED_INITIALIZED;
  1273. if (value == LED_MODE_TXRX_ACTIVITY) {
  1274. rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
  1275. rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
  1276. rt2x00dev->led_qual.led_dev.brightness_set =
  1277. rt2500pci_brightness_set;
  1278. rt2x00dev->led_qual.led_dev.blink_set =
  1279. rt2500pci_blink_set;
  1280. rt2x00dev->led_qual.flags = LED_INITIALIZED;
  1281. }
  1282. #endif /* CONFIG_RT2500PCI_LEDS */
  1283. /*
  1284. * Detect if this device has an hardware controlled radio.
  1285. */
  1286. #ifdef CONFIG_RT2500PCI_RFKILL
  1287. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1288. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1289. #endif /* CONFIG_RT2500PCI_RFKILL */
  1290. /*
  1291. * Check if the BBP tuning should be enabled.
  1292. */
  1293. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1294. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1295. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1296. /*
  1297. * Read the RSSI <-> dBm offset information.
  1298. */
  1299. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1300. rt2x00dev->rssi_offset =
  1301. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1302. return 0;
  1303. }
  1304. /*
  1305. * RF value list for RF2522
  1306. * Supports: 2.4 GHz
  1307. */
  1308. static const struct rf_channel rf_vals_bg_2522[] = {
  1309. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1310. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1311. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1312. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1313. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1314. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1315. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1316. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1317. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1318. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1319. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1320. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1321. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1322. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1323. };
  1324. /*
  1325. * RF value list for RF2523
  1326. * Supports: 2.4 GHz
  1327. */
  1328. static const struct rf_channel rf_vals_bg_2523[] = {
  1329. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1330. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1331. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1332. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1333. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1334. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1335. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1336. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1337. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1338. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1339. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1340. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1341. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1342. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1343. };
  1344. /*
  1345. * RF value list for RF2524
  1346. * Supports: 2.4 GHz
  1347. */
  1348. static const struct rf_channel rf_vals_bg_2524[] = {
  1349. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1350. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1351. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1352. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1353. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1354. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1355. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1356. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1357. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1358. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1359. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1360. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1361. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1362. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1363. };
  1364. /*
  1365. * RF value list for RF2525
  1366. * Supports: 2.4 GHz
  1367. */
  1368. static const struct rf_channel rf_vals_bg_2525[] = {
  1369. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1370. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1371. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1372. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1373. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1374. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1375. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1376. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1377. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1378. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1379. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1380. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1381. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1382. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1383. };
  1384. /*
  1385. * RF value list for RF2525e
  1386. * Supports: 2.4 GHz
  1387. */
  1388. static const struct rf_channel rf_vals_bg_2525e[] = {
  1389. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1390. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1391. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1392. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1393. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1394. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1395. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1396. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1397. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1398. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1399. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1400. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1401. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1402. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1403. };
  1404. /*
  1405. * RF value list for RF5222
  1406. * Supports: 2.4 GHz & 5.2 GHz
  1407. */
  1408. static const struct rf_channel rf_vals_5222[] = {
  1409. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1410. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1411. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1412. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1413. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1414. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1415. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1416. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1417. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1418. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1419. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1420. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1421. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1422. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1423. /* 802.11 UNI / HyperLan 2 */
  1424. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1425. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1426. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1427. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1428. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1429. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1430. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1431. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1432. /* 802.11 HyperLan 2 */
  1433. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1434. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1435. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1436. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1437. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1438. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1439. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1440. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1441. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1442. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1443. /* 802.11 UNII */
  1444. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1445. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1446. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1447. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1448. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1449. };
  1450. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1451. {
  1452. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1453. u8 *txpower;
  1454. unsigned int i;
  1455. /*
  1456. * Initialize all hw fields.
  1457. */
  1458. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1459. IEEE80211_HW_SIGNAL_DBM;
  1460. rt2x00dev->hw->extra_tx_headroom = 0;
  1461. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1462. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1463. rt2x00_eeprom_addr(rt2x00dev,
  1464. EEPROM_MAC_ADDR_0));
  1465. /*
  1466. * Convert tx_power array in eeprom.
  1467. */
  1468. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1469. for (i = 0; i < 14; i++)
  1470. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1471. /*
  1472. * Initialize hw_mode information.
  1473. */
  1474. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1475. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1476. spec->tx_power_a = NULL;
  1477. spec->tx_power_bg = txpower;
  1478. spec->tx_power_default = DEFAULT_TXPOWER;
  1479. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1480. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1481. spec->channels = rf_vals_bg_2522;
  1482. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1483. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1484. spec->channels = rf_vals_bg_2523;
  1485. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1486. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1487. spec->channels = rf_vals_bg_2524;
  1488. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1489. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1490. spec->channels = rf_vals_bg_2525;
  1491. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1492. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1493. spec->channels = rf_vals_bg_2525e;
  1494. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1495. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1496. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1497. spec->channels = rf_vals_5222;
  1498. }
  1499. }
  1500. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1501. {
  1502. int retval;
  1503. /*
  1504. * Allocate eeprom data.
  1505. */
  1506. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1507. if (retval)
  1508. return retval;
  1509. retval = rt2500pci_init_eeprom(rt2x00dev);
  1510. if (retval)
  1511. return retval;
  1512. /*
  1513. * Initialize hw specifications.
  1514. */
  1515. rt2500pci_probe_hw_mode(rt2x00dev);
  1516. /*
  1517. * This device requires the atim queue
  1518. */
  1519. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1520. /*
  1521. * Set the rssi offset.
  1522. */
  1523. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1524. return 0;
  1525. }
  1526. /*
  1527. * IEEE80211 stack callback functions.
  1528. */
  1529. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1530. u32 short_retry, u32 long_retry)
  1531. {
  1532. struct rt2x00_dev *rt2x00dev = hw->priv;
  1533. u32 reg;
  1534. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1535. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1536. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1537. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1538. return 0;
  1539. }
  1540. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1541. {
  1542. struct rt2x00_dev *rt2x00dev = hw->priv;
  1543. u64 tsf;
  1544. u32 reg;
  1545. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1546. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1547. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1548. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1549. return tsf;
  1550. }
  1551. static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
  1552. {
  1553. struct rt2x00_dev *rt2x00dev = hw->priv;
  1554. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1555. struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
  1556. struct queue_entry_priv_pci *entry_priv;
  1557. struct skb_frame_desc *skbdesc;
  1558. struct txentry_desc txdesc;
  1559. u32 reg;
  1560. if (unlikely(!intf->beacon))
  1561. return -ENOBUFS;
  1562. entry_priv = intf->beacon->priv_data;
  1563. /*
  1564. * Copy all TX descriptor information into txdesc,
  1565. * after that we are free to use the skb->cb array
  1566. * for our information.
  1567. */
  1568. intf->beacon->skb = skb;
  1569. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  1570. /*
  1571. * Fill in skb descriptor
  1572. */
  1573. skbdesc = get_skb_frame_desc(skb);
  1574. memset(skbdesc, 0, sizeof(*skbdesc));
  1575. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  1576. skbdesc->data = skb->data;
  1577. skbdesc->data_len = skb->len;
  1578. skbdesc->desc = entry_priv->desc;
  1579. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1580. skbdesc->entry = intf->beacon;
  1581. /*
  1582. * Disable beaconing while we are reloading the beacon data,
  1583. * otherwise we might be sending out invalid data.
  1584. */
  1585. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1586. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  1587. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  1588. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1589. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1590. /*
  1591. * Enable beacon generation.
  1592. * Write entire beacon with descriptor to register,
  1593. * and kick the beacon generator.
  1594. */
  1595. memcpy(entry_priv->data, skb->data, skb->len);
  1596. rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
  1597. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
  1598. return 0;
  1599. }
  1600. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1601. {
  1602. struct rt2x00_dev *rt2x00dev = hw->priv;
  1603. u32 reg;
  1604. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1605. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1606. }
  1607. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1608. .tx = rt2x00mac_tx,
  1609. .start = rt2x00mac_start,
  1610. .stop = rt2x00mac_stop,
  1611. .add_interface = rt2x00mac_add_interface,
  1612. .remove_interface = rt2x00mac_remove_interface,
  1613. .config = rt2x00mac_config,
  1614. .config_interface = rt2x00mac_config_interface,
  1615. .configure_filter = rt2x00mac_configure_filter,
  1616. .get_stats = rt2x00mac_get_stats,
  1617. .set_retry_limit = rt2500pci_set_retry_limit,
  1618. .bss_info_changed = rt2x00mac_bss_info_changed,
  1619. .conf_tx = rt2x00mac_conf_tx,
  1620. .get_tx_stats = rt2x00mac_get_tx_stats,
  1621. .get_tsf = rt2500pci_get_tsf,
  1622. .beacon_update = rt2500pci_beacon_update,
  1623. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1624. };
  1625. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1626. .irq_handler = rt2500pci_interrupt,
  1627. .probe_hw = rt2500pci_probe_hw,
  1628. .initialize = rt2x00pci_initialize,
  1629. .uninitialize = rt2x00pci_uninitialize,
  1630. .init_rxentry = rt2500pci_init_rxentry,
  1631. .init_txentry = rt2500pci_init_txentry,
  1632. .set_device_state = rt2500pci_set_device_state,
  1633. .rfkill_poll = rt2500pci_rfkill_poll,
  1634. .link_stats = rt2500pci_link_stats,
  1635. .reset_tuner = rt2500pci_reset_tuner,
  1636. .link_tuner = rt2500pci_link_tuner,
  1637. .write_tx_desc = rt2500pci_write_tx_desc,
  1638. .write_tx_data = rt2x00pci_write_tx_data,
  1639. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1640. .fill_rxdone = rt2500pci_fill_rxdone,
  1641. .config_filter = rt2500pci_config_filter,
  1642. .config_intf = rt2500pci_config_intf,
  1643. .config_erp = rt2500pci_config_erp,
  1644. .config = rt2500pci_config,
  1645. };
  1646. static const struct data_queue_desc rt2500pci_queue_rx = {
  1647. .entry_num = RX_ENTRIES,
  1648. .data_size = DATA_FRAME_SIZE,
  1649. .desc_size = RXD_DESC_SIZE,
  1650. .priv_size = sizeof(struct queue_entry_priv_pci),
  1651. };
  1652. static const struct data_queue_desc rt2500pci_queue_tx = {
  1653. .entry_num = TX_ENTRIES,
  1654. .data_size = DATA_FRAME_SIZE,
  1655. .desc_size = TXD_DESC_SIZE,
  1656. .priv_size = sizeof(struct queue_entry_priv_pci),
  1657. };
  1658. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1659. .entry_num = BEACON_ENTRIES,
  1660. .data_size = MGMT_FRAME_SIZE,
  1661. .desc_size = TXD_DESC_SIZE,
  1662. .priv_size = sizeof(struct queue_entry_priv_pci),
  1663. };
  1664. static const struct data_queue_desc rt2500pci_queue_atim = {
  1665. .entry_num = ATIM_ENTRIES,
  1666. .data_size = DATA_FRAME_SIZE,
  1667. .desc_size = TXD_DESC_SIZE,
  1668. .priv_size = sizeof(struct queue_entry_priv_pci),
  1669. };
  1670. static const struct rt2x00_ops rt2500pci_ops = {
  1671. .name = KBUILD_MODNAME,
  1672. .max_sta_intf = 1,
  1673. .max_ap_intf = 1,
  1674. .eeprom_size = EEPROM_SIZE,
  1675. .rf_size = RF_SIZE,
  1676. .tx_queues = NUM_TX_QUEUES,
  1677. .rx = &rt2500pci_queue_rx,
  1678. .tx = &rt2500pci_queue_tx,
  1679. .bcn = &rt2500pci_queue_bcn,
  1680. .atim = &rt2500pci_queue_atim,
  1681. .lib = &rt2500pci_rt2x00_ops,
  1682. .hw = &rt2500pci_mac80211_ops,
  1683. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1684. .debugfs = &rt2500pci_rt2x00debug,
  1685. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1686. };
  1687. /*
  1688. * RT2500pci module information.
  1689. */
  1690. static struct pci_device_id rt2500pci_device_table[] = {
  1691. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1692. { 0, }
  1693. };
  1694. MODULE_AUTHOR(DRV_PROJECT);
  1695. MODULE_VERSION(DRV_VERSION);
  1696. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1697. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1698. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1699. MODULE_LICENSE("GPL");
  1700. static struct pci_driver rt2500pci_driver = {
  1701. .name = KBUILD_MODNAME,
  1702. .id_table = rt2500pci_device_table,
  1703. .probe = rt2x00pci_probe,
  1704. .remove = __devexit_p(rt2x00pci_remove),
  1705. .suspend = rt2x00pci_suspend,
  1706. .resume = rt2x00pci_resume,
  1707. };
  1708. static int __init rt2500pci_init(void)
  1709. {
  1710. return pci_register_driver(&rt2500pci_driver);
  1711. }
  1712. static void __exit rt2500pci_exit(void)
  1713. {
  1714. pci_unregister_driver(&rt2500pci_driver);
  1715. }
  1716. module_init(rt2500pci_init);
  1717. module_exit(rt2500pci_exit);